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Abstract

In this work we derive entropy decay estimates for a class of nonlinear reaction-diffusion
systems modeling reversible chemical reactions under the assumption of detailed balance.
In particular, we provide explicit bounds for the exponential decay of the relative logarithmic
entropy, being based essentially on the application of the log-Sobolev inequality and a con-
vexification argument only, making it quite robust to model variations. An important feature
of our analysis is the interaction of the two different dissipative mechanisms: pure diffusion,
forcing the system asymptotically to the homogeneous state, and pure reaction, forcing the
solution to the (possibly inhomogeneous) chemical equilibrium. Only the interaction of both
mechanisms provides the convergence to the homogeneous equilibrium. Moreover, we in-
troduce two generalizations of the main result: we allow for vanishing diffusion constants in
some chemical components, and we consider different entropy functionals. We provide a
few examples to highlight the usability of our approach and shortly discuss possible further
applications and open questions.

1 Introduction

Reaction and diffusion processes are the driving forces of many physical, chemical and biologi-
cal phenomena. In diffusion, a random particle motion is microscopically described by a Brow-
nian stochastic process, and on the other hand, reactions represent instantaneous interactions
between particles. Typical examples where both mechanisms take place simultaneously are
chemical kinetics, charge carrier transport in semiconductors, flame propagation and combus-
tion, population dynamics, or movement of biological cells in plants and animals. These systems
are described by the vector of concentrations c(t, x) ∈ [0,∞[I , where I ∈ N is the number
of components (chemicals, species etc.), x ∈ Ω denotes the position variable, and t ≥ 0 is
time. In most parts of this work, the domain Ω ⊂ RN is assumed to be bounded with Lipschitz
boundary and, without loss of generality, we normalize its volume to 1, i.e. |Ω| =

∫
Ω

1 dx = 1.
Later, in Section 5.1, we consider a more general case allowing also for unbounded Ω. Then,
the reaction-diffusion process is modeled by the semilinear parabolic PDE system

∂

∂t
c = div

(
D∇c

)
−R(c) in Ω, (∇c)ν = 0 on ∂Ω, (1.1)

where we assumed vanishing flow of c through the boundary ∂Ω. The diffusion matrix is di-
agonal D(x) = diag(δi(x))i=1,..,I and positive definite. The species X1, . . . , XI are reacting
according to the mass-action law,

αr1X1 + · · ·+ αrIXI

krf


krb

βr1X1 + · · ·+ βrIXI , (1.2)
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for r = 1, . . . , R, where R ∈ N is the number of reactions, αr = (αr1, . . . , α
r
I) ∈ RI

and βr = (βr1 , . . . , β
r
I ) ∈ RI are the vectors of nonnegative stoichiometric coefficients, and

krb > 0 and krf > 0 are the forward and backward reaction rate coefficients. The analysis in
this paper uses krb = krf = kr(c) for r = 1, . . . , R, that is we assume that the condition of
detailed balance holds for the normalized density vector weq = (1, . . . , 1), see e.g. [Grö92,
GGH96, GlH97, Mie13]. We refer to Section 2 for more details on the modeling and to Section
5.1 for the situation where weq may depend on x ∈ Ω. Then, the reaction term in (1.1) takes
the form

R(c) =
R∑
r=1

kr(c)
(
cα

r − cβr
)

(αr − βr) with cα
r

=
I∏
i=1

c
αri
i . (1.3)

Typically, the stoichiometric vectors αr − βr, r = 1, . . . , R, do not span the full space RI . If
m = codim (span{αr−βr | r = 1, . . . , R }) > 0 we can choose a matrix Q ∈ RI×m of
rank m such that QR(c) ≡ 0. Defining

Q(c) :=

∫
Ω

Qc(x) dx, (1.4)

we see that all solutions of (1.1) conserveQ, i.e.Q(c(t)) = Q(c(0)) for all t > 0.

Reaction-diffusion systems are nowadays considered a classical topic, going back at least
to the works of Fisher [Fis37] and Kolmogorov et al. [KGP37]. The mathematical literature
on reaction-diffusion equations is vast, including several classical textbooks such as [Smo83,
Rot84, Mur03]. One of the key mathematical issues is the question of stability of linear and
nonlinear reaction-diffusion systems. In particular, in 1952 A. M. Turing [Tur52] first pointed out
the diffusion-induced instability of stable homogeneous reaction systems in chemistry. In gen-
eral, the classical mathematical analysis of the long-time asymptotic behavior involves linearized
stability techniques, spectral theory, perturbation and invariant regions arguments, or Liapunov
stability (see e.g. [CHS78, FHM97]). In this paper we are interested in the so-called entropy ap-
proach to study the long-time asymptotics of (1.1). This approach is per se a nonlinear method,
avoiding any kind of linearization and capable of providing explicitly computable convergence
rates. The condition of detailed balance introduced above in fact excludes the Turing instability
and is crucial for our analysis.

The particular aim of our paper is to provide explicit bounds for the exponential decay of
the relative entropyH(c|wq) given as follows. Using the logarithmic entropy function F1(z) =
z log z − z + 1, we set

F(a) =
I∑
i=1

F1(ai) and H(a|w) =
I∑
i=1

wiF1(ai/wi).

For concentration fields c : Ω→ [0,∞[I we then define the functionals

F(c) :=

∫
Ω

F(c(x)) dx and H(c|wq) :=

∫
Ω

H(c(x)|wq) dx,

where wq is the unique constant equilibrium state, corresponding to the vector of conserved
quantities q, viz. Qwq = q and R(wq) = 0. For all c with Q(c) = q one then has
H(c|wq) = F(c)−F(wq), see Lemma 2.3.
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The methods developed originally in [Grö83, Grö92, GGH96] and further refined in [GlH97,
Gli04] show that under quite general conditions there exists a λ(q) > 0, depending only on the
conserved quantities q, such that

H(c(t)|wq) ≤ e−λ(q)tH(c(0)|wq) for all t > 0. (1.5)

This entropy estimate can be turned to a standard L1-norm estimate by the Csiszár-Kullback
inequality to obtain

‖c(t)−wq‖2
L1(Ω;RI) ≤ CH(c(t)|wq) ≤ Ce−λ(q)tH(c(0)|wq) for all t > 0,

The literature on these inequalities is huge, e.g. we refer to [UA∗00], where the classical Csiszár-
Kullback inequalities are generalized to not necessarily normalized and possibly non-positive
L1-functions. Also, it is shown there that these new inequalities are in many important cases
significantly sharper than the classical ones.

