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Abstract

We study the time evolution in elastoplasticity within the rate-independent framework of gener-

alized standard materials. Our particular interest is the formation and the evolution of microstruc-

ture. Providing models where existence proofs are possible is a challenging task since the pres-

ence of microstructure comes along with a lack of convexity and, hence, compactness arguments

cannot be applied to prove the existence of solutions. In order to overcome this problem, we will

incorporate information on the microstructure into the internal variable, which is still compatible

with generalized standard materials. More precisely, we shall allow for such microstructure that

is given by simple or sequential laminates. We will consider a model for the evolution of these

laminates and we will prove a theorem on the existence of solutions to any finite sequence of

time-incremental minimization problems. In order to illustrate the mechanical consequences of

the theory developed some numerical results, especially dealing with the rotation of laminates,

are presented.

1 Introduction

We are going to show one way of incorporating microstructure into a model of elastoplasticity. There-
fore, we start with a model in finite-strain elastoplasticity with kinematic hardening and show how it
can be transformed into a model that describes the evolution of microstructure. All the necessary
assumptions are collected in Section 2.

1.1 Finite-Strain Theory

We study a model in elastoplasticity where we are interested in the time evolution of the deformation φ
and the plastic strain P . In terms of standard generalized materials, P serves as the internal variable.
Let Ω ⊆ Rm, m ∈ {2, 3}, be the reference configuration of an elastoplastic body. The variables φ
and P are fields and can both be considered as functions of a spatial variable x ∈ Ω. The following
three conditions (1.1), (1.2) and (1.3) underline the non-linear character of finite-strain theory. They
are supposed to hold for almost every x ∈ Ω.

Physical requirements on the deformation lead to a condition for the deformation gradient ∇φ:

∇φ(x) ∈ GL+(m)
def
= {F ∈ R

m×m | det(F ) > 0}. (1.1)

On the one hand, (1.1) guarantees that φ locally preserves the orientation of the ambient space R
m

and, on the other hand, the self-penetration of matter is excluded, at least locally. The plastic strain is
supposed to be volume preserving and, hence, an element of the special linear group SL(m):

P (x) ∈ SL(m)
def
= {P ∈ R

m×m | det(P ) = 1}. (1.2)
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Moreover, we assume a multiplicative split of the deformation gradient ∇φ into the elastic strain Fel

and the plastic strain P , such that
∇φ(x) = Fel(x)P (x). (1.3)

In particular, this implies that Fel(x) ∈ GL+(m). Instead of the term Fel(x), we will often write
∇φ(x)P−1(x).

1.2 A Classical Model

Let [0, T ] ⊆ R be a given time interval. Following [Mie03b, Mie03a, CT05], we associate an energy
E to every time t ∈ [0, T ], every deformation φ and plastic strain P via the formula

E(t, φ, P )
def
=

∫

Ω

[
W (∇φP−1) +H(P )

]
dx− F(t, φ). (1.4)

The energy consists of three parts. The first part measures the stored elastic energy and is given
by the density function W : Rm×m → R∪{∞}. In view of the condition (1.1), W has to satisfy
W (F ) = ∞ whenever F 6∈ GL+(m). The second part is due to plastic kinematic hardening and
given by H : SL(m) → R. Finally, the term F(t, φ) is supposed to be linear in φ and measures the
work done with respect to a time-dependent external loading.

In the classical sense, a pair (φ, P ) is said to be a solution of the time-continuous model if it meets a
given initial condition (φ(0), P (0)) = (φ0, P0) and if the following two equations are fulfilled for every
t ∈ [0, T ]: the equation of elastic equilibrium

DφE(t, φ(t), P (t)) = 0 (1.5)

and the plastic flow rule (Biot’s equation)

0 ∈ ∂ṖR(P (t), Ṗ (t)) + DPE(t, φ(t), P (t)), (1.6)

where ∂ṖR denotes the subgradient with respect to the second variable. The dissipation potential R
is given by a dissipation density R via

R(P (t), Ṗ (t))
def
=

∫

Ω

R(P (t, x), Ṗ (t, x)) dx. (1.7)

We consider rate-independent materials, where R is positively homogeneous of degree 1 in the
variable Ṗ , that is R(P, λṖ ) = λR(P, Ṗ ) for all λ > 0. An example is given by R(P, Ṗ ) =
σyield|ṖP−1| with yield stress σyield > 0, see Section 3. The balance equations (1.5) and (1.6) are
listed for the sake of completeness. The time-continuous model is not discussed further in this paper.

Now we replace the system (1.5) and (1.6) by the incremental minimization problem. As in [Mie03b,
Mie02], we define the dissipation DSL : SL(m)×SL(m) → [0,∞] for plastic strains by

DSL(P0, P1)
def
= inf

∫ 1

0

R(P (s), Ṗ (s)) ds (1.8)

where the infimum is taken over the set of all paths P ∈ C1([0, 1], SL(m)) such that P (0) = P0 and
P (1) = P1. We obtain a dissipation D between plastic-strain fields via

D(P0, P1)
def
= ‖DSL(P0, P1)‖L1(Ω).
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Let Q be the state space of all admissible pairs (φ, P ). For a partition 0 = t0 < · · · < tN = T of
the time interval and an initial state (φ0, P0) ∈ Q, the incremental minimization problem is to solve
iteratively, for l = 1, . . . , N ,

(φl,Λl) ∈ Argmin [E(tl, φ, P ) + D(Pl−1, P )] . (IMP)

Analyzing this problem is the standard approach to find energetic solutions for the rate-independent
system (Q, E ,D), see [MTL02, Mie05]. However, it is shown in [CHM02] that, in general, there are no
solutions for (IMP) because of the formation of microstructure. Only in very special cases, the existence
of solutions can be guaranteed, see [Mie04b]. Gradient plasticity is treated in [MM06, MM09] where
the energy contains a regularizing term of the form

∫
Ω
G(∇P )dx that gives an internal length scale.

Yet, neither approach allows for the modeling of microstructure.

1.3 Reformulation for Young Measures

In order to study systems that can develop microstructure, we are going to replace the plastic strain P
by a new internal variable Λ that encodes both the micro-fluctuations around the deformation gradient
∇φ as well as micro-fluctuations of the plastic strain. In fact, Λ lies in the set YM(Ω, Z) of Young

measures where Z
def
= Rm×m×SL(m). More details on Young measures are given in Section 2.4.

Following [Mie04a], we extend E in (1.4) to Young measures. Therefore, we define a new elastic strain
F̃el as a function of the deformation gradient ∇φ and (A,P ) ∈ Z via

F̃el(∇φ,A, P )
def
= ∇φ(I+A)P−1.

Here A is the placeholder for the micro-fluctuation around ∇φ and P for the plastic strain, I ∈ Rm×m

denotes the identity matrix. Then, very similar to (1.4), the energy for Young measures takes the form

Ẽ(t, φ,Λ)
def
=

∫

Ω

〈W (F̃el(∇φ,A, P )) +H(P ),Λ〉 dx− F(t, φ), (1.9)

where 〈., .〉 denotes the duality product between a continuous function and a measure, see (2.5).
The energy (1.9) reduces to (1.4) if we set Λ = δ0,P where δ0,P (x) denotes the Dirac measure
concentrated in (0, P (x)) ∈ Z .

Since ∇φ is a gradient, its micro-fluctuations should also meet the geometric requirements of a gradi-
ent. This is related to the notion of gradient Young measures. In addition to that, modeling aspects as
well as requirements of numerical implications make it necessary to work on a much smaller subset
of YM(Ω, Z), which will be done as follows. We fix L, a given subset of probability measures over Z
and reduce the analysis to Young measures that lie in the set

YML(Ω, Z)
def
= {Λ ∈ YM(Ω, Z) | Λ(x) ∈ L a.e. in Ω}.

Let Q̃ be the extended state space of all admissible pairs (φ,Λ). Then the dissipation between Young
measures Λ0,Λ1 ∈ YML(Ω, Z) is given via integration

D̃(Λ0,Λ1)
def
=

∫

Ω

DL(Λ0(x),Λ1(x))dx. (1.10)

Here the function DL : L×L → [0,∞] has to be modeled such that it measures the dissipation for
elements in L. As a first example for DL, we can think of the 1-Wasserstein distance, as was done
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in [MTL02, Mie04a, The02] and, in the context of damage, [FG06]. However, Young measures only
take into account volume fractions, which is not enough to control rotating laminates (see Section 3).
Hence, a better dissipation distanceDL has been introduced by [HK08], where L is a set of laminates,
and will be studied in Section 3 in detail. This DL distinguishes between the case where Λ0 and Λ1

are parallel and the case where Λ1 is rotated against Λ0. ThusDL is not continuous and, hence, leads
to new mathematical challenges in establishing an existence theory. Our analysis is the first that treats
a model describing time-discontinuous rotations of laminates, which is a well-observed phenomenon
in experiments.

We know that the incremental minimization problem (IMP) of the classical model that was discussed in
the previous section, in general, does not admit solutions. Studying (IMP) for (Q̃, Ẽ , D̃), we still have
to expect the formation of microstructures, since the subset YML(Ω, Z) may not be weakly closed in
YM(Ω, Z). Here we are going to circumvent this difficulty by the help of a regularization term

G(Λ) =

∫

Ω

∫

Ω

dW(Λ(x),Λ(y))p

|x− y|m+θp
dxdy.

The energy Ẽ(t, φ,Λ) is then replaced by the regularized energy

Ẽreg(t, φ,Λ)
def
= Ẽ(t, φ,Λ) + G(Λ).

