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Abstrat: We develop an extension to the spine theory of branhing pro-esses, and use it to give a simple and intuitive identity for alulating additivefuntionals of suh proesses, generalizing the well-known many-to-one lemma.1 Introdution1.1 The many-to-two lemmaConsider a branhing Brownian motion (BBM): one partile starts at 0 andmoves like a Brownian motion until a random exponentially distributed timewith mean 1. It then dies and leaves in its plae two new partiles, whih inde-pendently follow, relative to their initial position, the same random behaviouras their parent. Let N(t) be the set of partiles alive at time t, and for a partile
u ∈ N(t) let Xu(t) be the position of partile u. Let Bt, t ≥ 0 be a standardBrownian motion, and f : R → R be some measurable funtion. The followingresult is well-known:Lemma 1 (Simple many-to-one lemma).

E





∑

u∈N(t)

f(Xu(t))



 = etE[f(Bt)]. (1)The most useful aspet of this lemma is that it turns questions about asystem of many dependent partiles into questions about a single Brownianmotion. For example, let A(x, t) = #{u ∈ N(t) : Xu(t) > x}, the number ofpartiles that are above x at time t. For whih x and t is A(x, t) non-zero? (Thisquestion is related to solutions of the FKPP equation.) Markov's inequality andthe many-to-one lemma give us an easy upper bound:
P(A(x, t) ≥ 1) ≤ E[A(x, t)] = E





∑

u∈N(t)

1{Xu(t)>x}



 =
et

√
2πt

∫ ∞

x

e−y2/2dy.For a lower bound, one would like to use a seond-moment method, applying
P(A(x, t) ≥ 1) ≥ E[A(x, t)]2

E[A(x, t)2]
,but the many-to-one lemma does not tell us how to alulate E[A(x, t)2]. Insteadwe should use a many-to-two lemma. Lemma 2 gives an example of a many-to-two lemma for BBM.Lemma 2 (Simple many-to-two lemma). For measurable f and g,

E





∑

u,v∈N(t)

f(Xu(t)) g(Xv(t))



 = e2tE[eT∧tf(Bt) g(B′
t)] (2)where

B′
t =

{

Bt if t < T

BT + Wt−T if t ≥ Twith T exponentially distributed with parameter 2 and Wt, t ≥ 0 a standardBrownian motion independent of Bt. 1



The main result of this artile will be the many-to-few lemma, Lemma 3,whih is a muh more general version of Lemma 2. In fat we will be able toalulate additive funtionals not just of two partiles, but of arbitrarily manypartiles. We also inorporate the possibility of using a hange of measure forthe motion of the partiles to allow for easier alulation of the right-hand sideof the identity.Results similar to Lemma 3 have existed for some time in various forms1,usually proved by arguments spei� to the partiular model or problem. Ourartile provides several advantages over these previous results. Firstly, we stateLemma 3 for a rather general model, and our methods are robust and may beadapted for use with other branhing proesses. In addition the multiple spinesetup outlined in Setion 2 gives an intuitive bakdrop for understanding many-to-few results. Thus we hope that this artile will provide a general frameworkthat will allow the reader to quikly understand and onstrut a many-to-fewlemma for whihever branhing proess they wish to onsider. Finally, to ourknowledge there is no existing work � for any model � that allows one tohange measure as part of the result. This tehnique an be extremely useful:we give an example in Setion 4.2.There are already several appliations of this theory underway. Aïdékonand Harris [1℄ use the k-partile (for general k) version to ompute moments inorder to show that the number of partiles hitting a ertain level in a branhingBrownian motion with killing at the origin onverges in distribution in the limitapproahing ritiality. Döring and Roberts [6℄ alulate moments of numbersof partiles in a atalyti branhing model, for whih the multiple spine theorygives an intuitive ombinatorial derivation for a olletion of onstants whihotherwise appear abstratly from the analysis. Ortgiese and Roberts (work inprogress) also apply the k-partile version to the paraboli Anderson model toshow that the large-time behaviour of the underlying branhing proess is ratherdi�erent from that antiipated by its moments. Roberts [15℄ uses the full powerof our general many-to-two lemma, with a partiular hoie of measure hange,to give simple proofs of large-time asymptotis for the position of the extremalpartile in a branhing Brownian motion.1.2 The spine approahThree artiles [11, 13, 14℄ by Kurtz, Lyons, Pemantle and Peres � building onwork of Chauvin and Rouault [4℄ among others � gave the subjet of branhingproesses a new set of tools, known as spine methods. These tehniques havesine been used by many authors to prove new results and to give intuitive newproofs of old results.Just like the many-to-one lemma, the spine methods retain one essentialtheme: at large times the branhing struture may be very ompliated and wemay have very many partiles, but one an understand muh of this ompliated1An even simpler form of Lemma 2 was given by Sawyer [17℄. Kallenberg [10℄ proved aversion for disrete trees, whih he alls a �bakward tree formula�. Gorostiza and Wakolbinger[7℄ extend Kallenberg's formula to a lass of ontinuous-time proesses. Dawson and Perkinsgenerate what they all �extended Palm formulas� for historial proesses (superproessesenrihed with information on genealogy) in [5℄. For the paraboli Anderson model with Weibullupper tails, Albeverio et al. [2℄ gave a similar result by onsidering existene and uniqueness ofsolutions to a Cauhy problem. Bansaye et al. [3℄ develop quite general many-to-two lemmasfor Markov branhing proesses, allowing partiles to be born away from their parent.2