In this paper, however, we will concentrate exclusively on studying the decay of H( · |wq).
The decay rate λ(q) is obtained via the energy-dissipation relation

− d

dt
F(c(t)) = D(c(t)) :=

∫
Ω

I∑
i=1

δi
|∇ci|2

ci
+ G(c) dx, (1.6)

with G(c) :=
∑I

i=1 Ri(c) log ci, where Ri(c) denotes the i-th component of the reaction
term R(c). An important consequence of the detailed-balance condition is that the reactive
dissipation G has the form

G(c) :=
R∑
r=1

kr(c)Γ
(
cα

r

, cβ
r) ≥ 0, where Γ(a, b) = (a−b)(log a− log b) ≥ 0. (1.7)

Here we used the fundamental fact that the mass-action law, involving the monomials cγ , and
the Boltzmann statistics, leading to the logarithmic entropy, are intrinsically linked by the classi-
cal logarithm rule

∑I
i=1 γi log ci = log

(
cγ
)
.

Now we can define the optimal decay rate via

λ(q) := inf
D(c)

H(c|wq)
, (1.8)

where the infimum is taken over all sufficiently smooth concentration fields c : Ω → ]0,∞[I

satisfying the constraint Q(c) = q and c 6≡ wq. Explicit bounds for special reaction systems
were given in [DeF06, DeF07, DeF08], however, their bounds need further specifications for
the initial conditions. General reactions systems were considered in [Grö92, GGH96, GlH97],
the latter also including electrostatic interactions. Because of the coupling to the electrostatic
interaction, their analysis is restricted to two-dimensional domains Ω, but it is clear that without
this coupling the result of [GlH97, Thm. 5.2] or [Gli04, Thm. 4.16] transfers to our general setting.
Their contradiction and compactness arguments show that λ(q) > 0 for each q.

In this work we start from the characterization of λ(q) in (1.8) and use the log-Sobolev
estimate to derive explicit lower bounds for λ(q) in terms of the latter and the decay rate in
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the pure reaction system. As such, our approach is inspired by the recently developed gradient
flow structure for general reaction-diffusion systems satisfying the condition of detailed balance,
which shows that (1.1) has the form

ċ = −K(c)DF(c) = −
(
KD(c)+KR(c)

)
DF(c),

see e.g. [Mie11, GlM12, Mie13, LiM12]. The importance of the result is the interaction of the two
different dissipative mechanisms:

pure diffusion forcing the solution to converge to the homogeneous state
∫

Ω
c(0, x) dx with

rate λD given in terms of the log-Sobolev inequality; and

pure reaction forcing the solution at each point x ∈ Ω to converge to the x-dependent equilib-
riumwq(x) where q(x) = Qc(0, x) with the rate λR(q(x)).

Only the interaction of both mechanisms provide the convergence to the homogeneous equilib-
riumwq with q = Q(c(0)).

The main result of our paper, obtained in Section 3, provides lower bounds on λ(q), essen-
tially in terms of the rates λD and λR(q). Our analysis is essentially based on the application of
the log-Sobolev inequality and a convexification argument only, making it quite robust to model
variations. One main result (cf. Corollary 3.2) reads as follows. Define the log-Sobolev constants
ri as optimal constants in∫

Ω

δi(x)
|∇u|2

u
dx ≥ riu

∫
Ω

F1

(u(x)

u

)
dx where u =

∫
Ω

u dx,

and set λD := min{ ri | i = 1, . . . , I }. If for some µ∗ ≥ 0 the function

Φµ∗ : [0,∞[I → R; Φµ∗(a) = µ∗F(a) + G(a)

is convex, then we have the explicit lower bound

λ(q) ≥ min
{
λR(q) , λD

λR(q)

µ∗+λR(q)

}
. (1.9)

The assumption that G is convex privides the lower bound λ(q) ≥ min{λR(q), λD}.
In Section 3.5 we introduce generalizations of the main result for vanishing diffusion con-

stants in some components or for other entropy functionals. In Section 4 we discuss a few
examples to highlight the usability of the approach. The main application involves the system

u̇ = div
(
δ1∇u

)
+ k(v2−u), v̇ = div

(
δ2∇v

)
+ 2k(u−v2), (1.10)

for which we derive the explicit q-independent lower bound λ(q) ≥ 1
5

min{r1, 5r2, 2k}. More-
over, Theorem 4.5 covers the case δ2 = 0 and provides the q-dependent lower bound λ(q) ≥

1
100

min{r1, 2k}min{10q, 7}. Such systems with a degenerate diffusion tensor D were also
considered in [Gli04, DeF08].

The final Section 5 discusses possible further applications and addresses open questions
as well. In particular, we show that under certain assumptions it is possible to generalize our
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theory to the case that the thermodynamic equilibrium density weq, which is (1, ..., 1) in the
above case, also depends on x ∈ Ω. This allows also to deal with cases where Ω has infinite
measure but

∫
Ω
weq(x) dx is finite.

For a relatively recent survey on global existence theory for reaction-diffusion systems, we
refer to [Pie10]. Our work is independent of the existence theory, however, let us mention that
the reaction-diffusion system (1.1) is perfectly compatible with the condition (P), requiring quasi-
positivity of the nonlinearity R(c), and the “mass-control structure” condition (M) of [Pie10].
This implies the global existence of (possibly nonunique) weak solutions. All the estimates in
our paper hold for these weak solutions.

There is a vast literature on the connection of the long time behavior of convection-diffusion
equations and the log-Sobolev inequalities. Here we refer to [AM∗01] (and the references therein)
for the linear case. The trend to equilibrium for the classical Fokker-Planck equation has been
also studied in [MaV00]. Poincaré inequalities for linearizations of very fast diffusion equations
have been developed in [CL∗02]. For applications of the entropy-entropy dissipation approach to
nonlinear convection-diffusion equations, we refer to [MaL01], where certain fast diffusion equa-
tions with uniformly convex confinement potential and finite-mass but infinite-entropy equilibrium
solutions are treated, or to [CJ∗01] for the case of quasilinear (possibly) degenerate parabolic
systems in three cases: scalar problems with confinement by a uniformly convex potential, un-
confined scalar equations, and unconfined systems. The considered class of problems includes
porous media, fast diffusion, p-Laplacian and energy transport systems. We hope that our ap-
proach can be extended to vector-valued generalizations of these models.