On the one hand, the novel form of G penalizes rapid changes of the microstructure in Λ and, hence,
generates compactness, but, on the other hand, still allows for interfaces between pure states and
laminates.

Under additional assumptions, which are given in Section 2, we will prove that the incremental mini-
mization problem (IMP) for (Q̃, Ẽreg, D̃) admits solutions. This is the main result of this paper. In order
to prove this existence result, we will follow the direct method in the calculus of variations. All steps of
the proof are contained in Section 4. As the major point, we have to show compactness of the sublevel
sets of the energy Ẽreg in the appropriate function space, which involves tools from measure theory.
Before we come to that, the necessary assumptions and, in particular, a metric structure on the set
YML of Young measures is given in Section 2. The example from [HK08], which was an important
motivation for our analysis, is discussed in Section 3 in great detail.

2 Assumptions and Basic Properties

The reader exclusively interested in mechanics may skip this section and go directly to Section 3.
In the following, we list all the necessary assumptions for the analysis. Moreover, we fix the space
Ỹ of admissible deformation fields as well as the space Z̃ of admissible Young measures so that
Q̃ = Ỹ×Z̃ gives the extended state space. At the end of the section, we state our main result.

In this paper, we work over finite-dimensional real vector spaces like R, Rm, Rm×m and others.
Every such space is associated with its Euclidean topology, unless stated otherwise. There will be
no confusion if we denote the corresponding Euclidean norm always with the same symbol |.|. The
quantity R denotes the set R ∪ {∞}. As usual, we assume that the set Ω ⊆ Rm, which defines
the reference configuration, is sufficiently regular, namely Ω is a non-empty, open, connected, and
bounded set with Lipschitz boundary ∂Ω. We will consider different spaces that are defined over Ω,
like Lebesgue and Sobolev spaces as well as spaces of Young measures. In such a space, every two
elements are identified whenever they coincide almost everywhere (a.e.) in Ω, that means, outside a
subset of Ω with Lebesgue measure 0.
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2.1 Space of Deformations

We begin with assumptions for the functions W and H , which occur in the definition of the energy,
see (1.4) and (1.9). A crucial assumption for our analysis is the following condition of polyconvexity
on the energy density W : GL+(m) → R. There exists a convex and lower semicontinuous function
W : Rτ → R such that

W (Fel) = W(M(Fel)) for all Fel ∈ GL+(m). (2.1a)

The quantity M(Fel) ∈ Rτ with τ = (2m)!
(m!)2

denotes the vector of all minors of the matrix Fel in a fixed
order. By (2.1a), the function W becomes polyconvex, see [Bal77] for the relevance of polyconvexity
to the existence of solutions in elasticity theory. In addition, we assume W to be coercive: there exist
qF > m, qD > 0 and w1, w2 > 0 such that

W (Fel) ≥ w1(|Fel|qF + det(Fel)
−qD) − w2 for all Fel ∈ GL+(m). (2.1b)

The hardening function H : SL(m) → R is assumed to be lower semicontinuous. In addition, we
require that there exist qP > m and h1, h2 > 0 such that

H(P ) ≥ h1|P |qP − h2 for all P ∈ SL(m). (2.1c)

As in [Mie04b, MM09], the exponents in (2.1b) and (2.1c) are real numbers that fulfill qF , qP > m as
well as

1

qY

def
=

1

qF
+

1

qP
<

1

m
. (2.1d)

Later on we will use the following condition in order to bound the micro-fluctuation around the defor-
mation gradient ∇φ:

1

qA

def
=

1

qY
+

1

mqD
< 1. (2.1e)

We shall see in Lemma 4.2 that the assumptions (2.1b), (2.1c) and (2.1d) restrict deformations φ with
finite energy to the case φ ∈ W1,qY (Ω,Rm). Here W1,qY (Ω,Rm) denotes the Sobolev space of
weakly differentiable functions over Ω with values in Rm such that function and derivative have both
finite LqY -norm. We denote the LqY -norm by ‖.‖LqY and the norm of the space W1,qY (Ω,Rm) by
‖.‖W1,qY . The space W1,qY (Ω,Rm) continuously embeds into the space C(Ω,Rm) of continuous
functions due to (2.1d).

We impose homogeneous Dirichlet boundary conditions on a measurable subset Γ ⊆ ∂Ω of positive
surface measure. For simplicity, the Dirichlet datum φDir is independent of time. Then the set of all
admissible deformations reduces to

Ỹ def
= {φ ∈ W1,qY (Ω,Rm) | φ = φDir on Γ}. (2.2)

The set Ỹ together with the norm ‖.‖W1,qY is a closed affine subspace of W1,qY (Ω,Rm) and, hence,
weakly closed. Time-dependent Dirichlet boundary conditions could be treated as well, see, for exam-
ple, [FM06, MM09].

For the term F , which is connected to the external loading, we assume F(t, .) to be linear on
W1,qY (Ω,Rm), such that

F ∈ C1([0, T ], (W1,qY (Ω,Rm))∗). (2.3)
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2.2 Space for Internal Variables

Our aim is to define a metric structure on a subset of Young measures. We start on the level of
the underlying space Z = Rm×m×SL(m), which does not have a linear structure in the second
component. We denote by EZ the element (0, I) ∈ Z where I ∈ SL(m) is the identity matrix.
>From now on, we assume that dSL : SL(m)×SL(m) → R is a given distance on SL(m) that is
related to the Euclidean norm in the following way. First, we assume that dSL induces the Euclidean
topology. This is equivalent to the fact that for every plastic tensors P, P1, P2, . . . in SL(m) we have

lim
k→∞

|Pk − P | = 0 ⇔ lim
k→∞

dSL(Pk, P ) = 0. (2.4a)

Second, we assume that there exist constants τ0, τ1 > 0 and a monotonously increasing function
τ2 : R → R such that for every P ∈ Z we have

dSL(P, I) ≤ τ0 + τ1|P | and |P | ≤ τ2(dSL(P, I)). (2.4b)

In particular, this guarantees that the notion of bounded sets is the same for dSL and for the Euclidean
norm. Finally, we define the distance dZ : Z×Z → R on Z via

dZ((A0, P0), (A1, P1))
def
= |A0 − A1| + dSL(P0, P1). (2.4c)

The above conditions imply that (Z, dZ) is separable and complete.

2.3 Probability Measures

Before we come to probability measures, we recall the pairing 〈., .〉, which is defined between con-
tinuous functions and measures. Consider the set C0(Z) of all continuous functions g : Z → R that
vanish at infinity, meaning, g(A,P ) → 0 as dZ((A,P ), EZ) tends to ∞. The supremum-norm turns
C0(Z) into a separable Banach space. The space M(Z) of all signed Radon measures ν over Z
can be seen as the dual space of C0(Z) with the pairing 〈., .〉 given by

〈g, ν〉 def
=

∫

Z

g(A,P ) dν(A,P ). (2.5)

Let P(Z) ⊆ M(Z) be the subset of all probability measures over Z and define the subset where
the first moment is finite

P1(Z)
def
= {Λ ∈ P(Z) | 〈dZ(EZ , .),Λ〉 <∞}.

For two probability measures µ0, µ1 ∈ P1(Z), the 1-Wasserstein distance is given by

dW(µ0, µ1)
def
= sup{|〈g, µ0〉 − 〈g, µ1〉| | g : Z → R , LipdZ

(g) ≤ 1}. (2.6)

Here the supremum is taken over all Lipschitz continuous functions g where the Lipschitz constant
is formed using the distance dZ and denotes the smallest constant LipdZ

(g) such that, for every
(A0, P0), (A1, P1) ∈ Z , we have

|g(A0, P0) − g(A1, P1)| ≤ LipdZ
(g)dZ((A0, P0), (A1, P1)).
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The 1-Wasserstein distance is usually defined the equivalent dual way, see (A.2) in the appendix for
more. In what follows, we will often omit the exponent 1 and just write Wasserstein distance.

>From now on, we assume that L is a subset of P1(Z) that is closed with respect to dW. As a
consequence, we get the following.

The metric space (L, dW) is separable and complete. (2.7a)

In fact, since the metric space (Z, dZ) is separable and complete, so is (P1(Z), dW) as shown in
[AGS05, Proposition 7.1.5]. Moreover, we assume that the gradient part of each element in L is a
homogenous gradient Young measure, see [KP91], and has mean value 0 ∈ Rm×m, which means

∫

Z

A dΛ(A,P ) = 0 for all Λ ∈ L. (2.7b)

The integral is well-defined by definition of dZ , see (2.4).

The following lemma gives a sufficient condition for a function to be lower semicontinuous with respect
to the Wasserstein distance. Note that, by (2.4), the Euclidean norm and the distance dZ create the
same notion of lower semicontinuity for functions over Z .

Lemma 2.1. Let g : Z → R be a lower semicontinuous function on (Z, dZ) that is bounded from
below. Moreover, let Λ,Λ1,Λ2, . . . ∈ P1(Z) be probability measures such that dW(Λk,Λ) → 0
holds. Then we have

liminf
k→∞

〈g,Λk〉 ≥ 〈g,Λ〉.

