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ABSTRACT. We consider the problem of efficient estimation of the drift parameter of an Ornstein-Uhlenbeck type pro-
cess driven by a Lévy process when high-frequency observations are given. The estimator is constructed from the
time-continuous likelihood function that leads to an explicit maximum likelihood estimator and requires knowledge of
the continuous martingale part. We use a thresholding technique to approximate the continuous part of the process.
Under suitable conditions we prove asymptotic normality and efficiency in the Hájek-Le Cam sense for the resulting drift
estimator. To obtain these results we prove an estimate for the Markov generator of a pure jump Lévy process. Finally,
we investigate the finite sample behavior of the method and compare our approach to least squares estimation.

1. INTRODUCTION

Let (Lt, t ≥ 0) be a Lévy process on a filtered probability space (Ω,F , (Ft), P ) adapted to the filtration (Ft)t≥0.
Denote by (b, σ2, µ) the Lévy-Khintchine triplet of L. We call for every a ∈ R a strong solutionX to the stochastic
differential equation

(1) dXt = −aXt dt+ dLt, t ∈ R+, X0 = X̃,

a Lévy-driven Ornstein-Uhlenbeck (OU) process or Ornstein-Uhlenbeck type process. The initial condition X̃ is
assumed to be independent of L. We consider the problem of estimating the mean reversion parameter a when
observations Xt1 , . . . , Xtn on an interval [0, Tn] are given. It is well known that the drift of X is identifiable only
in the limit Tn →∞, even when time-continuous observations are given. Therefore, we work under the asymptotic
scheme Tn →∞ and ∆n = max1≤i≤n−1{|ti+1 − ti|} ↓ 0 as n→∞.

The OU process serves us here as a toy model to understand the interplay of jumps and continuous component
of X in this estimation problem. This interplay is fundamental also for drift estimation in more general models (cf.
[17]) to which we would like to extend our method later on.

Ornstein-Uhlenbeck type processes have important applications in various fields. In mathematical finance they are
well know as a main building block of the Barndorff-Nielsen-Shephard stochastic volatility model (cf. [3]). But also
in neuroscience they are popular for the description of the membrane potential of a neuron (cf. [16] and [10]).

Estimation of Lévy-driven Ornstein Uhlenbeck processes has been considered by several authors (see [21] and
the references therein) mostly when the driving Lévy process is a subordinator. Some examples are [11] on non-
parametric estimation of the Lévy density of L, in [4] the Davis-McCormick estimator was applied in the OU context
and parametric estimation based on a cumulant M -estimator was studied in [12]. In [8] least squares estimation
of the drift parameter for an α-stable driver is discussed, when no Gaussian component is present. [21] found that
the rate of convergence of the least absolute deviation estimator is either the standard parametric rate, when L
has a Gaussian component, or is faster than the standard rate, when L is a pure jump process and depends on
the activity of the jumps. Unfortunately, non of these methods leads to an efficient estimator of the drift when L is
a general Lévy process.

To construct an efficient estimator our starting point will be the continuous time likelihood function. From this
likelihood function an explicit maximum likelihood estimator can be derived, which is efficient in the sense of the
Hájek-Le Cam convolution theorem. In the likelihood function the continuous martingale part of X appears, which
is not directly observed in our setting. For discrete observations we approximate the continuous part of X by
neglecting increments that are larger than a certain threshold that has to be chosen appropriately. We will call this
thresholding technique a jump filter. For this discretized likelihood estimator with jump filtering we prove asymptotic
normality and efficiency by showing that it attains the same asymptotic distribution as the benchmark estimator
based on time-continuous observations.

This leads to the main mathematical question underlying this estimation problem. Can we recover the continuous
part of X in the high-frequency limit via jump filtering? If L has only compound Poisson jumps it is intuitively clear
that the answer is yes. But when L has infinitely many small jumps in every finite interval this is a much more
challenging question. It turns out that even in this situation jump filtering works under mild assumptions on the
behavior of the Lévy measure around zero. The main condition here is that the Blumenthal-Getoor index of the
jump part is strictly less than two, which is apparently a necessary condition in this context. In this setting jump
filtering becomes possible, since on a small time scale increments of the continuous part and of the jump part
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exhibit a different order of magnitude such that they can be distinguished via thresholding. To control the small
jumps of L under thresholding we derive an estimate for the Markov generator of a thresholded pure jump Lévy
process. Estimates of this type without thresholding were given, among others, in [7] and [9].

The problem of separation between continuous and jump part of a process appears naturally in many situations.
For example in estimation of the integrated volatility of a jump diffusion process via realized volatility the quadratic
variation of the jump component has to be removed. This problem has been solved by thresholding in [18] for
Poisson jumps and in [19] for more general jump behavior. Efficiency questions in this context in a simple parametric
model have been addressed in [1]. When properties of the jump component are of interest thresholding techniques
are equally useful as demonstrated, among others, in [2]. In contrast to our discussion all these references consider
the separation problem for a finite and fixed observation horizon Tn = T <∞.

We also demonstrate in a simulation example that jump filtering leads to a major improvement of the drift estimate
for finite sample size. This means that our methods really matters for practical applications when jump processes
are employed. Let us also mention that the drift estimator is easy to implement and computationally efficient.

The paper is organized as follows: In Section 2 we derive the maximum likelihood estimator based on time-
continuous observations, give its asymptotic properties and obtain the efficient limiting distribution for this esti-
mation problem. Section 3 deals with estimating the drift parameter from discrete observations when L has finite
jump activity. In Section 4 we build on the results from Section 2 and 3 to prove efficiency also for possibly infinite
jump activity. The finite sample behavior of the estimator is investigated in Section 5 based on simulated data
together with an analysis of the impact of the jump filter on the performance of the estimator.

2. MAXIMUM LIKELIHOOD ESTIMATION

Let us summarize some important facts on Ornstein-Uhlenbeck type processes. It follows from Itô’s formula that an
explicit solution of (1) is given by

(2) Xt = e−atX0 +

∫ t

0

e−a(t−s)dLs, t ∈ R+.

The integral in (2) can by partial integration be defined path-wise as a Riemann-Stieltjes integral, since the integrand
is of finite variation (see [6] for example). This solution to equation (1) is unique up to indistinguishability.

Equation (1) admits a stationary solution (cf. [22] and [20]) if and only if

(3)

∫
|x|>1

log |x| µ(dx) <∞ and a > 0.

Under these conditions X has a unique invariant distribution G and Xt
D−→ X∞ ∼ G as t→∞.

The Ornstein-Uhlenbeck process X exhibits a modification with càdlàg paths and hence it induces a measure P a

on the spaceD[0,∞) of càdlàg functions on the interval [0,∞). Denote by P at the restriction of P a to the σ-field
Ft. If σ2 > 0 then these induced measure are locally equivalent (cf. [23]) and the corresponding Radon-Nikodym
derivative or likelihood function is given by

dP at
dP 0

t

= exp

(
− a

σ2

∫ T

0

Xs dX
c
s −

a2

2σ2

∫ T

0

X2
s ds

)
,

where Xc denotes the continuous martingale part of X . This leads to the explicit maximum likelihood estimator

(4) âT = −
∫ T

0
XsdX

c
s∫ T

0
X2
sds

for a when the process is fully observed on [0, T ]. The estimator âT cannot be applied in this form, since time-
continuous observations are usually not available in most applications. Therefore, we will develop in the next section
a discrete version of âT and prove its efficiency. The main challenge there will be that the continuous part Xc is
not directly observed and hence has to be approximated from discrete observations of X via jump filtering.

However, for us âT will serve as a benchmark for the estimation problem with discrete observations. Asymptotic
normality and efficiency in the Hájek-Le Cam sense of âT follow easily from general results for exponential families
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of stochastic processes (cf. [15] and [17]). These results provide an efficiency bound for the case of discrete
observations in the next section. Let us summarize them in the following theorem.

Theorem 2.1. (i) Under the condition σ2 > 0 the estimator âT exists uniquely and is strongly consistent
under P a, i.e.

âT
a.s.−→ a

under P a as T →∞.
(ii) Suppose that additionally (3) holds and that X has bounded second moments such that the invariant

distribution satisfies Ea[X2
∞] <∞. Then under P a

√
T (âT − a)

D−→ N

(
0,

σ2

Ea[X2
∞]

)
and

(5) σ−1S
1/2
T (âT − a)

D−→ N(0, 1)

as T →∞, where ST =
∫ T

0
X2
s ds.

(iii) The statistical experiment {P a, a ∈ R+} is locally asymptotically normal.
(iv) The estimator âT is asymptotically efficient in the sense of Hájek-Le Cam.

For a proof we refer to [17], Section 4.2.

Remark 2.2. (i) When σ2 is known or a consistent estimator is at hand we can use (5) to construct confidence
intervals for a.

(ii) The second moment of the invariant distribution of X in terms of the Lévy-Khintchine triplet of L is given by

Ea
[
X2
∞
]

= (2a)−1

(
σ2 + b2 +

∫
R
x2 µ(dx)

)
.