Finite-volume discretizations (using Voronoi cells) of energy-reaction-diffusion systems cou-
pled to coupled to the Poisson equation have been considered in [Gli08, Gli11], and monotone
and exponential decay of the discrete free energy to its equilibrium value has been shown. The
fundamental idea here is to estimate the free energy by the dissipation rate indirectly by taking
into account sequences of Voronoi meshes. Essential ingredient is a discrete Sobolev-Poincaré
inequality, which allows to obtain an exponential decay rate independent of the mesh size.

In [DFFM08], the entropy approach is developed for general linear systems of reaction-
diffusion equations, and a nonlinear example of reaction-diffusion-convection system arising
in semiconductor or plasma physics as a paradigm for general nonlinear systems. The large
time behavior of the drift-diffusion-Poisson system (without recombination-generation terms) as
a model for charge transport in bi-polar semiconductor devices has been studied in [AMT00].
The same system with nonlinear recombination-generation terms has been treated in [WMZ08].
In [DiW08], asymptotic stability for the spatially one-dimensional setting of the nonlinear system
is approached with the methods of optimal transport (convergence in the Wasserstein topol-
ogy). See also [MRS86], [MaR87] or the surveys [Mar86], [MRS90] on mathematical modeling
of semiconductor devices.

Construction of entropies and entropy productions for a large class of nonlinear evolutionary
PDEs of even order in one space dimension is presented in [JüM06], where the task of proving
entropy dissipation is reformulated as a decision problem for polynomial systems. The method
is successfully applied to the porous-medium equation, the thin film equation and the quantum
drift-diffusion model.
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2 Set-up of the model

We consider the reaction-diffusion system (1.1) and discuss first the reaction part alone, where
we especially emphasize the set of equilibria. Then, we characterize the equilibria of the full
reaction-diffusion system (1.1).

2.1 The reaction rate equations and its equilibria

We first discuss the structure of general reaction-rate equations

ċ = −R(c), (2.1)

which is an ordinary differential equation for c(t) ∈ [0,∞[I . Here the reaction kinetics in R
is given by the reactions (1.2) according to the mass-action law. Arranging the stoichiometric
coefficients in (1.3), αr = (αr1, . . . , α

r
I) ∈ [0,∞[I and βr = (βr1 , . . . , β

r
I ) ∈ [0,∞[I , as

column vectors and defining the stoichiometric matrix (called Wegscheider matrix in [GlM12]
because of its origin in [Weg02])

W =
(

(βr −αr)r=1,...,R

)T

∈ RR×I ,

we can writeR in (2.1) in the form of the matrix-vector product

R(c) = −WTK(c), (2.2)

whereK(c) ∈ RR is the column vector with components

Kr(c) = krf (c)cα
r − krb(c)cβ

r

, where cα
r

=
I∏
i=1

c
αri
i ,

and krf ≥ 0 and krb ≥ 0 are the forward and backward intensities of the rth reaction. In general,
these coefficients may depend on the concentrations itself.

We call range(WT) ⊂ RI the stoichiometric subspace, and due to (2.2) we have R(c) ∈
range(WT). Its orthogonal complement, ker(W ) ⊂ RI , determines the conserved quantities
as follows: For m = dim ker(W ), choose any matrix Q ∈ RI×m such that rank Q = m and
QWT = 0, i.e., the rows of Q form a basis of ker(W ). SinceR(c) ∈ range(WT), we have

QR(c) = 0 for all c ∈ RI , (2.3)

which implies that all solutions c : [0, T ] → [0,∞[I of the reaction-rate equation (2.1) satisfy
the conservation rule Qc(t) = Qc(0) for all t ≥ 0.

Following [Grö83, GGH96, GlM12] we now additionally impose the crucial structural assump-
tion that the reaction system given by αr, βr, krf , k

r
b satisfies the condition of detailed bal-

ance, which means that there exists a strictly positive equilibrium concentrationweq ∈ ]0,∞[I

such that all R reactions are in equilibrium similtaneously, i.e.,

condition of detailed balance:
∃weq ∈ ]0,∞[I ∀ c ∈ [0,∞[I ∀ r = 1, ..., R : krf (c)wα

r

eq = krb(c)wβ
r

eq =: kr(c).
(2.4)
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In fact, by considering the relative densities ci/w
eq
i , we can assume weq = (1, ..., 1)T ∈

RI without loss of generality and obtain the simplification krf = krb =: kr assumed in the
introduction and used in the sequel.

The crucial observation of [Mie11] (see also [Mie13, GlM12]) is that (2.1) can be written as
a gradient system, namely

ċ = −R(c) = −KR(c)DF(c), where F(c) = H(c|(1, ..., 1))

and the Onsager matrix KR(c) = KR(c)T ≥ 0 is given by

KR(c) :=
R∑
r=1

kr(c)Λ(cα
r

, cβ
r

)
(
αr−βr

)
⊗
(
αr−βr

)
with Λ(a, b) =

a − b

log a− log b
.

The following proposition gives the characterization of the relevant steady states of the
reaction-rate equation (2.1). The proof is an elementary application of the Lagrange multiplier
theorem for minimization under constraints. We first introduce some notation. By

im+Q := {Qc ∈ Rm | c ∈ [0,∞[I , c 6= 0 } (2.5)

we denote the set of all possible conservation vectors q. For q ∈ im+Q the set

Cq := {a ∈ [0,∞[I |Qa = q } ⊂ RI

contains all the possible concentration vectors for the given q. Moreover, throughout the paper
we will use the following notational convention: For a function function f : R→ R we define a
mapping f : RI → RI by applying the function componentwise, viz.

f(c) := (f(c1), . . . , f(cI)) and
c

w
:=
( ci
wi

)
i=1,..,I

. (2.6)

Proposition 2.1 (Steady states for (2.1)) Assume thatR and Q are given as above, including
the detailed balance condition (2.4). Then, for each q ∈ im+Q there is a unique solution
w = wq of R(w) = 0 in the set Cq ∩ ]0,∞[I . This steady state wq is characterized as the
unique global minimizer of F subject to the constraint c ∈ Cq. In particular,

Qwq = q, ∀a ∈ Cq : F(a) ≥ F(wq), ∃λ ∈ Rm : logwq = QTλ. (2.7)

Proof: For a ∈ Cq ∩ ]0,∞[I the logarithm loga = DF(a) is well-defined and we have
R(a) = KR(a)DF(a) ⊂ range(WT). SinceKR(a) is invertible on range(WT), the relations
Qw = q andR(w) = 0 imply loga = DF(a) = QTλ for some λ ∈ Rm.