Proof. We define functions gl using the inf-convolution from convex analysis, also called Moreau-
Yoshida regularization. For every integer l > 0, it is given by the function gl : Z → R with

gl(Θ)
def
= inf

Θ̂∈Z

[
g(Θ̂) + l dZ(Θ, Θ̂)

]
. (2.8)

Since g is lower semicontinuous and bounded from below, gl is well-defined and Lipschitz continu-
ous with LipdZ

(g) ≤ l for every l > 0. In addition, the functions g1, g2, . . . form a monotonously
increasing sequence. The lower semicontinuity of g implies that gl → g pointwise. Beppo Levi’s
monotone-convergence theorem for Λ-measurable functions gives

lim
l→∞

〈gl,Λ〉 = 〈g,Λ〉. (2.9)

Moreover, by the definition (2.6), we have |〈gl,Λk〉−〈gl,Λ〉| ≤ LipdZ
(gl)dW(Λk,Λ). Hence, the

convergence dW(Λk,Λ) → 0 implies that 〈gl/l,Λk〉 → 〈gl/l,Λ〉 holds for every l > 0. We get the
estimate

liminf
k→∞

〈g,Λk〉 ≥ liminf
k→∞

〈gl,Λk〉 = 〈gl,Λ〉 for all l > 0.

Together with (2.9), this finishes the proof. �

2.4 Young Measures

We begin with a short introduction to Young measures. More details of the following construction
together with references can be found in [Bal89, p. 211].
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Since C0(Z) is a separable Banach space, so is L1(Ω,C0(Z)). Consider the space L∞
w∗(Ω,M(Z))

of all norm-bounded and weak* measurable functions µ : Ω → M(Z), which contains the space
of Young measures. Here an element µ is called weak* measurable if 〈µ(x), g〉 is a measurable
function in x for every g in C0(Z). The space L∞

w∗(Ω,M(Z)) can be identified with the dual space
of L1(Ω,C0(Z)) via the pairing

〈〈f, µ〉〉 =

∫

Ω

〈f(x), µ(x)〉 dx. (2.10)

The space of all Young measures is a subspace of L∞
w∗(Ω,M(Z)) and given by

YM(Ω, Z)
def
= {Λ ∈ L∞

w∗(Ω,M(Z)) | Λ(x) ∈ P(Z) a.e. in Ω}.

Weak* convergence is defined for Young measures using the pairing in (2.10). This is sometimes
just called Young measure convergence. However, the set YM(Ω, Z) is not closed under weak*
convergence.

In a special case, there is a closedness property for Young measures. For every exponent q ≥ 1
consider the set of Young measures given by

YMq(Ω, Z)
def
= {Λ ∈ YM(Ω, Z) | 〈〈|(A,P )|q,Λ〉〉 <∞}.

These are the Young measures with finite averaged qth moment. Note that here the qth moment is
computed with respect to the Euclidean norm. We will need the following result later on.

Lemma 2.2. Let q ≥ 1 be an exponent and Λ1,Λ2, . . . a sequence in YMq(Ω, Z). If there exists a
constant C > 0 such that for every k > 0 we have the estimate 〈〈|(A,P )|q,Λk〉〉 ≤ C , then there
exists a subsequence (not relabeled) and a Young measure Λ ∈ YMq(Ω, Z) such that Λk → Λ
weakly* and 〈〈|(A,P )|q,Λ〉〉 ≤ C .

Proof. The Banach-Alaoglu theorem implies that there exists Λ ∈ L∞
w∗(Ω,M(Z)) such that (up to a

subsequence) Λk → Λ weakly*. As a direct consequence, we get the estimate 〈〈|(A,P )|q,Λ〉〉 ≤
C . It remains to prove that Λ ∈ P(Z) a.e. in Ω. This is shown by Ball [Bal89, Thm.(iii)] if for all k > 0
the Young measure takes the form Λk = δ0,Pk

where Pk ∈ Lq(Ω, Z). Ball’s idea can also be applied
to the general case. �

Let p > 1 be a given exponent that we will keep fixed for the rest of the paper. With the help of the
Wasserstein distance dW, we define a metric structure on a subspace of YM(Ω, Z). Therefore, we
restrict the set of admissible Young measures to

Z̃ def
= {Λ ∈ YML(Ω, Z) | ‖dW(Λ, δEZ

)‖Lp <∞}. (2.11a)

The set Z̃ forms a metric space together with the distance distp : Z̃×Z̃ → R that is given by

distp(Λ0,Λ1)
def
= ‖dW(Λ0,Λ1)‖Lp. (2.11b)

This metric was used already in [Mie99].

Lemma 2.3. Let Λ1,Λ2, . . . ∈ Z̃ be a Cauchy sequence with respect to distp. Then there exists a

subsequence (not relabeled) and a Young measure Λ ∈ Z̃ such that
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(i) dW(Λk(x),Λ(x)) → 0 for almost every x ∈ Ω

(ii) distp(Λk,Λ) → 0.

In particular, (Z̃, distp) is a complete metric space.

Proof. We take a subsequence (not relabeled) such that the estimate distp(Λk,Λk+1) < 2−k holds
for every k > 0. This implies that we have

∞∑

k=1

dW(Λk(x),Λk+1(x)) <∞ for almost every x ∈ Ω.

Hence, Λ1(x),Λ2(x), . . . forms a Cauchy sequence in (L, dW). Since (L, dW) is a complete met-

ric space, there exists a Young measure Λ ∈ Z̃ such that (i) is fulfilled. Moreover, we know that
distp(Λk,Λl) < 2−k+1 for every l > k > 0. By Fatou’s lemma, we conclude that distp(Λk,Λ) <
2−k+1 for every k > 0, which implies (ii). �

2.5 Regularization and Main Result

We regularize the energy Ẽ and set Ẽreg = Ẽ + G. Therefore, let 0 < θ < m/p be a fixed number.

We consider the function G : Z̃ → [0,∞] given by

G(Λ)
def
=

∫

Ω

∫

Ω

dW(Λ(x),Λ(y))p

|x− y|m+θp
dxdy for Λ ∈ Z̃. (2.12)

Note that the term G remains finite even for certain Young measures that are discontinuous over Ω
since θ < m/p holds. The corresponding term in Banach spaces would be the Sobolev-Slobodetsky
norm leading to Wθ,p(Ω), which embeds into C0(Ω) if and only if θ > m/p. In Section 4, we will see
that G is still strong enough to imply compactness.

Our main result is as follows (equivalent to Theorem 4.7).

Theorem. Let the functions Ẽ , D̃ and G as well as the spaces Ỹ and Z̃ be defined as in (1.9), (1.10),
(2.12), (2.2) and (2.11), respectively, such that the conditions (2.1), (2.3), (2.4) and (2.7) are fulfilled.
Set Ẽreg = Ẽ + G. Moreover, assume that D̃ : Z̃×Z̃ → [0,∞] is lower semicontinuous.

Let 0 = t0 < t1 < . . . < tN = T be a finite partition of [0, T ] and (φ0,Λ0) ∈ Ỹ×Z̃ an initial state.

Then the incremental minimization problem for (Ỹ×Z̃, Ẽreg, D̃), which is to solve iteratively

(φl,Λl) ∈ Argmin
[
Ẽreg(tl, φ,Λ) + D̃(Λl−1,Λ)

]
for l = 1, 2, . . . , N,

admits solutions in Ỹ×Z̃ .

Note that the lower semicontinuity of D̃ is ensured, for example, by the lower semicontinuity of DL

with respect to dW. We will see, that the example in Section 3 fulfills this condition.
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3 Example for L and DL

In this section, we give a mechanically relevant example of a set L and a dissipation DL for which
our main result (Theorem 4.7) is applicable. The example is due to [HK08] and for more detailed
information see also [KH10b] and [KH11]. Various application, especially with respect to cyclic loading
can be found in [KH10a] and [HK11].

3.1 Dissipation Distance on Z

In order to construct a suitable dissipation distance dZ , we consider a specific dissipation density R

by setting R(P, Ṗ )
def
= σyield|ṖP−1| with yield stress σyield > 0. Having in mind the definition of DSL

in (1.8), we set

DSL(P0, P1) = inf
P∈S(P0,P1)

1∫

0

σyield|Ṗ (s)P (s)−1|ds for all P0, P1 ∈ SL(m) (3.1)

where the infimum is taken over the set

S(P0, P1)
def
= {P ∈ C1([0, 1], SL(m)) | P (0) = P0 and P (1) = P1}.

Then the property (2.4) is fulfilled if we set dSL = DSL, see Appendix B for the proof. Such kind of dissi-
pations were introduced in [Mie02, Mie03b] and further studied in [HMM03, GMMM06]. Here the multi-
plicative structure ofR (called plastic invariance in [Mie03b]) impliesDSL(P0, P1) = DSL(I, P0P

−1
1 ),

which clearly shows that it is useless to treat SL(m) as a subset of the linear space Rm×m. In par-
ticular, we have the estimate DSL(I, eξ) ≤ σyield|ξ| which contradicts any coercivity of the type
DSL(I, P ) ≥ c|P |δ−C for δ > 0.

3.2 Dissipation for Simple-Laminate Fields

Q0

R0

n0

(a)

Q0

R0
n1

(b) (c)

Figure 1: A pure rotation of a simple laminate: (a) before and (b) after the rotation. As a consequence,
Q0 and R0 interchange roles on a subset which is depicted in (c), its volume ratio being 2α0(1−α0).

The dissipation D
(2)
lam amounts to 2α0(1−α0)DSL(Q0, R0).

