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Abstract

In this paper, we prove a kind of Abelian theorem for a class of stochastic volatility models
(X,V ), where both the state process X and the volatility process V may have jumps. Our
results relate the asymptotic behavior of the characteristic function of X∆ for some ∆ > 0 in
a stationary regime to the Blumenthal-Getoor indexes of the Lévy processes driving the jumps
in X and V . The results obtained are used to construct consistent estimators for the above
Blumenthal-Getoor indexes based on low-frequency observations of the state process X . We
derive the convergence rates for the corresponding estimator and show that these rates can not
be improved in general.
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1 Introduction

Consider a class of affine stochastic volatility (ASV) models with jumps both in the state process and
in the volatility of the form:

dXt = (aX + bXVt−)dt+
√
Vt− dW1,t + dZ1,t, (1)

dVt = (aV − bV Vt−)dt+ aV σ
√
Vt− dW2,t + dZ2,t, (2)

where (W1,t,W2,t) is a two-dimensional Wiener process such that corr(W1,t,W2,t) = ρ, (Z1,t, Z2,t)
is a two-dimensional pure jump Lévy process with an increasing or constant Z2,t, aX , bX are two real
numbers, bV , σ are two positive real numbers, and aV ≥ 0. ASV models have got much attention
in the past decade (see Keller-Ressel, 2008 for an overview). Such well-known stochastic volatility
models as Heston, 1993, Bates, 1996 and Barndorff-Nielsen and Shephard, 2001 models are in the
class of ASV models, and this fact allows to treat all of them within one theoretical framework. The
main reason for the popularity of ASV models is their analytic tractability: the conditional characteristic
function of the vector (Xt, Vt) given (X0, V0) has, for any t > 0, an exponentially affine structure
in (X0, V0) and can be efficiently computed via solving a system of ordinary differential equations.
Various analytical properties of ASV models such as ergodicity or the existence of moments have
been extensively studied in the literature (see, e.g., Glasserman and Kim, 2010 and Keller-Ressel,
2011 for the most recent results). In this respect one contribution of the current paper is the derivation
of the so-called Abelian theorem relating the asymptotic behavior of the characteristic function of Xt

for any t > 0 to the asymptotic behavior of the Lévy measure of the two-dimensional Lévy process
(Z1, Z2) at the point (0, 0). The latter behavior is closely connected to the notion of a Blumenthal-
Getoor index which is the main object of our study. For a one-dimensional Lévy process Z = (Zt)t≥0

with a Lévy measure ν, the Blumenthal-Getoor index of Z is defined as

BG(Z) = inf

{
r > 0 :

∫
|x|≤1

|x|rν(dx) <∞
}
.

The Blumenthal-Getoor (BG) index is a fundamental characteristic of the Lévy process Z that deter-
mines the activity of jumps inZ . If ν([−ε, ε]) <∞, then the processZ has finite activity of jumps and
BG(Z) = 0. If the Lévy measure ν((−∞,−ε]∪ [ε,∞)) diverges near ε = 0 at a rate ε−α for some
α > 0, then the BG index of Z is equal to α. From a practical point of view, the importance of the
Blumenthal-Getoor index lies in the fact that it determines the smoothness properties of the marginal
density of Z and has significant impact on the convergence of different approximation algorithms for
Z (see, e.g., Dereich, 2011). One of the main results of our study states that the c.f. ϕ∆(u) of the
increments Xt+∆ −Xt for some ∆ > 0 in a stationary regime has a representation

log |ϕ∆(u)| = −τ1u− τ2u
α(1 + r(u)), |r(u)| ≤ τ3u

−κ, u > 1 (3)

with some constants τ1 ≥ 0, τ2 > 0, τ3 ≥ 0, κ > 0 and α ≥ 0 depending on the parameters of
the model (1)-(2). The representation (3) reveals the essential difference in the asymptotic behavior
of ϕ∆(u) between the case of Heston-like ASV models (aV > 0) and the case of Barndorff-Nielsen-
Shephard-like ASV models (aV = 0). While in the first case the asymptotic behavior of log |ϕ∆(u)| is
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equivalent to −τ1u, in the second case log |ϕ∆(u)| behaves like −τ2uα as u tends to infinity, where
α is proportional to the maximum of BG indexes of the Lévy processes Z1 and Z2.

The representation (3) is not only of theoretical interest, it can be used to construct statistical pro-
cedures for estimating the Blumenthal-Getoor indexes of the Lévy processes Z1 and Z2. Recently,
the problem of estimation of the BG index from the discrete observations of the Lévy process Z or
some other processes based on Z has drawn much attention in the literature. Aït-Sahalia and Jacod,
2009, studied the problem of estimating the so called jump activity index that is defined for any Itô
semimartingale X via

JAI(X) = inf

{
r > 0 :

∑
0≤s≤T

|∆Xs|r <∞

}
,

where ∆Xs = Xs − Xs− is the size of the jump at time s and T is a fixed time horizon. Note that
JAI(X) is a random quantity, which is to be determined pathwise. In the case of a Lévy process
X, JAI(X) coincides with the Blumenthal-Getoor index. Obviously, one can compute JAI(X) if the
whole path of the process X up to time T is observed. In a more realistic situation when the process
X is observed on the discrete grid {0,∆, . . . ,∆n} with ∆n = T and ∆ → 0 as n → ∞ (high-
frequency data), Aït-Sahalia and Jacod proposed a method which is able to consistently estimate
JAI(X) and is based on the statistics that counts the “big” increments of the process X. Turning
to the case of low-frequency data, i.e., the case of fixed ∆ > 0 and T → ∞, one may wonder if
any kind of statistical inference is possible in this situation at all. Indeed, one challenge is that the
transition density of X in ASV models is hardly ever known in closed form making the maximum-
likelihood estimation difficult. Furthermore, the volatility process V is not directly observable leading
to a kind of filtering problem which requires the elimination of V . The latter filtering problem is well
understood in the case of high-frequency data and poses significant problems if ∆ does not tend
to 0. The first results showing that a consistent estimation of the BG index based on low-frequency
data is possible, were obtained in Belomestny, 2010 for the case of Lévy processes. The inference in
Belomestny, 2010 relied on the kind of Abelian theorem that characterizes the decay of the c.f. of a
Lévy process Z. Such Abelian theorems are well known in the literature: Bismut, 1983 showed that
the tail integral ν

(
(−∞,−x) ∪ (x,+∞)

)
behaves asymptotically like c1x−γ as x → +∞ if and

only if the characteristic exponent of a Lévy process Z with the Lévy measure ν behaves like −c2|u|γ
as |u| → ∞ (here c1, c2, and γ are positive numbers). It turns out that the ideas similar to ones in
Belomestny, 2010 can be used to construct estimates for the BG indexes in the model (1)-(2) and the
representation (3) plays a crucial role in this construction.

The paper is organized as follows. In Section 2, we establish and discuss the representation (3). The
estimation algorithm for the BG of Z2 is formulated and analyzed in Section 3. In particular, we derive
the convergence rates for the proposed estimate and discuss their optimality. Section 4 contains the
proofs. Some important properties of the ASV model are collected in Appendix A.
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2 Abelian theorem

Denote by ν1 and ν2 the Lévy measures of the Lévy processes Z1 and Z2, respectively. Assume that
the following asymptotic relations hold

(AN1)

εγ1
∫
|x|>ε

ν1(dx) = β0,1 + β1,1ε
χ1(1 +O(ε)), ε→ +0,

(AN2)

εγ2
∫
y>ε

ν2(dy) = β0,2 + β1,2ε
χ2(1 +O(ε)), ε→ +0

with some 0 < γ1, γ2 ≤ 1, β0,1 > 0, β0,2 > 0 and 0 ≤ χ1 < γ1, 0 ≤ χ2 < γ2. The assumptions
(AN1) and (AN2) imply that the Blumenthal-Getoor indexes of the Lévy processes Z1 and Z2 are
equal to γ1 and γ2, respectively. Moreover, suppose that

(AE)

bV > 0, aV σ
2 < 2,

(AM) ∫
|x|>1

|x|2+δν2(dx) <∞.