3. DISCRETE OBSERVATIONS: FINITE ACTIVITY

In this section we consider the estimation of a for discrete observations. The maximum likelihood estimator for
the drift given in (4) involves the continuous martingale part that is unknown when only discrete observations are
given. Hence, we will approximate the continuous part of the process by removing observations that most likely
contain jumps. We restrict our attention in this section to the case that the driving Lévy process has jumps of finite
activity. The jump filtering technique provides us in the high-frequency limit an asymptotically normal and efficient
estimator. Based on these results we will treat the general case of an infinitely active jump component in Section 4.

3.1. Estimator and observation scheme. Let X be an Ornstein-Uhlenbeck process defined by (1) and suppose
we observe X at discrete time points 0 = t1 < t2 < . . . < tn = Tn such that Tn → ∞ as well as
∆n = max1≤i≤n−1{|ti+1 − ti|} ↓ 0 and n∆nT

−1
n = O(1) as n → ∞. The last condition assures that the

number of observations n does not grow faster than Tn∆−1
n . It can always be fulfilled by neglecting observations

and will simplify the formulation of the proof considerably. Denote by (b, σ2, µ) the Lévy-Khintchine triplet of L.
Assume throughout this section that λ = µ(R) <∞ for the Lévy measure µ.

By deleting increments that are larger than a threshold vn > 0 we filter increments that most likely contain jumps
and thus approximate the continuous part with the remaining increments. Applied to the time-continuous likelihood
estimator (4) this method leads to the following estimator.

(6) ān := −
∑n−1
i=0 Xti∆iX1{|∆iX|≤vn}∑n−1

i=0 X
2
ti(ti+1 − ti)

.

Here vn > 0, n ∈ N, is a cut-off sequence that will be chosen as a function of the maximal distance between
observations ∆n and ∆iX = Xti+1 −Xti .

In the finite activity case the jump part J of L can be written as a compound Poisson process

Jt =

Nt∑
i=1

Zi
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where N is a Poisson process with intensity λ and the jump heights Z1, Z2, . . . are iid with distribution F .

3.2. Asymptotic normality and efficiency. The indicator function that appears in ān deletes increments that are
larger than vn. In [18] it was shown that increments of the continuous part of X over an interval of length ∆n are

with high probability smaller than ∆
1/2
n . Hence, we set vn = ∆β

n for β ∈ (0, 1/2) to keep the continuous part in
the limit unaffected by the threshold. In order to be able to choose vn such that Xc

n =
∑n−1
i=0 ∆iX1{|∆iX|≤vn}

approximates the continuous martingale part in the limit, we make the following assumptions on the jumps of L
and the observation scheme.

Assumption 3.1. (i) Suppose that there exists a β ∈ (0, 1/2) such that the maximal distance between

observations satisfies Tn∆
(1−2β)∧ 1

2
n = o(1) and

(ii) the drift b = 0 and the distribution F of the jump heights is such that

F (−2∆β
n, 2∆β

n) = o(T−1
n ),

(iii) µ and a satisfy (3) and X has bounded second moments.

Remark 3.2. Suppose that F has a bounded Lebesgue density f . Then F (∆β
n,∆

β
n) = O(∆β

n) and Assumption
3.1(ii) becomes ∆nTn = o(1). Together with 3.1(i) we obtain that β = 1/3 leads to an optimal compromise
between 3.1(i) and (ii).

Remark 3.3. Assumption 3.1(i) means here that for given Tn → ∞ we require ∆n ↓ 0 fast enough such that
there exists β ∈ (0, 1/2):

Tn∆1−2β
n = o(1) and Tn∆1/2

n = o(1).

Of course one of these to conditions will be dominating and determine the order of ∆n.

Remark 3.4. Assumption 3.1(ii) gives a lower bound for the choice of the threshold β. At the same time 3.1(i)
limits the range of possible β’s from above, since the available frequency of observations, i.e. the order of ∆n,
may be limited in specific applications. Hence, the distribution F , the observation length Tn and frequency ∆n fix
a range for the choice of β. At this point the question of a data driven method to choose β arises, but this will not
be considered in this work. The condition b = 0 is necessary in this context, since otherwise there is no hope to
recover the continuous martingale part via jump filtering.

The following theorem gives as the main result of this section a central limit theorem for the discretized MLE with
jump filter.

Theorem 3.5. Suppose that Assumption 3.1 holds and that σ2 > 0. Set vn = ∆β
n for β ∈ (0, 1/2), then

T 1/2
n (ān − a)

D−→ N

(
0,

σ2

Ea[X2
∞]

)
as n→∞.

The estimator ān is asymptotically efficient.

Remark 3.6. Asymptotic efficiency follows immediately from Theorem 2.1 and the first statement of Theorem 3.5.

3.3. Proof. We divide the proof of the theorem into several lemmas. First of all we need a probability bound for the
event that the continuous component of X exceeds a certain threshold.

Lemma 3.7. Let sups∈[0,T ]{E[|Xs|l]} <∞ for some l > 0. For any δ ∈ (0, 1/2) and i ∈ {1, . . . , n− 1} we
have

P (|∆iW + ∆iD| > ∆1/2−δ
n ) = O

(
∆l(1/2+δ)
n

)
as n→∞.

Proof: In the first step we separate ∆iW and ∆iD.

P
(
|∆iW + ∆iD| > ∆1/2−δ

n

)
≤ P

(
|∆iW | >

∆
1/2−δ
n

2

)
+ P

(
|∆iD| >

k∆
1/2
n

2

)
.

By Lemma 22.2 in [14]

P

(
|∆iW | >

∆
1/2−δ
n

2

)
≤ 2∆δ

n e
− 1

8∆δn .
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It follows from Jensen’s inequality that∣∣∣∣∫ ti+1

ti

Xs ds

∣∣∣∣l ≤ ∆l−1
n

∫ ti+1

ti

|Xs|l ds.

This leads to

E[|∆iD|l] ≤ ∆l−1
n al

∫ ti+1

ti

E[|Xs|l] ds ≤ ∆l
na

l sup
s∈[ti,ti+1]

{E[|Xs|l]}.

Finally, Markov’s inequality yields

P

(
|∆iD| >

∆
1/2−δ
n

2

)
≤ al sup

s∈[ti,ti+1]

{E[|Xs|l]}
2l∆l

n

∆
l(1/2−δ)
n

= O
(

∆l(1/2+δ)
n

)
.

�

3.3.1. Jump filtering. First we will investigate how to choose the cut-off sequence vn in order to filter the jumps.
Define for n ∈ N and i ∈ {1, . . . , n} the following sequence of events

Ain =
{
ω ∈ Ω : 1{|∆iX|≤vn}(ω) = 1{∆iN=0}(ω)

}
.

HereN denotes the counting measure that counts the jumps ofL andW andD = −a
∫ ·

0
Xt dt are the Gaussian

and drift component of X , respectively.

Lemma 3.8. Suppose that Assumption 3.1 holds and set vn = ∆β
n, β ∈ (0, 1/2), then it follows that for An =⋂n

i=1A
i
n we have

P (An)→ 1 as n→∞.

Proof: Observe that

P (Acn) = P

(
n⋃
i=1

(Ain)c

)
≤

n∑
i=1

P ((Ain)c).

By setting

Ki
n = {|∆iX| ≤ vn},

M i
n = {∆iN = 0},

we can rewrite (Ain)c as

(Ain)c =
{
1Ki

n
6= 1Mi

n

}
= (Ki

n\M i
n) ∪ (M i

n\Ki
n).

Here the events Ki
n\M i

n and M i
n\Ki

n correspond to the two types of errors that can occur when we search for
jumps. In the first case we miss a jump and in the second case we neglect an increment although it does not
contain any jumps. Next, we are going to bound the probability of both errors.

(7) P ((Ain)c) = P (Ki
n\M i

n) + P (M i
n\Ki

n).

Set ∆i = ti+1 − ti. For the first type of error we obtain

P (Ki
n\M i

n) =P (|∆iX| ≤ vn,∆iN > 0)

=

∞∑
j=1

e−λ∆i
(λ∆i)

j

j!
P (|∆iX| ≤ vn|∆iN = j)

≤λ∆nP (|∆iX| ≤ vn|∆iN = 1) +O(∆2
n)

and

P (|∆iX| ≤ vn|∆iN = 1) ≤ P (|∆iX| ≤ vn, |∆iJ | > 2vn|∆iN = 1)

+ P (|∆iX| ≤ vn, |∆iJ | ≤ 2vn|∆iN = 1).(8)
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The first term on the right side is bounded by

P (|∆iX| ≤ vn, |∆iJ | > 2vn|∆iN = 1)

= P (|∆iW + ∆iJ + ∆iD| ≤ vn, |∆iJ | > 2vn|∆iN = 1)

≤ P (|∆iW + ∆iD| > vn,∆iN = 1)P (∆iN = 1)−1(9)

≤ P (|∆iW + ∆iD| > vn)P (∆iN = 1)−1 = O(∆1−2β
n ),(10)

where we used Lemma 3.7. Denote by F the distribution of the jump heights of J . Then we obtain for the second
term on the right-hand side of (8)

P (|∆iX| ≤ vn, |∆iJ | ≤ 2vn|∆iN = 1) ≤ P (|∆iJ | ≤ 2vn|∆iN = 1) = F ((−2vn, 2vn)).

For the second addend in (7) it follows by independence of W and J that

P (M i
n\Ki

n) =P (|∆iX| > vn,∆iN = 0)

≤P (|∆iW + ∆iD| > vn).