The Lagrange multiplier rule shows that all such points are critical points of the functional
F under the constraint Qa = q. However, since F is strictly convex, there is only one critical
point, namely the global minimizer.
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We emphasize that there may be additional steady states on the boundary of [0,∞[I , such
thatwq is not the unique steady state in Cq, but only in the interior of Cq. For instance, consider

u̇ = 2(uv2 − u3), v̇ = 2(u3 − uv2).

We have Q(u, v) = u+ v = q as conserved quantity and find for q > 0 the two steady states
wq = (q/2, q/2) and wq = (0, q). In such cases the discussion in [GGH96, Sect. 4] can be
used.

Our theory will only be useful in the case that such boundary equilibria do not exist. However,
we do not need to exclude such equilibria explicitly. If they occur, we are simply lead to the
conclusion that λR(q) = 0 as G(w) = 0 for some w ∈ Cq. Then, our method does not
provide any exponential decay.

2.2 The reaction-diffusion system and its steady states

We consider the reaction-diffusion system (1.1) in a bounded domain Ω ⊂ RN with Lipschitz
boundary. We prescribe homogeneous Neumann boundary datum for c. The reaction termR is
as in the previous section, and the diffusion matrix D in (1.1) is diagonal with diagonal elements
δi(x) ≥ 0, i = 1, . . . , I . Recalling |Ω| =

∫
Ω

1 dx = 1 and

Q(c) = Qc with c =

∫
Ω

c(x) dx,

the no-flux boundary condition for c on ∂Ω yields the conservation rule

d

dt
Q(c(t)) = QD

∫
∂Ω

(∇c)ν dS −
∫

Ω

QR(c) dx = 0.

Hence, even without assuming the detailed balance condition, all (weak) solutions of (1.1) satisfy
Q(c(t)) = Qc(t) = Q(c(0)) for all t > 0.

We now impose the condition of detailed balance (2.4) where the reaction intensities kr may
depend on x ∈ Ω and c, but it will be crucial that

the equilibrium concentrationweq does not depend on x ∈ Ω. (2.8)

The problems arising for x-dependent weq are discussed in Section 5.1. For our theory we
could allow for intensities kr depending on (x, c) as long as kr(c) := inf{ kr(x, c) | x ∈ Ω }
is positive for all c. Since all the following estimates are monotone in each kr, we can replace
kr(x, c) by kr(c). Hence, without loss of generality, we will assume that kr is independent of
x.

For q ∈ im+Q we define the set of the corresponding concentration fields as

Cq := { c ∈ L1(Ω; RI) | c ≥ 0, Q(c) = Qc = q } ⊂ L1(Ω; RI)

and show that the equilibria wq for the reaction-rate equation (2.1) found in Proposition 2.1
represent the equilibrium states for the reaction-diffusion system (1.1).
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Proposition 2.2 (Steady states for (1.1)) All steady states w of (1.1) are spatially constant
and satisfyR(w) = 0. In particular, ifwq is the only steady state of the reaction-rate equation
(2.1) in Cq (i.e. with Qwq = q), then also the reaction-diffusion system (1.1) has only the
steady state c ≡ wq in the set Cq.

Moreover, for all conservation vectors q ∈ im+Q the constant statewq is the unique global
minimizer of F on Cq (i.e. subject to the constraint Q(c) = q). Moreover, wq is the global
minimizer ofH( · |wq) for all c : Ω→ [0,∞[I .

Proof: By the gradient structure of the reaction-diffusion system (1.1) a concentration field w
is a steady state if and only if the dissipation vanishes, viz. D(w) = 0, where D is defined
in (1.6). Using G(w) ≥ 0 from (1.7) we see that D is the sum of two nonnegative terms,
which both have to vanish. This immediately implies that the steady statew is a constant vector
such that R(w) = 0, which proves the first part of the proposition. Due to the conservation
q = Q(c(0) = Qc(0), we havew = wq.

When minimizing F on Cq, the strict convexity gives a unique global minimizer. Since the
integral functionals F and Q are defined via x-independent integrands, the minimizer must be
constant. Thus, it coincides with the minimizer of F on Cq, which proves the second assertion
by employing Proposition 2.1.

The last statement follows because c 7→ H(c|wq) ≥ 0 has the unique global minimizer c =
wq. By the definition H(c|wq) =

∫
Ω

H(c(x)|wq) dx, we conclude that the global minimizer
ofH( · |wq) is c = wq.

The following relations will be useful in the subsequent derivations of energy-dissipation
inequalities. They reflect the special structure of the logarithmic entropy and the properties of
the steady stateswq.

Lemma 2.3 For all vectors a,b ∈ RI and all vector-valued functions c(x) ∈ RI , the following
relations hold:

H(a|b) = F(a)− F(b) + (b−a) · log b, (2.9a)

Qa = q =⇒ H(a|wq) = F(a)− F(wq), (2.9b)

Q(c) = q =⇒ H(c|wq) = F(c)− F(wq), (2.9c)

H(c|c) = F(c)− F(c). (2.9d)

Proof: (a) Relation (2.9a) follows from an explicit expansion.

(b) Proposition 2.1 gives Qwq = q and logwq ∈ range QT. Inserting this into (2.9a) gives
(2.9b).

(c) Employing (2.9a) with a = c(x) and b = wq we obtain (2.9c) after integration, because
logwq ∈ range QT is constant and Q(wq−c) = 0.

(d) Finally, (2.9d) also follows from (2.9a) with b = c.
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3 Entropy-dissipation estimates

Throughout this section we assume that Ω is a bounded domain in Rd with Lipschitz boundary
∂Ω. Again we use the normalization |Ω| = 1. The aim is to derive lower estimates of the
dissipation D(c) in terms of the relative entropyH(c|wq) that depend only on q ∈ im+Q but
not on c ∈ Cq.

3.1 Entropy functionals and functional inequalities

For γ ≥ 0 we consider the entropy functions

Fγ(z) =


1

γ(γ−1)

(
zγ − γz + γ − 1

)
for γ ∈ R \ {0, 1},

z log z − z + 1 for γ = 1,
z − log z − 1 for γ = 0.