The conditions (AE) and (AM) ensure the existence and uniqueness of the solution of (2) together
with the positive recurrence on (0,∞) (see Masuda, 2007). As a result, V admits a unique invariant
distribution π and Vt > 0 almost surely, for all t > 0. If additionally V0 is taken to have the distribution
π, then Vt is strictly stationary with the stationary distribution π. Then the strict stationarity of V implies
the strict stationarity of the process (Xt+∆ −Xt)t≥0 for any ∆ > 0. Denote by ϕ∆ the characteristic
function ofXt+∆−Xt in a stationary regime. The following theorem describes the asymptotic behavior
of ϕ∆(u) as |u| → ∞.

Theorem 2.1. Assume that the assumptions (AN1), (AN2), (AE) and (AM) are fulfilled. Then

log |ϕ∆(u)| = −τ1u− τ2u
α(1 + r(u)), |r(u)| ≤ τ3u

−κ, u > 1, (4)

where τ1 ≥ 0, τ2 > 0, τ3 ≥ 0, α ≥ 0 and κ > 0 are some numbers depending on the parameters
of the model (1)-(2). In particular,
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� if aV > 0, then τ1 is positive, α = max{γ1, γ2}, and

κ =


(γ2 − γ1) ∧ χ1, if γ1 < γ2,

(γ1 − γ2) ∧ χ2, if γ1 > γ2,

χ1 ∧ χ2, if γ1 = γ2;

� if aV = 0, then τ1 = 0, α = max{γ1, 2γ2}, and

κ =


(2γ2 − γ1) ∧ 2χ2 ∧ 1, if γ1 < 2γ2,

(γ1 − 2γ2) ∧ χ1, if γ1 > 2γ2,

χ1 ∧ 2χ2 ∧ 1, if γ1 = 2γ2.

Discussion It is easily seen that τ1 > 0 as long as aV > 0 and τ1 = 0 if aV = 0, meaning that
the asymptotic behavior of ϕ∆(u) changes markedly if we move from the Heston-like ASV models
(aV > 0) to the Barndorf-Nielsen-Shephard-like ASV models (aV = 0). Furthermore, if γ2 ≥ γ1 then
the value of α is always proportional to the BG index of Z2. Hence, in the latter case the problem
of statistical inference on γ2 can be reformulated as the problem of estimating α in (4), which is
considered in the next section.

3 Estimation of the Blumenthal-Getoor index

Suppose that the discrete observations X0, X∆, . . . , Xn∆ of the state process X are available for
some fixed ∆ > 0. First, estimate ϕ∆(u) by its empirical counterpart ϕn(u) defined as

ϕn(u) =
1

n

n∑
k=1

eiu(X∆k−X∆(k−1)). (5)

Note that under the assumptions (AE) and (AM),

1

n

n∑
k=1

eiu(X∆k−X∆(k−1)) a.s.−→ ϕ∆(u), n→ ∞

by the Birkhoff’s ergodic theorem (see, e.g., Athreya and Lahiri, 2010). Fix some θ > 2 such that
2θ ∈ N and consider a random function

Yn(u) = log
{
− log

[
|ϕn(u)|2θ/ |ϕn(θu)|2

]}
.

Furthermore, introduce a weighting function wUn(u) = U−1
n w1(u/Un), where Un is a sequence of

positive numbers tending to infinity, the function w1 is supported on [ε, 1] and satisfy∫ 1

ε

w1(u) du = 0,

∫ 1

ε

w1(u) log u du = 1. (6)
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Next, define an estimate of the parameter α in (4) by

αn =

∫ ∞

0

wUn(u)Yn(u) du. (7)

The estimate (7) can be alternatively defined as αn = ln,1 with

(ln,0, ln,1) := argmin
(l0,l1)

∫ Un

0

wUn
⋄ (u)(Yn(u)− l1 log(u)− l0)

2 du,

where wUn
⋄ (u) is a suitable weighting function supported on [εUn, Un]. In order to see that αn is a

reasonable estimate of α, we introduce a deterministic quantity

ᾱn =

∫ ∞

0

wUn(u)Y(u) du

with

Y(u) := log
{
− log

[
|ϕ(u)|2θ/ |ϕ(θu)|2

]}
= log(2τθu

αR(u)),

where by Theorem 2.1 we have τθ = τ2(θ − θα) and R(u) → 1 as u → +∞. Using Theorem 2.1
one can also show (see Lemma 5.4) that for n large enough,

|α− ᾱn| ≤ C1 τ3 U
−κ
n , (8)

with some constant C1 not depending on the parameters of the underlying ASV model. Hence, α is
close to ᾱn in the sense of (8); the next theorem shows that ᾱn converges to αn in probability.

Theorem 3.1. Consider a class of ASV models of the form (1)-(2) such that the assumptions (AN1),
(AN2), (AM) and (AE) are fulfilled. If aV > 0 (τ1 > 0) and the sequence Un fulfills

ε1,n :=
log n√
n
e2θ(τ1+τ2+τ2τ3)Un → 0, Un → ∞, n→ ∞,

then

P

{
|αn − ᾱn| > C2

ε1,n
τθUα

n

}
≤ C3n

−1−δ (9)

for some constants C2 > 0, C3 > 0 and δ > 0 not depending on α, τ1, τ2 and τ3. In the case
aV = 0 (τ1 = 0) we get

P

{
|αn − ᾱn| > C2

ε2,n
τθUα

n

}
≤ C3n

−1−δ,

provided

ε2,n :=
log n√
n
e2θ(τ2+τ2τ3)U

α
n → 0, Un → ∞, n→ ∞.
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Denote by AH a class of ASV models (1) such that aV is strictly positive, assumptions (AN1), (AN2),
(AM) and (AE) are fulfilled, and additionally

min{τ1, τ2} ≥ τ > 0, τ3 ≤ τ̄ <∞, 0 < α ≤ ᾱ, 0 < κ ≤ κ̄ (10)

in the representation (4). As we will see in the proof of Theorem 2.1, all conditions in (10) can be
reformulated in terms of the parameters of the underlying ASV model (1)-(2). Combining (8) with (9)
and choosing Un in an optimal way, we arrive at

sup
(X,V )∈AH

P(X,V )

(
|α− αn| > C4 log

−κ̄ n
)
≤ C5n

−1−δ, (11)

where constants C4 and C5 depend on τ , τ̄ and ᾱ only. Since

∞∑
n=1

P(X,V ){|α− αn| > C4 log
−κ̄ n} ≤ C5

∞∑
n=1

n−1−δ <∞,

for any (X,V ) ∈ AH , it follows by Borel-Cantelli lemma that the upper bound of the sequence of
events {|α− αn| > C4 log

−κ̄ n}, n ∈ N, is of probability 0, i.e.,

P(X,V )

{
|α− αn| > C4 log

−κ̄ n for infinitely many n
}
= 0,

or, equivalently,

P(X,V )

{
lim
n→∞

(
logκ̄ n |α− αn|

)
> C4

}
= 0.

