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Abstract

In this study lubrication theory is used to describe the stability and morphol-
ogy of the rim that forms as a thin polymer film dewets from a hydrophobized
silicon wafer. Thin film equations are derived from the governing hydrodynamic
equations for the polymer to enable the systematic mathematical and numerical
analysis of the properties of the solutions for different regimes of slippage and for
a range of time scales.

Dewetting rates and the cross sectional profiles of the evolving rims are de-
rived for these models and compared to experimental results. Experiments also
show that the rim is typically unstable in the spanwise direction and develops
thicker and thinner parts that may grow into “fingers”. Linear stability analysis
as well as nonlinear numerical solutions are presented to investigate shape and
growth rate of the rim instability. It is demonstrated that the difference in morphol-
ogy and the rate at which the instability develops can be directly attributed to the
magnitude of slippage. Finally, a derivation is given for the dominant wavelength
of the bulges along the unstable rim.

1 Introduction

Rim instabilities for thin liquid films that wet a solid substrate have been studied for
decades, both theoretically and experimentally [1, 2, 3, 4, 5, 6, 7, 8]. The mathematical
models typically exploit the large separation of length scales to obtain a simplified
thin film equations from the underlying Navier-Stokes equations in conjunction with
conservation of mass. For most wetting scenarios the type of boundary condition
at the liquid/solid interface typically enters only weakly and does not influence the
morphology or stability properties of the film, see for example [3, 7, 9, 10].

The picture is different when the thickness of the liquid is only on the scale of a few
hundred nanometers and placed on a hydrophobically coated substrate. This is the
situation for polymer films that dewet after they have been heated above the glass
transition temperature. This is the situation for experiments carried out by a number
groups [11, 12, 13, 14, 15] to name but a few. The dewetting begins after the de-
posited polymer films are heated above the glass transition temperature and holes
have formed, either spontaneously, through spinodal decomposition, or by nucleation.
The dewetting i.e. hole growth is driven by van-der-Waals forces that make it ener-
getically favourable to decrease the area of the substrate covered by the originally
deposited polymer film.
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In the beginning of the dewetting process, holes are formed that grow; the receding
liquid accumulates in a capillary rim at the perimeter of the hole. This rim increases
in width and height as the dewetting proceeds. While in some experiments the growth
of the hole continues until it collides with neighboring holes and then the remaining
ridges destabilize into droplets via a Rayleigh-Plateau instability [16, 17], in others the
rim of the hole destabilizes while it grows and gives rise to finger-like structures that
eventually pinch-off and from droplets. Such finger-like instabilities have also been
observed for planar as opposed to axisymmetric dewetting, see [11, 18, 19, 20, 21,
22, 23] and in other related situations [12, 13, 13, 24, 25, 26, 27, 28, 29, 30, 31].

The effect of slippage on the shape and dewetting rate was first investigated in [14,
32]. Scaling arguments were used to predict that for substantial slip at the liquid/solid
interface, the position of the contact line follows a t2/3 law in contrast to a linear be-
havior in the no-slip situation. The size dependence of the dewetting rate in the slip
case was further explored in [33], where the authors suggest and give experimental
evidence that this has a strong positive effect on promoting the fingering instability. For
the early stages of rupture, the effect of different magnitudes of slip was investigated
in [34].

Moreover experimental results by Fetzer et al. [15] show that there is a transition of
the cross section of the rim from an oscillatory decay to a montone decay towards
the undisturbed (wet) side of the rim, simply by changing the hydrophobic coating.
This was explained to be due to the difference in magnitude of the interfacial slippage
of the liquid and the coating in [15, 27], followed by a quantitative comparison with
theoretical predictions [35] on the basis of thin film equations derived asymptotically
from the underlying Navier-Stokes equations. In addition, in [36, 37] it was shown that
viscoelastic effects alone using the Jeffreys model cannot explain this morphological
transition.

In order to systematically investigate the impact of slippage on the dynamics and
morphology of dewetting films Fetzer et al., Bäumchen et al. [15, 35, 38, 39] and Mar-
quant et al. [40] used, as a model system, Polystyrene (PS) below the entanglement
length, dewetting from a silicon/silicon oxide wafer that has been treated with coat-
ings of either self-assembled monolayers of Octadecyltrichlorosilane (OTS) or Dode-
cyltrichlorosilane (DTS) or of spin coated amorphous AF 1600 Teflon. Both hole and
planar (trench) dewetting were investigated.

In this paper we present our theory for these nano- and microfluidic phenomena on
the basis of the presence of interfacial slippage. Building on our past work we aim
here to present a comprehensive picture in form of a continuum theory that connects
the experimental observations and relates them to the dominant physical forces that
interact on these scales. In particular, we summarize our previous results on the shape
of the cross sections of the evolving rims and expand our mathematical approach to
the “finger” instability to give an estimate of the dominant wavelength.
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2 Mathematical models

The dewetting process described in the introduction represents a slow laminar flow
of a very viscous polymer. The polymer is assumed to be below the entanglement
length allowing us to assume that elastic effects do not pay a role. The governing
equations describing this dewetting process are given by the Navier-Stokes equations
for viscous incompressible flow of a fluid layer on 0 ≤ Z ≤ H(X, Y, T ) with

ρ (∂TU + U · ∇U) = −∇(P + F ′(H)) + µ∇2
U, (2.1)

∇ · U = 0. (2.2)

Here, U = (U(X, Y, Z, T ), V (X, Y, Z, T ), W (X, Y, Z, T )) denotes the velocity field,
P = P (X, Y, Z, T ) the pressure field, ρ the density, µ the viscosity and F ′(H) =
dF/dH the contribution due to an intermolecular potential F (H).