(3.1)

Note that F2(z) = 1
2
(z−1)2. We see that all Fγ are convex and satisfy Fγ(1) = F ′γ(1) = 0 ≤

Fγ(z). In particular, we have F ′′γ (z) = zγ−2 > 0. Moreover,

∀ z > 0 : [0,∞[ 3 γ 7→ γFγ(z) is increasing (3.2)

due to ∂γ(γFγ(z)) = z
(γ−1)2

F1(zγ−1) ≥ 0. Moreover, we have the following identities

F1(uv) = vF1(u) + uF1(v) + (u−1)(v−1), (3.3)

aγFγ(u/a) = Fγ(u) +
aγ − 1

γ
− ua

γ−1 − 1

γ − 1
. (3.4)

Using u =
∫

Ω
u(x) dx and |Ω| = 1, an integration of (3.4) gives

uγ Fγ
(
u/u

)
= Fγ(u)− Fγ(u). (3.5)

Crucial for the forthcoming analysis will be the following estimate, which can be seen as a
generalization of the Poincaré and Log-Sobolev inequalities:

∀u > 0 :

∫
Ω

|∇u|2

u2−σ dx ≥ ρ(Ω, σ, γ)uσ
∫

Ω

Fγ(u/u) dx. (3.6)

Using the monotonicity (3.2), we have

0 < γ1 < γ2 =⇒ ρ(Ω, σ, γ1) ≥ γ1

γ2

ρ(Ω, σ, γ2).

The case σ = 2 and γ = 2 is the Poincaré inequality, we then write ρP = ρ(Ω, 2, 2). The case
σ = and γ = 1 is the logarithmic Sobolev inequality, we then write ρLSi = ρ(Ω, 1, 1). Using
Trudinger’s inequality one can show that ρ(Ω, 0, 0) > 0 if the dimension satisfies d ≤ 2.

For further usage we define for δ ∈ L∞(Ω) with δ(x) > 0 a.e. the Log-Sobolev constant
ρLSi(δ) as

ρLSi(δ) := inf

{ ∫
Ω

δ(x)
|∇u(x)|2

u(x)
dx

∣∣∣∣ u > 0, u

∫
Ω

F1(u/u) dx = 1

}
. (3.7)

Clearly, δ(x) ≥ δ0 > 0 implies ρLSi(δ) ≥ δ0ρLSi(1) = δ0ρ(Ω, 1, 1).
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3.2 The energy-dissipation balance

For a given initial condition c(0) we expect that the solution c of (1.1) converges to the cor-
responding steady state, namely wq with q = Q(c(0)) = Qc(0). From now on, we fix wq
and consider only initial conditions having the conservation vector q. Using (2.9c), the relative
entropyH(c(t)|wq) satisfies the energy-dissipation relation

− d

dt
H(c(t)|wq) = − d

dt
F(c(t)) = D(c) :=

∫
Ω

I∑
i=1

δi
|∇ci|2

ci
+ G(c) dx. (3.8)

As a first step towards our decay estimates we consider the reaction-rate equation ȧ =
−R(a) and define

λR(q) := inf
{ G(a)

H(a|wq)

∣∣∣ a ∈ Cq, a 6= wq

}
. (3.9)

Obviously, we have the decay estimate H(a(t)|wq) ≤ e−λR(q)tH(a(0)|wq) for all t > 0
and all a(0). For this we simply note − d

dt
H(a(t)|wq) = G(a(t)) ≥ λR(q)H(a(t)|wq) and

apply Gronwall’s inequality.

To find a corresponding exponential decay estimate for the reaction-diffusion system (1.1) it
is necessary to estimate D from below, namely

∀ q = im+Q ∃λ(q) ≥ 0 ∀ c ∈ Cq : D(c) ≥ λ(q)H(c|wq). (3.10)

Combining (3.8) and (3.10) we obtain d
dt
H(c(t|wq)) ≤ −λ(q)H(c(t)|wq) and conclude the

desired decay estimate

Q(c(0)) = q =⇒ H(c(t)|wq) ≤ e−λ(q)tH(c(0)|wq) for t ≥ 0.

3.3 The basic estimate

The basic strategy to obtain our decay estimate relies on the entropy estimates for the diffusive
dissipation through the gradient terms |∇ci|2/ci. Using the log-Sobolev estimate (3.7) we obtain∫

Ω

δi(x)
|∇ci|2

ci
dx ≥ ρLSi(δi)H(ci|ci) = F(ci)− F1(ci), (3.11)

where the last identity follows from (2.9a). Thus, the total dissipation can be bounded from below
by integrals over the functions F(c(x)) and G(c(x)) and an extra function of the average c.
The idea is now to use convexity arguments on the affine subspace Cq. For this we use the
convexification Φ∗∗ of a function Φ : [0,∞[I → R, which is the supremum over all affine
functions lying below of Φ.

The following general result is derived for the case that all diffusion constants δi are positive;
however, we will see later that also cases can be handled where some δi are 0.
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Theorem 3.1 Assume r := min{ ρLSi(δi) | i = 1, .., I } > 0 and choose µ ∈ R such that

Φµ(a) := µF(a) + G(a) with G(a) = R(a) · loga

is nonnegative. Denote by Φ∗∗µ the convexification of Φµ and set

sµ(q) := inf
{ Φ∗∗µ (a)− µF(a)

H(a|wq)

∣∣∣ a ∈ Cq, a 6= wq

}
(3.12a)

λ̂(q) :=

{
min{sµ(q), rsµ(q)

µ+sµ(q)
} for µ ≥ 0,

min{r−µ, sµ(q)} for µ ≤ 0.
(3.12b)

Then we have the estimate

∀ q ∈ im+Q ∀ c ∈ Cq : D(c) ≥ λ̂(q)H(c|wq). (3.13)

Proof: We employ (3.7) to obtain for θ ∈ ]0, 1] the estimate

D(c) ≥ rH(c|c) +

∫
Ω

θG(c) dx

= (r−θµ)H(c|wq) + (r−θµ)F(wq)− rF(c) + θ

∫
Ω

µF(c) + G(c) dx,

where we usedQ(c) = q and Lemma 2.3. With Φµ ≥ Φ∗∗µ and Jensen’s inequality we find

D(c) ≥ (r−θµ)H(c|wq) + (r−θµ)F(wq)− rF(c) + θΦ∗∗µ (c)

= (r−θµ)H(c|wq)− (r−θµ)H(c|wq) + θ
(
Φ∗∗µ (c)− µF(c)

)
≥ (r−θµ)H(c|wq) +

(
θsµ(q)− (r−θµ)

))
H(c|wq)

≥ (%−θµ)H(c|wq) +
(
θsµ(q)− (%−θµ)

))
H(c|wq) ≥ (%−θµ)H(c|wq),

if 0 < % ≤ r and θsµ(q) ≥ %−θµ. To optimize the decay rate %−θµ given the above constraint
we choose % ∈ [0, r] and θ ∈ [0, 1] as follows:

For µ = 0 we choose % = min{s0, r} and θ = 1, giving λ̂ = min{r, s0}.