In the case aV = 0, i.e., τ1 = 0 in (4), one can define a class ABNS with

τ2 ≥ τ̄ > 0, τ3 ≤ τ̄ <∞ 0 < α ≤ ᾱ, 0 < κ ≤ κ̄ (12)

to get

sup
(X,V )∈AOU

P(X,V )

(
|α− αn| > C4 log

−κ̄/ᾱ n
)
≤ C5n

−1−δ. (13)

Discussion As can be seen, the rates of convergence of αn are logarithmic and depend on the up-
per bound ᾱ for the BG index α. The latter feature can also be observed in the high-frequency setup of
Aït-Sahalia and Jacod, 2009. Comparing the first part of Theorem 3.1 with the situation where the Lévy
process Z2 is observed directly (see Belomestny, 2010, Theorem 6.7), we immediately realize that the
convergence rates in both cases are of the same order, indicating that the problem of estimating the
BG index of Z2 from the low-frequency observations of the processX has the same complexity as the
similar problem based on direct observations of the Lévy processZ2. Moreover, under the presence of
a nonzero Gaussian part the latter estimation problem becomes even more complex than the former
one, as far as the rates of convergence are concerned. The results of Belomestny, 2010 (Theorem
6.5) also indicate that the convergence rates in (11) and (13) are optimal and can not be improved in
general.
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4 Proofs

4.1 Proof of Theorem 2.1

It follows from the general results on affine processes (see, e.g., Duffie, Filipović and Schachermayer,
2003) that for any s ≤ t

ϕ(u,w, t− s|x, v) = E
[
eiuXt+iwVt |Xs = x, Vs = v

]
= exp {ψ0(u,w, t− s) + ixu+ vψ1(u,w, t− s)} , (u, v) ∈ R× R≥0,

(14)

where ψ0(u,w, t) and ψ1(u,w, t) are some complex-valued functions satisfying the system of non-
linear differential equations{

∂ψ1(u,w,t)
∂t

= σ2a2V ψ
2
1(u,w, t) + (2 · i aV σρu− bV )ψ1(u,w, t)− (u2 − i bXu) ,

∂ψ0(u,w,t)
∂t

= i aXu+ aV ψ1(u,w, t) +
∫∞
−∞

∫∞
0

(
eiux+ψ1(u,w,t)y − 1

)
ν(dx, dy)

(15)

with the initial conditions
ψ1(u,w, 0) = iw, ψ0(u,w, 0) = 0.

The following lemma easily follows from the standard results on ODEs.

Lemma 4.1. The solution of the equation

∂ψ(w, s)

∂s
= Φ(ψ(w, s)), ψ(w, 0) = iw (16)

with

Φ(z) = Az2 +Bz − C,

where A, B and C are complex numbers is explicitly given by the formula

ψ(w, s) = −2C(exp(λs)− 1)− (λ(exp(λs) + 1) +B(exp(λs)− 1))(i · w)
λ(exp(λs) + 1)−B(exp(λs)− 1)− 2A(exp(λs)− 1)(i · w)

,

where λ =
√
B2 + 4AC .

Lemma 4.1 implies that

ψ1(u,w, s) = −2C(exp(λs)− 1)− (λ(exp(λs) + 1) +B(exp(λs)− 1))(i · w)
λ(exp(λs) + 1)−B(exp(λs)− 1)− 2A(exp(λs)− 1)(i · w)

(17)

with
A = σ2a2V , B = 2 · i aV σρu− bV , C = u2 − i bXu, λ =

√
B2 + 4AC,
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and

ψ0(u,w, t) = i aXut+ aV

∫ t

0

ψ1(u,w, s) ds

+

∫ t

0

[∫ ∞

−∞

∫ ∞

0

(
exp
{
iux+ ψ1(u,w, s)y

}
− 1
)
ν(dx, dy)

]
ds.

(18)

Under assumptions (AE) and (AM), the process (Vt)t≥0 and, consequently, (Xt+∆ − Xt)t≥0 is er-
godic. Due to (14), the c.f. of the increments Xt+∆ −Xt in a stationary regime is given by

ϕ∆(u) = Eπ
[
eiu(Xt+∆−Xt)

]
= eψ0(u,0,∆)Eπ

[
eVtψ1(u,0,∆)

]
= exp {ψ0(u, 0,∆) + l(ψ1(u, 0,∆))} ,

where π is the invariant distribution of the volatility process V and l is the Laplace exponent of π, i.e.,

l(w) = log

[∫ ∞

0

ewy π(dy)

]
= lim

t→∞
ψ0(0,−iw, t).

As a result,

l(w) = aV

∫ ∞

0

ψ1(0,−iw, s)ds+

∫ ∞

0

[∫ ∞

0

(
eψ1(0,−iw,s)y − 1

)
ν2(dy)

]
ds. (19)

Our objective is now to infer on the asymptotic behavior of the function

log |ϕ∆(u)| = Re {ψ0(u, 0,∆)}+Re {l(ψ1(u, 0,∆))} (20)

as u → +∞, where ψ1 is given by (17), ψ0 - by (18), and l is in the form (19). Consider now two
cases.

Case aV = 0. We have A = 0, B = −bV , λ = bV , and formula (17) boils down to

ψ1(u,w, s) =
C

bV
(exp(−bV s)− 1) + (i · w) exp(−bV s).

Hence

ψ1(0, w, s) = ie−bV sw,

ψ1(u, 0, s) = BsC = Bs(u
2 − ibXu)

with Bs = b−1
V (exp(−bV s)− 1). Moreover,

l(w) =

∫ ∞

0

[∫ ∞

0

(
ee

−bV swy − 1
)
ν2(dy)

]
ds,

and

ψ0(u, 0,∆) = iaXu∆+

∫ ∆

0

[∫ ∞

−∞

∫ ∞

0

(
eiux+B∆(u2−ibXu)e

−bV sy − 1
)
ν(dx, dy)

]
ds.

10



Formula (20) yields

log |ϕ∆(u)| = Re

{∫ ∆

0

[∫ ∞

−∞

∫ ∞

0

(
eiux+B∆(u2−ibXu)e

−bV sy − 1
)
ν(dx, dy)

]
ds

}
+Re

{∫ ∞

0

[∫ ∞

0

(
ee

−bV sB∆(u2−ibXu)y − 1
)
ν2(dy)

]
ds

}
=: W1 +W2.

In what follows we derive asymptotic expansions (as u → +∞) for the terms W1 and W2. Set cγ =
Γ(1− γ), dγ = Γ(1− γ) sin ((1− γ)π/2) , and eγ = Γ(1− γ) cos ((1− γ)π/2) for any γ ∈ R.
For estimating the term W1 we apply Lemma 5.3 with ϱ = −B∆e

−bV su2 and ϕ = −B∆bXe
−bV su

to get

W1 = −
∫ ∆

0

[
β0,2cγ2ϱ

γ2 [1 +R1(ϱ, ϕ)] +R(u)
]
ds+O(1), u→ +∞,

where R1(ϱ, ϕ) = Āϱ−χ2β1,2/β0,2 + ϕ/ϱ, R(u) = −uγ1
(
β0,1dγ1 + β1,1dγ1−χ1u

−χ1

)
and Ā is

some constant not depending on the parameters of the model (1)-(2) and ∆. This gives the expansion

W1 = −δ(1)1,1u
γ1 − δ

(1)
2,1u

γ1−χ1 − δ
(1)
1,2u

2γ2 − δ
(1)
2,2u

2γ2−2χ2 − δ
(1)
3,2u

2γ2−1 +O(1), u→ +∞

with the coefficients

δ
(1)
1,1 = β0,1dγ1∆,

δ
(1)
2,1 = β1,1dγ1−χ1∆,

δ
(1)
1,2 = u−2γ2

∫ ∆

0

β0,2cγ2ϱ
γ2ds = β0,2cγ2(−B∆)

γ2

∫ ∆

0

e−bV sγ2ds

= β0,2cγ2(−B∆)
γ2
1− e−bV ∆γ2

bV γ2
,

δ
(1)
2,2 = u−2(γ2−χ2)

∫ ∆

0

cγ2Āβ1,2ϱ
γ2−χ2ds = cγ2Āβ1,2 (−B∆)

γ2−χ2
1− e−bV ∆(γ2−χ2)

bV (γ2 − χ2)
,

δ
(1)
3,2 = bXδ

(1)
1,2.

Turn now to W2. Making use of Lemma 5.1 with ϕ = −e−bV sB∆bXu and ϱ = −e−bV sB∆u
2, we

arrive at the asymptotic formula

W2 = −
∫ ∞

0

ϱγ2
[
β0,2cγ2 (1 + (ϕ/ϱ)) + β1,2cγ2−χ2ϱ

−χ2

]
ds+O(1), u→ +∞ (21)

or, equivalently,

W2 = −δ(2)1,2u
2γ2 − δ

(2)
2,2u

2γ2−2χ2 − δ
(2)
3,2u

2γ2−1 +O(1), (22)
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where

δ
(2)
1,2 = u−2γ2β0,2cγ2

∫ ∞

0

ϱγ2ds =
β0,2cγ2
γ2bV

(−B∆)
γ2 ,

δ
(2)
2,2 = u−2γ2+2χ2β1,2cγ2−χ2

∫ ∞

0

ϱγ2−χ2ds =
β1,2cγ2−χ2

(γ2 − χ2)bV
(−B∆)

γ2−χ2 ,

δ
(2)
3,2 = u−2γ2β0,2cγ2bX

∫ ∞

0

ϱγ2ds =
β0,2cγ2bX
γ2bV

(−B∆)
γ2 .