The boundary conditions at the free surface Z = H(X, Y, T ), are given by the kine-
matic condition

∂T H = −∇XY ·

∫ H

0

UXY dZ, (2.3)

and the normal and tangential stress conditions

n · (τ − P I) · n = 2σκ , t · (τ − P I) · n = 0 , (2.4)

with constant surface tension σ, respectively. We denote ∇XY = (∂X , ∂Y ), UXY =
(U, V ) and define the normal and tangential vectors by

n =
(−∇XY H, 1)

(

1 + (∇XY H)2
)1/2

and t =
1

(

(∇XY H)2
[

1 + (∇XY H)2
])1/2

(

∇XY H
(∇XY H)2

)

(2.5)
The local mean curvature is then given by κ = ∇XY · n. In a Newtonian flow τ is
proportional to the strain rate, i.e. τ = µγ̇, where γ̇ij = ∂iUj + ∂jUi.

The driving forces of the dewetting are intermolecular forces and is described by an
effective interface potential, that consists of long-range attractive van der Waals con-
tributions and a short range Born repulsion term that penalizes the thinning of the film
below a minimum threshold H∗. The experimental situation as given in [41, 42], where
a silicon wafer, that is coated with a native SiO layer of thickness dSiO, which is coated
by another hydrophobic layer of DTS, OTS or AF 1600 Teflon of thickness dc, leads to
the potential [41]

F (H) =
Cc

H8
−

Ac

12πH2
+

Ac − ASiO

12π(H + dc)2
+

ASiO − ASi

12π(H + dc + dSiO)2
(2.6)

The constant Cc denotes the strength of the short range repulsion and ASi , ASiO , Ac

denote the Hamaker constants of polystyrene with the different substrate layers, Si,
SiO and the hydrophobic coating, respectively.
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It turns that for dewetting scenarios discussed here, the last two terms can be ne-
glected with little or no change to the numerical and asymptotic results. Therefore, we
will mostly use the simpler two-term potential

F (H) =
Cc

H8
−

Ac

12πH2
, (2.7)

and occasionally the three-term variant

F (H) =
Cc

H8
−

Ac

12πH2
+

ASiO − ASi

12π(H + dc + dSiO)2
(2.8)

where the third term has been dropped since in the experiments we consider here
Ac ≈ ASiO.

For the boundary conditions at the solid surface at Z = 0 we require impermeability.
The central assumption on the non-Newtonian behaviour or complex nature of the
dewetting polymer, is essentially contained in a thin layer between the polymer film
and the substrate, that is hydrophobically coated with a self-assembled monolayer,
here OTS and DTS. Specifically, it is argued in [43] and extended further in [44],
that due to a coil-stretch transition of the chains of a self-assembled monolayer, an
unusually high slippage may be expected due to the resulting decrease of viscosity
there. In our continuum formulation we approximate this by an effective slip boundary
condition, the Navier slip condition

U = B ∂ZU, (2.9)

and investigate the changes in the solution, their morphology and stability properties,
as the slip length parameter B varies by several orders of magnitude.

We nondimensionalize the problem by introducing the scales

Z = H z, X = L x, Y = L y, H = H h, B = H b,
U = U u, V = U v, W = W w, T = H

W
t, P + F ′ = P p,

F ′ = P φ′.
(2.10)

and note that for the thin film flows such as considered here it is typically of great
advantage to use the fact that the ratio of the characteristic length scales in the
vertical and lateral directions of the evolving film profiles is small, i.e. we assume
εlub = L /H ≪ 1. This simplifies the governing equations so that the remaining
problems can be integrated with respect to Z to obtain dimension-reduced thin film
equations for the profile H(X, Y, T ).

In fact, a family of closed form thin film equations was derived in the asymptotic limit
of small εlub for various orders of magnitude of the slip length [27]. Two distinguished
limits were established. They essentially go back to the different balances in the gov-
erning equations that are required for the flow fields corresponding to the order of
magnitude of the slip length. For small slip lengths the flow field has a parabolic profile
(see figure 1, left)and the horizontal pressure gradients balances the most dominant

4



0

H

Z

X

B B = ∞

Figure 1: Sketch of flow profiles for increasing slippage.

viscous contribution, while for very large slip length the constant flow field typical for
plug flow (see figure 1, right) requires the balance of the vertical pressure gradient
with the dominant viscous term. The distinguished limits are

the weak-slip regime:

∂th = −∇ ·
[(

h3 + bh2
)

∇ · (△h − φ′(h))
]

. (2.11)

with the limiting case b = 0; i.e. the well-known no-slip lubrication equation.

The strong-slip regime, a coupled system of equations for the horizontal velocities
u(x, y, t), v(x, y, t) and the film profile h(x, y, t)

Re
du

dt
=

1

h
[∂x (4h∂xu + 2h∂yv) + ∂y (h∂xv + h∂yu)] + ∂x [∆h + φ′(h)] −

u

hβ
,

(2.12)

Re
dv

dt
=

1

h
[∂y (4h∂yv + 2h∂xu) + ∂x (h∂xv + h∂yu)] + ∂y [∆h + φ′(h)] −

v

hβ
,

(2.13)

∂th = −∂x (h u) − ∂y (h v) , (2.14)

where we denote the total derivative by d/dt = ∂t + u ∂x + v ∂y, the Laplace operator
by ∆ = ∂2

x + ∂2
y and Re= ρU L /µ is the Reynolds number. For this model the slip

length is large and of order b = β/ε2
lub. By choosing

Both models use the non-dimensionalized form of the two-term intermolecular poten-
tial (2.7),

φ(h) =
1

8(h/ε)8
−

1

2(h/ε)2
, (2.15)

or of the three-term potential (2.8),

Φ(h) =
a1

8(h/ε)8
−

a2

2(h/ε)2
+

a3

((h/ε) + d)3
, (2.16)

with
a1 = 1.014, a2 = 1.014, a3 = 7.465 and d = 25.34,
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where ε = Hmin/H , and Hmin is the thickness where each of the dimensional poten-
tials (2.7) or (2.8) achieves its minimum value.