behaviour to �rst order by arefully studying just one speial partile. It is nogreat surprise, then, that spine tehniques allowed simple proofs of muh moregeneral versions of the many-to-one lemma that would not have been aessibleotherwise.We develop a theory of multiple spines in order to gain further informationabout the system. This approah leads naturally to a quite simple proof of ourmain result. However, just as general many-to-one theorems are far from theonly appliation of single-spine tehniques, the detailed multiple-spine theorythat we develop in proving our results may also be useful in other ways.This artile is arranged as follows. In Setion 2 we give a summary of the multi-spine setup, and then state our main result in Setion 3. Setion 4 providessome examples of how this result an be applied. Then in Setion 5 we givefull onstrutions of the measures and �ltrations used in the theory. Setion5 is rather tehnial and may be ignored by readers wishing only to apply ourmethods. We prove the many-to-few lemma in Setion 6. Finally, in Setion 7we state a disrete-time version of the many-to-few lemma.2 Multiple spinesWe state here the general ontinuous-time branhing setup that we will studyin this paper.We onsider a branhing proess starting with one partile at x under aprobability measure Px. This partile moves withing a measurable spae (J,B)aording to a Markov proess with generator C. When at position y, a partilebranhes at rate R(y) (informally, in a period of time dt the partile branheswith probability R(y)dt), dying and giving birth to a random number of newpartiles with distribution µy (where for eah y, µy has support on {0, 1, 2, . . .}).Eah of these partiles then independently repeats the stohasti behaviour ofits parent from its starting point.We label our partiles using the Ulam-Harris sheme: the �rst partile is ∅,its l hildren are labelled 1, 2, . . . , l, the m hildren of partile 1 are labelled 11,
12, . . . , 1m, and so on. We denote by N(t) the set of all partiles alive at time
t. For a partile u ∈ N(t) we let σu be the time of its birth and τu the time ofits death, and de�ne σu(t) = σu ∧ t and τu(t) = τu ∧ t. If u ∈ N(t) then for all
s ≤ t we write Xu(s) for the position of the unique anestor of u alive at time
s. If u has 0 hildren then we write Xu(s) = ∆ for all t ≥ τu, where ∆ 6∈ J is agraveyard state.2.1 The k-spine measures Pk and QkWe de�ne new measures Pk

x and Qk
x under whih there are k distinguished lines ofdesent whih we all spines. The atual onstrution of Pk

x is slightly tehnial,and the onstrution of Qk
x relies on a arefully hosen hange of measure (seeSetion 5), but we do not neessarily have to understand these onstrutions.It is most important simply to understand the dynamis of the system underthese new measures.Under Pk

x partiles behave as follows:3



• We begin with one partile at position x whih (as well as its position)arries k marks 1, 2, . . . , k.
• All partiles move as Markov proesses with generator C, independentlyof eah other given their birth times and positions, just as under Px.
• We think of eah of the marks 1, . . . , k as distinguishing a partiular lineof desent or �spine�, and de�ne ξi

t to be the position of whihever partilearries mark i at time t.
• A partile at position y arrying j marks b1 < b2 < . . . < bj at time tbranhes at rate R(y), dying and being replaed by a random number ofpartiles with law µy independently of the rest of the system, just as under

Px.
• Given that a partiles v1, . . . , va are born at a branhing event as above,the j spines eah hoose a partile to follow independently and uniformlyat random from amongst the a available. Thus for eah 1 ≤ l ≤ a and

1 ≤ i ≤ j the probability that vl arries mark i just after the branhingevent is 1/a, independently of all other marks.
• If a partile arrying j > 0 marks b1 < b2 < . . . < bj dies and is replaedby 0 partiles, then its marks remain with it as it moves to the graveyardstate ∆.In other words, under Pk

x the system behaves exatly as under Px; the onlydi�erene is that some partiles arry extra marks showing the lines of desentof k spines. We all the olletion of partiles that have arried at least onespine up to time t the skeleton at time t, and write skel(t); see Figure 1. Ofourse Pk
x is not de�ned on the same σ-algebra as Px. We let Fk

t be the �ltrationontaining all information about the system (inluding the k spines) up to time
t; then Pk

x is de�ned on Fk
∞. This will be lari�ed in Setion 5.

Figure 1: A realisation of the start of the proess. Eah partile in the skeletonis a di�erent olour, and partiles not in the skeleton are drawn in grey. Thenumbers show how many spines are arried by eah partile in the skeleton.Now, for eah n ≥ 0 and y ∈ R let
mn(y) =

∑

a

anµy(a),4



the nth moment of the o�spring distribution. Let
µn

y (a) =
anµy(a)

mn(y)
;

µn
y is alled the nth size-biased distribution with respet to µy. For 1 ≤ i, j ≤ kde�ne T (i, j) to be the �rst split time of the ith and jth spines, i.e. the �rst timeat whih marks i and j are arried by di�erent partiles. Let D(v) be the totalnumber of marks arried by partile v.Suppose that ζ(X, t) is a funtional of a proess (Xt, t ≥ 0) suh that if

(Yt, t ≥ 0) is a Markov proess with generator B then ζ(Y, t) is a unit-meanmartingale with respet to the natural �ltration of (Yt, t ≥ 0). For example if
Y is a Brownian motion on R then we might take

ζ(X, t) = eXt−t/2.Under Qk
x partiles behave as follows:

• We begin with one partile at position x whih (as well as its position)arries k marks 1, 2, . . . , k.
• Just as under Pk

x, we think of eah of the marks 1, . . . , k as a spine, with
ξi
t the position of whihever partile arries mark i at time t.