Lemma 3.7 yields

(11) P (|∆iW + ∆iD| > vn) = O(∆2−2β
n )

So finally,

P ((Ain)c) ≤ F (−2∆β
n, 2∆β

n)∆n +O(∆1−2β
n ),

such that the statement follows. �

3.3.2. Approximation of the continuous martingale part.

Lemma 3.9. Under Assumption 3.1 we obtain∣∣∣∣∣
n−1∑
i=0

Xti(∆iX1{|∆iX|≤vn} −∆iX
c)

∣∣∣∣∣ = Op(Tn∆1/2
n )

as n→∞.

Proof: On An from Lemma 3.8 we have

(12)
n−1∑
i=0

Xti

(
∆iX1{|∆iX|≤vn} −∆iX

c
)

=

n−1∑
i=0

Xti

(
∆iX1{∆iN=0} −∆iX

c
)
,

By Lemma 3.8 we have P (An) → 1 as n → ∞. Observe now that the difference of the increments on the right
hand side of (12) is unequal to zero only if a jump occurred in that interval, i.e.

∆iX1{∆iN=0} −∆iX
c =

{
−∆iX

c; ∆iN > 0,
0; ∆iN = 0.

Define Cni = {∆iN > 0} and observe that

E

∣∣∣∣∣1An
n−1∑
i=0

Xti(∆iX1{∆iN=0} −∆iX
c)

∣∣∣∣∣ = E

∣∣∣∣∣
n−1∑
i=0

Xti∆iX
c 1An∩Cni

∣∣∣∣∣ .
The i-th increment of Xc can be written as ∆iX = ∆iW + ∆iD. Therefore,

E

∣∣∣∣∣
n−1∑
i=0

Xti∆iX
c 1An∩Cni

∣∣∣∣∣ ≤
n−1∑
i=0

E
[
|Xti(∆iW + ∆iD)| 1An∩Cni

]
≤
n−1∑
i=0

E
[
(|Xti∆iW | + |Xti∆iD|) 1Cni

]
.
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The number of jumps of J follows a Poisson process with intensity λ such that P (Cni ) ≤ ∆nλ. The independence
of N ⊥W and ∆iN ⊥ Xti yields

n−1∑
i=0

E
[
|Xti∆iW | 1Cni

]
=

n−1∑
i=0

E[(|Xti |]E[|∆iW |]P (Cni ) ≤ O(Tn∆1/2
n ).

Finally, by Hölder’s inequality

n−1∑
i=0

E
[
|Xti∆iD| 1Cni

]
≤
n−1∑
i=0

E
[
X2
ti(∆iD)2

]1/2
P (Cni )1/2 = O(Tn∆1/2

n ).

�

3.3.3. Central limit theorem for the discretized estimator. To prove Theorem 3.5, we show next that when we
discretize the time-continuous estimator âT as

ân = −
∑n
i=1Xti∆iX

c∑n
i=1X

2
ti(ti+1 − ti)

,

then ân attains the same asymptotic distribution as âT itself. In the last step we will then show that the discretized
MLE and the estimator with jump filter show the same limiting behavior.

Lemma 3.10. Let X be stationary with finite second moments and suppose
that ∆nTn = o(1). Then

T 1/2
n (ân − a)

D−→ N
(
a, σ2Ea[X2

∞]−1
)

as n→∞

under Pa.

Proof: First, we prove that the numerator of ân and its continuous time analog∫ T

0

X2
t dX

c
t

have in L2 the same limit. Define Zn =
∑n−1
i=0 Xti∆iX

c and btcn = maxi≤n{ti|ti ≤ t}. First observe that∫ Tn

0

Xt dX
c
t − Zn =

∫ Tn

0

Xt dWt −
n−1∑
i=0

Xti∆iW +−a
∫ Tn

0

X2
t dt−

n−1∑
i=0

Xti∆iD

From Ito’s isometry we obtain for the first difference on the right-hand side

Ea

(∫ Tn

0

Xt dWt −
n−1∑
i=0

Xti∆iW

)2
 = Ea

(∫ Tn

0

Xt dWt −
∫ Tn

0

Xbtcn dWt

)2


= Ea

[∫ Tn

0

(Xt −Xbtcn)2 dt

]
= O(∆nTn).

The second difference is bounded by

Ea

[∣∣∣∣∣−a
∫ Tn

0

X2
t dt−

n−1∑
i=0

Xti∆iD

∣∣∣∣∣
]

= aEa

[∣∣∣∣∣
∫ Tn

0

X2
t dt−

n−1∑
i=0

Xti

∫ ti+1

ti

Xt dt

∣∣∣∣∣
]

= aEa

[∣∣∣∣∣
∫ Tn

0

X2
t dt−

∫ Tn

0

XbtcnXt dt

∣∣∣∣∣
]
≤ a

∫ Tn

0

Ea
[
|X2

t −XbtcnXt|
]
dt

= O(∆1/2
n Tn),

where we applied Fubini’s theorem and Hölder’s inequality to obtain the estimate

Ea
[
|X2

t −XbtcnXt|
]
≤ Ea[X2

t ]1/2Ea
[
(Xt −Xbtcn)2

]1/2
= O(∆1/2

n ).
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It follows now that T−1/2
n (

∫ Tn
0

Xt dX
c
t − Zn)

p−→ 0 as n→∞. A similar estimate shows that also

T−1
n

(∫ T

0

X2
t dt−

n−1∑
i=0

X2
ti(ti+1 − ti)

)
→ 0

in L2 as T →∞ such that the statement follows from Theorem 2.1. �

Proof of Theorem 3.5: By Lemma 3.10 T 1/2
n (ân − a)

D−→ N(0, σ2

Ea[X2
∞] ) as n → ∞. By Slutsky’s lemma it

remains to show

(13) T 1/2
n (ān − ân)

p−→ 0 as n→∞.

Observe that

T 1/2
n (ān − ân) = T 1/2

n

(∑n
i=1Xti∆iX1{|∆iX|≤vn} −

∑n
i=1Xti∆iX

c∑n
i=1X

2
ti∆i

)
.

By Lemma 3.9 we obtain under Pa that

T−1/2
n

(
n∑
i=1

Xti∆iX1{|∆iX|≤vn} −
n∑
i=1

Xti∆iX
c

)
p−→ 0 as n→∞,

and

T−1
n

n∑
i=1

X2
ti∆i

p−→ Ea[X2
∞],

such that (13) follows. �

4. DISCRETE OBSERVATIONS: INFINITE ACTIVITY

In this section we generalize the results from Section 3 to the case that the jump part of the driving Lévy process
can be of infinite activity. We give conditions on the Lévy measure and suitable rates for the cut-off sequence that
ensure separation in the high-frequency limit between jump part and continuous part. Under these conditions we
will then prove asymptotic normality and efficiency of the drift estimator ān given in (6).

The observation scheme considered here will be like in 3.1, i.e. 0 = t1 < t2 < . . . < tn = Tn such that
Tn →∞ as well as ∆n = max1≤i≤n−1{|ti+1 − ti|} ↓ 0 and n∆nT

−1
n = O(1) as n→∞.

4.1. Asymptotic normality and efficiency. In this section we state as the main result of this paper a CLT for the
estimation error of ān. The limiting distribution will imply asymptotic efficiency of ān. But before we can formulate
the theorem, we introduce some notation and mild assumptions on the jump part of L that enable us to separate
the jump part and continuous part via jump filtering.

Let N denote the Poisson random measure associated to the jump part of L. The jump component J of X , the
components M of jumps smaller than one and U of jumps larger than one and the drift D are given by

Jt =

∫ t

0

∫ ∞
−∞

x(N(dx, ds)− µ(dx)λ(ds)),

Mt =

∫ t

0

∫ 1

−1

x(N(dx, ds)− µ(dx)λ(ds)),

Ut = Jt −Mt,

Dt = −a
∫ t

0

Xs ds,

(14)

respectively. Owing to this decomposition of X we can apply the results from Chapter 3 to D, W and U and thus
can focus on M . To control the small jumps of M we impose the following assumption on the Lévy measure µ.

Assumption 4.1. (i) Suppose that (3) holds and that X has bounded second moments.
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(ii) There exists an α ∈ (0, 2) such that as v ↓ 0

(15)

∫ v

−v
x2 µ(dx) = O(v2−α).

(iii) There exists η > 0 such that for all ε ≤ η
E[∆iM1{|∆iM |≤ε}] = 0.

Remark 4.2. Assumption 4.1(ii) controls the intensity of small jumps, which is determined by the mass of µ around
the origin. When γ denotes the Blumenthal-Getoor index of L defined by

γ = inf
c≥0

{∫
|x|≤1

|x|c µ(dx) <∞

}
≤ 2

then α = γ satisfies (15), i.e. Assumption 4.1(i) states that the Blumenthal-Getoor index is less than two. This is a
natural condition in the context of jump filtering (see e.g. [19] in the context of volatility estimation).

The main result of this chapter is the following central limit theorem for the drift estimator with jump filter.

Theorem 4.3. Suppose that Assumption 4.1 holds. If there exists β ∈ (0, 1/2) such that Tn∆
1/2−β
n = o(1) as

n→∞ then vn = ∆β
n yields

T 1/2
n (ān − a)

D−→ N(0, σ2Ea[X2
∞]−1).