For µ > 0 let we take % = min{r, µ+sµ} and θ = %
µ+sµ

, finding λ̂ = min{ rsµ
µ+sµ

, sµ}.

For µ < 0 we still have µ + sµ ≥ 0 and hence take θ = 1 and % = min{µ+sµ, r}. This

gives λ̂ = min{r−µ, sµ}, and the result is established.

To obtain a feeling for the role of µ in the definition of λ̂(q) we define the function

Gµ(a) = Φ∗∗µ (a)− µF(a).

Using the convexity of F and the classical estimate (Φ+Ψ)∗∗ ≥ Φ∗∗ + Ψ∗∗ we see that µ 7→
Gµ(a) is monotone, and thus for µ1 < µ2 we have 0 ≤ Gµ1 ≤ Gµ2 ≤ G. In particular, this
implies that µ 7→ sµ(q) is monotone and bounded from above by λR(q). Hence, maximizing
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the decay rate λ̂ in terms of µ means to find a good intermediate value such that sµ(q) is
already big enough, but sµ

µ+sµ
is not yet too small.

The following result shows that a simple comparison of λ̂(q) with r = λD and λR(q) is
possible if µF + G is convex for some µ∗. The result follows simply by observing Gµ = G for
all µ ≥ µ∗ and hence sµ(q) = λR(q) for µ ≥ µ∗.

Corollary 3.2 With the assumptions of Theorem 3.1, let µ∗F+G be convex. Then (3.13) takes
the form

D(c) ≥ λ̂(q)H(c|wq) with λ̂(q) = min

{
λR(q) , λD

λR(q)

µ∗ + λR(q)

}
.

Even in this general setting we can give arguments showing that sµ(q) is finite. This is the
much simpler, finite-dimensional analog of the results in [GlH97, Gli04]. We need the additional
assumption that there are no steady states of ȧ = −R(a) on the boundary of Cq. Then, the
function G and hence the function Gµ converge to +∞ near the boundary. Moreover, in many
chemical systems (not for semiconductors) the set Cq = {a ∈ [0,∞[I |Qa = q } is compact.
Thus, the function H(a|wq) is bounded from above on Cq, while Gµ is continuous in the interior
of Cq and +∞ on the boundary. Hence, the fraction Gµ(a)/H(a|wq) can only approach 0 on
Cq \{wq} when converging to the pointwq. The following general result establishes a positive
lower bound near this point by using the fact that we consider all the conserved quantities via
Q, i.e. the rows of Q forming a basis of ker(W ).

Proposition 3.3 For each q ∈ im+Q and µ > 0 we have

Λ(q) := lim inf
Cq3a→wq

Φ∗∗µ (a)−µF(a)

H(a|wq)
= lim inf

Cq3a→wq

G(a)

H(a|wq)

= inf
{ ∑R

r=1 kr(wq)
(∑I

i=1
αri−βri
wqi

ξi
)2∑I

i=1
1
wqi
ξ2
i

∣∣∣Qξ = 0
}
> 0.

Proof: The result follows by expanding the nominator and the denominator for a = wq+ξ with
small ξ satisfying Qξ = 0. For the nominator we use the result of Lemma 3.4 below, stating
that Φ∗∗µ = Φ in a neighborhood ofwq. This implies Φ∗∗µ (a)− µF(a) = G(a).

To see that the infimum on the right-hand side is positive we first observe that it is sufficient
to restrict to the sphere |ξ| = 1. Using the transformation ξ = diag(wq)η, the nominator

takes the form
∑R

1 kr
(
(αr−βr)·η

)2
and, using kr > 0, it can only vanish for η ∈ ker(W ).

By the definition of Q there exists y ∈ Rm such that η = QTy. Thus, we have 0 = Qξ =
Q diag(wq)QTy. Since Q diag(wq)QT is positive definite (as wq > 0 and rank(Q) = m)
we conclude y = 0 and hence ξ = diag(wq)QTy = 0, which contradicts |ξ| = 1. Hence,
the nominator is bounded from below by a positive constant on { ξ | Qξ = 0, |ξ| = 1 }, and
we conclude Λq > 0.
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Proposition 3.3 and the definition of λR(q) immediately give the estimates

Λ(q) ≥ λR(q) ≥ sµ(q).

The next result shows that in principle every positive µ can be used to derive a bound, since
the quotient Gµ(a)/H(a|wq) is controlled in a neighborhood of the critical point wq. Then,
for compact sets Cq it is usually easy to establish Gµ ≥ γ > 0 outside of this neighborhood,
which then implies sµ(q) > 0.

Lemma 3.4 Let F, G, and Φµ be defined as above with µ > 0. Take any w ∈ ]0,∞[I such
that G(w) = 0. Then there exists δ > 0 such that for all a with |a−w| ≤ δ we have
Φ∗∗µ (a) = Φµ(a).

Proof: We denote by T 1
af the linear approximation of f in the pointa. We use the abbreviations

ρ = |c−a| and ε = |a−w|, where we assume ε ≤ ε∗ := 1
2

min{1, w1, .., wI}.
Since F satisfies D2F > 0, we have

∀a ∈ Bε∗(w) ∀ c : F(c)− T 1
aF(c) ≥ νρ2/(1+ρ).

For G we use G(w) = DG(w) = 0, D2G(w) ≥ 0, and smoothness. Hence for a ∈
Bε∗(w) we have

|G(a)| ≤Mε2, |DG(a)| ≤Mε, D2G(a) ≤ −Mε, |D3G(a)| ≤M.

Thus G− T 1
aG can be estimated locally via

G(c)− T 1
aG(c) ≥ −Mερ2 −Mρ3.

For general c we use G(c) ≥ 0 and estimate |T1
aG(c)| to obtain

G(c)− T 1
aG(c) ≥ 0−Mε2 −Mερ.