• A partile with mark i at time t moves as if under the hanged measure
Qi

x|G{i}
t

:= ζ(ξi, t)Pk
x|G{i}

t

.
• A partile at position y arrying j marks at time t branhes at rate

mj(y)R(y), dying and being replaed by a random number of partileswith law µj
y independently of the rest of the system.

• Given that a partiles v1, . . . , va are born at suh a branhing event, the
j spines eah hoose a partile to follow independently and uniformly atrandom, just as under Pk

x.
• Partiles not in the skeleton (those arrying no marks) behave just asunder P, branhing at rate R(y) and giving birth to numbers of partileswith law µy when at y.In other words, under Qk spine partiles move as if weighted by the martingale

ζ; they breed at an aelerated rate; and they give birth to size-biased numbersof hildren.3 The many-to-few lemmaWe note here that if Y is measurable with respet to Fk
t , then it an be expressedas the sum

Y =
∑

v1,...,vk∈N(t)∪{∆}

Y (v1, . . . , vk)1{ξ1
t =v1,...,ξk

t =vk}where eah Y (v1, . . . , vk) is Ft-measurable. To see this one an generalize theargument in [16℄. Sine this is a purely measure-theoreti argument and will belear for most Y of interest, we leave it as an exerise for the reader.We now state our main result in full.5



Lemma 3 (Many-to-few). For any k ≥ 1 and Fk
t -measurable Y as above,

P





∑

v1,...,vk∈N(t)

Y (v1, . . . , vk)





= Qk



Y
∏

v∈skel(t)

ζ(Xv, σv(t))

ζ(Xv, τv(t))
exp

(

∫ τv(t)

σv(t)

(

mD(v)(Xv(s)) − 1
)

R(Xv(s))ds

)



 .Note that this is muh more general than the simple version stated in Lemma2. As well as using the more general branhing setup and allowing us to alulateadditive funtionals of arbitrarily many partiles rather than just two, we arealso able to use the martingales ζ(ξi, t) to hange the motion of the spines, whihin many situations will make alulation of the right-hand side easier. We alsostate a disrete-time version of Lemma 3 in Setion 7.4 Examples4.1 Simple appliations of Lemma 3The setion above states the many-to-few lemma in some generality. It may beenlightening to look instead at some partiular simple examples of branhingproesses and see how the result an easily be used to alulate moments ofpopulation numbers. We do this below.Example 1. The simplest possibility is to take Y ≡ 1, eah ζj ≡ 1, A ≡ 2(purely binary branhing, so mk ≡ 2k) and R ≡ 1. This ompletely ignores thespatial movement of the partiles: we shall simply be alulating the momentsof the number of partiles in a Yule tree (a ontinuous-time Galton-Watsonproess with 2 hildren at every branh point). Beause of the simpliity of thismodel there are many other ways of getting the same result.
E[|N(t)|2] = e2tQ2[eT (1,2)∧t]

= e2t

∫ t

0

esQ(T (1, 2) ∈ ds) + e2tQ(T (1, 2) > t)

= e2t

∫ t

0

2e−sds + et

= 2e2t − et.In order to alulate the kth moment let T = inf1≤i,j≤k T (i, j) be the �rsttime at whih any two spines split, and let Sj be the event that at time T , j ofthe spines follow the �rst hild and k − j follow the seond hild.
6



E
[

|N(t)|k
]

= Qk

[

∏

v∈skel(t)

e(2D(v)−1)(τv(t)−σv(t))

]

= Qk
[

e(2k−1)t1{T>t}

]

+
k−1
∑

j=1

∫ t

0

Qk

[

∏

v∈skel(t)

e(2D(v)−1)(τv(t)−σv(t))1{T∈ds}1Sj

]

= et +

k−1
∑

j=1

(

k

j

)
∫ t

0

esE
[

|N(t − s)|j
]

E
[

|N(t − s)|k−j
]

ds.Thus E[N(t)3] = 6e3t − 6e2t + et, E[N(t)4] = 24e4t − 36e3t + 14e2t + 3et, and soon.Example 2. A more interesting example is to take the same setup as in Ex-ample 1 above but with eah partile moving as a Brownian motion (so that wehave a standard branhing Brownian motion), and to attempt to alulate theprobability that a partile has position above λt at time t. The �rst momentmethod, with the many-to-one lemma, gives us an upper bound: setting
W = |{u ∈ N(t) : Xu(t) ≥ λt}|we have

P(∃u ∈ N(t) : Xu(t) ≥ λt) ≤ E[W ] = etP(ξt ≥ λt) ∼ et−λ2t/2where we use ∼ to indiate that we are ignoring terms of at most polynomialorder.For the lower bound we use the seond moment method with the many-to-two lemma. Let W = #{u ∈ N(t) : Xu(t) ≥ λt}; then
P(∃u ∈ N(t) : Xu(t) ≥ λt) ≥ E[W ]2

E[W 2]so to get asymptoti agreement with the upper bound, we require
E[W 2] . et−λ2t/2.Now, from Lemma 3, taking Y = 1{ξ1

t ≥λt,ξ2
t≥λt},

E[W 2] = e2tQ2[eT (1,2)∧t1{ξ1
t ≥λt,ξ2

t≥λt}]