Case aV > 0. In this case,

ψ1(u,w, s) = − u(1 + o(1/u))

σaV (
√
1− ρ2 − iρ)

, u→ +∞, (23)

ψ1(0,−iw, s) =
we−bV s

1 + wABs

(24)

with Bs = b−1
V (exp(−bV s) − 1). By (24), the function l(w) remains bounded for all w such that

Rew ≥ 0. Therefore, we have l(ψ1(u, 0,∆)) = O(1) as u → +∞. The asymptotic relation (23)
implies

Re{ψ0(u, 0,∆)} = −aV
[
uσ−1a−1

V

√
1− ρ2∆

]
+

+Re

{∫ ∆

0

[∫ ∞

−∞

∫ ∞

0

(
eiux−[σ−1a−1

V (
√

1−ρ2+iρ)u+o(1)]y − 1
)
ν(dx, dy)

]
ds

}
as u→ +∞. Furthermore, Lemma 5.3 with ϱ = uσ−1a−1

V

√
1− ρ2 and ϕ = uσ−1a−1

V ρ gives

Re{ψ0(u, 0,∆)} = −aV
[
uσ−1a−1

V

√
1− ρ2 ∆

]
+

+

∫ ∆

0

[
−β0,2 rγ2(a) ϱγ2 [1 +R2(ϱ, ϕ)] +R(u)

]
ds+O(1), u→ +∞,

where a = ρ/
√
1− ρ2,R2(ϱ, ϕ) = (B̄β1,2/β0,2)ϱ

−χ2 , B̄ = rγ2−χ2(a)/rγ2(a),

R(u) = −uγ1
(
β0,1dγ1 + β1,1dγ1−χ1u

−χ1

)
and

rγ2(a) =

∫ ∞

0

e−y

yγ2
(cos(ay) + a sin(ay)) dy.

12



Denote ς = σaV /
√

1− ρ2. Then the following relations hold

aV

[
uσ−1a−1

V

√
1− ρ2 ∆

]
= aV ς

−1∆u,∫ ∆

0

β0,2 rγ2(ϕ/ϱ) ϱ
γ2ds = β0,2 rγ2(a)

(
u

ς

)γ2
∆,∫ ∆

0

R(ϱ)β0,2 rγ2(ϕ/ϱ) ϱ
γ2ds = β0,2 rγ2(a) B̄

β1,2
β0,2

(
u

ς

)γ2−χ2

∆∫ ∆

0

R2(u)ds = −uγ1
(
β0,1dγ1 + β1,1dγ1−χ1u

−χ1

)
∆+O(1), u→ +∞.

Combining the last formulas, we arrive at the representation

log |ϕ(u)| = −τ1u− λ1,1u
γ1 − λ2,1u

γ1−χ1 − λ1,2u
γ2 − λ2,2u

γ2−χ2 +O(1), u→ +∞, (25)

with

τ1 = aV ς
−1,

λ1,1 = β0,1dγ1 ,

λ2,1 = β1,1dγ1−χ1 ,

λ1,2 = β0,2rγ2(a)ς
−γ−2,

λ2,2 = β0,2 rγ2(a) B̄
β1,2
β0,2

ςχ2−γ2 .

This completes the proof of Theorem 2.1.

4.2 Proof of Theorem 3.1

We begin the proof with the following lemma.

Lemma 4.2. Suppose that

ε̃n :=

[
inf

u∈[0,Un]
|ϕ(u)|

]−2θ
log n√
n

= o(1), n→ ∞. (26)

Then there exist positive constants D1, D2, and δ such that for any n > 1

P

{
|αn − ᾱn| > D1ε̃n

∫ Un

0

∣∣wUn(u)
∣∣ ∣∣log−1 (G(u))

∣∣ du} ≤ D2n
−1−δ, (27)

where G(u) = |ϕ(u)|2θ/ |ϕ(uθ)|2.

13



Proof. We divide the proof into several steps.

1. Denote Gn(u) = |ϕn(u)|2θ/ |ϕn(uθ)|2 . It holds

Gn(u)− G(u) = |ϕn(u)|2θ − |ϕ(u)|2θ

|ϕn(uθ)|2
+

|ϕ(u)|2θ

|ϕ(uθ)|2
|ϕ(uθ)|2 − |ϕn(uθ)|2

|ϕn(uθ)|2

= G(u)
[
ξ1,n(u) + ξ2,n(u)

1− ξ2,n(u)

]
= G(u)Λn(u)

(28)

with

ξ1,n(u) =
|ϕn(u)|2θ − |ϕ(u)|2θ

|ϕ(u)|2θ
and ξ2,n(u) =

|ϕ(uθ)|2 − |ϕn(uθ)|2

|ϕ(uθ)|2
.

2. Lemma 5.5 shows that the event

Wn =

{
sup

u∈[0,Un]

|ξk,n(u)| ≤ B1 ε̃n, k = 1, 2

}

has a probability that tends to 1 as n tends to infinity. More precisely, it holds

P(Wn) = P

(
sup

u∈[0,Un]

|ξk,n(u)| > B1ε̃n

)
≤ D2n

−1−δ, k = 1, 2 (29)

for some positive constants B1, D2, and δ.

3. For any u ∈ [εUn, Un], the Taylor expansion for the function f(x) = log(− log(x)) in the vicinity
of the point x = G(u) yields

Yn(u)− Y(u) = χ1(u)(Gn(u)− G(u)) + χ2(u)(Gn(u)− G(u))2 (30)

with

χ1(u) = G−1(u) log−1(G(u)) and |χ2(u)| ≤ 2−1 max
z∈In(u)

[
1 + | log(z)|
z2 log2(z)

]
, (31)

where by In(u) we denote the interval between G(u) and Gn(u). Due to (4),

G(u) = |ϕ(u)|2θ

|ϕ(θu)|2
= exp {2τ2uα (−θ (1 + r(u)) + θα (1 + r(θu)))}

≤ exp
{
A1u

α + A2u
α−κ} ,

where A1 = 2τ2 (θ
α − θ) < 0 and A2 = 2τ2τ3 (θ

α−κ + θ). Hence, G(u) → 0 as u → +∞.
Moreover, the length of the interval |In(u)| = G(u)|Λn(u)| tends to 0 on the event Wn, uniformly in
u ∈ [εUn, Un]. Thus, In(u) ⊂ (0, 1) on Wn for n large enough and the maximum on the right hand
side of the inequality in (31) is attained at one of the endpoints of the interval In(u).
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4. Denote Q(u) = χ2(u)(Gn(u)−G(u))2. Lemma 5.6 shows that there exist a positive constant B3

such that for any u ∈ [εUn, Un] and for n large enough

Wn ⊂
{
|Q(u)| ≤ B3(ξ

2
1,n(u) + ξ22,n(u))

∣∣log−1 (G(u))
∣∣} . (32)

5. The Taylor expansion (30) and previous discussion yield that on the set Wn,

|αn − ᾱn| =

∣∣∣∣∫ Un

0

wUn(u)(Yn(u)− Y(u)) du

∣∣∣∣
≤

∫ Un

0

|wUn(u)|
(
|Gn(u)− G(u)|

|G(u)|
∣∣log−1 (G(u))

∣∣+ |Q(u)|
)
du

≤
∫ Un

0

|wUn(u)| log−1
(
G−1(u)

)( |Gn(u)− G(u)|
|G(u)|

+B3(ξ
2
1,n(u) + ξ22,n(u))

)
du.