In [27] a detailed derivation of these thin film models is given in two dimensions.
The generalization to three dimensions, presented here is a rather straight forward
extension of that analysis.

The strong-slip regime and the weak-slip regime have as the limiting case a regime,
where the slip-length is intermediate to both of them

∂th = −∇ ·
[

h2 ∇ · (△h − φ′(h))
]

(2.17)

and called the intermediate-slip regime. This regime is obtained for slip lengths b =
O(β/εlub).

We note that for the highly viscous flows considered here, the Reynolds number is
extremely small and inertial effects will be neglected in the rest of the paper.

3 Cross sections of rims

Shortly after the dewetting has begun, liquid polymer will accumulate near the dewet-
ting front and leads eventually to the formation of a rim that merges into the undis-
turbed film leaving behind a film of minimal thickness H∗. This rim typically attains
a specific shape before it undergoes a Rayleigh-Plateau type instability along the
dewetting front. We will next give an overview of the possible cross sectional shapes
for the various regimes and demonstrate that the cross sectional shape of the rim
directly depends on and quantitatively reflects the size of the slip length. Recent ex-
perimental results on the long-time profiles of the cross section of the rims for different
hydrophobic coatings are shown for comparison.

3.1 No-slip case

Most well-known is the no-slip case. The evolution of the liquid film profile is given by
the one-dimensional version of (2.11) with b = 0,

∂th = −∂x

[

h3∂x

(

∂xxh − ε−1Φ′(h/ε)
)]

, (3.1)

where we use he normalized potential Φ(h/ε) = φ(h) and ε = H∗/H , together with
the far-field conditions

lim
x→−∞

h(x, t) = ε and lim
x→∞

h(x, t) = 1. (3.2)

Let us denote by s(t) the position of the dewetting front towards the dewetted side
and by s(t) + w(t) the position of the front merging into the undisturbed film, i.e. w(t)
denotes the width of the growing rim, see the figure 2.
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h=ε

Region I Region II

Region III h=1
s(t) (t) ws(t)+

Figure 2: Sketch of rim profile.

As is well-known, without slip the dewetting velocity depends singularly on the residual
film thickness ε, i.e. if x = s(t) denotes the position of the dewetting front then ṡ ∼
1/ ln(1/ε) → 0 as ε → 0, see e.g. [45]. The detailed matched asymptotic argument by
Flitton and King [45], extended by Münch et al. [27] to take into account the effective
interface potential, show that in the latter case, by matching the regions I to III to
region II in figure 2, the following asymptotic formlua for the position can be derived

s(t) ∼ δ̄t
(tan θ)3

3(δ̄ log t + 1)
, where δ̄ = 1/ ln(1/ε) (3.3)

and θ is the contact angle, defined by tan(θ) =
√

−2Φ(1), where Φ(1) < 0. The
leading order solution for the rim profiles has the parabolic form [45],

h(x, t) =
6s(t)

w(t)3
(x − s(t))(s(t) + w(t) − x), (3.4)

where the width of the rim satisfies

w(t) ∼ δ̄1/2t1/2 22/3 tan θ

(δ̄ log t)1/6(1 + δ̄ log t)1/3
(3.5)

and the slope of the profile at the dewetting front as t → ∞, the slope of the profile is

∂xh(s(t), t) =
6s

w2
= 21/3 (δ̄ log t)1/3

1 + (δ̄ log t)1/3
tan θ.

i.e. it asymptotes to a value that is 21/3 times the slope of a static contact angle.

3.2 Intermediate-slip case

For the intermediate-slip case the problem for the cross-sectinal profile reads

∂th = −∂x

[

h2∂x

(

∂xxh − ε−1Φ′(h/ε)
)]

, (3.6)

together with boundary conditions

lim
x→−∞

h(x, y, t) = ε and lim
x→∞

h(x, y, t) = 1 . (3.7)
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Figure 3: (a) Evolution of the dewetting rim profile obtained by solving (3.6), (3.7), with
the intermolecular potential (2.16) and ǫ = 0.04. (b) The same rim profiles rescaled
as explained in the text, using the same line styles as on the left. The fourth profile,
shown by open circles, corresponds to the solutions ϕ of (3.9), (3.10).

As for the no-slip case a matched asymptotic argument has been carried out to yield
an expression for the position of the dewetting front, see [27]

s(t) =

(

3

2

)2/3

0.0272 (tan θ)5/3 t2/3 . (3.8)

The corresponding rim shape is obtained from a matched asymptotics analysis for
(3.6), (3.7), which yields the leading order outer problem [45]

ϕϕ′′′ = 1 , where ′ = d/dξ , (3.9)

and boundary conditions

ϕ = 0 , ϕ′ = 1 , ϕ2ϕ′′′ = 0 at ξ = 0, (3.10)

ϕ ∼ 2 (2/3)1/2 (d − ξ)3/2 as ξ → d .