Let Λ ∈ P1(Z) be a convex combination of two Dirac measures

Λ = αδ((1−α)a⊗n,Q) + (1 − α)δ(−αa⊗n,R) (3.2)
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where Q,R ∈ SL(m) are plastic strains, α ∈ [0, 1] a real number and a, n ∈ Rm vectors such
that |n| = 1. The quantity a ⊗ n denotes the tensor product. In order to shorten notation, we write
A = (1−α)a⊗ n and B = −αa⊗ n. By definition, the matrices A and B are rank-one connected
since the difference A−B = a⊗n has at most rank 1. Hence, Λ is a (homogenous) gradient Young
measure. We define the set Ls ⊆ P1(Z) of simple laminates as the collection of all those Λ that are
of the form (3.2).

When working with simple laminates, we have to take care of the fact that the representation given
by (3.2) is not unique. Note also that (Ls, dW) forms a separable and complete metric space, see
Appendix A for a proof. In addition, the mean value of the micro-fluctuations is the zero matrix in
Rm×m. Hence, the assumptions (2.7) listed in Section 2 are fulfilled.

For L = Ls we now give the nontrivial distance Dlam that was introduced in [HK08]. Motivated by
experimental observations, this dissipation is made very sensible to a change in the orientation n. In
particular, a “rotation” of a simple laminate produces dissipation. For simple laminates Λ0,Λ1 ∈ Ls

the distance Dlam distinguishes between two cases. First, suppose there exist representations of the
form (3.2) for Λ0 and Λ1, respectively, so that n0 = n1 or n0 = −n1 holds. Then we write Λ0 ‖ Λ1

and the dissipation D
(1)
lam is modeled by the Wasserstein distance with respect toDSL. Using the form

(A.2) instead of (2.6), we find

D
(1)
lam(Λ0,Λ1) = inf

[
λDSL(Q0, Q1) + (1 − α0 − α1 + λ)DSL(R0, R1)

+(α0 − λ)DSL(Q0, R1) + (α1 − λ)DSL(R0, Q1)

]

where the infimum is taken over all λ such that the numbers λ, α0 − λ, α1 − λ and 1−α0 −α1 + λ
lie in [0, 1]. Second, suppose that there are no representations of the form (3.2) so that n0 = n1 or
n0 = −n1 holds. Then we write Λ0 6 ‖ Λ1 and the dissipation is modeled by

D
(2)
lam(Λ0,Λ1) =α0α1DSL(Q0, Q1) + α0(1 − α1)DSL(Q0, R1)

+(1 − α0)α1DSL(R0, Q1) + (1 − α0)(1 − α1)DSL(R0, R1).

See Figure 1 for an example. Putting both functions together, we end up with

Dlam(Λ0,Λ1) =

{
D

(1)
lam(Λ0,Λ1) for Λ0 ‖ Λ1

D
(2)
lam(Λ0,Λ1) for Λ0 6 ‖ Λ1,

which defines a dissipation on the set Ls of simple laminates.

The function Dlam is lower semicontinuous with respect to the Wasserstein distance dW. In fact, if
we have in mind (A.2) as well as Remark A.2, it is not hard to prove that the functions D

(1)
lam and

D
(2)
lam are continuous with respect to dW. Moreover, we see that D

(2)
lam ≥ D

(1)
lam holds and that the set

{(Λ0,Λ1) ∈ L2
s | Λ0 ‖ Λ1} is closed with respect to dW. This directly implies that Dlam is lower

semicontinuous with respect to dW. In particular, the associated dissipation D̃ is lower semicontinuous
with respect to the distance distp, see (2.11b). Hence, the set L = Ls, the distance dSL = DSL and
the dissipation DL = Dlam, as defined above, form an example to which our main result can be
applied.

3.3 A Study of a Rotating Laminate

Let us consider a particular case of the model introduced in [HK08] by allowing the inelastic deforma-
tion to assume only two distinct values, hence P,Q ∈ {I±γs⊗ns} in (3.2), where γ > 0 denotes a
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constant material parameter, and s and ns are orthonormal vectors. Meaning, that SL(m) is replaced
by {I ± γs⊗ns} ⊆ SL(m). This may constitute a model for a shape-memory-alloy possessing two
martensitic variants. In this case the dissipation distance (1.8) reduces to

DSL(P0, P1) =

{
r for P0 6= P1

0 for P0 = P1,
(3.3)

where r > 0. For laminates this yields the simple expression

Dlam(Λ0,Λ1) =

{
r |α1 − α0| for Λ0‖Λ1

r (α0(1 − α1) + α1(1 − α0)) for Λ0 6 ‖Λ1.

As in [HK08] we assume an incompressible neo-Hookean energy of the form

W (Fel) =

{
µ‖Fel‖2 for det(Fel) = 1

∞ for det(Fel) 6= 1,
(3.4)

with µ > 0 denoting the shear-modulus. Moreover we assume H(I ± γs⊗ns) = 0. The energy in
(1.9) can then be calculated as

Ẽ(t, φ,Λ)
def
=

∫

Ω

W̃ (∇φ,Λ) dx−F(t, φ), (3.5)

with
W̃ (∇φ,Λ) =αW (∇φ(I + (1 − α) a⊗ n)(I + γ s⊗ ns))

+(1 − α)W (∇φ(I − α a⊗ n)(I − γ s⊗ ns)),

where a · n = 0.

In the plane-strain case, we can specify the quantities above as n = (cosϕ, sinϕ) and a =
a0 (− sinϕ, cosϕ), ns = (cosψ, sinψ), s = (− sinψ, cosψ). In the absence of dissipation the
energy will be minimized with respect to all possible laminates resulting in a relaxed energy of the
form

W rel(∇φ) = inf
α∈[0,1], ϕ∈[0,π)

W̃ (∇φ,Λ). (3.6)

In the presence of dissipation, however, the minimization in Theorem 4.7 gives the stationarity condi-
tions

0 =
∂W̃

∂a0l
, 0 ∈ ∂W̃

∂αl
+ r sign (αl − αl−1), (3.7)

where a0l and αl denote the values at the end of time-increment number l, together with the condition
for rotation of the laminate

f(∇φl, αl−1, αl, ϕl)
def
= W̃ (∇φ,Λl)−W̃ (∇φl,Λl−1)+r (αl−1(1−αl)+αl(1−αl−1)) < 0, (3.8)

which gives the evolution of ϕ as

ϕl =





Argmin
ϕ∈[0,π)

f(∇φ, αl−1, αl, ϕ) for inf
ϕ∈[0,π)

f(∇φ, αl−1, αl, ϕl−1) < 0

ϕl−1 else.
(3.9)

Given ∇ϕl, αl−1, ϕl−1, the equations (3.7) and (3.9) can be solved for αl, ϕl. This allows one to
compute the evolution of α and ϕ in the time-incremental problem (IMP).
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As an example we present a simple shear test of the form ∇ϕ =

(
1 0

ξ(t) 1

)
, where ξ(t) = t for

t ∈ [0, 2]. The model parameters chosen are: µ = 75, r = 1, γ = 0.2, ψ = π/10. Hence, the
inelastic shearing deformation is misaligned with respect to the applied shear.

In Figure 2 the laminate rotation angle ϕ is displayed as a function of ξ, once as result of the mini-
mization in (3.6), and once as result of the time-incremental procedure in (3.9). The same is done for
the volume ratio α as function of ξ in Figure 3. In Figure 4 the difference in α of the results from (3.7)
and (3.9) is shown.

It can be seen thatϕ starts to deviate from the solution found by minimization, until finally the inequality
(3.8) is satisfied. Then the minimization result is retrieved in a sudden way. This process repeats itself
in a stick-slip-type behavior. After every jump in ϕ, the variable α remains constant within a certain
interval, until the differential inclusion in (3.7) becomes nontrivial again.

4 Proof of the Main Result

In order to prove our main result, we use the direct method in the calculus of variations. In doing
so, we have to show coercivity and lower semicontinuity of the energy as well as weak sequential
compactness of the sublevel sets of the energy.

4.1 Coercivity

Before we prove the coercivity of the energy Ẽ , we recall an inequality between determinant and norm
of a matrix.

Remark 4.1. Let F ∈ GL+(m) be a given matrix. Then we have

|F |m√
mm

≥ det(F ). (4.1)

Proof. Let σ1, . . . , σm ≥ 0 be a representation of the singular values of F counted with multiplicity.
The Euclidean norm of F and the determinant of F are given by

|F | =
√
σ2

1 + · · ·+ σ2
m and det(F ) = σ1 · · · · · σm.

The well-known inequality of the quadratic mean and the geometric mean reads

√
σ2

1 + · · · + σ2
m

m
≥ m

√
σ1 · · · · · σm.

This directly implies (4.1). �

The energy Ẽ is coercive in the following sense.
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ξ = t

φ(t)

Figure 2: Evolution of ϕ as function of ξ. Dashed line: minimizer of W rel in (3.6), solid line: solution
via time-incremental evolution.
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0.8

0.9 α(t)

ξ = t

Figure 3: Evolution of α as function of ξ. Dashed line: minimizer of W rel in (3.6), solid line: solution
via time-incremental evolution.
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Figure 4: Difference of α as function of ξ between the minimizer of W rel in (3.6) and the solution via
time-incremental evolution.
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Lemma 4.2. Let the functional Ẽ as well as the spaces Ỹ and Z̃ be defined as in (1.9), (2.2)
and (2.11), respectively, such that the conditions (2.1), (2.3) and (2.7) are fulfilled. Moreover, let
(t1, φ1,Λ1), (t2, φ2,Λ2), . . . be a sequence in [0, T ]×Ỹ×Z̃ such that

sup
k>0

Ẽ(tk, φk,Λk) <∞.