By (28), expression in the brackets is equal to

P :=
|Gn(u)− G(u)|

|G(u)|
+B3(ξ

2
1,n(u) + ξ22,n(u)) =

|ξ1,n(u) + ξ2,n(u)|
|1− ξ2,n(u)|

+B3(ξ
2
1,n(u) + ξ22,n(u)),

and P can be upper bounded on the set Wn as follows (all supremums are taken over [0, Un]):

P ≤ sup |ξ1,n(u)|+ sup |ξ2,n(u)|
1− sup |ξ2,n(u)|

+B3

(
(sup |ξ1,n(u)|)2 + (sup |ξ2,n(u)|)2

)
≤ 2B1ε̃n

1−B1ε̃n
+ 2B3B

2
1 ε̃

2
n ≤ D1ε̃n.

This completes the proof.

Now we proceed with the proof of Theorem (3.1). First, we get a lower bound for the infimum of the
function |ϕ(u)| over [0, Un]. Consider two cases (see Theorem 2.1):

1 aV > 0 (τ1 > 0) In this case,

inf
u∈[0,Un]

|ϕ(u)| = inf
u∈[1,Un]

|ϕ(u)| = inf
u∈[1,Un]

exp {−τ1u− τ2u
α (1 + r(u))}

≥ inf
u∈[1,Un]

exp
{
−τ1u− τ2u

α − τ2τ3u
α−κ}

≥ exp {− (τ1 + τ2 + τ2τ3)Un} .

2 aV = 0 (τ1 = 0) Following the same lines, we arrive at

inf
u∈[0,Un]

|ϕ(u)| = inf
u∈[1,Un]

|ϕ(u)| = inf
u∈[1,Un]

exp
{
−τ2uα − τ2τ3u

α−κ}
≥ exp {− (τ2 + τ2τ3)U

α
n } .
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Thus, we conclude that ε̃n ≤ ε1,n in the first case and ε̃n ≤ ε2,n in the second one, and therefore the
assumption of Lemma 4.2 is fulfilled in both cases. Next,∣∣log−1 (G(u))

∣∣ = 1

2τθuαR(u)

with τθ = τ2(θ − θα) and

R(u) = 1 +
θr(u)− θαr(θu)

θ − θα
.

Hence ∫ Un

0

∣∣wUn(u)
∣∣ ∣∣log−1 (G(u))

∣∣ du =
1

2τθUα
n

∫ 1

ε

|w1(u)|
uαR(Unu)

du ≤ C2

τθUα
n

for some C2 > 0 and the statement of the theorem follows.

5 Auxiliary results

Lemma 5.1. Consider a Lévy measure ν on R+ that satisfies

Π(ε) :=

∫ ∞

ε

ν(dy) = ε−γ(β0 + β1ε
χ(1 +O(ε))), ε→ +0, (33)

with 0 < χ < γ < 1 and β0 > 0. Denote

Φ(ρ, ϕ) =

∫ ∞

0

(
e−ϱz cos(ϕz)− 1

)
ν(dz),

then the following asymptotic relations hold.

(i) As ϕ, ϱ→ ∞,

Φ(ϱ, ϕ) =

{
−ϱγ [β0cγ (1 + ϕ/ϱ) + β1cγ−χϱ

−χ] +O
(
e−ϕ
)
, ϱ/ϕ→ +∞,

−ϕγ
[
β0dγ + β0eγ (ϱ/ϕ) + β1(dγ−χ + eγ−χ)ϕ

−χ (ϱ/ϕ)
]
+O (e−ϱ) , ϕ/ϱ→ +∞,

where cγ = Γ(1−γ), dγ = Γ(1−γ) sin((1−γ)π/2), and eγ = Γ(1−γ) cos((1−γ)π/2).

(ii) As ϕ, ϱ→ ∞ and ϕ/ϱ = a for some constant a > 0,

Φ(ϱ, ϕ) = −ϱγ
[
β0rγ(a) + β1rγ−χ(a)ϱ

−χ]+O
(
e−ϱ
)

with

rγ(a) =

∫ ∞

0

e−y

yγ
(cos(ay) + a sin(ay)) dy.

Proof. (i) Here we present the proof only for the case ϕ/ϱ → +∞. The case ϱ/ϕ → +∞ can be
treated in a similar way.
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i1. Integrating by parts, we get∫ ∞

0

(
e−ϱz cos(ϕz)− 1

)
ν(dz) =

∫ ∞

0

(
e−y cos(ϕy/ρ)− 1

)
ν(d(y/ϱ))

= −
(
e−y cos(ϕy/ρ)− 1

)
Π(y/ϱ)

∣∣∞
0

−
∫ ∞

0

Π(y/ϱ)e−y
(
cos(ϕy/ϱ) + ϕ/ϱ sin(ϕy/ϱ)

)
dy.

Hence ∫ ∞

0

(
e−ϱz cos(ϕz)− 1

)
ν(dz) = −ϱγ

∫ ∞

0

(y/ϱ)γΠ(y/ϱ)
e−y

yγ
cos(ϕy/ϱ)dy

−ϕϱγ−1

∫ ∞

0

(y/ϱ)γΠ(y/ϱ)
e−y

yγ
sin(ϕy/ϱ)dy

= −ϱγI1 − ϕϱγ−1I2.

i2. Take H = ϱp with 0 < p < 1, and represent I1 as a sum of two integrals:

I1 =

∫ ∞

0

(y/ϱ)γΠ(y/ϱ)
e−y

yγ
cos(ϕy/ϱ)dy =

∫ H

0

(y/ϱ)γΠ(y/ϱ)
e−y

yγ
cos(ϕy/ϱ)dy

+

∫ ∞

H

ρ−γΠ(y/ϱ)e−y cos(ϕy/ϱ)dy.

The function ϱ−γΠ(y/ϱ) is uniformly bounded for y > H as ϱ→ +∞. Indeed,

ϱ−γ Π(y/ϱ) ≤ ϱ−γ Π(H/ϱ)

= ϱ−pγ
(
β0 + β1ϱ

χ(p−1)
(
1 +O(ϱp−1)

))
= β0ϱ

−pγ + β1ϱ
−
(
χ+(γ−χ)p

)(
1 + ϱp−1O(1)

)
and χ+ (γ − χ)p > 0. This boundeness of ρ−γΠ(y/ϱ) implies∫ +∞

H

ρ−γΠ(y/ϱ)e−y cos(ϕy/ϱ)dy = O(e−H).

As a result,

I1 =

∫ H

0

(y/ϱ)γΠ(y/ϱ)
e−y

yγ
cos(ϕy/ϱ)dy +O(e−H).

i3. If ρ→ ∞ and y < H , the assumption (33) implies

I1 = β0

∫ H

0

e−y

yγ
cos(ϕy/ϱ)dy + β1ϱ

−χ
∫ H

0

e−y

yγ−χ
cos(ϕy/ϱ)dy

+O

(
ϱ−χ−1

∫ H

0

e−y

yγ−χ−1
dy

)
+O(e−H).
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Note now that∫ H

0

e−y

yγ
cos(ϕy/ϱ)dy =

∫ ∞

0

e−y

yγ
cos(ϕy/ϱ)dy −

∫ ∞

H

e−y

yγ
cos(ϕy/ϱ)dy

=

∫ ∞

0

e−y

yγ
cos(ϕy/ϱ)dy +O(e−HH−γ).

Analogously,∫ H

0

e−y

yγ−χ
cos(ϕy/ϱ)dy =

∫ ∞

0

e−y

yγ−χ
cos(ϕy/ϱ)dy +O(e−HHχ−γ),

and we conclude that

I1 = β0

∫ ∞

0

e−y

yγ
cos(ϕy/ϱ)dy + β1ϱ

−χ
∫ ∞

0

e−y

yγ−χ
cos(ϕy/ϱ)dy + T1,

where

T1 = O

(
ϱ−χ−1

∫ H

0

e−y

yγ−χ−1
dy

)
+O(e−HH−γ) +O

(
ϱ−χe−HHγ−χ)+O(e−H)

= O
(
ϱ−γe−H

)
.

i4. Since ∫ ∞

0

e−y

yγ
cos(hy)dy ≍ eγh

γ−1, h→ +∞

with eγ = Γ(1− γ) cos((1− γ)π/2), we get

ϱγI1 = ϕγ
[
β0eγ(ϱ/ϕ) + β1eγ−χϕ

−χ(ϱ/ϕ)
]
+O(e−H), ϱ, ϕ→ ∞.