Here, the profile has been rescaled according to

h = (λ3/ṡ)ϕ, x = (λ2/ṡ)ξ + s−, s+ = (λ2/ṡ)d + s− . (3.11)

The problem (3.9), (3.10) has been investigated before by Boatto et al. [46] where it
was found that solutions exist if d = 1/2. Solving the problem (3.6), (3.7) numerically
for a long time we find that eventually the solutions approach a universal shape ϕ that
is given by the solution of the asymptotic ODE problem (3.9), (3.10).

Indeed, this can be seen most clearly when the profiles are shifted to the same lateral
position and rescaled to have a maximum height of one,

h =
maxx(h(x, t))

maxξ(ϕ(ξ))
ϕ x =

maxx(h(x, t))

λ maxξ(ϕ(ξ))
ξ. (3.12)
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The lateral length scale is found from the scaling for h and (3.11). The result is shown
in figure 3(b). We clearly see that the rescaled solutions of the full lubrication model
converge in time to a universal shape given by the solution ϕ of (3.9), (3.10).

Interestingly, the results show that the rim is asymmetric with respect to the vertical
axis going through the maximum of the rim. The width of the portion to the right of this
axis is about 3/2 the width of the portion to the left. Later in this section we will make
comparisons of these rim shapes with long-time experiments for PS dewetting from
the DTS coated silicon/silicon oxide wafer.

Another important observation is the fact that dewetting rates of the rim for the intermediate-
slip regime is ṡ(t) ∼ t−1/3, which means that as the rim grows it will slow down. This
is in contrast to the situation for no-slip and also for very large slip in the strong-slip
regime, where the dewetting rate is almost constant (as explained in the previous and
the following section). This property has important implications for our discussion of
the rim instability further below.

3.3 Strong-slip case

The experiments by Fetzer et al. [15] on the transition in the cross sectional shape of
the rim for different hydrophobic coatings, focussed on the rim shapes of PS dewetting
on OTS and on DTS after their dewetting fronts have travelled the same distance and
so have accumulated and transported the same volume of liquid. To ensure that the
bulk material properties of PS were not altered, the temperature was kept constant.
Nevertheless, the dewetting of DTS was much faster than for OTS, and while on the
OTS coating the spatial decay of the rim onto the rim was oscillatory, it was monotonic
on DTS. The changes in the rim profile was explained with the difference in friction
betwen the liquid PS and the coating layer which is reflected, in our continuum formu-
lation, by large differences in slippage. The effect of grafted brushes on the amount
of slippage/friction at the interface between a solid substrate and a polymer liquid has
been attributed to a coil-stretch transition [32, 44]. It is therefore plausible that the dif-
ferent chain lengths of the otherwise chemically identical OTS and DTS brushes could
be the reason the difference of the apparent slippage inferred from the experimental
observations of the cross sectional rim shape.

However, the thin film models for weak- and intermediate-slip show rim profiles that
always have oscillatory decaying tails. Moreover, it was shown in [36, 37] that including
viscoelacticity into the film models will not lead to rim tails having montone decay.

The transition from an oscillatory to a monotonic profile only occurs for large enough
slip-lengths, where the strong-slip model is valid; rim profiles for the intermediate and
weak-slip models, profiles always show decaying oscillations. This is also true if vis-
coelasticity is included, i.e. profiles will have a monotonically decaying profile only if
enough slippage is present [36, 37].

The transition can be observed most easily via a linear stability analysis about the
undisturbed flat film h = 1, u = 0. For this purpose, we shift the lateral x coordinate
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Figure 4: Left: Rim profiles of 130 nm PS films on DTS and OTS coated Si/SiO wafers
at constant temperature T = 120◦C (the inset depicts a semilog plot of |h(x) − H|).
Profiles are shown with the dewetting front shifted into the origin. While PS on OTS
show rim profiles with oscillatory decay of the rim, the rim of PS on DTS has a mono-
tone decay.(By courtesy of Karin Jacobs, Saarland University). Right: Rim profiles
for different slip lengths b non-dimensionalized with H = 130 nm. The inset shows a
semilog plot of max (|h(x) − H|, 10−5).

to the frame moving with the rim ξ = x − s(t) and introduce a small (δ ≪ 1) normal
modes perturbation of the flat state,

h(x, t) = 1 + δh1e
ωξ , u = δv1e

ωξ . (3.13)

The exponent ω must have negative real part to ensure spatial decay. The order O(δ)
problem results in a third order polynomial equation for ω. The solutions with negative
real part are complex exactly if the discriminant

D = 1 −
44ṡ2

33
β (3.14)

is positive, thus indicating oscillatory decay in particular for small β → 0. Increasing
the slip parameter increases ṡ and therefore decreases D until it becomes negative
so that we see a transition to a monotonic decay.

For the data supplied by the experiment in Fetzer et al. [15] the numerical solutions
of the one dimensional, inertialess version of (2.12) confirms the prediction from the
linear stability analysis, see figure 4.

Interestingly, the transition in the profile can also be obtained for the same hydropho-
bic coating by increasing the temperature and thereby reducing the viscosity, thus
changing the value of ṡ, provided the amount of slippage is in the proper range. More-
over, we note that the above analysis can be refined by linearizing the full Stokes
model instead of the thin film equation and has led to a new method for determining
the slip length from experimental measurements of the profile [35].