Then both of the following conditions hold

(i) sup
k>0

‖φk‖W1,qY <∞

(ii) sup
k>0

〈〈|(A,P )|q,Λk〉〉 <∞ where q = min{qA, qP}.

Proof. Within the proof, all the quantities that depend on the times tk can be estimated uniformly, see
(2.3). Hence, we can omit tk.

The linear loading term F has no influence on coercivity. We can assume that F = 0 for simplicity.
The boundedness of Ẽ together with (2.1c) and (2.1b) implies that there exist constants c1, c2, c3 > 0
such that for every k > 0 we have

〈〈|P |qP ,Λk〉〉≤ c1, (4.2)

〈〈|∇φk(I + A)P−1|qF ,Λk〉〉≤ c2, (4.3)

〈〈det(∇φk(I + A))−qD ,Λk〉〉≤ c3. (4.4)

Now fix k > 0. Since the exponents fulfill condition (2.1d), we can use Hölder’s inequality together
with (4.2) and (4.3) (cf. [MM06]) and conclude

‖〈|∇φk(I + A)P−1|qF ,Λk〉1/qF · 〈|P |qP ,Λk〉1/qP ‖LqY ≤ c
1/qP

1 c
1/qF

2 .

We apply Hölder’s inequality once again and obtain that

‖〈|∇φk(I + A)|qY ,Λk〉1/qY ‖LqY ≤ c
1/qP

1 c
1/qF

2 . (4.5)

The mean value of the micro-fluctuations is 0, see (2.7b). In addition, |.|qY is convex. Hence, Jensen’s

inequality applied to (4.5) yields ‖∇φk‖LqY ≤ c
1/qP

1 c
1/qF

2 and we have (i) since Poincaré’s inequality
gives the boundedness in the W1,qY -norm.

As an assumption of Section 2, the first component of Λk(x) (the gradient part) is a homogenous
gradient Young measure for almost every x ∈ Ω. Hence, Jensen’s inequality can be applied for
every quasiconvex function, see [KP91], and, in particular, for det(.)−qD . Then (4.4) implies that

‖ det(∇φk)
−1‖LqD ≤ c

1/qD

3 holds. Following Remark 4.1, we get the estimate

‖1/|∇φk|‖LmqD ≤ c4, (4.6)

where c4 > 0 is a constant independent of k. In view of (2.1e), Hölder’s inequality together with (4.5)
and (4.6) bounds the micro-fluctuations

sup
k>0

〈〈|A|qA,Λk〉〉 ≤ (c
1/qP

1 c
1/qF

2 c4)
qA.

This estimate together with (4.2) implies that

sup
k>0

〈〈|A|q + |P |q),Λk〉〉 ≤ (c
1/qP

1 c
1/qF

2 c4)
qA + c1.

In fact, this is again an application of Hölders inequality where we use that the set Z has measure
1 and q = min{qD, qP}. Hence, we have (ii), since simple computation shows that the inequality
21−q/2|A+ P |q ≤ |A|q + |P |q holds for every (A,P ) ∈ Z . �
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4.2 Lower Semicontinuity

The lower-semicontinuity result makes use of polyconvexity defined in terms of the minors which are
given by the quantity M(∇φ(I+A)P−1). We will use an algebraic property of minors, which is pro-
vided in the next lemma for the sake of completeness.

Lemma 4.3. There exists a bilinear function A : R
τ×R

τ → R
τ such that

M(UV ) = A(M(U),M(V )) for every U, V ∈ R
m×m.

Proof. The determinant has the property det(UV ) = det(U)det(V ) for all matrices U, V ∈ Rm×m.
In a similar way, the Cauchy-Binet formula gives a multiplicative rule for every minor, see, for example,
Gantmacher [Gan59, Binet-Cauchy formula]. Hence, there exists a bilinear function as desired. �

Now we are in the position to prove the lower semicontinuity of the energy.

Lemma 4.4. Let the functional Ẽ as well as the spaces Ỹ and Z̃ be defined as in (1.9), (2.2)
and (2.11), respectively, such that the conditions (2.1), (2.3) and (2.7) are fulfilled. Moreover, let
(t1, φ1,Λ1), (t2, φ2,Λ2), . . . be a sequence in [0, T ]×Ỹ×Z̃ such that tk → t, φk → φ weakly

in Ỹ and Λk → Λ in Z̃ for some (t, φ,Λ) ∈ [0, T ]×Ỹ×Z̃ . Then we have the estimate

Ẽ(t, φ,Λ) ≤ liminf
k→∞

Ẽ(tk, φk,Λk).

Proof. Using Lemma 2.3, we can extract a subsequence (not relabeled) such that Λk(x) → Λ(x)
holds with respect to dW for almost every x ∈ Ω.

The condition (2.3) implies that the loading term is weakly continuous in the second variable. We
conclude that F(tk, φk) → F(t, φ). Moreover, we can omit the time variable. The energy Ẽ consists
of two more parts. The hardening function H is lower semicontinuous and bounded from below, see
(2.1c). As a consequence of Lemma 2.1, H is also lower semicontinuous with respect to dW if H is
seen as a linear function on L. Applying Fatou’s lemma, we end up with

〈〈H(P ),Λ〉〉 =

∫

Ω

〈H(P ),Λ〉 dx ≤
∫

Ω

liminf
k→∞

〈H(P ),Λk〉 dx ≤
Fatou

liminf
k→∞

〈〈H(P ),Λk〉〉.

It remains to prove lower semicontinuity of the stored elastic energy, which means

〈〈W (∇φ(I + A)P−1),Λ〉〉 ≤ liminf
k→∞

〈〈W (∇φk(I + A)P−1),Λk〉〉. (4.7)

Lemma 4.3 implies that there exists a bilinear function A : Rτ×Rτ → Rτ such that

M(F (I + A)P−1) = A(M(F ),M((I + A)P−1)) for (F,A, P ) ∈ R
τ×Z.

With the help of A, we define the function f : L×Rτ → R via

f(Λ,M)
def
= 〈W(A(M,M((I + A)P−1))),Λ〉 for (Λ,M) ∈ L×R

τ .

The function f is designed in such a way that f(Λ,M(F )) = 〈W (F (I + A)P−1),Λ〉 holds for
every Λ ∈ L and every F ∈ Rm×m, see (2.1a) for the relation between W and W. By definition, f is
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convex and lower semicontinuous in the second variable. Moreover, f is lower semicontinuous in the
first variable with respect to dW. This follows by Lemma 2.1.

The rest of the proof is an application of a result by Eisen [Eis79]. In fact, Eisen assumes that f is a
continuous function over a Euclidean space, which is not the case in our situation. Nevertheless, on
the one hand, we can relax the continuity assumption by an approximation argument similar to that in
the proof of Lemma 2.1. Note that the approximation of f via inf-convolution, see (2.8), preserves the
convexity in the second variable. On the other hand, a careful look at his proof shows that his ideas
also work if the first variable takes values in a complete metric space. Whenever M(∇φk) → M(∇φ)
holds weakly in L1(Ω,Rm), we conclude that

∫

Ω

f(Λ,M(∇φ))dx ≤ liminf
k→∞

∫

Ω

f(Λk,M(∇φk))dx.

This is equivalent to (4.7) and finishes the proof since, by the classical weak-continuity property of
minors, we have that M(∇φk) → M(∇φ) weakly in LqY /m(Ω,Rm), see for example [Dac89, §4,
Thm. 2.6]. In view of (2.1d), we know that qY /m > 1. �

4.3 Compactness Result

We are going to use concepts from [AT04]. The set Ω ⊆ Rm is a non-empty, open, connected, and
bounded set with Lipschitz boundary. In this domain Ω, we consider the open balls

Bx,r = {y ∈ Ω | |y − x| < r} where x ∈ Ω and r > 0. (4.8)

Let |Bx,r| denote the Lebesgue measure of the ball Bx,r and diam(Ω)
def
= sup{|x− y| | x, y ∈ Ω}

the diameter of Ω. Then the regularity of the boundary of Ω implies that there exists a positive constant
CB > 0 such that

|Bx,r| ≥ CB · γ(r)m for all x ∈ Ω and r > 0, where γ(r) = min{r, diam(Ω)}. (4.9)

In particular, we have the important doubling property of measures. This means that there exists a
constant cdouble > 0 such that

|Bx,2r| ≤ cdouble|Bx,r| for all x ∈ Ω and r > 0.

Let Λ ∈ Z̃ be a Young measure for which G(Λ) is finite. Then we set

gΛ(x) =

[∫

Ω

dW(Λ(x),Λ(y))p

|x− y|m+θp
dy

]1/p

for all x ∈ Ω. (4.10)

The function gΛ is non-negative and can be seen as the norm of a generalized gradient of Λ. As a
consequence of Fubini’s theorem, gΛ lies in Lp(Ω) as long as G(Λ) <∞, see (2.12).

Before we present our compactness result, we prove the following result. It generalizes the theory in
[AT04], where the corresponding result for the classical Sobolev space W1,p(Ω,L) is established, i.e.
the case θ = 1.

Lemma 4.5. Let the functional G and the space Z̃ be defined as in (2.12) and (2.11), respectively.
There exists a positive constant CdW

> 0 that only depends on Ω and θ with the following property.

Let Λ ∈ Z̃ be a given Young measure with G(Λ) <∞ and gΛ as defined in (4.10). Then we have

dW(Λ(x),Λ(y)) ≤ CdW
|x− y|θ(gΛ(x) + gΛ(y)) for a.a. (x, y) ∈ Ω × Ω. (4.11)
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Proof. It is sufficient to show (4.11) for every (x, y) ∈ Ω×Ω with gΛ(x), gΛ(y) <∞ and x 6= y. Fix
such a pair (x, y), set r = |x− y|, and consider the set given by

ωx,y
def
= Bx,2r ∩ By,2r.