Similarly, using the fact that ∫ ∞

0

e−y

yγ
sin(hy)dy ≍ dγh

γ−1, h→ ∞

with eγ = Γ(1− γ) sin((1− γ)π/2), we arrive at

ϕϱγ−1I2 = ϕγ
[
β0dγ + β1dγ−χϕ

−χ]+O(e−H), ϱ, ϕ→ ∞.

(ii) The first three steps are the same as i1, i2 and i3.
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ii4. Introduce

vγ(a) =

∫ ∞

0

e−y cos(ay)

yγ
dy,

then
ϱγI1 = ϱγ

[
β0vγ(a) + β1vγ−χ(a)ϱ

−χ
]
+O

(
e−H

)
.

Analogously,

ϕϱγ−1I2 = aϱγI2 = aϱγ
[
β0wγ(a) + β1wγ−χ(a)ϱ

−χ
]
+O

(
e−H

)
with

wγ(a) =

∫ ∞

0

e−y sin(ay)

yγ
dy.

It remains to note that
rγ(a) = vγ(a) + awγ(a).

Lemma 5.2. Consider a Lévy measure ν on R \ {0} that fulfilles

G(ε) :=

∫
|x|>ε

ν(dx) = ε−γ(β0 + β1ε
χ(1 +O(ε))), ε→ +0 (34)

with 0 < χ < γ < 1 and β0 > 0. Denote

V (u) =

∫
R

(
cos(ux)− 1

)
dν(x).

Then as u→ +∞,

V (u) = −uγ
(
β0dγ + β1dγ−χu

−χ
)
+O(1).

Proof. For the sake of simplicity we consider only the case of even measure ν.

1. First, we apply the integration by parts to get

V (u) = −
∫ +∞

0

(
cos(ux)− 1

)
dG(x)

= −
(
cos(ux)− 1

)
G(x)

∣∣+∞
0

− u

∫ +∞

0

sin(ux)G(x)dx

= −
∫ +∞

0

sin(x)G(x/u)dx.
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2. Take H = up with 0 < p < 1, and represent the last integral as a sum of tho integrals:∫ +∞

0

sin(x)G(x/u)dx =

∫ H

0

sin(x)G(x/u)dx+

∫ +∞

H

sin(x)G(x/u)dx

= I1 + I2.

The integral I2 is bounded, because G(x/u) is uniformly bounded for x > H by G(H/u).

3. Next, we apply (34) to I1:

I1 =

∫ H

0

sin(x) (x/u)−γ
(
β0 + β1 (x/u)

χ (1 +O (x/u))
)

= β0u
γ

∫ H

0

sin(x)

xγ
dx+ β1u

γ−χ
∫ H

0

sin(x)

xγ−χ
dx+ β1u

γ−χ−1

∫ H

0

sin(x)

xγ−χ−1
dx.

Note that the integral
∫ H
0

sin(x)x−γdx can be represented in the following way:∫ H

0

sin(x)

xγ
dx =

∫ ∞

0

sin(x)

xγ
dx−

∫ ∞

H

sin(x)

xγ
dx = dγ +O(H−γ).

Analogously, ∫ H

0

sin(x)

xγ−χ
dx = dγ−χ +O(H−(γ−χ)).

Finally, we arrive at

I1 = β0dγu
γ + β1dγ−χu

γ−χ + T1,

where

T1 = O(u(1−p)γ) +O(u(1−p)(γ−χ)) +O(u(1−p)(γ−χ−1)) = O(u(1−p)γ).

Lemma 5.3. Let ν be a two-dimensional Lévy measure on R × R+ with marginals ν1 and ν2, and
assumptions (AN1) and (AN2) are fulfilled. Denote

Q(u, ϱ, ϕ) =

∫ ∞

−∞

∫ ∞

0

(
exp
{
iux− (ϱ+ iϕ)y

}
− 1

)
ν(dx, dy)

for any real numbers u, ϱ and ϕ. Then

Re{Q(u, ϱ, ϕ)} = Φ(ρ, ϕ) +R(u) +O(1), u, ϱ, ϕ→ +∞
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with

Φ(ρ, ϕ) =

∫ ∞

0

(
e−ϱy cos(ϕy)− 1

)
ν2(dy)

and

R(u) = −uγ1
(
β0,1dγ1 + β1,1dγ1−χ1u

−χ1

)
.

Moreover, the following asymptotic relations hold as ϱ, ϕ→ +∞

Re{Q(u, ϱ, ϕ)} = −β0,2cγ2ϱγ2 [1 +R1(ϱ, ϕ)] +R(u) +O(1), ϱ/ϕ→ +∞,

Re{Q(u, ϱ, ϕ)} = −β0,2rγ2(a)ϱγ2 [1 +R2(ϱ, ϕ)] +R(u) +O(1), ϕ/ϱ = a,

where

R1(ϱ, ϕ) = Ā
β1,2
β0,2

ϱ−χ2 +
ϕ

ϱ
, R2(ϱ, ϕ) = (B̄β1,2/β0,2)ϱ

−χ2

and Ā, B̄ are two absolute constants.

Proof. We have

Re [Q(u, ϱ, ϕ)] =

∫ ∞

0

(exp(−ϱy) cos(ϕy)− 1) ν2(dy)

+

∫ ∞

−∞

∫ ∞

0

(cos(ux)− 1) · exp(−ϱy) cos(ϕy)ν(dx, dy)

+

∫ ∞

−∞

∫ ∞

0

sin(ux) sin(ϕy) exp(−ϱy)ν(dx, dy) = Φ(ϱ, ϕ) + I1(u, ϱ, ϕ) + I2(u, ϱ, ϕ).

Consider for simplicity the case of the Lévy measure ν with independent components. In this case
(see Cont, Tankov, 2004),

I1(u, ϱ, ϕ) =

∫ ∞

−∞
(1− cos(ux)) ν1(dx), I2(u, ϱ, ϕ) =

∫ ∞

−∞
sin(ux)ν1(dx).

The asymptotical behavior of these integrals is given by Lemma 5.2. Other statements directly follow
from Lemma 5.1. The constants Ā and B̄ are equal to

Ā = cγ2−χ2/cγ2 , B̄ = rγ2−χ2(a)/rγ2(a).

This completes the proof.

Lemma 5.4. For any n large enough, it holds

|α− ᾱn| ≤ cτ3U
−κ
n (35)

with some constant c not depending on n.
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Proof. Denote

R(u) = 1 +
θr(u)− θαr(θu)

θ − θα
,

then

|α− ᾱn| =

∣∣∣∣α−
∫ Un

0

wUn(u)Y(u)du

∣∣∣∣ = ∣∣∣∣α−
∫ Un

0

wUn(u) log(2τθu
αR(u))du

∣∣∣∣ =
=

∣∣∣∣α− log(2τθ)

∫ Un

0

wUn(u)du− α

∫ Un

0

wUn(u) log u du−
∫ Un

0

wUn(u) logR(u)du

∣∣∣∣
=

∣∣∣∣∫ Un

0

wUn(u) log
(
1 +

θr(u)− θαr(θu)

θ − θα

)
du

∣∣∣∣
=

∣∣∣∣∫ 1

0

w1(s) log
(
1 +

θr(sUn)− θαr(θsUn)

θ − θα

)
ds

∣∣∣∣.
Since the function w1 is supported on [ε, 1], the lower bound of the integral can be changed to ε. It
follows from

|r(u)| ≤ τ3u
−κ, u > 1

that ∣∣∣∣θr(sUn)− θαr(θsUn)

θ − θα

∣∣∣∣ ≤ θτ3(sUn)
−κ + θατ3(θsUn)

−κ

θ − θα
= τ3U

−κ
n s−κ θ + θα−κ

θ − θα

for n large enough (more precisely, for n s.t. εUn > 1). Hence for n large enough∣∣∣∣θr(sUn)− θαr(θsUn)

θ − θα

∣∣∣∣ ≤ 1

2

and

|α− ᾱn| ≤ τ3U
−κ
n

θ + θα−κ

θ − θα

∫ 1

ε

|w1(s)|s−κds, (36)

as | log(1 + x)| ≤ 2|x| for any |x| ≤ 1/2. The observation that the integral on the right hand side of
(36) is finite completes the proof.