3.4 Long-time evolution of rims

An interesting recent observation by Marquant e al. [40] was that a PS film of 130
nm thickness dewetting from a DTS coated silicon wafer eventually also develops

10



rim tails with oscillating decay. In this experiment the dewetting was initialted with a
straight contact line. The evolution of the rim was monitored while the area of the cross
section increased by several orders of magnitude (figure 5). The initially monotonic
decay of the rim profile eventually develops oscillations (figure 6). Moreover, when the
profiles are shifted such that they all start at the origin, scaled so that the maxima of
their height is one and the horizontal scale accordingly the profiles assume a universal
asymmetric shape for large time, that resembles the large-time asymptotic profile we
found for the intermediate-slip regime (figure 3(b)). If the location of the maxima is
scaled to 0.2 one obtains the signature of the rim shapes for the intermediate-slip
regime, where the width on the right side of the maximum is 3/2 the width of the left
side, shown in figure 5(right).
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53903

he
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 / 
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distance s  from the contact line / µm
0.0 0.2 0.4 0.6

0.0

0.2

0.4

0.6

0.8

1.0

h 

  

Figure 5: Left: Rim shapes of PS(10.3k) at 110oC of thickness 120(5) nm dewetting
from a DTS coated Si/SiO wafer. For easy comparison all dewetting fronts are shifted
to the origin. Rim shapes are monitored until the area of the rim has reached manyfold
its original area at the early stages of the dewetting. The legend indicates the time (in
seconds), the measurement of the rim took place. In order to distinguish the symbols
for the different curves, the density of points have been reduced. Right: Normalized
cross sections of the rims corresponding to t = 40(+), t = 490(×), t = 6620(�), t =
21503(⋆), t = 53903(•) to illustrate the approach to a universal shape. The heights are
all scaled to 1 and the widths accordingly. The limiting rim shape has an asymmetric
shape with respect to the vertical line through the maximum of the rim. The width to
the right of this line is 3/2 times the width to the left of this line. (By courtesy of Karin
Jacobs, Saarland University)

To explain this we recall first that due to the small height of the dewetting film the
magnitude of the slip length is not only comparable to, but it is many times larger
than the film thickness. If the rim or other structures have grown to much larger sizes
the relative size of the slip length will deacrease. In our mathematical model we non-
dimensionalized the slip length with the hight of the film. Hence we can expect that as
the rim grows we may pass from one slip regime to another.

We can demonstrate this behaviour and their corresponding rim shapes also by solv-
ing the one dimensional strong-slip equation numerically for long periods of time, ne-
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Figure 6: The same rims as in figure 5 for t = 2900, t = 12053 and t = 37703 shown
here in a semi-log plot of |H − H0| to emphasize the transition from monotone to
oscillatory decay of the rim tails, where H0 denotes the unperturbed film thickness.
(By courtesy of Karin Jacobs, Saarland University)

glecting inertial contributions. For every value of the slip-length parameter β, the po-
sition of the contact-line eventually approaches the power-law behaviour s(t) ∼ t2/3

that we also obtained numerically and asymptotically in the intermediate slip case
(figure 7(a)). Also, the spatial decay of the rim changes from monotonic to oscillatory
(figure 7(b)).

In particular for very large values of β, however, s(t) tends to a nearly linear behaviour
first before the exponent as determined in figure 7(a) decreases again. This suggests
at least that the evolution of the rim passes through several time regimes before even-
tually following the dynamics of the intermediate slip case. The different regimes were
identified and analyzed asymptotically by Evans et al. in the limit of large β. The re-
sults published in [47] confirm that in the first long-time regime 1 ≪ t ≪ β1/2/ log1/2 β,
the contact line position s(t) ∼ t/ log1/2 t, i.e. the dewetting rate is nearly constant. A
follow-up publication covering the later stages up to where s(t) follows the t2/3 power-
law behaviour is in preparation.

4 Stability analysis

In this section we argue that the tendency of the rim instability to develop preferably
on the side facing the dewetted area is captured by the intermediate slip model. It
has been argued already in [14, 48] that the dependence of the dewetting rate on
the rim size in the intermediate slip regime is also responsible for the asymmetric
growth of the instability. If one imagines a perturbation that creates thicker and thinner
regions in the dewetting rims, then this perturbation will be amplified, and in fact be
amplified asymmetrically, since thicker regions will dewet more slowly than the thinner
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Figure 7: (a) A log-log plot of the evolution of s(t) for the strong slip model with different
slip lengths β, using the intermolecular potential (2.16) with ε = 0.04. The bottom
thin dotted line is proportional to t2/3 to guide the eye. (b) We show the profiles for
β = 118.5e − 3 and ε = 0.02 at two different times, in a semilog of |h(x, t) − 1|.

ones and will be left behind, leading to finger-type protrusions on dewetted side of the
rim. This mechanism ist not present for the other regimes where the dewetting rate is
largely independent of the rim size. We revisit our earlier results on the linear stability
analysis for the no-slip and the intermediate slip regime. Then we show how these
results carry over into the nonlinear regime. Finally, we predict the dominant wave
length of the instability in the intermediate slip case.