The triangle inequality in R
m implies that Bx,r ⊆ ωx,y. Using (4.9), we have

|ωx,y| ≥ CB|x− y|m. (4.12)

In fact, here we know that γ(r) = r since r = |x − y| ≤ diam(Ω). Now we apply the triangle
inequality for dW and obtain the following estimate after integration

dW(Λ(x),Λ(y)) ≤ 1

|ωx,y|

[∫

ωx,y

dW(Λ(x),Λ(z))dz +

∫

ωx,y

dW(Λ(z),Λ(y))dz

]
. (4.13)

The integrals on the right-hand side of (4.13) can be bounded from above as follows. We use (4.12)
and we add non-negative terms in order to find that

dW(Λ(x),Λ(y)) ≤ r−m

CB

[∫

Bx,2r

dW(Λ(x),Λ(z))dz +

∫

By,2r

dW(Λ(z),Λ(y))dz

]
. (4.14)

We deal with the two integrals separately. We write the first integrand as a product

∫

Bx,2r

dW(Λ(x),Λ(z))dz =

∫

Bx,2r

dW(Λ(x),Λ(z))

|x− z|θ+m/p
· |x− z|θ+m/pdz

and apply Hölder’s inequality. In doing so, we find that the integral is bounded by

[∫

Bx,2r

dW(Λ(x),Λ(z))p

|x− z|m+θp
dz

] 1

p

·
[
|Bx,2r|(2r)(θ+m/p)p′

] 1

p′

.

Here p′ denotes the conjugate exponent to p such that 1/p+1/p′ = 1. The first factor is bounded by
gΛ(x). Hence, using γ(2r) ≤ 2r together with (4.9) implies that

∫

Bx,2r

dW(Λ(x),Λ(z))dz ≤ gΛ(x) [c1 · (2r)m]1/p′ (2r)θ+m/p ≤ c1 · (2r)θ+mgΛ(x)

for some positive constant c1 > 0 that does not depend on Λ. The second integral in (4.14) can be
bounded analogously by interchanging x and y. Finally, recalling r = |x − y|, we end up with the
following estimate

dW(Λ(x),Λ(y)) ≤ r−m

CB

· c1 · (2r)θ+m(gΛ(x) + gΛ(y)) = CdW
|x− y|θ(gΛ(x) + gΛ(y)),

where we have set CdW
= 2θ+mc1/CB. This finishes the proof. �

Now we can prove the compactness result, as the main ingredient for the proof of the existence of
solutions to the incremental minimization problem for (Q̃, Ẽreg, D̃).
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Lemma 4.6. Let the functions Ẽ and G as well as the spaces Ỹ and Z̃ be defined as in (1.9), (2.12),
(2.2) and (2.11), respectively, such that the conditions (2.1), (2.3), (2.4) and (2.7) are fulfilled. Set
Ẽreg = Ẽ + G.

Let t∗ ∈ [0, T ] be a given time and let (φ1,Λ1), (φ2,Λ2), . . . be a sequence in Ỹ×Z̃ . If the regular-

ized energy Ẽreg stays uniformly bounded, that means

sup
k>0

Ẽreg(t∗, φk,Λk) <∞,

then there exists a subsequence (not relabeled), a deformation field φ0 ∈ Ỹ and a Young measure
Λ0 ∈ Z̃ such that all the following conditions are fulfilled

(i) φk → φ0 weakly in Ỹ

(ii) Λk → Λ0 in Z̃

(iii) Λk(x) → Λ0(x) pointwise with respect to dW for almost every x ∈ Ω

(iv) G(Λ0) ≤ liminf
k→∞

G(Λk).

Proof. Within the proof, all the quantities that depend on time are evaluated at an arbitrary but fixed
time t∗ and, hence, we can omit t∗. We are going to extract subsequences of (φ1,Λ1), (φ2,Λ2), . . .
in an iterative way. In order to shorten notation, we shall keep the original labeling.

We apply the sequential form of the Banach-Alaoglu theorem. Lemma 4.2 implies that the sequence
φ1, φ2, . . . is uniformly bounded in Ỹ . Hence, by the Banach-Alaoglu theorem, there exists a deforma-
tion φ0 ∈ Ỹ and a subsequence such that φk → φ0 weakly in Ỹ . We have (i). In addition, Lemma 4.2
also implies that the Young measures Λ1,Λ2, . . . lie in the space YMq(Ω, Z) with uniformly bounded
averaged qth moment. In particular, for some constant C > 0 we have that

sup
k>0

〈〈|(A,P )|q,Λk〉〉 ≤ C. (4.15)

By Lemma 2.2, there exists a Young measure Λ0 ∈ YMq(Ω, Z) and a further subsequence such
that Λk → Λ0 weakly* and 〈〈|(A,P )|q,Λ0〉〉 ≤ C .

As a first step towards showing (ii), we are going to analyze spatial averages of the Young measures
Λ0,Λ1, . . .. Therefore, fix a radius r > 0, a point x ∈ Ω, an integer k ≥ 0 and define the average
µr

k(x) given by

〈g, µr
k(x)〉 =

1

|Bx,r|

∫

Bx,r

〈g,Λk(y)〉dy for all g ∈ C0(Z).

See (4.8) for the definition of Bx,r. Then µr
k(x) lies in P(Z). Due to (4.9) and (4.15), we have the

following estimate

〈|(A,P )|, µr
k(x)〉 =

1

|Bx,r|

∫

Bx,r

〈|(A,P )|,Λk(y)〉dy ≤ CC−1
B γ(r)−m.

In view of (2.4), we conclude that

〈dZ((A,P ), EZ), µr
k(x)〉 ≤ τ0 + (τ1 + 1)CC−1

B γ(r)−m for all integers k ≥ 0. (4.16)
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That means that µr
k(x) lies in P1(Ω) and its first moment is bounded uniformly with respect to k.

Moreover, since we know that Λk → Λ0 weakly*, we get that µr
k(x) → µr

0(x) weakly*. This implies
that dW(µr

k(x), µ
r
0(x)) → 0 holds for every x ∈ Ω and r > 0, see [AGS05, Prop. 7.1.5].

The triangle inequality for dW gives the estimate

dW(µr
k(x), µ

r
0(x)) ≤ dW(µr

k(x), δEZ
) + dW(µr

0(x), δEZ
).

Both terms in the right-hand side can be computed explicitly via the equation

dW(µr
k(x), δEZ

) = 〈dZ((A,P ), EZ), µr
k(x)〉.

Then (4.16) bounds the quantity dW(µr
k(x), µ

r
0(x)) independently of x ∈ Ω and k. Together with the

pointwise convergence, we obtain convergence in Z̃ , meaning that

distp(µ
r
k, µ

r
0) = ‖dW(µr

k(x), µ
r
0(x))

p‖Lp → 0 for all r > 0. (4.17)

Next, we are going to bound the quantity distp(Λk, µ
r
k). Therefore, fix a positive integer k > 0 and

a radius diam(Ω) > r > 0. The following holds for almost every x ∈ Ω. By the definition of the
Wasserstein distance, we know that

dW(Λk(x), µ
r
k(x)) = sup

Lip(g)≤1

1
|Bx,r|

∫
Bx,r

[〈g,Λk(x)〉 − 〈g,Λk(y)〉]dy

≤ 1
|Bx,r|

∫
Bx,r

dW(Λk(x),Λk(y))dy

≤ 1
|Bx,r|

∫
Bx,r

CdW
|x− y|θ(gΛk

(x) + gΛk
(y))dy.

In the last line, we have used Lemma 4.5 where gΛk
is given by (4.10). Clearly, the term |x − y| is

bounded by diam(Ω). With the help of (4.9), we conclude that

dW(Λk(x), µ
r
k(x)) ≤

CdW
rθ

CB rd

∫

Bx,r

(gΛk
(x) + gΛk

(y))dy.

If we extend the function gΛk
by 0, it can be seen as an element of Lp(Rm). We set z = y − x as

well as Br
def
= {y ∈ Rm | |y| < r} and find that

dW(Λk(x), µ
r
k(x)) ≤

CdW
rθ

CB rd

∫

Br

(gΛk
(x) + gΛk

(x+ z))dz.

The function |.|p is convex. Now if we integrate and apply Jensen’s inequality to it, we get that

distp(Λk, µ
r
k) ≤

(
CdW

rθ

CB rm

∫

Ω

∫

Br

|gΛk
(x) + gΛk

(x+ z)|pdzdx
)1/p

.

We can change the order of integration by Fubini’s theorem. In order to get the integral uniformly
bounded for all integers k > 0, we use that there exists a constant CG > 0 such that G(Λk) ≤ CG ,

which follows because the energy is uniformly bounded. Hence, ‖gΛk
‖Lp ≤ C

1/p
G holds for every

integer k > 0 and we conclude that

distp(Λk, µ
r
k) ≤

(
CdW

rθ

CB rm
|Br|CG 2p

)1/p

= c1 r
θ/p (4.18)
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where c1 > 0 is a constant that is independent of r and k.

We show that distp(µ
r
0,Λ0) → 0 as r tends to 0. Fix a function g ∈ C0(Z). For every radius r > 0

and every point x ∈ Ω, we know that

〈g, µr
0(x)〉 =

1

|Bx,r|

∫

Bx,r

〈g,Λ0(y)〉dy.