Together we arrive at the lower estimate

G(c)− T 1
aG(c) ≥ −M(ε+ρ) min{ε, ρ2} ≥ −4M

√
ερ2/(1+ρ).

Thus, choosing δ = min{ε∗, µν2/(4M)2} > 0 we obtain Φµ(c) ≥ T 1
aΦµ(c) which implies

the desired relation Φ∗∗µ (a) = Φµ(a).

3.4 Exploiting higher entropies

The above result can be generalized by using the stronger entropy estimates involving Fγ for
γ > 1. Thus, exploiting the better growth and stronger convexity of Fγ , one gains more flexibility
in handling the reaction terms. However, the convexification will become more troublesome.
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We again employ (3.6) but now once with γ = 1 and once with a suitable γ > 1:

D(c) ≥ θr0D1(c) + (1−θ)D2(c) with

D1(c) =

∫
Ω

I∑
i=1

ciF1(ci/ci) dx = F(c)− F(c),

D2(c) =

∫
Ω

r1

I∑
i=1

ciFγ(ci/ci) + G(c) dx,

where r0 = δρ(Ω, 1, 1), r1 = δρ(Ω, 1, γ), and θ ∈ ]0, 1[ is free to be optimized later. Unfortu-
nately, the expression forD2 cannot be decomposed into a simple integral (depending on c but
not on c) and a function of c, since relation (3.5) would need the terms cγi in front of Fγ(ci/ci).
Nevertheless we can define the function

Ψa(c) := r1

I∑
i=1

aiFγ(ci/ai) + G(c),

denote by Ψ∗∗a its convexification (where a is a fixed vector), and obtain the lower bound
D2(c) =

∫
Ω

Ψc(c(x)) dx ≥ Ψ∗∗c (c). As in Section 3.3 we arrive at the lower bound

D(c) ≥ θr0H(c|wq) + (1−θ)Ψ∗∗c (c)− θr0

(
F(c)−F(wq)

)
.

Thus, if we define the quantity

ŝ(q) := inf
{ Ψ∗∗a (a)

H(a|wq)

∣∣∣ a ∈ Cq, a 6= wq

}
∈ [0,∞] (3.14)

and choose θ = ŝ(q)/(r0+ŝ(q)), we obtain the lower bound

Q(c) = q =⇒ D(c) ≥ λ(q)H(c|wq), where λ(q) =
r0 ŝ(q)

r0 + ŝ(q)
.

3.5 Allowing for vanishing diffusion constants

It was observed in [Gli04, DeF08] that under certain structural assumption (see [Gli04, Assump-
tion (I,iv)] for a general sufficient condition) the exponential decay to equilibrium persists even in
the case when some diffusion constants δi vanish. Our method can also be used in such cases.
In this section we give the rough idea how the above approach can be modified to obtain explicit
bounds for such cases. It is clear that conditions as given in [Gli04] are needed to carry the
method through. Again the aim is to obtain explicit bounds by involving a log-Sobolev inequality
and convexification.

We now assume that the components ci are arranged in such a way that the first J < I
components have a strictly positive diffusion constant while for i > J the diffusion constants
may be zero, viz.

r0 := min{ ρLSi(δj) | j = 1, ..., J } > 0 and δi ≥ 0 for i = J+1, ..., I.
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For the dissipation estimate we obtain

− d

dt
F(c(t)) = D(c) ≥ Ddiff(c) +

∫
Ω

G(c) dx with

Ddiff(c) =

∫
Ω

J∑
j=1

δj
|∇cj|2

cj
dx ≥ r0

(∫
Ω

J∑
j=1

F1(cj(x)) dx−
J∑
j=1

F1(cj)
)
.

To generate a lower bound in terms of H(c|wq), we are missing the terms F1(ci) for i > J
in the integral of Ddiff. To obtain these terms we simply add them to the first term and hope that
the necessary subtraction at the second term can be compensated:

Ddiff(c) +

∫
Ω

G(c) dx ≥ θr0

(
H(c|wq) + F(wq)

)
+ Gθ(c) where

Gθ(c) :=

∫
Ω

Gθ(c(x)) dx− r0

J∑
j=1

F1(cj) with

Gθ(c) := (1−θ)r0

J∑
j=1

F1(cj)− θr0

I∑
i=J+1

F1(ci) + G(c).

Note that the second sum in the definition ofGθ (including the minus sign) is concave. However,
the hope is that the last term G has better convexity properties and can compensate for the
concavity of the second term at least for small θ.

As above we estimate Gθ from below via Jensen’s estimate and obtain

D(c) ≥ θr0H(c|wq) +G∗∗θ (c)− r0

J∑
j=1

F1(cj) + θr0F(wq).

Thus, the desired decay estimate (1.5) follows with λ(q) = θ̂(q)r0 > 0 if, for a given q ∈
im+Q, we are able to find a positive θ = θ̂(q) such that

∀a ∈ Cq : G∗∗θ (a)− r0

J∑
j=1

F1(aj) + θr0F(wq) ≥ 0. (3.15)

This theory will be successfully applied in the second part of Section 4.2 for a linear system
with quadratic entropy and in Section 4.4 for a nonlinear system of two equations where one
diffusion constant vanishes. We conjecture that it can be done in general cases if the assumption
in [Gli04, Ass. (I,iv)] holds.

Remark 3.5 The above condition can be made plausible by introducing the auxiliary function

G̃θ(a) := G∗∗θ (a)− (1−θ)r0
∑J

j=1 F1(aj) + θr0
∑I

i=J+1 F1(ai),

which satisfies G̃θ ≤ G, sinceG∗∗θ ≤ Gθ. For convexGθ condition (3.15) reduces to the same condition
as in the previous case, namely

∀a ∈ Cq : G̃θ(a) ≥ θr0

(
F(a)− F(wq)

)
= θr0H(a|wq).
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For θ ≈ 0 we can expand G∗∗θ in the form

G∗∗θ (a) = G∗∗0 (a) +O(θ) = r0
∑J

j=1 F1(aj) + Ĝ(a) +O(θ),

where Ĝ ≥ 0 with equality only on {wq | q ∈ im+Q }. Thus, we find G̃θ(a) = Ĝ(a) +O(θ), and as

in Lemma 3.4 it should be possible to show G̃θ(a) = G(a) for θ ∈ [0, θ0] and a in a neighborhood of
wq .