The estimator is asymptotically efficient.

Example 4.4. Let L = W + J , where J is a compound Poisson process

Jt =

Nt∑
i=1

such that Yi ∼ F are iid and Nt is a Poisson process with intensity λ. Suppose that F has a bounded Lebesgue
density f . Then ∫ v

−v
x2 µ(dx) = λ

∫ v

−v
x2f(x) dx ≤ Cv3

for C > 0 such that for L Assumption 4.1(i) holds for every α ∈ [0, 2).

More generally every Lévy process with Blumenthal-Getoor index less than two fulfills Assumption 4.1(i). This
includes all Lévy processes commonly used in applications like (tempered) stable , normal inverse Gaussian,
variance gamma and also gamma processes.

4.2. Proof. Asymptotic efficiency of ān follows from the first statement of Theorem 4.3 together with Theorem 2.1
such that it remains to prove the asymptotic normality result. We will divide the proof of Theorem 4.3 into several
lemmas. In the proofs in this section constants may change from line to line or even within one line without further
notice.

4.2.1. A moment bound. In this section we derive a moment bound for short time increments of pure jump Lévy
processes. Set

f(x) =

{
x2 , if |x| ≤ 1,

0 , if |x| > 2

and f(x) ∈ [0, 1] for |x| ∈ (1, 2] such that f ∈ C∞(R). We scale f to be supported on [−v, v] by

(16) fv(x) = v2f(x/v).

Proposition 4.5. Let (Mt)t≥0 be a pure jump Lévy process with Lévy measure µ such that supp(µ) ⊂ [−1, 1]
and Assumption 4.1(1) and (2) hold. Then for all β ∈ (0, 1

2 ) we obtain

E
[
f t
β

(Mt)
]

= O
(
t1+β(2−α)

)
as t ↓ 0.

Remark 4.6. The estimate in Proposition 4.5 gives actually a bound for the Markov generator of M on the smooth
test function fv .
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Proof: Let PMt denote the distribution of Mt. We apply Plancherel’s identity to obtain

E[f t
β

(Mt)] =

∫
R
f t
β

(x) PMt(dx) = (2π)−1

∫
R
Ff t

β

(u)φt(u)du,

where Ff =
∫
R e

iuxf(x) dx denotes the Fourier transform of f and the characteristic function of M satisfies

φt(u) = exp

(
t

∫ 1

−1

(eiux − 1− iux) µ(dx)

)
.

Let us rewrite φt as the linearization of the exponential at zero plus a remainder R.

φt(u) = 1 + ψt(u) +R(t, u)

with

ψt(u) = t

∫ 1

−1

(eiux − 1− iux) µ(dx).

Then,

E[f t
β

(Mt)] = (2π)−1

∫
R
Ff t

β

(u)(1 + ψt(u) +R(t, u)) du

= (2π)−1

∫
R
Ff t

β

(u)ψt(u) du+ (2π)−1

∫
R
Ff t

β

(u)R(t, u) du.(17)

For the first term on the right hand side we obtain

(2π)−1

∫
R
Ff t

β

(u)ψt(u) du = (2π)−1t

∫ 1

−1

∫
R
Ff t

β

(u)(e−iux − 1 + iux) du µ(dx)

= t

∫ 1

−1

(
f t
β

(x) + (2π)−1

∫
R
F
(

(f t
β

)′
)

(u)x du

)
µ(dx)

= t

∫ 1

−1

f t
β

(x) µ(dx) = tO(tβ(2−α))(18)

by Assumption 4.1.1 and since ∫
R
F

((
f t
β
)′)

(u) du =
(
f t
β
)′

(0) = 0.

It remains to bound the second addend in (17). For Re(z) ≤ 0 observe that∣∣∣∣ez − z − 1

z2

∣∣∣∣ =

∣∣∣∣∣
∞∑
l=2

zl−2

l!

∣∣∣∣∣ ≤ |ez| ≤ 1

and therefore |ez − z − 1| ≤ |z|2 on the left half plane. Theorem 2.2.5 in [13] implies that |ψt(u)| ≤ Ctuα such
that

|R(t, u)| = |eψt(u) − ψt(u)− 1| ≤ |ψt(u)|2 ≤ Ct2u2α,

where we used that for every characteristic function | exp(ψt(u))| = φt(u) ≤ 1 holds. Hence, we obtain

(19)

∣∣∣∣∫
R
F
(
f t
β
)

(u)R(t, u) du

∣∣∣∣ ≤ Ct2 ∫
R

∣∣∣F(f tβ) (u)
∣∣∣ |u|2α du.

Therefore, it remains to bound
∫
R

∣∣∣Ff tβ (u)
∣∣∣u2α du in t. From (16) and the scaling property of the Fourier

transform it follows that
F(fv)(u) = v3F

(
v−1f(x/v)

)
(u) = v3F(f)(vu).

Since f ∈ C∞(R), we obtain |F(f)(u)| ≤ Cm|u|−m such that

|F(fv)(u)| ≤ Cmv3−mu−m

for all u ∈ R and m, v > 0. Then

h(v, u) = |F(fv)(u)|u2α ≤ Cmv3−mu2α−m.

If

(20) 2α+ 1 < m
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holds then h(v, ·) ∈ L1(R) for all v ∈ (0, 1). Setting v = tβ yields

t2
∫
R

∣∣∣F(f tβ) (u)
∣∣∣ |u|2α du ≤ Cmt(3−m)β+2

for all m > 0. Since the first term in (17) is of the order O
(
t1+β(2−α)

)
, we choose m such that

(3−m)β + 2 ≥ 1 + β(2− α)⇔ m ≤ 1 + β−1 + α.

Together with (20) this leads to the condition

2α+ 1 < 1 + β−1 + α⇔ α < β−1,

which due to α ∈ (0, 2) always holds for β ∈ (0, 1/2). Hence, we obtain∣∣∣∣∫
R
F
(
f t
β
)

(u)R(t, u) du

∣∣∣∣ = O
(
t1+β(2−α)

)
.

Together with (17) and (18) this yields finally

E[f t
β

(Mt)] = tO(tβ(2−α)).

�

4.2.2. Approximating the continuous martingale part. The main step is to show that the continuous martingale part
can be approximated by summing only the increments that are below the threshold vn. We will use throughout the
notation from (14).

Lemma 4.7. Suppose that the assumptions of Theorem 4.3 hold, then

T−1/2
n

n−1∑
i=0

Xti(∆iX1{|∆iX|≤vn} −∆iX
c)

p−→ 0 as n→∞.

Proof: Let us consider the following decomposition where X̃ = W +D + U

T−1/2
n

n−1∑
i=0

Xti(∆iX1{|∆iX|≤vn} −∆iX
c) = T−1/2

n

n−1∑
i=0

Xti(∆iX̃1{|∆iX|≤vn} −∆iX
c)

+ T−1/2
n

n−1∑
i=0

Xti∆iM1{|∆iX|≤vn} = T−1/2
n

n−1∑
i=0

Xti(∆iX̃1{|∆iX̃|≤2vn} −∆iX
c)

+ T−1/2
n

n−1∑
i=0

Xti∆iX̃(1{|∆iX|≤vn} − 1{|∆iX̃|≤2vn}) + T−1/2
n

n−1∑
i=0

Xti∆iM1{|∆iX|≤vn}

= Sn1 + Sn2 + Sn3 .

Since X̃ is an OU process with finite activity jumps, it follows from our results in Chapter 3 that Sn1 converges to
zero in probability when n→∞. Let us prove next convergence of

Sn2 = T−1/2
n

n−1∑
i=0

Xti∆iX̃
(
1{|∆iX|>vn,|∆iX̃|≤2vn} + 1{|∆iX|≤vn,|∆iX̃|>2vn}

)
.

Let us prove next that the contribution of the second indicator function on the right-hand side tends to zero in
probability.

P

(
T−1/2
n

n−1∑
i=0

|Xti∆iX̃|1{|∆iX|≤vn,|∆iX̃|>2vn} > 0

)

= P

(
n−1⋃
i=0

{|∆iX| ≤ vn, |∆iX̃| > 2vn}

)
≤
n−1∑
i=0

P (|∆iX| ≤ vn, |∆iX̃| > 2vn)(21)
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When |∆iX̃| > 2vn then with high probability |∆iU | > 0, since by Lemma 3.7 we obtain

(22)
n−1∑
i=0

P (|∆iX̃| > 2vn, |∆iU | = 0) ≤
n−1∑
i=0

P (|∆iW + ∆iD| > 2vn) = O(Tn∆1−2β
n ).

This together with (21) and that fact that on {|∆iX| ≤ vn, |∆iX̃| > 2vn} necessarily |∆iM | > vn implies that

P

(
T−1/2
n

n−1∑
i=0

|Xti∆iX̃|1{|∆iX|≤vn,|∆iX̃|>2vn} > 0

)
≤
n−1∑
i=0

P (|∆iU | 6= 0, |∆iM | > vn)

≤
n−1∑
i=0

P (|∆iU | 6= 0)P (|∆iM | > vn) = O(Tn∆nv
2
n) = O(Tn∆1−2β

n ),

where we used Markov’s inequality and independence of U and M . The remaining term in Sn2 is

T−1/2
n

n−1∑
i=0

Xti∆iX̃1{|∆iX|>vn,|∆iX̃|≤2vn}.