The Lebesgue differentiation theorem implies that we obtain 〈g, µr
0(x)〉 → 〈g,Λ0(x)〉 as r tends to

0. Hence, we find that µr
0(x) → Λ0(x) weakly* for almost every x ∈ Ω. Fix two radii r1, r2 > 0. For

every integer k > 0, the triangle inequality for distp implies that

distp(µ
r1

0 , µ
r2

0 ) ≤ distp(µ
r1

0 , µ
r1

k ) + distp(µ
r1

k ,Λk) + distp(Λk, µ
r2

k ) + distp(µ
r2

k , µ
r2

0 ).

Applying the estimates (4.17) and (4.18) and taking the limit k → ∞ gives

distp(µ
r1

0 , µ
r2

0 ) ≤ c1(r
θ/p
1 + r

θ/p
2 ).

Thus, µr
0 forms a Cauchy sequence in Z̃ as r tends to 0. The convergence with respect to dW implies

weak* convergence, see [AGS05, Prop. 7.1.5]. Since we already know that µr
0(x) → Λ0(x) weakly*

for almost every x ∈ Ω, we conclude that Λ0 is the limit of the Cauchy sequence. Moreover, we get
the estimate

distp(µ
r
0,Λ0) ≤ c1r

θ/p. (4.19)

Now we are in the position to show (ii). For every radius r > 0 and every integer k > 0, the triangle
inequality for distp implies that

distp(Λk,Λ0) ≤ distp(Λk, µ
r
k) + distp(µ

r
k, µ

r
0) + distp(µ

r
0,Λ0).

As a consequence of (4.17), (4.18) and (4.19), we obtain distp(Λk,Λ0) → 0, which is (ii). Eventually
extracting a further subsequence, we get (iii) by Lemma 2.3. Finally, (iv) follows by (iii) if we apply
Fatou’s lemma. �

4.4 Existence of Solutions

Now we are in the position to prove the existence of solutions to the time incremental minimization
problem with regularized energy. We follow the strategy of the direct methods in the calculus of varia-
tions.

Theorem 4.7. Let the functions Ẽ , D̃ and G as well as the spaces Ỹ and Z̃ be defined as in (1.9),
(1.10), (2.12), (2.2) and (2.11), respectively, such that the conditions (2.1), (2.3), (2.4) and (2.7) are
fulfilled. Set Ẽreg = Ẽ + G. Moreover, assume that D̃ : Z̃×Z̃ → [0,∞] is lower semicontinuous.

Let 0 = t0 < t1 < . . . < tN = T be a finite partition of [0, T ] and (φ0,Λ0) ∈ Ỹ×Z̃ an initial

state. Then the regularized incremental minimization problem for (Ỹ×Z̃, Ẽreg, D̃), which is to solve
iteratively, for every l = 1, 2, . . . , N ,

(φl,Λl) ∈ Argmin
[
Ẽreg(tl, φ,Λ) + D̃(Λl−1,Λ)

]
,

admits solutions in Ỹ×Z̃ .
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Proof. Fix a positive integer l ∈ {1, 2, . . . , N} and assume that the pairs (φ0,Λ0), . . ., (φl−1,Λl−1)

form a solution for the times t0, . . . , tl−1. Let (φl,1,Λl,1), (φl,2,Λl,2), . . . ∈ Ỹ×Z̃ be an infimizing

sequence for the sum Ẽreg(tl, φ,Λ) + D̃(Λl−1,Λ). As a consequence of Lemma 4.4 and Lemma

4.6(iv), the energy Ẽreg is lower semicontinuous. Moreover, D̃ is assumed to be lower semicontinuous,
too. Together with the compactness result of Lemma 4.6, this implies that there exists a pair (φl,Λl) ∈
Ỹ×Z̃ such that

Ẽreg(tl, φl,Λl) + D̃(Λl−1,Λl) = liminf
k→∞

[
Ẽreg(tl, φl,k,Λl,k) + D̃(Λl−1,Λl,k)

]
.

Hence, the pairs (φ0,Λ0), . . . , (φl,Λl) form a solution of the incremental minimization problem for
the times t0, . . . , tl. The rest of the proof follows by induction over l. �

A Wasserstein Distance in Ls

Let µ0, µ1 ∈ P1(Z) two probability measures with finite first moment. Then the 1-Wasserstein dis-
tance is given by

dW(µ0, µ1)
def
= min

µ∈Γ(µ0,µ1)

∫

Z×Z

dZ(Θ0,Θ1)dµ(Θ0,Θ1) (A.1)

where Γ(µ0, µ1) ⊆ P1(Z×Z) denotes the set of transport plans between µ0 and µ1, see, for
example, [AGS05, §5.2, §7.1]. The equivalence between (2.6) and (A.1) follows by the duality theorem
of Kantorovich and Rubinstein, see, for example, [Rac91, §5.3].

In the special situation of simple laminates Λ0,Λ1 ∈ Ls, every element in Γ(Λ0,Λ1) is given by a
doubly stochastic 2×2-matrix. Consequently, the set Γ(Λ0,Λ1) can be parameterized by one real
variable λ such that the Wasserstein distance dW defined by (A.1) reduces to

dW(Λ0,Λ1) = inf

[
λdZ((A0, Q0), (A1, Q1)) + (1−α0−α1+λ)dZ((B0, R0), (B1, R1))

+(α0−λ)dZ((A0, Q0), (B1, R1)) + (α1−λ)dZ((B0, R0), (A1, Q1))

]

(A.2)
where the infimum is taken over all λ such that the numbers λ, α0−λ, α1−λ and 1 − α0 − α1 + λ
lie in [0, 1]. Since (2.6) and (A.1) are equivalent, the value of dW(Λ0,Λ1) in (A.2) does not depend on
the representations of Λ0 and Λ1 that we have chosen via (3.2).

A.1 Separability and Completeness of (Ls, dW)

For every integer i0 ≥ 2 we consider the set P[i0](Z)) of all probability measures µ ∈ P1(Z)) that
are supported on at most i0 points. Clearly, Ls is a subset of P[2](Z)). Note also that P[1](Z)) can
be identified with Z .

Lemma A.1. If (Z, dZ) is a complete and separable metric space, so is, for every integer i0 ≥ 2, the
space (P[i0](Z), dW).

Proof. Using [AGS05, Proposition 7.1.5], the set P1(Z) of probability measures is separable and
complete with respect to the Wasserstein distance dW. Clearly, the subset P[i0](Z) is separable.
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It remains to show that P[i0](Z) is a closed subset with respect to dW. Assume that this is not
the case. Then there exist probability measures µ1, µ2, . . . ∈ P[i0](Z) and µ ∈ P1(Z) such that
µk → µ with respect to dW and µ fulfills the following property: There exist positive real numbers
ρ, ǫ > 0 and points Θ1, . . . ,Θi0+1 ∈ Z such that the balls BΘi,ρ = {Ξ ∈ Rm×m | dZ(Ξ,Θi) < ρ},
for i = 1, . . . , i0 + 1, are pairwise disjoint and

〈χBΘi,ρ/2
, µ〉 > ǫ for all i = 1, . . . , i0 + 1 (A.3)

where χBΘi,ρ/2
denotes the characteristic function of the ball BΘi,ρ/2. Condition (A.3) characterizes

the case where the support of µ consists of (at least) i0 + 1 points.

Consider the functions g1, . . . , gi0+1 : Z → R given by

gi(Ξ) =





ρ/2 for dZ(Ξ,Θi) ≤ ρ/2

ρ− dZ(Ξ,Θi) for ρ/2 < dZ(Ξ,Θi) ≤ ρ

0 for ρ < dZ(Ξ,Θi).

The functions g1, . . . , gi0 are non-negative and Lipschitz continuous with Lipschitz constant 1. More-
over, by construction, g1, . . . , gi0 have pairwise disjoint support and (A.3) implies that 〈gi, µ〉 > ǫρ/2
for every i = 1, . . . , i0 + 1. We know that µk → µ holds with respect to dW. Hence, there exists
an index k0 such that 〈gi, µk0

〉 > ǫρ/4 holds for i = 1, . . . , i0 + 1, simultaneously. This forms a
contradiction since µk0

is supported on at most i0 points only. �

Using the same tools as in the proof of the previous lemma, we can show the following.

Remark A.2. Let i0 ≥ 2 be a fixed integer and µ0, µ1, µ2, . . . ∈ P[i0](Z) probability measures such
that µ0 6∈ P[i0−1](Z) and µk → µ0 with respect to the Wasserstein distance dW. Then, for every
integer k ≥ 0, there exist a representation

µk =

i0∑

i=1

αi
kδΘi

k

where α1
k, . . . , α

i0
k lie in [0, 1] and Θ1

k, . . . ,Θ
i0
k lie in Z such that αi

k → αi
0 holds with respect

to the Euclidean norm in R and Θi
k → Θi

0 holds with respect to the distance dZ on Z for every
i = 1, . . . , i0.

Lemma A.3. If (Z, dZ) is a complete and separable metric space, so is (Ls, dW).

Proof. In view of Lemma A.1, it remains to show that Ls is a closed subset of P[2](Z) with respect to
dW. Let Λ1,Λ2 . . . ∈ Ls be simple laminates and µ ∈ P[2](Z) a measure such that Λk → µ with
respect to dW.