= etP(ξt ≥ λt) + e2t

∫ t

0

es · 2e−2sQ2
(

ξ1
t ≥ λt, ξ2

t ≥ λt
∣

∣T (1, 2) = s
)

ds

∼ et−λ2t/2 + 2e2t

∫ t

0

e−2s

∫ ∞

−∞

1√
2πs

e−x2/2s

· Q2
(

ξ1
t ≥ λt, ξ2

t ≥ λt
∣

∣T (1, 2) = s, ξs = x
)

dx ds

∼ et−λ2t/2 + 2e2t

∫ t

0

e−2s

∫ ∞

−∞

1√
2πs

e−x2/2s−(λt−x)2/(t−s)dxds

= et−λ2t/2 + 2e2t

∫ t

0

e−2s

√

2π(t − s)

t + s
e−λ2t2/(t+s)ds.7



It is not di�ult to see that if λ >
√

2 then
2s +

λ2t2

t + s
≥ t +

1

2
λ2t for s ∈ [0, t](expand out to get a quadrati in s; if λ ∈ (

√
2,
√

18) then there are no roots,and if λ ≥
√

18 then both roots are larger than t � the easiest way to hekthis latter fat is to note that the equation is satis�ed for s = 0 and s = t, andhas negative derivative for s ∈ [0, t]). Thus
E[W 2] ∼ et−λ2t/2and we have proved that if λ >
√

2 then
lim

t→∞

1

t
log P(∃u ∈ N(t) : Xu(t) ≥ λt) = 1 − 1

2
λ2.Of ourse we ould have taken more are in the approximations above to gain amore detailed result, but we prefer to demonstrate a simple use of the many-to-two lemma without getting bogged down in arefully approximating integrals.For a more detailed appliation to a similar problem see Roberts [15℄.4.2 Large deviations for BBMA large deviations result for branhing Brownian motion was �rst proved byLee [12℄. Later a probabilisti proof was given by Hardy and Harris [8℄. In thissetion we give an outline of a proof using the many-to-two lemma, showing howa areful hoie of single-partile martingale an ease the required alulations.For A ⊆ C[0, 1], let

M(A, T ) = {u ∈ N(T ) : X(sT )/T = g(s) ∀s ∈ [0, 1] for some g ∈ A}and de�ne
H1 =

{

g ∈ C[0, 1] : g(0) = 0, ∃h ∈ L2[0, 1] with g(s) =

∫ t

0

h(s)ds ∀t ∈ [0, 1]

}

.Theorem 4. For any losed set F ⊆ C[0, 1],
lim sup
T→∞

1

T
log P(M(F, T ) 6= ∅) ≤ − inf

g∈F
J(g)and for any open set U ⊆ C[0, 1],

lim inf
T→∞

1

T
log P(M(U, T ) 6= ∅) ≥ − inf

g∈U
J(g)where

J(g) :=

{

supθ∈[0,1]

(

∫ θ

0
g′(s)2ds − θ

) if g ∈ H1

∞ otherwise.8



Proof. For a C2 funtion f : [0, T ] → R suh that f(0) = 0 and t ∈ [0, T ] wede�ne
N̂(t) = #{u ∈ N(t) : |Xu(s) − f(s)| < εT ∀s ∈ [0, t]}where ε > 0 and T > 0 are �xed onstants (sometimes we shall write N̂ε(t)to indiate the dependene on ε). It�'s formula shows that if (Bt, t ≥ 0) is astandard Brownian motion, then

V (B, t) := e
R

t

0
f ′(s)dBs−

1
2

R

t

0
f ′(s)2ds+ π2t

8ε2T2 cos
( π

2εT
(Bt − f(t))

)is a loal martingale. The optional stopping theorem then tells us that
ζ(B, t) := V (B, t)1{|Bs−f(s)|<εT ∀s≤t}is a martingale. Applying the many-to-one lemma,

E[N̂(t)] = etQ1

[

1

ζ(ξ1, t)

]

≥ e
π2t

8ε2T
+t

Q1[e−
R

t

0
f ′(s)dξ1

s+ 1
2

R

t

0
f ′(s)2ds].Integration by parts tells us that

∫ t

0

f ′(s)dξ1
s −

∫ t

0

f ′(s)2ds

= f ′(t)ξ1
t −

∫ t

0

f ′′(s)ξ1
sds − f ′(t)f(t) +

∫ t

0

f(s)f ′′(s)ds

= f ′(t)(ξ1
t − f(t)) −

∫ t

0

f ′′(s)(ξ1
s − f(s))dsso that under Q1,

∣

∣

∣

∣

∫ t

0

f ′(s)dξ1
s −

∫ t

0

f ′(s)2ds

∣

∣

∣

∣

≤ εT |f ′(t)| + εT

∫ t

0

|f ′′(s)|ds.Thus
E[N̂(t)] ≥ et− 1

2

R

t

0
f ′(s)2ds−εT |f ′(t)|−εT

R

t

0
|f ′′(s)|ds.On the other hand, for δ < ε,

E[N̂δ(t)] = etQ1

[

1

ζ(ξ1, t)
1{|ξ1

s−f(s)|<δT ∀s≤t}

]

≤ e
π2t

8ε2T
+t

cos
(

πδ
2ε

)Q1[e−
R

t

0
f ′(s)dξ1

s+ 1
2

R

t

0
f ′(s)2ds]

≤ et− 1
2

R

t

0
f ′(s)2ds+εT |f ′(t)|+εT

R

t

0
|f ′′(s)|ds+ π2

8ε2T

cos
(

πδ
2ε

)Similarly, setting
R(T ) =

e3εT supu≤T |f ′(u)|+3εT
R

T

0
|f ′′(u)|du+ π2

8ε2T

cos
(

πδ
2ε

)9



we have
E[N̂δ(t)