Lemma 5.5. Let the assumptions (AM) and (AE) be fulfilled. Denote

ξ1,n(u) =
|ϕn(u)|2θ − |ϕ(u)|2θ

|ϕ(u)|2θ
, ξ2,n(u) =

|ϕ(uθ)|2 − |ϕn(uθ)|2

|ϕ(uθ)|2
, (37)

and

ε̃n =

[
inf

u∈[0,Un]
|ϕ(u)|

]−2θ
log n√
n
. (38)

There exist some positive constants B1, B2, and δ such that

P

{
sup

u∈[0,Un]

|ξk,n(u)| > B1ε̃n

}
≤ B2n

−1−δ, k = 1, 2. (39)
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Proof. Denote

H1 =

[
inf

u∈[0,Un]
|ϕ(u)|

]2θ
sup

u∈[0,Un]

∣∣|ϕn(u)|2θ − |ϕ(u)|2θ
∣∣

|ϕ(u)|2θ
,

H2 =

[
inf

u∈[0,Un]
|ϕ(u)|

]2θ
sup

u∈[0,Un]

||ϕn(uθ)|2 − |ϕ(uθ)|2|
|ϕ(uθ)|2

.

Substituting (37) and (38) into (39), we obtain an equivalent formulation of the statement of the lemma: P
{ √

n
logn

H1 > B1

}
≤ B2n

−1−δ,

P
{ √

n
logn

H2 > B1

}
≤ B2n

−1−δ.
(40)

Denote w∗(u) = log−1/2(e+ |u|). The quantity H1 can be upper bounded as follows:

H1 ≤
[

inf
u∈[0,Un]

|ϕ(u)|
]2θ supu∈[0,Un]

∣∣|ϕn(u)|2θ − |ϕ(u)|2θ
∣∣

infu∈[0,Un] |ϕ(u)|2θ
≤ 2θ sup

u∈[0,Un]

|ϕn(u)− ϕ(u)|

≤ 2θ sup
u∈[0,Un]

[
w∗(u)

infs∈[0,Un]w
∗(s)

|ϕn(u)− ϕ(u)|
]

≤ 2θ
√
log(e+ Un) sup

u∈[0,Un]

[w∗(u) |ϕn(u)− ϕ(u)|]

≤ C1

√
log n sup

u∈[0,Un]

[w∗(u) |ϕn(u)− ϕ(u)|]

≤ C1

√
log n sup

u∈R
[w∗(u) |ϕn(u)− ϕ(u)|] ,

for some constant C1. The quantity H2 can be upper bounded in a similar way:

H2 ≤
[

inf
u∈[0,Un]

|ϕ(u)|
]2θ supu∈[0,Unθ] ||ϕn(u)|2 − |ϕ(u)|2|

infu∈[0,Unθ] |ϕ(u)|2

≤
[

inf
u∈[0,Unθ]

|ϕ(u)|
]2θ−2

sup
u∈[0,Unθ]

∣∣|ϕn(u)|2 − |ϕ(u)|2
∣∣

≤ 2 sup
u∈[0,Unθ]

|ϕn(u)− ϕ(u)|

≤ C2

√
log n sup

u∈R
[w∗(u) |ϕn(u)− ϕ(u)|] .

Note that under the assumptions (AE) and (AM) the sequence Xk∆ − X(k−1)∆, k = 2, . . . , n, is
strongly mixing and ergodic with exponentially decreasing mixing coefficients (see Masuda, 2007). By
the Proposition 6.3, there exist positive constants B(0)

1 , B2 and δ such that

P

{√
n

log n
sup
u∈R

[
w∗(u) |ϕn(u)− ϕ(u)|

]
> C1B

(0)
1

}
≤ B2n

−1−δ.
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Combining this result with the upper bounds for H1 and H2, we arrive at

P

{ √
n

log n
H1 > C1B

(0)
1

}
≤ P

{√
n

log n
sup
u∈R

[w∗(u) |ϕn(u)− ϕ(u)|] > B
(0)
1

}
≤ B2n

−1−δ

and

P

{ √
n

log n
H2 > C2B

(0)
1

}
≤ P

{√
n

log n
sup
u∈R

[w∗(u) |ϕn(u)− ϕ(u)|] > B
(0)
1

}
≤ B2n

−1−δ.

Formulae (40) follow with B1 = B
(0)
1 ·max {C1, C2}.

Lemma 5.6. Denote Q(u) = χ2(u)(Gn(u)− G(u))2 and let ε̃n = o(1). Then

Wn :=

{
sup

v∈[0,Un]

|ξk,n(v)| ≤ B1 ε̃n, k = 1, 2

}
⊂
{
|Q(u)| ≤ B3(ξ

2
1,n(u) + ξ22,n(u))

∣∣log−1 (G(u))
∣∣}

for some positive constant B3, n large enough, and all u ∈ [εUn, Un].

Proof. Denote

S(u) = |Q(u)| |log (G(u))|
ξ21,n(u) + ξ22,n(u)

.

By formula (28) and a trivial inequality (a+ b)2 ≤ 2 (a2 + b2), we get

(Gn(u)− G(u))2 = G2(u)Λ2
n(u) ≤ 2 G2(u)

ξ21,n(u) + ξ22,n(u)

(1− ξ2,n(u))
2 .

Hence

S(u) ≤ 2 |χ2(u)|
G2(u) | log (G(u))|
(1− ξ2,n(u))

2 .

Let us now show that for n large enough

Wn ⊂
{
ω : |Λn(u)| ≤

1

2

}
.

In fact, we have on Wn for n large enough:

|Λn(u)| =
|ξ1,n(u) + ξ2,n(u)|

|1− ξ2,n(u)|
≤ sup |ξ1,n(u)|+ sup |ξ2,n(u)|

1− sup |ξ2,n(u)|

≤ 2B1ε̃n
1−B1ε̃n

≤ 1

2

because ε̃n = o(1). By (31), we get

|χ2(u)| ≤ 2−1 max
z∈I1(u)

[
1 + | log(zG(u))|

z2G2(u) log2(zG(u))

]
,
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where I1(u) is an interval between 1 and 1 + Λn(u). On the set Wn, we have I1(u) ⊂ [1/2, 3/2].
Therefore

|χ2(u)| G2(u) | log (G(u))| ≤ 2−1 max
z∈[1/2,3/2]

[
1 + | log(zG(u))|

log2(zG(u))

]
| log (G(u))|

≤ 2−1

(
1 +

∣∣log(1
2
G(u))

∣∣) |log (G(u))|∣∣log(1
2
G(u))

∣∣2 .

Since supu∈[εUn,Un] |G(u)| → 0 as n→ ∞, the function |χ2(u)| G2(u) | log (G(u))| is bounded on

[εUn, Un] by a constant C̃ . So, we have proved that on Wn,

S(u) ≤ 2 C̃

(1− ξ2,n(u))
2 ,

for u large enough. Moreover, it holds on Wn

S(u) ≤ C

(1− ξ2,n(u))
2 ≤ sup

u∈[0,Un]

C

(1− ξ2,n(u))
2 ≤ C(

1− supu∈[0,Un] |ξ2,n(u)|
)2

≤ C

(1−B1ε̃n)2
≤ B3

for some B3, C = 2C̃ and n large enough. This completes the proof.

6 Appendix. Exponential inequalities for dependent sequences
and for empirical characteristic functions

The following theorem can be found in Merlevéde, Peligrad, and Rio, 2009.