4.1 Linear theory

For the theoretical describtion of the rim instability we use linear stability analysis and
consider the evolution of a small perturbation of the base state hb(x, t). Specifically,
we introduce the perturbation

h(x, y, t) = hb(x, t) + δhp(x, t) exp(iky)

into the thin film model, with δ ≪ 1 and retain only linear terms in δ. Note that while the
above ansatz is for a sinusoidal perturbation with a fixed but arbitrary wavenumber k, a
general perturbation can be obtained via the superposition principle for the linearized
problem using a range of wavenumbers (i.e. via Fouriertransform). Such a general
perturbation needs to be considered when discuss in section 4.3 the subtle issue of
how the dominant wavenumber is selected for this instability with a time-dependent
base state. Experiments by Jacobs et al. [40] and also by Gabriele et al. [49] suggest
that the wavelength of the finger pattern increases in time keeping a fixed ratio with
the growing width of the rim. We obtain for the linearized equation

∂hp

∂t
+ Lhp − k2

[

(hn
bhpx)x + hn

b

(

hpxx − ε−2Φ′′ (hb/ε)hp

)]

+ k4 hn
bhp = 0, (4.1)
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where

Lhp ≡
∂

∂x

[

nhn−1
b

(

hbxxx − ε−2Φ′′ (hb/ε)) hbx

)

hp − hn
b ε−2Φ′′ (hb/ε) hbxhp

+hn
b

(

hpxxx − ε−2Φ′′ (hb/ε) hpx

)]

(4.2)

for the no-slip model n = 3 and for the intermediate-slip model n = 2.

The main challenge in this stability problem is the time dependent base state. This
leads to coefficients of the spatial derivatives of hp in the linearized PDE that are not
time independent. Therefore, solutions for the linearized problem cannot be obtained
by separation of variables i.e. a classical normal modes approach. Instead, we solve
an initial value problem for (4.1), (4.2) for a fixed set of wavenumbers numerically,
in tandem with the equation for the base state, and observe how the perturbations
evolve in time.

The evolution is computed for a time interval [t0, t1] where t0 and t1 are the times
where the unperturbed front, more specifically, the left contact line regions, estimated
for the purpose of this subsection by the position of the turning point, has reached a
certain position.

An initial perturbation h(t) is introduced at time t0 using

hp(x, t0) =
∂hb

∂x
(x, t0), (4.3)

which corresponds to a ‘zig-zag’ perturbation, i.e. we perturb both sides of the ridge
in the same direction [50].
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Figure 8: The perturbation profile for wavelength l = 264.7 for the intermediate-slip
model (left) and the no-slip model(right), at different stages of its evolution, normalized
and shifted along the x-axis for better comparison. The labels 1, 2, 3 correspond to
the crosses in the inset, which indicate the position s(t) of the base state and the
amplification A(t) achieved by hp(x, t).

To describe the growth of bumps and eventually fingers in the rims, we use the ampli-
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fication A(t) of the perturbation with respect to the initial data,

A(t) ≡
maxx |hp(x, t)|

maxx |hp(x, t0)|
for t0 ≤ t ≤ t1. (4.4)

For each fixed wavelength, the perturbation grows as the dewetting proceeds, then it
reaches a maximum, after which it decays. Longer wavelengths achieve the maximal
amplification factor

Amax ≡ max
t≥t0

A(t)

at later stages of the dewetting, when the front has advanced further into the film
and the ridge of the base state has grown in size, suggesting that the most ampli-
fied wavelength correlates with the width of the ridge [25]. As was shown in [26] the
amplification factor grows much faster for the intermediate-slip model compared to
the no-slip case. But more significant is the comparison of the shape of the amplified
perturbation hp.

Figure 8 shows profiles of the perturbation hb for a fixed choice of k = 0.0237 at
different stages of amplification. For the intermediate-slip case, the initial perturbation
(given by (4.3)), has one pronounced maximum and a minimum and slowly evolves
into a new profile where the minimum is replaced by a relatively flat part even after
the maximum amplification has been achieved. This is in contrast to the no-slip case,
where a second bump is created, suggesting a more symmetric shape of the evolving
instability.

4.2 Nonlinear dynamics

Our numerical simulations of the full nonlinear no-slip and intermediate-slip models
show that small perturbations lead to a visible formation of fingers or bulges once the
nonlinearities become important. In addition, the symmetric/asymmetric shapes pre-
dicted by linear stability analysis for the no-slip/intermediate-slip case persists upon
entry into the nonlinear regime.

To show this we solve the full non-linear two-dimensional problem together with a
perturbed base state as initial data, with a monochromatic perturbation, h(x, y, t0) =
hb(x, t) + δhp(x, t0)cos(qy) and hp(x, t0) = ∂xhb(x, t0). The numerical method used
here is an extension of an ADI-code for higher order PDE [51, 52]. In the y-direction
periodic boundary conditions were used and sufficiently large x-domains so that the
film profile achieved its far-field values ε and 1. For the intermediate-slip case we
see an amplification of the perturbation that eventually leads to fingers (figure 9).
Moreover, we observe that the back side of the rim, i.e. the side facing the thick film
coating the wafer, is fairly flat, despite the prominent ‘fingers’ that have formed at
the dewetting front, and the saddle point and maximum (S and M) are shifted along
the x-axis. The plots shown here correspond to an amplication of 480 of the initial
perturbation.
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Figure 9: Top: Surface plot and contour lines for h(x, y, t) for the slip case at time
t = 93 × 103 (corresponding to s(t) = 685) and perturbation wavelength l = 265. M
and S denote the location of the maxima and the saddle point, respectively. Bottom:
Surface plot and contour lines for h(x, y, t) for the no-slip case at time t = 104 × 103

(corresponding to s(t) = 2.68 × 103) and perturbation wave length l = 446. M and S
denote the location of the maxima and the saddle point, respectively.