Let us prove that on {|∆iX̃| ≤ 2vn} the contribution of U is negligible.

T−1/2
n

n−1∑
i=0

P (|∆iX̃| ≤ 2vn, |∆iU | > 0)

= T−1/2
n

n−1∑
i=0

(
P (|∆iX̃| ≤ 2vn,∆iN = 1) +O(∆2

n)
)

≤ T−1/2
n

n−1∑
i=0

(
P (|∆iW + ∆iD| > 1− 2vn) +O(∆2

n)
)

= O(∆3/2
n ),

(23)

as n → ∞, where N denotes the counting process that counts the jumps of U and the last step follows from
Lemma 3.7. Hence, we can assume that ∆iU = 0 on {|∆iX̃| ≤ 2vn} and so ∆iX̃ = ∆iW + ∆iD. For

Tn∆
1/2−β/2
n = o(1) it follows from Lemma 4.8 that as n→∞

T−1/2
n

n−1∑
i=0

Xti∆iD1{|∆iX|>vn,|∆iX̃|≤2vn}
p−→ 0.

We have decomposed Sn2 into a term that converges to 0 in probability and a remainder.

Sn2 = T−1/2
n

n−1∑
i=0

Xti∆iW1{|∆iX|>vn,|∆iX̃|≤2vn} + op(1).

For the remainder let us observe that by Lemma 4.9 we obtain

Sn2 = T−1/2
n

n−1∑
i=0

Xti∆iW1{|∆iX|>vn,|∆iX̃|≤2vn}

= T−1/2
n

n−1∑
i=0

Xti∆iW1{|∆iW+∆iD+∆iM |>vn,|∆iW+∆iD|≤2vn} + op(1)

= T−1/2
n

n−1∑
i=0

Xti∆iW1{|∆iM |>vn} + op(1)

Markov’s inequality yields P (|∆iM | > vn) ≤ ∆
1/2−β
n . Independence of Xti , ∆iW and ∆iM leads to

E

[
T−1/2
n

n−1∑
i=0

Xti∆iW1{|∆iM |>vn}

]
= 0
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and

E

(T−1/2
n

n−1∑
i=0

Xti∆iW1{|∆iM |>vn}

)2
 ≤ T−1

n E

[
n−1∑
i=0

X2
ti(∆iW )21{|∆iM |>vn}

]

+T−1
n E

∑
i6=j

Xti∆iW1{|∆iM |>vn}Xtj∆jW1{|∆jM |>vn}

 .
Since Xti , Xtj ,∆iW,∆iM,∆jM ⊥ ∆jW for i < j the off-diagonal elements are centered,

E

∑
i6=j

Xti∆iW1{|∆iM |>vn}Xtj∆jW1{|∆jM |>vn}

 = 0

and the diagonal elements can be estimated by

T−1
n E

[
n−1∑
i=0

X2
ti(∆iW )21{|∆iM |>vn}

]
≤ T−1

n ∆n

n−1∑
i=0

E[X2
ti ]P (|∆iM | > vn)

≤ sup
i
{E[X2

ti ]}∆
1−2β
n → 0

as n → ∞. The last step is to show that Sn3 tends to zero in probability as n → ∞. As in (23) it follows that on
|∆iX| ≤ vn we can assume that ∆iU = 0. Now

n−1∑
i=0

P (|∆iX| ≤ vn,∆iU = 0) ≤
n−1∑
i=0

P (|∆iW + ∆iD + ∆iM | ≤ vn, |∆iM | ≤ 2vn)

+

n−1∑
i=0

P (|∆iW + ∆iD + ∆iM | ≤ vn, |∆iM | > 2vn).

The second addend vanishes, since by Lemma 3.7 we obtain
n−1∑
i=0

P (|∆iW + ∆iD + ∆iM | ≤ vn, |∆iM | > 2vn)

≤
n−1∑
i=0

P (|∆iW + ∆iD| > vn) = O(Tn∆1−2β
n ).

Thus, Sn3 can be rewritten as

Sn3 = T−1/2
n

n−1∑
i=0

Xti∆iM1{|∆iX|≤vn,|∆iM |≤2vn} + op(1).

Lemma 4.9 yields

T−1/2
n

n−1∑
i=0

Xti∆iM1{|∆iX|≤vn,|∆iM |≤2vn} = T−1/2
n

n−1∑
i=0

Xti∆iM1{|∆iM |≤ 3
2 vn}

+ op(1).

Since Xti and ∆iM are independent and ∆iM is centered

E

[
T−1/2
n

n−1∑
i=0

Xti∆iM1{|∆iM |≤ 3
2 vn}

]
= 0

and

E

(T−1/2
n

n−1∑
i=0

Xti∆iM1{|∆iM |≤ 3
2 vn}

)2
 ≤ T−1

n E

[
n−1∑
i=0

X2
ti(∆iM)21{|∆iM |≤ 3

2vn}

]

+T−1
n E

∑
i 6=j

Xti∆iM1{|∆iM |≤ 3
2vn}

Xtj∆jM1{|∆jM |≤ 3
2vn}

 .
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Since Xti , Xtj ,∆iM ⊥ ∆jM for i < j the off-diagonal elements vanish by Assumption 4.1.1 such that

E

∑
i 6=j

Xti∆iM1{|∆iM |≤ 3
2 vn}

Xtj∆jM1{|∆jM |≤ 3
2 vn}

 = 0

and the diagonal elements can by Lemma 4.5 be estimated by

T−1
n E

[
n−1∑
i=0

X2
ti(∆iM)21{|∆iM |≤ 3

2 vn}

]
≤ T−1

n

n−1∑
i=0

E[X2
ti ]E[(∆iM)21{|∆iM |≤ 3

2 vn}
]

≤ sup
i
{E[X2

ti ]}v
α
n → 0

as n→∞. �

4.2.3. Approximation of the drift. The next step is to show that the drift component of X is in the limit not affected
by the cut-off.

Lemma 4.8. If the assumptions of Theorem 4.3 are fulfilled then

T−1/2
n

n−1∑
i=0

Xti(∆iD1{|∆iX|≤vn} −∆iD)
p−→ 0 as n→∞.

Proof: We rewrite the sum as follows.

T−1/2
n

n−1∑
i=0

Xti(∆iD1{|∆iX|≤vn} −∆iD) = T−1/2
n

n−1∑
i=0

Xti∆iD1{|∆iX|>vn}.

Next, we decompose ∆iD as follows

∆iD = −a
(∫ ti+1

ti

(Xs −Xti) ds+ ∆iXti

)
such that by Lemma 4.9 below

T−1/2
n

n−1∑
i=0

Xti∆iD1{|∆iX|>vn} =− aT−1/2
n

n−1∑
i=0

Xti

∫ ti+1

ti

(Xs −Xti) ds1{|∆iJ|>vn}

− aT−1/2
n

n−1∑
i=0

X2
ti∆i1{|∆iJ|>vn} + op(1).(24)

For the second term we obtain by Markov’s inequality and from vn = ∆β
n that

E

[∣∣∣∣∣
n−1∑
i=0

X2
ti∆i1{|∆iJ|>vn}

∣∣∣∣∣
]
≤
n−1∑
i=0

∆iE[X2
ti ]P (|∆iJ | > vn) ≤ CTn∆1−2β

n

and so for T 1/2
n ∆1−β

n = o(1) it follows that

T−1/2
n

n−1∑
i=0

Xti∆i1{|∆iJ|>vn} = op(1).

For the first sum on the right side of (24) we obtain by Hölder’s inequality and independence of Xti and ∆iJ

E

[∣∣∣∣Xti

∫ ti+1

ti

(Xs −Xti) ds1{|∆iJ|>vn}

∣∣∣∣] ≤
E

[(∫ ti+1

ti

(Xs −Xti) ds

)2
]1/2

P (|∆iJ | > vn)1/2E[X2
ti ]

1/2 = O(∆3/2
n v−1/2

n )

such that for T 1/2
n ∆

1/2−β/2
n = o(1) we can conclude that

T−1/2
n

n−1∑
i=0

Xti

∫ ti+1

ti

(Xs −Xti) ds1{|∆iJ|>vn} = op(1).
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�

4.2.4. Identifying the jumps. In the following we will show that the increments of X that are larger than the thresh-
old vn are dominated by the jump component.

Lemma 4.9.

T−1/2
n

n−1∑
i=0

Xti∆iX(1{|∆iX|≤vn} − 1{|∆iM |≤2vn})
p−→ 0 as n→∞.

Proof: Observe that

T−1/2
n

n−1∑
i=0

Xti∆iX(1{|∆iX|≤vn} − 1{|∆iJ|≤2vn}) = T−1/2
n

n−1∑
i=0

Xti∆iX1{|∆iX|≤vn,|∆iJ|>2vn}(25)

− T−1/2
n

n−1∑
i=0

Xti∆iX1{|∆iX|>vn,|∆iJ|≤2vn}.