2] = etQ2

[

1

ζ(ξ1, t)
1{|ξ1

s−f(s)|<δT ∀s≤t}

]

+

∫ t

0

Q

[

2e2t−sζ(ξ1, s)

ζ(ξ1, t)ζ(ξ2, t)

∣

∣

∣

∣

T = s

]

≤ R(T )et− 1
2

R

t

0
f ′(s)2ds + R(T )

∫ t

0

e2t−s+ 1
2

R

s

0
f ′(u)2du−

R

t

0
f ′(u)2duds

≤ R(T )et− 1
2

R

t

0
f ′(s)2ds + R(T )te2t−

R

t

0
f ′(s)2ds sup

r∈[0,t]

e
1
2

R

r

0
f ′(s)2ds−r.Choosing τ suh that

e
1
2

R

τ

0
f ′(s)2ds−τ = sup

r∈[0,T ]

e
1
2

R

r

0
f ′(s)2ds−rwe see that

E[N̂δ(t)
2] ≤ R(T )(T + 1)e2t−

R

t

0
f ′(s)2ds+ 1

2

R

τ

0
f ′(s)2ds−τ .Putting our estimates for the �rst and seond moments together,

P(N̂(T ) ≥ 1) ≤ P(N̂(τ) ≥ 1)

≤ E[N̂(τ)] ≤ eτ− 1
2

R

τ

0
f ′(s)2ds+2εT |f ′(τ)|+2εT

R

τ

0
|f ′′(s)|ds+ π2

32ε2T

cos
(

π
4

)and
P(N̂ε(T ) ≥ 1) ≥ P(N̂δ(T ) ≥ 1) ≥ E[N̂δ(T )]2

E[N̂δ(T )2]
≥ eτ− 1

2

R

τ

0
f ′(s)2ds

R(T )(T + 1)e2εT |f ′(T )|+2ε
R

T

0
|f ′′(s)|ds

.Now setting g(t) = f(tT )/T and θ = τ/T , we obtain
1

T
log P(N̂(T ) ≥ 1) ≤ θ − 1

2

∫ θ

0

g′(s)2ds + 2ε|g′(θ)| + 2ε

∫ 1

0

|g′′(s)|ds + o(1)and
1

T
log P(N̂(T ) ≥ 1) ≥ θ− 1

2

∫ θ

0

g′(s)2ds−5ε sup
s∈[0,1]

|g′(s)|−5ε

∫ 1

0

|g′′(s)|ds+o(1).This establishes the required estimates for balls about smooth funtions, towithin an error whih goes to zero with the radius of the ball. It remains toapply tehniques from large deviations theory. For the lower bound it su�es tohoose ε small. For the upper bound we must rule out the possibility of partilesfollowing extreme paths, so that we are left with a ompat set; then use uppersemiontinuity of the rate funtion to hek that we may hoose an appropriate
ε. These details are arried out fully in [8℄, and are similar to those in the proofof Shilder's theorem for one Brownian motion (see [18℄ for example).5 Multiple spines and hanges of measureOur main aim in this setion is to give full details of the setup introdued inSetion 2. We take, more or less, the route laid out by Hardy and Harris [9℄ fora single spine. 10



5.1 TreesWe use the Ulam-Harris labelling system: de�ne a set of labels
Ω := {∅} ∪

⋃

n∈N

Nn(as usual N = {1, 2, 3, . . .}).We often all the elements of Ω partiles. We think of ∅ as our �initalanestor�, and a label (3, 2, 7) (for example) as representing �the seventh hildof the seond hild of the third hild of the initial anestor�. For a partile u ∈ Ωwe de�ne |u|, the generation of u, to be the length of u (so if u ∈ Nn then |u| = n,and |∅| = 0). For two labels u, v ∈ Ω we write uv for the onatenation of u and
v, so for example (3, 2, 7)(1, 5, 4) := (3, 2, 7, 1, 5, 4) (and we take ∅u = u∅ = u).We write u ≤ v and say that u is an anestor of v if there exists w ∈ Ω suhthat uw = v.We de�ne a tree to be a subset τ ⊆ Ω suh that

• ∅ ∈ τ : the initial anestor is part of τ ;
• for all u, v ∈ Ω, uv ∈ τ ⇒ u ∈ τ : if τ ontains a partile then it ontainsall the anestors of that partile;
• for eah u ∈ τ , there exists Au ∈ {0, 1, 2, . . .} suh that for j ∈ N, uj ∈ τ ifand only if 1 ≤ j ≤ Au: eah partile in τ has a �nite number of hildren.We let T be the set of all suh trees.5.2 Marked treesSine we wish to have a partiular view of trees, as systems evolving in time andspae, we de�ne a marked tree to be a set T of triples of the form (u, lu, Xu)suh that u ∈ Ω, the settree(T ) := {u : ∃ lu, Xu suh that (u, lu, Xu) ∈ T }forms a tree, lu ∈ [0,∞) is the lifetime of u, and, setting σu :=

∑

v<u lv and
τu :=

∑

v≤u lu,
Xu : [σu, τu) → Jis the position funtion of u. We think of Xu(t) as desribing the spatial positionof the partile u at time t. To paint the piture more learly, we think of theinital anestor ∅ moving around in spae aording to its position funtion X∅until just before time l∅. At this time it disappears and a number A∅ of newpartiles appear; eah of these then moves around in spae aording to itsposition funtion for a period of time equal to its lifetime, before being replaedby a number of new partiles; and so on.We let T be the set of all marked trees, and for T ∈ T we de�ne the set ofpartiles alive at time t to be