First, consider the function G : Z → Rm×m given by G(F, P ) = F . This function is Lipschitz
continuous with respect to dW. The definition of the Wasserstein distance (2.6) implies that 〈G,Λk〉 →
〈G, µ〉. The quantity 〈G,Λk〉 is equal to the mean value of the first part of Λk. We conclude that the
mean value of the first part of µ is 0 since it is 0 for all Λ1,Λ2, . . ..

Second, we show that µ can be represented in the form

µ = αδ(A,Q) + (1 − α)δ(B,R) (A.4)
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where the matricesA andB are rank-one connected. Suppose that µ lies in P[1](Z). Having in mind
the above result, we can write µ = 1 · δ(0,Q) + 0 · δ(0,Q) for some Q ∈ SL(m). Now suppose that µ
does not lie in P[1](Z). Then we apply Remark A.2. Since the rank is a lower semicontinuous function
with respect to the Euclidean norm, we conclude that there exists a representation of the form (A.4)
with A and B rank-one connected.

We put both results together. The mean value of the first part of µ is 0. Hence, we know that

αA+ (1 − α)B = 0. (A.5)

Since A and B are rank-one connected, there exist vectors a, n ∈ Rm such that |n| = 1 and

A− B = a⊗ n. (A.6)

The unique common solution of the equations (A.5) and (A.6) isA = (1−α)a⊗n andB = −αa⊗n.
As a consequence, we have shown that µ lies in Ls. �

B Topology on Z

We are going to show that the distance DSL given by (3.1) is a possible choice for dSL. In particular,
the properties (2.4a) and (2.4b) are fulfilled for dSL = DSL. Results in this direction can also be found
in [Mie02, HMM03].Within the proofs, we will assume that σyield = 1 in order to simplify the formulas.
The assertions are true for every σyield > 0 if they are true for σyield = 1.

Lemma B.1. The distance DSL given by (3.1) fulfills the condition (2.4a).

Proof. We have to show that

lim
k→∞

|Pk − I| = 0 ⇔ lim
k→∞

DSL(Pk, I) = 0

for every sequence P1, P2, . . . in SL(m). In fact, it is sufficient to investigate the situation around the
identity matrix I because the following two facts are true for every matrices P, P1, P2, . . . in SL(m):
On the one hand, we know that DSL(Pk, P ) = DSL(PkP

−1, I) holds by definition. On the other
hand, we have the estimate

|PkP
−1 − I| 1

|P−1| ≤ |Pk − P | ≤ |PkP
−1 − I| |P |

since the Euclidean norm in Rm×m is sub-multiplicative, that is, the estimate |AB| ≤ |A| |B| holds
for every matrices A,B ∈ R

m×m. Hence, |Pk − P | tends to 0 if and only if |PkP
−1 − I| does.

First, we show the direction “⇐”. Fix an integer k > 0. We apply again the fact that the Euclidean
norm is sub-multiplicative and we get that

DSL(Pk, I) = inf
P∈S(Pk,I)

1∫

0

|Ṗ (s)P (s)−1|ds ≥ inf
P∈S(Pk,I)

1∫

0

|Ṗ (s)| 1

|P (s)|ds. (B.1)

For every path P ∈ S(Pk, I) we consider the function p : [0, 1] → R given by p(s) = |P (s)|. The
triangle inequality for the Euclidean norm implies that |Ṗ | ≥ ṗ holds. We conclude that

DSL(Pk, I) ≥ inf
P∈S(P0,P1)

1∫

0

ṗ(s)p(s)−1ds = ln(|Pk|) − ln(|I|). (B.2)
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Let P ∈ S(Pk, I) be any path such that

1∫

0

|Ṗ (s)P (s)−1|ds ≤ 2DSL(Pk, I).

Then, for every real number s ∈ [0, 1], the estimates (B.2) implies that |P (s)| ≤ C holds where
C = e2DSL(Pk,I)+ln(|I|) is constant. In view of (B.1), we end up with

DSL(Pk, I) ≥ C−1 inf
P∈S(Pk,I)

1∫

0

|Ṗ (s)|ds ≥
Jensen

C−1|Pk − I| (B.3)

where we have also applied Jensen’s inequality. Hence, if DSL(Pk, I) tends to 0, so does |Pk − I|.
Second, we show the direction “⇒”. For every integer k > 0 we consider the polar decomposition
Pk = UkSk. Here Sk ∈ Rm×m is a symmetric positive-definite matrix and Uk lies in the special
orthogonal group

SO(m) = {U ∈ R
m×m | UTU = I and det(U) = 1}.

Both the Euclidean norm and the distance DSL are invariant under the multiplication with an element
of SO(m). Indeed, it is not hard to show that

DSL(P0, P1) = DSL(UP0Ũ , UP1Ũ) and |P0 − P1| = |UP0Ũ − UP1Ũ | (B.4)

holds for every P0, P1 ∈ SL(m) and U, Ũ ∈ SO(m). In particular, we get the inequality

DSL(Pk, I) = DSL(Sk, U
−1
k ) ≤ DSL(Sk, I) +DSL(Uk, I) for all k > 0. (B.5)

If |Pk − I| tends to 0, both quantities |Sk − I| and |Uk − I| tend to 0, too. Otherwise, there would
be a subsequence (not relabeled), a matrix Ũ ∈ SO(m) \ {I} and a symmetric positive-semidefinite
matrix S̃ ∈ Rm×m \ {I} such that |Uk − Ũ | → 0 and |Sk − S̃| → 0. We get that Ũ S̃ = I . Yet, this
is impossible since the unique polar decomposition of the identity matrix is I = I · I .

Let J(Uk) and J(Sk) be the Jordan normal forms of Uk and Sk, respectively, for every integer k > 0.
Note that the Jordan normal form is not unique. However, the argument works with any fixed order of
the Jordan blocks. In view of (B.4) and (B.5), it remains to show that both the following conditions hold

(i) lim
k→∞

|J(Uk) − I| = 0 ⇒ lim
k→∞

DSL(J(Uk), I) = 0,

(ii) lim
k→∞

|J(Sk) − I| = 0 ⇒ lim
k→∞

DSL(J(Sk), I) = 0.

Fix an integer k > 0. The matrices Uk and Sk are both normal. In particular, the spectral theorem can
be applied to them. Hence, the Jordan normal form J(Uk) of Uk consists of Jordan blocks

Z(βi)
def
=

(
cos(βi) −sin(βi)

sin(βi) cos(βi)

)

in a fixed order where βi ∈ [−π, π) is some angle for every 1 ≤ i ≤ m/2. If the dimensionm is odd,
there is an additional Jordan block (1), a 1 × 1-block. The Jordan normal form J(Sk) of Sk is even
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simpler, it is a diagonal matrix: J(Sk) = diag(σ1, . . . , σm) where σ1, . . . , σm > 0 are the singular
values of Pk.

We define a path from J(Uk) to Uk in a block-wise fashion. We set s 7→ Z((1 − s)βi) for every
1 ≤ i ≤ m/2. The 1×1-block (1) remains unaltered. We get a corresponding pathP ∈ S(J(Uk), I)
such that

|Ṗ (s)P (s)−1| = |Ṗ (s)| ≤ m1/2 · max
1≤i≤m/2

{|βi|} (B.6)

holds for every s ∈ [0, 1]. As J(Uk) tends to I , the angle βi converges to 0 for every 1 ≤ i ≤ m/2.
Hence, we have (i). Now consider the path in S(J(Sk), I) given by P (s) = diag(σ1−s

1 , . . . , σ1−s
m )

for s ∈ [0, 1]. Then we end up with the estimate

|Ṗ (s)P (s)−1| = |diag(ln(σ1), . . . , ln(σm))| ≤ m1/2max{|ln(σ1)|, . . . , |ln(σm)|}. (B.7)

This holds for every s ∈ [0, 1]. As J(Sk) tends to I , the entry σi converges to 1 and, hence, |ln(σi)|
converges to 0 for every i = 1, . . . , m. This shows (ii) and finishes the proof. �

Lemma B.2. The distance DSL given by (3.1) fulfills the condition (2.4b).

Proof. We are going to use arguments of the previous lemma. It is sufficient to show that there exist
constants τ̃0, τ̃1 > 0 and a monotonously increasing function τ̃2 : R → R such that for every matrix
P ∈ SL(m) both the following conditions are fulfilled

(i) DSL(P, I) ≤ τ̃0 + τ̃1|P − I|,

(ii) |P − I| ≤ τ̃2(DSL(P, I)).

Clearly, (ii) is a direct consequence of (B.3). It remains to show (i). Fix a matrix P ∈ SL(m) and let
P = US be its polar decomposition where U lies in SO(m) and S ∈ Rm×m is a symmetric positive-
definite matrix. Like in the previous lemma, we consider their Jordan normal forms. In particular, we
get that J(S) = diag(σ1, . . . , σd) where σ1, . . . , σd > 0 are the singular values of P .

With the help of (B.5) together with the estimates (B.6) and (B.7), we see that there exists some
constant C > 0 (we can actually set C = m1/2π) such that

DSL(P, I) ≤ C +m1/2max{|ln(σ1)|, . . . , |ln(σm)|}. (B.8)

We know that det(P ) = det(S) = 1. This immediately implies that ln(σ1) + · · · + ln(σm) = 0
holds. Moreover, for the Euclidean norm we have that |P | ≥ max{σ1, . . . , σm}. We end up with the
estimate

max{|ln(σ1)|, . . . , |ln(σm)|} ≤ m ln(max{σ1, . . . , σm}) ≤ m ln(|P |).

Together with (B.8), this implies that DSL(P, I) ≤ C +m3/2ln(|P − I| + |I|) and, hence, we have
(i). �
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