We shall prove in Lemma 4.10 below that

T−1/2
n

n−1∑
i=0

Xti∆iX1{|∆iX|≤vn,|∆iJ|>2vn}
p−→ 0.(26)

In the next step we show that the contribution of U is negligible, since by independence of ∆iW , ∆iM , ∆iU and
Xti it follows that

E

[∣∣∣∣∣
n−1∑
i=0

Xti∆iX1{|∆iJ|≤2vn,|∆iU |6=0}

∣∣∣∣∣
]
≤
n−1∑
i=0

E[|Xti |]E[|∆iW |]P (|∆iU | 6= 0)

+

n−1∑
i=0

E[|Xti |]E[|∆iJ1{|∆iU |6=0)}] +

n−1∑
i=0

E[|Xti∆iD|1{|∆iU |6=0)}](27)

Now U is a compound Poisson process with intensity µ(R\[−1, 1]) < ∞ such that P (∆iU 6= 0) = O(∆n).
We obtain for first addend on the right hand side

T−1/2
n

n−1∑
i=0

E[|∆iW |]E[|Xti |]P (∆iU 6= 0) = O(T 1/2
n ∆1/2

n ).

We split the second term into the contribution by U and J such that

T−1/2
n

n−1∑
i=0

E[|Xti |]E[|∆iJ |1{∆iU 6=0}] = T−1/2
n

n−1∑
i=0

E[|Xti |]E[|∆iM |]E[1{∆iU 6=0}]

+ T−1/2
n

n−1∑
i=0

E[|Xti |]E[|∆iU |1{∆iU 6=0}]

The first sum is of order

T−1/2
n

n−1∑
i=0

E[|Xti |]E[|∆iM |]E[1{∆iU 6=0}] = O(T 1/2
n ∆1/2

n ).

Since U is a compound Poisson process, the sum in the second term is of the order of

N((ti, ti+1),R\[−1, 1]).

This leads to the following estimate when n is large enough.

T−1/2
n E

n−1∑
i=0

|Xti∆iU1{∆iU 6=0}| ≤ T−1/2
n E

N((0,Tn),R\[−1,1])∑
i=1

|Xti∆iU1{∆iU 6=0}|

= T−1/2
n E[N((0, Tn),R\[−1, 1])]E[|Xti |]E[∆iU |]

= O(T 1/2
n ∆1/2

n )
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where the sum up to N is over all increments that contain at least one jump of J . To prove convergence of the last
addend in (27) we rewrite ∆iD as follows

(28) ∆iD = −a
(∫ ti+1

ti

(Xs −Xti) ds+ ∆iXti

)
and so

T−1/2
n E[|

n−1∑
i=0

Xti∆iD1{∆iU 6=0}|] ≤ T−1/2
n aE[|

n−1∑
i=0

Xti

∫ ti+1

ti

(Xs −Xti) ds1{∆iU 6=0}|]

+ T−1/2
n E[|

n−1∑
i=0

X2
ti∆n1{∆iU 6=0}|].

The first term on the right hand side gives by using Hölder’s inequality

T−1/2
n aE

[∣∣∣∣∣
n−1∑
i=0

Xti

∫ ti+1

ti

(Xs −Xti) ds1{∆iU 6=0}

∣∣∣∣∣
]

≤ T−1/2
n a

n−1∑
i=0

E[X2
ti ]

1/2E

[(∫ ti+1

ti

(Xs −Xti) ds

)2
]1/2

1{∆iU 6=0}|]

= O(T 1/2
n ∆n).

Hence, we obtain

T−1/2
n

n−1∑
i=0

Xti∆iD1{∆iU 6=0} = Op(T
1/2
n ∆1/2

n )

such that it follows that
n−1∑
i=0

Xti∆iX1{|∆iJ|≤2vn,|∆iU |6=0} = op(1).

Since the contribution of U is negligible, we obtain from (25)and (26) that

T−1/2
n

n−1∑
i=0

Xti∆iX(1{|∆iX|≤vn} − 1{|∆iM |≤vn})

= T−1/2
n

n−1∑
i=0

Xti∆iX1{|∆iX|>vn,|∆iJ|≤2vn,|∆iU |=0} + op(1).

Hence, it remains to prove

T−1/2
n

n−1∑
i=0

Xti∆iX1{∆iX|>vn|∆iM |≤2vn,|∆iU |=0}
p−→ 0 as n→∞.

Observe that

{|∆iM | ≤ 2vn,∆iU = 0, |∆iX| > vn}
⊂ {|∆iM | ≤ 2vn,∆iU = 0, |∆iW + ∆iD|+ |∆iM | > vn}
⊂ {|∆iW + ∆iD| > vn/2} ∪ {|∆iM | ≤ 2vn, |∆iM | > vn/2}.

Therefore, the last two steps will be to show that

(i) T−1/2
n

∑n−1
i=0 Xti∆iX1{|∆iW+∆iD|>vn}

p−→ 0,

(ii) T−1/2
n

∑n−1
i=0 Xti∆iX1{|∆iM |>vn/2,|∆iM |≤2vn}

p−→ 0.

For the proof of these two convergences we refer to Lemma 4.12 and Lemma 4.11. �

Lemma 4.10.

T−1/2
n

n−1∑
i=0

Xti∆iX1{|∆iX|≤vn,|∆iJ|>2vn}
p−→ 0 as n→∞
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Proof: On {|∆iX| ≤ vn, |∆iJ | ≥ 2vn} we have

||∆iW + ∆iD| − |∆iJ || ≤ |∆iX| ≤ vn.
Hence, we necessarily have |∆iW + ∆iD| > vn, i.e.

{|∆iX| ≤ vn, |∆iJ | > 2vn} ⊂ {|∆iW + ∆iD| > vn}(29)

such that

P (|∆iX| ≤ vn, |∆iJ | > 2vn) ≤ P (|∆iW + ∆iD| > vn) = O(∆2−β
n ).(30)

It follows from (29) that

T−1/2
n

∣∣∣∣∣
n−1∑
i=0

Xti∆iX1{|∆iX|≤vn,|∆iJ|>2vn}

∣∣∣∣∣ ≤ T−1/2
n

n−1∑
i=0

|Xti∆iX|1{|∆iW+∆iD|>vn}

≤ T−1/2
n

n−1∑
i=0

|Xti∆iW |1{|∆iW+∆iD|>vn} + T−1/2
n

n−1∑
i=0

|Xti∆iD|1{|∆iW+∆iD|>vn}

+ T−1/2
n

n−1∑
i=0

|Xti∆iM |1{|∆iW+∆iD|>vn} + T−1/2
n

n−1∑
i=0

|Xti∆iU |1{|∆iW+∆iD|>vn}

= A1
n + . . .+A4

n.

For A1
n we find by (30), Hölder’s inequality and independence of Xti and ∆iW that

E[|A1
n|] ≤ T−1/2

n ∆1/2
n

n−1∑
i=0

E[X2
ti ]

1/2P (|∆iW + ∆iD| > vn)1/2

= O(T 1/2
n ∆1/2−β/2

n ).

Using (28) we obtain for A2
n that

E[|A2
n|] ≤ T−1/2

n a

n−1∑
i=0

E

[∣∣∣∣Xti

∫ ti+1

ti

(Xs −Xti) ds

∣∣∣∣1{|∆iW+∆iD|>vn}

]

+ T−1/2
n ∆n

n−1∑
i=0

E[X2
ti1{|∆iW+∆iD|>vn}]

Hölder’s inequality yields for the first term on the right hand side

T−1/2
n a

n−1∑
i=0

E

[∣∣∣∣Xti

∫ ti+1

ti

(Xs −Xti) ds

∣∣∣∣1{|∆iW+∆iD|>vn}

]

≤ T−1/2
n a

n−1∑
i=0

E

[(
Xti

∫ ti+1

ti

(Xs −Xti) ds

)2
]1/2

P (|∆iW + ∆iD| > vn)1/2

= O(T 1/2
n ∆1−β/2

n )

for the second addend we find that

T−1/2
n ∆n

n−1∑
i=0

E[X2
ti1{|∆iW+∆iD|>vn}] ≤ T

−1/2
n ∆n

n−1∑
i=0

E[X4
ti ]

1/2P (|∆iW + ∆iD| > vn)1/2

= O(T 1/2
n ∆1/2−β/2

n ).

For A3
n we get by a similar estimate as for A1

n that

E[|A3
n|] = O(T 1/2

n ∆1/2−β/2
n ).

The last addend A4
n converges to zero in probability, since by independence and Hölder’s inequality

E[|A4
n|] ≤ T−1/2

n

n−1∑
i=0

E[X2
ti ]

1/2E[∆iU
2]1/2P (|∆iW + ∆iD| > vn)1/2 = O(T 1/2

n ∆1/2−β/2
n ).



18

�

Now we show that the increments of the continuous part ofX are negligible in the limit. This convergence is mainly
based in the moment bound that we have derived in Lemma 3.7.

Lemma 4.11.

T−1/2
n

n−1∑
i=0

Xti∆iX1{|∆iW+∆iD|>vn}
p−→ 0 as n→∞.