N(t) := {u ∈ tree(T ) : σu ≤ t < τu}.11



For onveniene, we extend the position path of a partile v to all times t ∈
[0, τv), to inlude the paths of all its anestors:

Xv(t) :=

{

Xv(t) if σv ≤ t < τv

Xu(t) if u < v and σu ≤ t < τuand if Av = 0 then we write Xv(t) = ∆ ∀t ≥ τv.5.3 Marked trees with spinesWe now enlarge our state spae further to inlude the notion of spines. Wede�ne a spine to be a single maximal distinguished line of desent. That is, aspine ξ on a marked tree τ is a subset of tree(τ) suh that
• ∅ ∈ ξ;
• ξ ∩ (N(t) ∪ {∆}) ontains exatly one partile for eah t;
• if v ∈ ξ and u < v then u ∈ ξ;
• if v ∈ ξ and Av > 0, then ∃j ∈ {1, . . . , Av} suh that vj ∈ ξ; otherwise

ξ ∩ N(t) = ∅ ∀t ≥ τv.If v ∈ ξ ∩ N(t) then we de�ne ξt := Xv(t), the position of the spine at time t.At ertain points we shall also use the notation ξt to mean the partile v itself� beyond this introdution it should always be lear from the ontext whihmeaning is intended, and so this should not lead to any ambiguity. For laritywithin this setion we will use the less onise notation node(ξt) to denote thepartile v itself � that is, the unique v ∈ N(t) ∩ ξ. We say that a marked treewith spines is a sequene (τ, ξ1, ξ2, ξ3, . . .) where τ ∈ T is a marked tree and ξ1,
ξ2, . . . are spines on τ . We let T̃ be the set of all marked trees with spines.5.4 FiltrationsWe now work exlusively on the spae T̃ of marked trees with spines, and use dif-ferent �ltrations on this spae to enapsulate di�erent amounts of information.We give desriptions of these �ltrations below; formal de�nitions are similar tothose in [16℄ and are left to the reader.The �ltration (Ft, t ≥ 0)We de�ne (Ft, t ≥ 0) to be the natural �ltration of the branhing proess - itdoes not know anything about the spines.The �ltrations (Fk

t , t ≥ 0)For eah k ≥ 1 we de�ne (Fk
t , t ≥ 0) to be the natural �ltration for the branh-ing proess and the �rst k spines. It does not know anything about spines ξk+1,

ξk+2, . . . , but knows everything about the branhing proess and spines ξ1, . . . ,
ξk.The �ltrations (Gj

t , t ≥ 0)For eah j we de�ne
Gj

t := σ
(

ξj
s , s ∈ [0, t]

)12



where ξj
s represents the position of the jth spine at time s. Gj

t ontains just thespatial information about the jth spine up to time t (and whether or not it hasdied), but does not know whih nodes of the tree atually make up that spine.The �ltrations (G̃{i1,...,ij}
t , t ≥ 0)For eah j-tuple i1, . . . , ij we de�ne

G̃{i1,...,ij}
t := σ

(

Gk
t ∪ Ak

t ∪ Ck
t , k ∈ {i1, . . . , ij}

)

.where
Ak

t = {{u = node(ξk
s )} : u ∈ Ω, s ∈ [0, t]}and

Ck
t = {{u < node(ξk

t ), Au = a, σu ≤ σ} : u ∈ Ω, a ≥ 2, σ ∈ [0,∞)}.

G̃{i1,...,ij}
t ontains all the information about the relevant olletion of spines upto time t: whih nodes make up the spines, their positions, and for all spinenodes not in N(t) (so all the strit anestors of the spines at time t) their life-times and number of hildren.The �ltration (G̃k

t , t ≥ 0)We use the shorthand
G̃k

t = G̃{1,...,k}
tso that G̃k

t knows everything about the �rst k spines up to time t. Thus G̃k
t isdi�erent from G̃{k}

t .5.5 Probability measuresWe may now take a probability measure Px on T̃ suh that under Px, thesystem evolves as a branhing proess starting with one partile at x, eahpartile moves as a Markov proess with generator C independently of all othersgiven its birth time and position, and a partile at position y branhes at rate
R(y) into a random number of partiles with distribution µy. This is the systemdesribed in Setion 2. This measure, however, has no knowledge of the spines(sine it sees only the �ltration Ft). We would like to extend this to a measureon eah of the �ner �ltrations F̃k

t . To do this, we imagine eah spine, at eah�ssion event, hoosing uniformly from the available hildren. Then it is easy tosee that, for any partile u in a marked tree T and any j ≥ 1, we would likeProb(u ∈ ξj) =
∏

v<u

1

Av
.We reall from Setion 2 that if Y is an F̃k

t -measurable random variable thenwe an write:
Y =

∑

v1,...,vk∈N(t)∪{∆}

Y (v1, . . . , vk)1{ξ1
t =v1,...,ξk

t =vk} (3)where eah Y (v1, . . . , vk) is Ft-measurable. (Here when we write ξj
t we aretalking really about the partile node(ξj

t ) rather than its position.)13



De�nition 5. We de�ne the probability measure Pk
x on (T̃ , F̃∞), by setting

Pk
x[Y ] = Px





∑

v1,...,vk∈N(t)∪{∆}

Y (v1, . . . , vk)
k
∏

j=1

∏

u<vj

1

Au



 (4)for eah Fk
t -measurable Y with representation (3).Remark. The measure P̃x is an extension of Px in that Px = P̃x|F∞ , sine