Theorem 6.1. Let (Zk, k ≥ 1) be a strongly mixing sequence of centered real-valued random vari-
ables on the probability space (Ω,F ,P) with the mixing coefficients satisfying

α(n) ≤ ᾱ exp(−cn), n ≥ 1, ᾱ > 0, c > 0. (41)

Assume that supk≥1 |Zk| ≤ M a.s., then there is a positive constant C depending on c and ᾱ such
that

P

{
n∑
i=1

Zi ≥ ζ

}
≤ exp

[
− Cζ2

nv2 +M2 +Mζ log2(n)

]
.

for all ζ > 0 and n ≥ 4, where

v2 = sup
i

(
E[Zi]2 + 2

∑
j≥i

Cov(Zi, Zj)

)
.
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Corollary 6.2. Denote

ρj = E
[
Z2
j log

2(1+ε)
(
|Zj|2

)]
, j = 1, 2, . . . ,

with arbitrary small ε > 0 and suppose that all ρj are finite. Then∑
j≥i

Cov(Zi, Zj) ≤ Cmax
j
ρj

for some constant C > 0, provided (41) holds. Consequently the following inequality holds

v2 ≤ sup
i

E[Zi]2 + Cmax
j
ρj.

Proof. Due to the Rio inequality

|Cov(Zi, Zj)| ≤ 2

∫ α(|j−i|)

0

QZi
(u)QZj

(u)du

where for any random variable X we denote by QX the quantile function of X. Define

ρX = E
[
X2 log2(1+ε)

(
|X|2

)]
.

The Markov inequality implies for small enough u > 0

P

(
|X| > ρ

1/2
X

u1/2| log(u)|(1+ε)

)
≤ E

[
X2 log2(1+ε)

(
|X|2

)
)
] ρ−1

X

u−1 log−2(1+ε)(u)

× log−2(1+ε)

(
ρX

u log2(1+ε)(u)

)
= u log−2(1+ε)

(
ρX log−2(1+ε)(u)

)
≤ u

and therefore

QX(u) ≤
ρ
1/2
X

u1/2| log(u)|(1+ε)
.

Hence

|Cov(Zi, Zj)| ≤ 2

∫ α(|j−i|)

0

√
ρiρj

u log2(1+ε)(u)
du ≤ 2

√
ρiρj log

−1−2ε(α(|j − i|))

and ∑
j≥i

Cov(Zi, Zj) ≤ C
√
ρiρj

∑
j>i

1

|j − i|1+2ε

with some constant C > 0 depending on ᾱ.
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Let Zj, j = 1, . . . , n, be a sequence of random variables. Define

ϕn(u) =
1

n

n∑
j=1

exp(iuZj).

Proposition 6.3. Suppose that the following assumptions hold:

(AZ1) The sequence Zj, j = 1, . . . , n, is strictly stationary and is α-mixing with mixing coefficients
(αZ(k))k∈N satisfying

αZ(k) ≤ ᾱ0 exp(−ᾱ1k), k ∈ N

for some ᾱ0 > 0 and ᾱ1 > 0.

(AZ2) The r.v. Zj possess finite absolute moments of order p > 2.

Let w be a positive monotone decreasing Lipschitz function on R+ such that

0 < w(z) ≤ log−1/2(e+ |z|), z ∈ R. (42)

Then there is δ′ > 0 and ξ0 > 0, such that the inequality

P

{√
n

log n
∥ϕn − ϕ∥L∞(R,w) > ξ

}
≤ Bn−1−δ′ (43)

holds for any ξ > ξ0 and some positive constant B depending on ξ.

Proof. Denote Wn(u) = ϕn(u) − E[ϕn(u)]. Consider the sequence Ak = ek, k ∈ N and cover
each interval [−Ak, Ak] by Mk = (⌊2Ak/γ⌋+ 1) disjoint small intervals Λk,1, . . . ,Λk,Mk

of the
length γ. Let uk,1, . . . , uk,Mk

be the centers of these intervals. We have for any natural K > 0

max
k=1,...,K

sup
Ak−1<|u|≤Ak

|Wn(u)| ≤ max
k=1,...,K

max
|uk,m|>Ak−1

|Wn(uk,m)|

+ max
k=1,...,K

max
1≤m≤Mk

sup
u∈Λk,m

|Wn(u)−Wn(uk,m)|.

Hence

P

(
max

k=1,...,K
sup

Ak−1<|u|≤Ak

|Wn(u)| > λ

)
≤

K∑
k=1

∑
{|uk,m|>Ak−1}

P(|Wn(uk,m)| > λ/2)+

P

(
sup

|u−v|<γ
|Wn(v)−Wn(u)| > λ/2

)
. (44)
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It holds for any u, v ∈ R

|Wn(v)−Wn(u)| ≤ 2|w(|v|)− w(|u|)|

+
1

n

n∑
j=1

|exp(ivZj)− exp(iuZj)|+ |ϕ(v)− ϕ(u)|

≤ (u− v)

[
Lw +

1

n

n∑
j=1

|Zj|+ E|Z|

]
, (45)

where Lω is the Lipschitz constant of w. The Markov inequality implies

P

(
1

n

n∑
j=1

[|Zj| − E|Z|] > c

)
≤ c−pn−pE

∣∣∣∣∣
n∑
j=1

[|Zj| − E|Z|]

∣∣∣∣∣
p

for any c > 0. Using now Dedecker and Rio inequalities and taking into account the assumptions
(AZ1)-(AZ2), we get

E

∣∣∣∣∣
n∑
j=1

[|Zj| − E|Z|]

∣∣∣∣∣
p

≤ Cp(ᾱ)n
p/2,

where Cp(ᾱ1) is some constant depending on ᾱ = (ᾱ0, ᾱ1) and p from assumptions (AZ1) and
(AZ2) respectively. Hence,

P

(
1

n

n∑
j=1

|Zj| > 2 · E|Z|

)
≤ Cp(ᾱ)n

−p/2(E|Z|)−p. (46)

Setting γ = λ/(24max{E|Z|, Lw}) and combining (45) with the inequality (46), we obtain

P

(
sup

|u−v|<γ
|Wn(v)−Wn(u)| > λ/2

)
≤ B1n

−p/2 (47)

with some constant B1 not depending on λ and n. Let us turn now to the first term on the right-hand
side of (44). If |uk,m| > Ak−1, then it follows from Theorem 6.1 and Corollary 6.2

P (|Re [Wn(uk,m)] | > λ/4)

≤ B2 exp

(
− B3λ

2n

4w2(Ak−1) log
2(1+ε)(w(Ak−1)) + λ log2(n)w(Ak−1)

)
,

P (| Im [Wn(uk,m)] | > λ/4)

≤ B4 exp

(
− B3λ

2n

4w2(Ak−1) log
2(1+ε)(w(Ak−1)) + λ log2(n)w(Ak−1)

)
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with some constants B2, B3 and B4 depending only on the characteristics of the process Z . Taking
λ = ζn−1/2 log1/2 n with ζ > 0, we get∑

{|uk,m|>Ak−1}

P(|Wn(uk,m)| > λ/2) ≤ (⌊2Ak/γ⌋+ 1)

× exp

(
− B3λ

2n

4w2(Ak−1) log
2(1+ε)(w(Ak−1)) + λ log2(n)w(Ak−1)

)
. AkN

1/2 exp

(
− Bζ2 log(n)

w2(Ak−1) log
2(1+ε)(w(Ak−1))

)
log(r−1)/2(n), n→ ∞

with r = 2(1 + ε) and some constant B > 0. Fix θ > 0 such that Bθ > d and compute∑
{∥uk,m∥>Ak−1}

P(|Wn(uk,m)| > λ/2) . ek−θB(k−1)n1/2 log(r−1)/2(n)e−B(k−1)(ζ2 logn−θ)

. ek(1−θB) log(r−1)/2(n)e−B(k−1)(ζ2 logn−θ)+log(n).

a If ζ2 log n > θ we get asymptotically

K∑
k=2

∑
{∥uk,m∥>Ak−1}

P(|Wn(uk,m)| > λ/2) . log(r−1)/2(n)e−(Bζ2−1) log(n).

Taking large enough ζ > 0, we get (43).
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