Proof: We decompose ∆iX = ∆iW + ∆iD + ∆iM + ∆iU to obtain

T−1/2
n

n−1∑
i=0

Xti∆iX1{|∆iW+∆iD|>vn} = T−1/2
n

n−1∑
i=0

Xti∆iW1{|∆iW+∆iD|>vn}

+ T−1/2
n

n−1∑
i=0

Xti∆iD1{|∆iW+∆iD|>vn} + T−1/2
n

n−1∑
i=0

Xti∆iM1{|∆iW+∆iD|>vn}

+ T−1/2
n

n−1∑
i=0

Xti∆iU1{|∆iW+∆iD|>vn} = V 1
n + V 2

n + V 3
n + V 4

n .

Lemma 3.7 yields for k = ∆
β−1/2
n and l = 2 that

P (|∆iW + ∆iD| > vn) = O(∆2−β
n ).

For V 1
n we obtain by Hölder’s inequality and independence of Xti and ∆iW that

E[|V 1
n |] = T−1/2

n E

[∣∣∣∣∣
n−1∑
i=0

Xti∆iW1{|∆iW+∆iD|>vn}

∣∣∣∣∣
]

≤ T−1/2
n ∆1/2

n

n−1∑
i=0

E[X2
ti ]

1/2P (|∆iW + ∆iD| > vn)

= O(T 1/2
n ∆3/4−β

n ).

To prove convergence of V 2
n we decompose ∆iD as in (28) to obtain

E[|V 2
n |] = T−1/2

n E

[∣∣∣∣∣
n−1∑
i=0

Xti∆iD1{|∆iW+∆iD|>vn}

∣∣∣∣∣
]

≤ T−1/2
n aE

[∣∣∣∣∣
n−1∑
i=0

Xti

∫ ti+1

ti

(Xs −Xti) ds1{|∆iW+∆iD|>vn}

∣∣∣∣∣
]

+ T−1/2
n E

[∣∣∣∣∣
n−1∑
i=0

X2
ti∆i1{|∆iW+∆iD|>vn}

∣∣∣∣∣
]

Applying Hölder’s inequality to the first term on the right hand side results in

T−1/2
n aE

[∣∣∣∣∣
n−1∑
i=0

Xti

∫ ti+1

ti

(Xs −Xti) ds1{|∆iW+∆iD|>vn}

∣∣∣∣∣
]

≤ T−1/2
n a

n−1∑
i=0

E

[(
Xti

∫ ti+1

ti

(Xs −Xti) ds

)2
]1/2

P (∆iW + ∆iD| > vn)1/2

= O(T 1/2
n ∆1−β

n ).
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The remaining term is of the order

T−1/2
n E

[∣∣∣∣∣
n−1∑
i=0

X2
ti∆i1{|∆iW+∆iD|>vn}

∣∣∣∣∣
]

≤ T−1/2
n ∆n

n−1∑
i=0

E
[
X4
ti

]1/2
P (|∆iW + ∆iD| > vn)1/2

= O(T 1/2
n ∆3/4−β

n ).

Therefore, we conclude that V 2
n → 0 as n→∞. Similar estimates as for V 1

n can be used for V 3
n and V 4

n to show

E[|V 3
n |] = O(T 1/2

n ∆3/4−β
n )

and

E[|V 4
n |] = O(T 1/2

n ∆3/4−β
n ).

This concludes the proof. �

The next lemma states that the increments of the jump component that are close to the threshold are negligible in
the limit. For the proof we use the small time moment bound for the jump component from Lemma 4.5. This is the
step where Assumption 4.1 on the intensity of small jumps becomes crucial.

Lemma 4.12.

T−1/2
n

n−1∑
i=0

Xti∆iX1{ vn2 <|∆iM |≤2vn}
p−→ 0 as n→∞.

Proof: Let us consider the following decomposition

T−1/2
n

n−1∑
i=0

Xti∆iX1{|∆iM |>vn/2,|∆iM |≤2vn} = T−1/2
n

n−1∑
i=0

Xti∆iW1{|∆iM |>vn/2,|∆iM |≤2vn}

+ T−1/2
n

n−1∑
i=0

Xti∆iD1{|∆iM |>vn/2,|∆iM |≤2vn} + T−1/2
n

n−1∑
i=0

Xti∆iU1{|∆iM |>vn/2,|∆iM |≤2vn}

+ T−1/2
n

n−1∑
i=0

Xti∆iM1{|∆iM |>vn/2,|∆iM |≤2vn} = S1
n + S2

n + S3
n + S4

n

For the probability that |∆iM | lies in (vn/2, 2vn) we derive from Lemma 4.5 and Markov’s inequality that

P (|∆iM | ≤ 2vn, |∆iM | > vn/2) = P (|∆iM |1{|∆iM |≤2vn} > vn/2)

≤ 4v−2
n E[(∆iM)21{|∆iM |≤2vn}] = O(∆1−αβ

n )(31)

Hence, by independence of Xti , ∆iW , and ∆iM we find that E[S1
n] = 0 and the second moment can be

estimated as follows.

E[(S1
n)2] ≤ T−1

n E

[
n−1∑
i=0

X2
ti(∆iW )21{|∆iM |>vn/2,|∆iM |≤2vn}

]

+ T−1
n E

∑
i6=j

Xti∆iW1{|∆iM |>vn/2,|∆iM |≤2vn}Xtj∆jW1{|∆jM |>vn/2,|∆jM |≤2vn}

 .
Since Xti , Xtj ,∆iW,∆jM,∆iM ⊥ ∆jW for i < j, the off-diagonal elements have zero expectation such
that the second addend vanishes. For the diagonal elements we obtain

T−1
n E

[
n−1∑
i=0

X2
ti(∆iW )21{|∆iM |>vn/2,|∆iM |≤2vn}

]
≤ T−1

n ∆n

n−1∑
i=0

E[X2
ti ]O(∆1−αβ)

n )

= O(∆1−αβ)
n )



20

This yields the convergence S1
n

p−→ 0 as n→∞. To prove that S2
n

p−→ 0 as n→∞ we plug in (28) and obtain

E[|S2
n|] = E

[
aT−1/2

n

∣∣∣∣∣
n−1∑
i=0

Xti

∫ ti+1

ti

(Xs −Xti) ds1{|∆iM |>vn/2,|∆iM |≤2vn}

∣∣∣∣∣
]

+ E

[
aT−1/2

n

∣∣∣∣∣
n−1∑
i=0

X2
ti∆i1{|∆iM |>vn/2,|∆iM |≤2vn}

∣∣∣∣∣
]

and by independence

E

[
aT−1/2

n

∣∣∣∣∣
n−1∑
i=0

X2
ti∆i1{|∆iM |>vn/2,|∆iM |≤2vn}

∣∣∣∣∣
]

≤ aT−1/2
n

n−1∑
i=0

E[X2
ti ]∆iP (vn/2 < |∆iM | ≤ 2vn)

= O(T 1/2
n ∆1−αβ

n ).

For the second term Hölder’s inequality yields

E

[
aT−1/2

n

∣∣∣∣∣
n−1∑
i=0

∫ ti+1

ti

(Xs −Xti) ds1{|∆iM |>vn/2,|∆iM |≤2vn}

∣∣∣∣∣
]

= O(T 1/2
n ∆

1−αβ
2

n )

From Assumption 4.1 it follows that S4
n is centered for n large enough. Furthermore, from Lemma 4.9 we conclude

E[(S4
n)2] = T−1

n

n−1∑
i=0

E[X2
ti ]E[(∆iM)21{|∆iM |>vn/2,|∆iM |≤2vn}]

≤ T−1
n

n−1∑
i=0

E[X2
ti ]E[(∆iM)21{|∆iM |≤2vn}] ≤ O(∆(2−α)β

n )
n→∞−→ 0.

Finally, we show that S3
n
n→∞−→ 0. Independence together with (31) leads to

E[|S3
n|] = T−1/2

n

n−1∑
i=0

E[|Xti∆iU1{|∆iM |>vn/2,|∆iM |≤2vn}|]

= T−1/2
n

n−1∑
i=0

E[|Xti |]E[|∆iU |]P (|∆iM | > vn/2, |∆iM | ≤ 2vn)

= O(T 1/2
n ∆1−αβ

n )

Proof of Theorem 4.3: Recall that for

ân = −
∑n
i=1Xti∆iX

c∑n
i=1X

2
ti∆

n
i

we already know that T 1/2
n (ân − a)

D−→ N(0, σ2

Ea[X2
∞] ) as n→∞. Therefore, it remains to show

(32) T 1/2
n (ān − ân)

p−→ 0 as n→∞.

Observe that

T 1/2
n (ān − ân) =

T
−1/2
n (

∑n
i=1Xti∆iX1{|∆iX|≤vn} −

∑n
i=1Xti∆iX

c)

T−1
n
∑n
i=1X

2
ti∆i

.

By Lemma 4.7

T−1/2
n

(
n∑
i=1

Xti∆iX1{|∆iX|≤vn} −
n∑
i=1

Xti∆iX
c

)
p−→ 0 as n→∞,

and

T−1
n

n∑
i=1

X2
ti∆

n
i

p−→ Ea[X2
∞],
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such that (32) follows. �

5. SIMULATION RESULTS

We investigate the finite sample performance of the estimator from Section 3 and 4 by means of Monte Carlo
simulations. First, we consider Ornstein-Uhlenbeck type processes with finite jump intensity and give mean and
standard deviation as well as the number of jumps detected for different parameter values and varying jump inten-
sity. We also take a look at the normalized distribution of the estimation error for finite samples. Then we investigate
models with infinite jump activity. In the last part we compare the performance of the maximum likelihood approach
and least squares estimation and find that the jump filtering approach leads to a major improvement of the estimate
also for finite samples.