In the no-slip case, the amplification achieved for the same wavelengths was much
smaller, in fact quite close to the one obtained for linear theory of about 50. The
surface plot of the rim appears to be practically unchanged. We therefore include
here a surface plot and contour lines for a longer wavelength. For this wavelength, a
higher amplification of about 600 is achieved but only at a fairly late stage, where the
base state has also become rather large. Hence, the net effect of the corrugation on
the ridge still appears to be smaller than in the slip case. Moreover, the contour plots
show that the undulations are symmetric. Also the line connecting the saddle point
and the maximum (S and M) is very much aligned with the y-direction.

We conclude that the ridge tends to develop a sequence of thinner and thicker parts
like in the varicose mode for static rim destabilisation, rather than forming pronounced
fingers that protrude into the dewetted area; this is in accordance with our results for
the linear theory.

4.3 Wavelength for the intermediate-slip model

So far, we have used numerical simulations of the linearized intermediate slip lu-
brication model to investigate the stability or instability of perturbations with a fixed
wavenumber k. It would be desirable to make quantitative statements that involve
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perturbations of arbitrary wavenumber and of arbitrary superposition of such per-
turbations. In particular, we would like to determine the dominant wavenumber that
determines the distance between the bulges (or the troughs) seen an experiment.

In situations where the base state is stationary, the answer is usually obtained from
the mode that has the largest growth rate. A solution to the linearized problems may
initially be a superposition of different modes, but since the evolution of each mode is
exponentially fast with different growth/decay rates, it will quickly converge to the mode
with the largest growth rate. This mode in turn can be found by solving an eigenvalue
problem and by maximizing the growth rate over the range of wavenumbers.

In the current problem, we have seen that the growth rate for a fixed wavenumber k is
not constant and in fact, perturbations decay after reaching a maximum amplification.
Thus, at any given time, we need to find the mode with the largest momentary am-
plification. Our current numerical setup, however, only allows us to track the evolution
for a set of fixed wavenumbers k. Identifying the dominant wavenumber would there-
fore require us to monitor a large set of wavenumbers and determine the one with the
largest amplification at every time t. This seems to be a rather tedious process so we
have used an asymptotic approach instead [53].

In the previous section on the shapes of rims, we have seen that for large times, the
film profile for the intermediate slip model splits into three asymptotic regions: Two in-
ner solutions near the unperturbed and the residual films, and an outer region which
comprises the rim. The leading order outer solution is essentially a traveling wave,
given by (3.9)-(3.11). It is a good approximation of the rim once this is large compared
to the film thickness in the inner region. Traveling waves have the advantage that they
are stationary in a comoving frame of reference, so the stability analysis results in a
linear PDE that can be solved by normal modes / eigenvalue analysis. The asymptotic
approach can be generalized to the lubrication model for the three-dimensional situa-
tion including the spanwise coordinate. It results in a sharp interface model for which
the previously found traveling wave is a lower-dimensional solution. We introduce a
normal-modes perturbation of the base state

h(x, y, t) = htw(x − s(t)) + δh1(x − s(t)) exp(αt + iky), δ ≪ 1,

(similarly for the sharp interfaces that bound the outer solution – details in [53]) and
find the O(δ) problem

−σϕ1 =
(

ϕ2
(

ϕ1ξξ − q2ϕ1

)

ξ

)

ξ
− q2ϕ2

(

ϕ1ξξ − q2ϕ1

)

+ ϕ1ξ , (4.5)

ϕ1ξ = ϕξξϕ1 , ϕ2ϕ1ξξξ − ϕ1 = 0 , at ξ = 0; (4.6)

ϕ1 ∼ (1/2 − ξ)1/2 as ξ → 1/2. (4.7)

Here we have scaled the variables as in (3.11), and introduced rescaled wavenumbers
and growth rates

q = (λ2/ṡ)k and σ = (λ2/ṡ2)α, (4.8)

respectively, to make the resulting eigenvalue problem parameter-free. The eigen-
value for the fastest growing mode was found numerically and turns out to be real; the
resulting dispersion relation σ(q) is shown in fig. 10.
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From this dispersion relation, we can obtain the evolution of a single-mode perturba-
tion in the original variables via

h1(x, t) =
λ3

ṡ
ϕ1(ξ; q) exp

[

ṡ2

λ2
σt

]

, ξ =
ṡ

λ2
(x − s), q =

λ2

ṡ
k, (4.9)

keeping in mind that we treat the rim as a traveling wave that does not grow in time.

Now, for long times, the rim does grow even if the unperturbed film thickness is small
by comparison, and as a result, the speed ṡ ∼ t−1/3 slowly decreases, thus chang-
ing the scalings in (4.9). Therefore, the growth rate changes over time. We may still
assume that at every given time t ≥ t0 ≫ 1 (i.e. once the rim is large enough), the
evolution of the perturbation is captured for an order one time period by the momen-
tary growth rate ṡ2σ/λ2, but to track the evolution and obtain an approximation for the
perturbation hp in the full lubrication model for longer times, we need to accumulate
the changes in the growth rate. This suggests using

hp(x, t; k) ∼ ϕ1(ξ; q) exp

[
∫ t

t0

c(τ)2

λ2
σ(q(k; τ))dτ

]

, (4.10)

as an approximation for hp(x, t; k), for any fixed k and t ≥ t0 ≫ 1. Here, ξ and q
are given in terms of x and k as in (4.9), ϕ1(ξ; q) is the normalized eigenfunction
corresponding to the eigenvalue σ(q), and c ≡ ṡ.

We can check the approximation (4.10) by comparing the numerical results for the full
lubrication and the sharp interface model. First, we look at the perturbation profiles
and compare hp(x, t; k)/ maxx |hp(x, t; k)| from the full model with ϕ1(ξ; q). The com-
parison is done for a fixed wavenumber k at the time t when the amplification factor
A(t) = A(t; k) as defined in (4.4) is maximal. Thus, the corresponding q is the cut-
off wave number qc > 0 where σ(qc) = 0. Fig. 11(a) clearly shows good agreement
between the outer region of the full model and the sharp interface result.