∑

v1,...,vk∈N(t)∪∆

k
∏

j=1

∏

u<vj

1

Au
= 1.In summary, partiles arrying spines behave just as they would under Px,and when suh a partile branhes, eah spine makes an independent hoieuniformly from amongst the available hildren.5.6 Martingales and a hange of measureAs in Setion 2 de�ne T (i, j) := inf{t ≥ 0 : ξi

t 6= ξj
t }, and suppose that we aregiven a funtional ζ(·, t), t ≥ 0, suh that ζ(Y, t) is a unit-mean martingale withrespet to the natural �ltration of the Markov proess (Yt, t ≥ 0) with generator

C. We all ζ the single-partile martingale.Reall that we de�ned skel(t) = skelk(t) (often the k will be impliit), theskeleton, to be the subtree up to time t generated by those partiles arrying atleast one spine,
skel(t) = {u ∈ Ω : ∃s ≤ t, j ≤ k suh that node(ξj

s) = u}.We also set
D(v) = #{j : ∃t with v = ξj

t }to be the number of spines following partile v, and de�ne
E(v, t) = exp

(

−
∫ τv(t)

σv(t)

(

mD(v)(Xv(s)) − 1
)

R(Xv(s))ds

)

.Sine we will not always know whih partiles are the spines (when we areworking on Ft for example), it will sometimes be helpful to have the aboveonepts de�ned for a general skeleton of k partiles u1, . . . , uk instead of thespines. For this reason we de�ne
skelu1,...,uk

(t) = {v ∈ Ω : σv ≤ t, ∃j with v ≤ uj},

Du1,...,uk
(v) = #{j : v ≤ uj},and

Eu1,...,uk
(v, t) = exp

(

−
∫ τv(t)

σv(t)

(

mDu1,...,uk
(v)(Xv(s)) − 1

)

R(Xv(s))ds

)so that
skel(t) = skelξ1

t ,...,ξk
t
(t), D(v) = Dξ1

σv
,...,ξk

σv
(v) and E(v, t) := Eξ1

σv
,...,ξk

σv
(v, t).14



Remark. We note that, with the notation given above,
Pk(ξ1

t = u1, . . . , ξ
k
t = uk|Ft) =

∏

v∈skelu1,...,uk
(t)\N(t)

A
Du1,...,uk

(v)
v .De�nition 6. We de�ne an F̃k

t -adapted (and, in fat, G̃k
t -adapted) proess

ζ̃k(t), t ≥ 0 by
ζ̃k(t) =

∏

v∈skel(t)

(

ζ(Xv, τv(t))

ζ(Xv, σv(t))
E(v, t)

)

∏

v∈skel(t)\N(t)

ADv
v(if Av = 0, that is to say that v has no hildren, then we may arbitrarily de�ne

ζ(Xv, τv(t)) = 0) and an Ft-adapted proess Zk(t), t ≥ 0 by
Zk(t) =

∑

u1,...,uk∈N(t)

k
∏

j=1

∏

v≤uj

ζ(Xv, τv(t))

ζ(Xv, σv(t))
Eu1,...,uk

(v, t).Again we will often supress the dependene on k.We remark here that Z and ζ(ξj , ·) are, in fat, simply the projetions of ζ̃onto the relevant �ltrations:
• Z(t) = P̃[ζ̃(t)|Ft]

• ζ(ξj , t) = P̃[ζ̃(t)|G{j}
t ].Lemma 7. The proess ζ̃(t), t ≥ 0 is a martingale with respet to the �ltrations

G̃k
t and F̃k

t .Proof. Let χ = (v1, v2, . . .) be a single line of desent (so in partiular v1 < v2 <
. . .), with χt representing the position of the unique vi that is alive at time t.The births along χ form a Cox proess driven by χt with rate funtion R. Thusfor any j ≥ 0,

P

[

∏

v<χt

Aj
v

∣

∣

∣

∣

χs, s ∈ [0, t]

]

= exp

(
∫ t

0

(mj(χs) − 1)R(χs)ds

)

.Deomposing the proess ζ̃(t) aording to the splitting times of the k spines andrepeatedly applying the above fat together with the optional stopping theoremand the Markov branhing property (whih ensures that di�erent branhes ofthe skeleton are independent given the information up to their split) gives theresult.De�nition 8. We de�ne the measure Qk
x by

dQk
x

dPk
x

∣

∣

∣

∣

Fk
t

= ζ̃(t).The proof that Qk
x behaves as laimed in Setion 2.1 is just the same as theoriginal proof (for one spine) given by Chauvin and Rouault [4℄, applied to eahbranh of the skeleton independently. 15



6 Proof of the many-to-few lemmaWe �rst need to alulate the probability that a k-tuple of partiles (u1, . . . , uk)makes up the skeleton at time t.Lemma 9 (Gibbs-Boltzmann weights for Qk). For any u1, . . . uk ∈ N(t)∪{∆},
Qk(ξ1

t = u1, . . . , ξ
k
t = uk|Ft) =

1

Z(t)

∏

v∈skelu1,...,uk
(t)

ζ(Xv, τv(t))

ζ(Xv, σv(t))
Eu1,...,uk

(v, t).Proof. By the fat that Pk[ζ̃(t)|Ft] = Z(t) and standard properties of ondi-tional expetation,
Qk(ξ1

t = u1, . . . , ξ
k
t = uk|Ft)

=
Pk[ζ̃(t)1{ξ1

t =u1,...,ξk
t =uk}|Ft]

Pk[ζ̃(t)|Ft]