5.1. Finite intensity models. In this section we perform Monte Carlo simulations for the drift estimator (6) of an
Ornstein-Uhlenbeck type process defined by

(33) Xt = e−atX0 +

∫ t

0

e−a(t−s)dLs, t ∈ R+.

We take a deterministic starting value X0 ∈ R and a > 0. The driving Lévy process L is assumed to be of the
form

Lt = Wt +

Nt∑
i=1

Yi,

where W is a Wiener process with E[W 2
t ] = σ2

W t and N is a Poisson process with intensity λ and the jump
heights Yi are iid withN(0, 2)-distribution. An advantage of this Ornstein-Uhlenbeck model is that exact simulation
algorithms are available both forX andL. We use an exact discretization of the explicit solution (33) to the Langevin
equation driven by L on a equidistant time grid ti = ∆ni for i = 1, . . . n. Algorithms for the exact simulation of L
can be found in [5], among others.

Table 1 contains means and standard deviations of each 100 realizations of the drift estimator ān from (6). The
parameter values are a = 2 and 5 and jump intensity λ, time horizon T and number of observations n vary as
given in Table 1. We also present the number of increments that were above the threshold ∆0.3

n . This number
corresponds to the number of jumps that were detected and we observe that it is relatively stable when T and λ
are kept fixed, which suggests that the jump filter works quite reliable for finite intensity models and the threshold
exponent β = 0.3. For the compound Poisson process the average number of jumps in an interval of length T
is E[NT ] = Tλ and thus is proportional to the jump intensity. This relation is also visible for the simulated data.
The average number of filtered jumps is not equal to the expected number of jumps, but lies between 60 and 70
% of the latter. This is surprising, since we would expect the average number of detected jumps to approach the
expected number as ∆n tends to zero.

Another interesting finding is that as soon as the step size ∆n is so small that the discretization error is negligible
(cf. Section 4.2.4 in [17] for an analysis of the discretization error), a further increase in the number of observations
does not improve the accuracy of the estimator any further. This indicates that the assumption of high-frequency
observations is already reasonable when the stochastic error dominates the discretization error at least for finite
intensity models.

The distribution of T 1/2(ān − a) is depicted in Figure 1 for T = 70, ∆n = 0.001, σW = 1 and λ = 1 and 2.
The histogram on the left corresponds to a = 2 whereas on the right we have a = 5. From Theorem 3.5 and the
Lévy-Itô decomposition it follows that the asymptotic variance of ān is given by

(34) AVAR(ān) = (2aσ2
W )
(
σ2
W + λσ2

j

)−1
,

where σ2
j denotes the variance of the jump heights. Hence, we find that the asymptotic variance is proportional

to a, which can also be observed for finite samples in Figure 1. By comparing the results of Figure 1 (top) and
(bottom) we find that the variance also scales with the jump intensity as indicated in (34).

Eventually, we find that the estimator performs well even for very short time horizons if the discretization is fine
enough. This observation corresponds to the results of Theorem 4.2.12 in [17] that states that the discretization
bias is of the order O(∆n).
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a = 2 a = 5

λ T n mean std dev ∅ jumps detect mean std dev ∅ jumps detect

1 10 1000 2.029 0.322 6.72 4.979 0.486 7.40
2000 2.041 0.298 6.96 4.991 0.508 7.20
4000 2.011 0.352 7.02 5.012 0.476 6.83

20 1000 1.976 0.237 13.1 4.691 0.316 12.5
2000 1.958 0.199 13.2 4.898 0.379 12.3
4000 2.031 0.242 13.0 4.964 0.336 13.1

50 2000 1.931 0.139 30.96 4.586 0.215 29.1
4000 1.956 0.135 31.3 4.819 0.218 31.2
6000 1.984 0.160 32.23 4.631 0.294 30.1

5 10 2000 1.983 0.174 31.23 4.848 0.271 30.9
4000 1.973 0.189 31.6 4.947 0.297 30.9

20 2000 1.896 0.145 61.43 4.641 0.226 60.2
4000 1.962 0.136 62.2 4.783 0.201 61.4

50 4000 1.860 0.0744 149.6 4.569 0.120 145.2
6000 1.910 0.0780 149.3 4.688 0.138 148.8

TABLE 1. Mean and standard deviation of ān with β = 0.3 for an OU process with Gaussian
component and compound Poisson jumps
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FIGURE 1. Standardized error distribution of ān for a = 2 (left) and a = 5 (right) compound
Poisson jumps with intensity λ = 1 (top) and λ = 2 (bottom)

5.2. Infinite intensity models. In Section 4 we have proved an asymptotic normality result for the discretized
maximum likelihood estimator with jump filter (6) for models that involve a jump component of infinite activity. In
this section we simulate data from an Ornstein-Uhlenbeck model of the form (33) with L = W + G, where W
is a Wiener process with E[W 2

t ] = σ2
W t and G is a gamma process. Again we consider an equidistant grid

ti = i∆n for i = 0, . . . , n. The gamma process has jumps of infinite activity, paths of finite variation and its
Blumenthal-Getoor index is zero. The Lévy measure µ of G has an explicit Lebesgue density given by

g(x) = cx−1e−λx1{x>0} for x ∈ R.
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a = 2 a = 5

c T mean std dev ∅ jumps detect mean std dev ∅ jumps detect

0.5 1 2.092 0.799 2.39 5.184 1.170 2.26
5 1.990 0.368 11.7 4.972 0.648 12.1

7.5 1.975 0.272 17.7 4.948 0.499 17.8
10 1.980 0.268 23.7 5.037 0.441 23.9
20 1.991 0.156 47.2 4.982 0.286 47.6

1 1 2.088 0.802 1.66 5.166 1.422 1.83
2.5 2.053 0.581 5.28 5.080 1.109 5.90
5 2.043 0.513 8.40 5.016 0.843 8.62

7.5 1.999 0.466 12.7 4.982 0.668 13.1
10 1.999 0.337 17.2 5.034 0.592 17.1

TABLE 2. Results of 200 Monte Carlo simulations of ān with ∆n = 0.0015 and β = 0.3 for
Gamma process jumps

The parameter c > 0 controls the jump intensity and λ > 0 the frequency of large jumps. It follows immedi-
ately from this density that G is a subordinator. Exact simulation algorithms are known for increments of gamma
processes and we use Johnk’s algorithm (cf. [5]).

Table 2 gives mean and standard deviation for different observation lengths and parameter values. The standard
deviation scales approximately with T−1/2 as expected from Theorem 4.3. In contrast to Table 1 we kept here
∆n = 0.0015 fixed for all n. As in the finite intensity case we use the threshold exponent β = 0.3 for the jump
filter. We find that the value of a has hardly any impact on the average number of increments that is filtered. When
a increases the number of filtered increments also increases slightly, since a greater variability of the drift might
push increments with a relatively small jump over the threshold.

We conclude that the jump filtering approach performs well, also for models with infinite jump activity provided that
the maximal observation distance is small.

5.3. Maximum likelihood vs. least squares estimation. In this section we compare maximum likelihood and
least squares estimation for the Ornstein-Uhlenbeck type processX defined in (33). For continuously observedX
the least squares estimator for the drift parameter a is given by

âLST = −
∫ T

0
XsdXs∫ T

0
X2
sds

.

For Gaussian Ornstein-Uhlenbeck processes the least squares and the likelihood estimator âML
T (4) coincide,

since the continuous martingale part under P a equals the process itself. But when the driving process has jumps
it follows from Theorem 4.2.10 in [17] that the asymptotic variances of both estimators differ by

AVAR
(
âLST

)
−AVAR

(
âML
T

)
= Ea[X2

∞]−1

∫
R
x2 µ(dx) > 0.

Hence, the least squares estimator is inefficient when jumps are present.

Figure 3 compares the bias of the MLE and LSE for compound Poisson jumps with varying jump intensity. For each
intensity the mean of 500 Monte Carlo simulations is given for an Ornstein-Uhlenbeck process with σW = 1 and
jumps with N(0, 2)-distribution. The true parameter is a = 2 and we find that the MLE has a significantly smaller
bias than the LSE.

The standard deviation for both estimators is given in Figure 3 on the right. The jump intensity λ of the compound
Poisson part of L varies between one and ten. In this model setup the difference in asymptotic variance between
MLE and LSE is given by

AVAR
(
âLST

)
−AVAR

(
âML
T

)
=

2aσ2
jλ

σ2
W + σ2

jλ
.
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FIGURE 2. Error distribution of ān for an Ornstein-Uhlenbeck process with a = 2 (left) and
a = 5 (right), σW = 1 and Gamma process jumps
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FIGURE 3. Bias (left) and standard deviation (right) of MLE and LSE for varying jump intensity

We observe that already for small jump intensities the MLE clearly outperforms the LSE. With growing intensity this
efficiency gain becomes even more severe. For λ = 10 the standard deviation is about five times larger for the
least squares estimator.

This simulation example shows the significant gain in efficiency when we use a discretized likelihood estimator with
approximation of the continuous part for drift estimation and underlines the importance of jump filtering for jump
diffusion models.
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