To check the time dependent factor in (4.10), we take the maximum with respect to x
(and ξ) of the modulus on both sides, and then solve for σ. Recalling the definition of
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Figure 11: (a) Comparison of the rescaled perturbation hp(x, t) labelled ’3’ (solid line)
with the eigenfunction of the sharp interface model for the corresponding wavenum-
ber q (circles). (b) Comparison of the rescaled growth rates σ̂ and wavenumbers q
obtained from the solutions hp for several choices of fixed l = 2π/k, with the disper-
sion relation for the sharp interface model (circles). Further explanations for (a) and
(b) are given in the text.

the amplification factor in (4.4) we obtain that for fixed k and t ≫ 1,

σ(q) ∼
λ2

c2

d

dt
ln A(t; k). (4.11)

In fig. 11(b), we have plotted both sides of this relation for two different choices for
k. The agreement is good except in the range of smaller q. This is not surprising,
since small q correspond to smaller t in the full model (recalling that k is fixed) where
the condition of validity for a long time (large rim) asymptotic approximation is less
satisfied.

We now use (4.10) to investigate the evolution of a more general perturbation a su-
perposition of modes with different wavenumbers. Specifically, we assume the rim is
perturbed at a time t0 and the initial perturbation is given by

hp(x; t0) =

∫ ∞

−∞

ϕ1(ξ; k)eiky dk. (4.12)

Note that due to our normalisation of ϕ1 this implicitly assumes that the initial ampli-
tude at t = t0 of each contribution is one for all wavenumbers. By applying (4.10) the
perturbation at time t ≫ t0 ≫ 1 is found to be

hp(x; t) =

∫ ∞

−∞

exp

[
∫ t

t0

c(τ)2

λ2
σ(q(k; τ))dτ

]

ϕ1(ξ; k)eiky dk. (4.13)

At any given time, the dominant wave number kd is the one for which the amplification
i.e. the square bracket is maximal. Taking derivatives with respect to k we obtain

∫ t

t0

c(τ)σ′

(

λ2

c(τ)
kd

)

dτ = 0. (4.14)

19



Since 1/c(τ) is monotonically increasing, we can use Q = kdλ
2/c(τ) as integration

variable. Substituting this in and recalling c(τ) ∼ τ−1/3 for all τ ≥ t0 ≫ 1 yields

0 =

∫ q(kd;t)

q(kd;t0)

−c3

λ2kdcτ
σ′(Q)dQ ∼

∫ q(kd;t)

q(kd;t0)

Qσ′(Q)dQ (4.15)

for t ≫ t0 ≫ 1. Since q(kd; t0) = q(kd; t)c(t)/c(t0) → 0 for t ≫ t0, we can replace
the lower integration limit by 0. Integration by parts then leads us to an “equal area”
condition

∫ q(kd;t)

0

(σ(Q) − σ(q(kd; t)) ) dQ = 0. (4.16)

The function σ(Q) is the dispersion relation for the sharp interface model that was pre-
viously obtained from numerical calculations. Solving for qd ≡ q(kd; t) we numerically
obtain q(kd; t) = 5.3, from which we can obtain the dominant wave-number in the scal-
ing of the full lubrication via kd = qdc(τ)/λ2. The width of the rim is w(t) = (1/2)(λ2/c),
thus kdw(t) = qd/2, which results in

ld
w(t)

=
2π

qd/2
≈ 2.4 (4.17)

for the dominant wavelength ld = 2π/kd. This implies in particular that the dominant
wavelength grows with the same scaling as the width of the rim. Also note that the
result is different from the preferred and the cut-off wavelength, lm = 3.24 and lc =
2.03, respectively. These are obtained upon using qm (where σ is maximal) and qc > 0
(where σ is zero) in (4.17) instead of qd.

5 Conclusion

In this paper we have presented our analysis on the morphology and stability of a rim
that is formed at front of a dewetting polymer film. By revisiting some of our previous
work together with our new results, our goal was to give a coherent theory that can
explain the dewetting patterns observed in experiments for the model system PS on a
hydrophobically coated silicon/silicon oxide wafer. The aim of this fundamental study
is to be able to eventually simply infer material properties, such as the interfacial con-
ditions for polymer/substrate system, by extracting information on the morphological
signatures of the evolving patterns.

We believe that on the basis of this theory it is now possible to infer the magnitude of
the effective slippage at the polymer/coating interface by observing in an experiment
the cross sectional rim shape, the symmetric/asymmetric shapes of the evolving in-
stability, as well as the time scales on which these occur.

The model system used in the experiments considers polymers below the entangle-
ment length at very slow flow conditions and so the governing hydrodynamic equa-
tions for bulk of the liquid were taken to be the Navier-stokes equations. In fact the
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dewetting dynamics were so slow that inertial terms are negligible. The only remain-
ing feature of non-Newtonian behaviour is the magnitude of slippage, that plays a
dominant role, also because of the small scale of the thickness of the liquid polymer
film.

For liquid polymer above entanglement length however, other properties, such as
elastic effects shall also be taken into account. At this point we only have developed
appropriate thin film models for Jeffreys-type viscoelastic models. However, we have
not explored their properties in the same detail as for the Newtonian case. Develop-
ing this theory further and seeking experimental validation for it is part of ongoing
research.
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