=
1

Z(t)

(

∏

v∈skelu1,...,uk
(t)

ζ(Xv, τv(t))

ζ(Xv, σv(t))
Eu1,...,uk

(v, t)

)

·
(

∏

v∈skelu1,...,uk
(t)\N(t)

A
Du1,...,uk

(v)
v

)

Pk(ξ1
t = u1, . . . , ξ

k
t = uk|Ft)

=
1

Z(t)

∏

v∈skelu1,...,uk
(t)

ζ(Xv, τv(t))

ζ(Xv, σv(t))
Eu1,...,uk

(v, t)as required.The proof of the many-to-few lemma is now straightforward.
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Proof of Lemma 3. We begin with the right-hand side.
Qk



Y
∏

v∈skel(t)

ζ(Xv, σv(t))

ζ(Xv, τv(t))

1

E(v, t)





= Qk

[

∑

u1,...,uk∈N(t)∪{∆}

Y (u1, . . . , uk)

·
∏

v∈skelu1,...,uk
(t)

ζ(Xv, σv(t))

ζ(Xv, τv(t))

1

Eu1,...,uk
(v, t)

1{ξ1
t =u1,...,ξk

t =uk}

]

= Qk

[

∑

u1,...,uk∈N(t)∪{∆}

Y (u1, . . . , uk)

·
∏

v∈skelu1,...,uk
(t)

ζ(Xv, σv(t))

ζ(Xv, τv(t))

1

Eu1,...,uk
(v, t)

Qk(ξ1
t = u1, . . . , ξ

k
t = uk|Ft)

]

= Qk

[

1

Z(t)

∑

u1,...,uk∈N(t)

Y (u1, . . . , uk)

]

= Pk

[

∑

u1,...,uk∈N(t)

Y (u1, . . . , uk)

]where for the last step we used the fat that dPk

dQk

∣

∣

∣

Ft

= Z(t).7 Many-to-few in disrete timeWe state here a version of the many-to-few lemma for disrete-time proesses.We shall not prove this result, as it is very similar to the ontinuous-time versionstudied above.7.1 A disrete-time branhing proessWe begin with one partile in generation 0 loated at x ∈ J . Any partile atposition y has hildren whose number and positions are deided aording toa �nite point proess Dy on J . The hildren of partiles in generation n makeup generation n + 1. We de�ne N(n) to be the total number of partiles ingeneration n, and Xv to be the position of partile v. We set
mj(y) = Py[N(1)j ]to be the jth moment of the number of partiles reated by the point proess

Dy. Write |v| to be the generation of partile v. For a partile v in generation
n ≥ 1, let p(v) be its parent in generation n − 1. For any line of desent
v0, v1, v2, . . . suh that |vn| = n and p(vn+1) = vn for eah n ≥ 0, we note that
Xv0 , Xv1 , Xv2 , . . . is a Markov hain with some generator C′ not depending onthe hoie of v0, v1, . . .. Suppose that ζ(X, n), n ≥ 0 is a funtional of a proess
(Xn, n ≥ 0) suh that if (Xn, n ≥ 0) is a Markov proess with generator C′then ζ(X, n), n ≥ 0 is a martingale with respet to the natural �ltration of
(Xn, n ≥ 0). 17



7.2 The skeleton and the measure QkWe have k distinguished lines of desent just as in the ontinuous-time ase,whih we all spines. Under P, if a partile arrying j marks (i.e. the partile ispart of j spines) in generation n has l hildren in generation n + 1, then eah ofits j marks hooses a partile to follow in generation n+1 uniformly at randomfrom the l hildren. We let ξi
n be the position of the ith spine in generation nand de�ne skel(n) to be the set of all partiles of generation at most n whihare part of at least one spine. Set Dv to be the number of marks arried bypartile v.Under Qk

x partiles behave as follows:
• We begin with one partile at position x whih (as well as its position)arries k marks 1, 2, . . . , k.
• Just as under Pk, we think of eah of the marks 1, . . . , k as a spine, with

ξi
n the position of whihever partile arries mark i at time n.

• A partile at position y arrying j marks has hildren whose number andpositions are deided by a point proess suh that:� for eah j and l ≥ 0, Qj
y(N(1) = l) = ljPy(N(1) = l)/Py[N(1)j ] (thenumber of hildren is j-size biased);� for eah i, the sequene Xξi

0
, Xξi

1
, Xξi

2
, . . . is a Markov hain dis-tributed as if under the hanged measure Qi

x|G{i}
n

:= ζ(ξi, n)Pk
x|G{i}

n
.

• Given that a partiles v1, . . . , va are born at suh a branhing event, the
j spines eah hoose a partile to follow independently and uniformly atrandom, just as under Pk.

• Partiles not in the skeleton (those arrying no marks) have hildren a-ording to the point proess Dy when at position y, just as under P.In other words, under Qk spine partiles move as if weighted by the martingale
ζ, and they give birth to size-biased numbers of hildren.7.3 The main result in disrete timeLemma 10 (Many-to-few in disrete time). For any k ≥ 1 and Fk

n-measurable
Y suh that

Y =
∑

v1,...,vk∈N(n)∪{∆}

Y (v1, . . . , vk)1{ξ1
n=v1,...,ξk

n=vk}we have
P





∑

v1,...,vk∈N(n)

Y (v1, . . . , vk)



 = Qk



Y
∏

v∈skel(n)

ζ(p(v), |v| − 1)

ζ(v, |v|) mDp(v)(Xp(v))



 .The proof of this result is similar to that of Lemma 3.18
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