4 Applications

In this section we present a series of simple examples to see the above theory at work. In
Section 5 we give an outlook to further applications to be studied in a subsequent work.

4.1 A scalar reaction-diffusion equation

We consider a single speciesX1 with density c > 0, which can be absorbed into and recreated
from the background according to the reaction αX1

⇀↽ ∅, i.e. α = 1 and β = 0. Without loss
of generality we can assume that the unique steady state equalsw = 1. SinceW = 1 ∈ R1×1,
there are no conserved quantities. The reaction-diffusion equation is

ċ = div
(
δ∇c

)
−R(c) with R(c) = k(c)

(
cα−1

)
(4.1)

with α > 0. For simplicity, we will assume that the reaction coefficient k(c) > 0 is independent
of c.

For the entropyH(c|1) =
∫

Ω
H(c(x)|1) dx =

∫
Ω
F1(c(x)) dx we find the dissipation

−Ḣ = D(c) =

∫
Ω

δ
|∇c|2

c
+R(c) log c dx ≥

∫
Ω

r0F1(c)+G(c) dx− r0F1(c),

where r0 = ρLSi(δ) and G(c) = R(c) log c ≥ 0. Defining Φ(a) = µF1(a) + G(a) and
denoting by Φ∗∗µ its convexification we obtain

sµ := inf
{ Φ∗∗µ (a)−µF1(a)

F1(a)

∣∣∣ a > 0, a 6= 1
}
.

Returning to the special case R(u) = k(uα−1) with 1 ≤ α ≤ 22, the function G(c) =
k R(u) log u is convex, and we obtain Φ∗∗µ (a)− µF1(a) = G(a). Thus,

sµ = k ŝ(α) with ŝ(α) = inf
{ (aα−1) log a

F1(a)

∣∣∣ a > 0, a 6= 1
}
.

It can be shown that ŝ : [1,∞[ → R increases from ŝ(1) = 1 to ŝ(∞) ≈ 3.356. Applying
Corollary 3.2 with µ∗ = 0, we find that the solutions c of the scalar reaction diffusion equation
(4.1) with α ∈ [1, 22] satisfy the decay estimate

H(c(t)|1) ≤ e−λtH(c(0)|1) with λ = min{kŝ(α), ρLSi(δ)}.

Note that this result can even be improved by choosing µ∗ < 0. This is especially useful in the
case that ρLSi(δ) is very small or even 0.

17



4.2 Linear exchange reactions

In this subsection we treat linear systems where the reaction terms are given in terms of a
time-continuous Markov chain with finite state space {1, ..., I}, namely

R(c) =
∑
i<j

kij
(
ci
weq
i
− cj
weq
j

)(
ei−ej)

where ej ∈ RI denotes the jth unit vector. Here weq = (weq
1 , .., w

eq
I ) ∈]0, 1[I is a nontrivial

steady state, which provides the detailed-balance condition (also called reversibility in Markov
chains, see [Mie12, Maa11, ErM11]).

The specific nice property is that the dissipation function

G(c) ·
(

log( ci
weq
i

)
)
i=1,..,I

=
∑
i<j

kij Γ( ci
weq
i
,
cj
weq
j

)

is convex, since the function (a, b) 7→ Γ(a, b) = (a−b) log(a/b) is convex. Hence we can
apply Corollary 3.2 and obtain the decay estimate

D(c) ≥ λ(q)H(c|weq) with λ(q) = min
{

min{ ρLSi(δi) | i = 1, .., I }, λMk(q)
}
,

where λMk(q) is the decay rate for the linear Markov chain ȧ = −R(a) under the constraint
Qa(t) = q.

However, the results can be improved, since one does not necessarily need all diffusion
constants to be positive. To show the applicability of our method, we look at a simple system
with two densities u and v and a degenerate diffusion, namely

u̇ = δ∆u+ αv − βu, v̇ = βu− αv. (4.2)

Clearly, for solutions c = (u, v) we have the conserved quantityQ(c) = u+v, and the unique
steady states wq with Q(wq) = q > 0 are given via wq = q

α+β
(α, β). By linearity it is

sufficient to study one q > 0 and we choose q = α + β givingwq = (α, β).

Unfortunately, we are not able to use the approach explained in Section 3.5, since for θ > 0
the function Gθ(u, v) = aF1(u) + (αv−βu) log

(
αv
βu

)
− θF1(v) is not bounded from below

by an affine function, i.e. G∗∗θ ≡ −∞. Instead, we show the usability of the theory by looking at
the quadratic entropies instead: even there the argument is illuminating. We define

B(c) =

∫
Ω

B(c(x)|α, β) dx with

B(u, v|α, β) = αF2(u
α

) + βF2( v
β
) = 1

2α
(u−α)2 + 1

2β
(v−β)2.

With the Poincaré constant ρP = ρ(Ω, 2, 2) for Ω we set r = δρP and G(c) = 1
αβ

(
βu−αv

)2
,

and the method of Section 3.5 yields the following result.

Proposition 4.1 The solutions c = (u, v) of (4.2) satisfy B(c(t)) ≤ e−λtB(c(0)) with λ =

r + α + β −
(
(r+α+β)2 − 4αr

)1/2
.
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It can be checked by linear spectral theory that this λ is identical to the optimal rate obtained by
twice the smallest nontrivial eigenvalue of the linear system.

Proof: As in Section 3.5 we define the auxiliary function Φθ(c) = (1−θ)ru2/α − θrv2/β +
G(c). UsingQ(c(t)) = α + β, the dissipation estimate gives

− d

dt
B(c) =

∫
Ω

δ

α
|∇u|2 + G(c) dx ≥

∫
Ω

r

α
(u−u)2 + G(c) dx

= 2θr
(∫

Ω

B(c|α, β) dx+
α + β

2

)
+

∫
Ω

Φθ(c(x)) dx− ru2/α.

For 0 ≤ θ ≤ Θ :=
(
r + α + β −

(
(r+α+β)2 − 4αr

)1/2)
/(2r) the function Φθ is convex

and we can estimate

− d

dt
B(c) ≥ 2θrB(c) + Φθ(c)− ru2/α = 2θrB(c) + G(u, v)− θr

(
u2/α+v2/β−α−β

)
.

For u + v = α + β the last two terms are nonnegative if and only if θ ≤ (α+β)/r. Since
Θ ≤ (α+β)/r, we obtain the desired result − d

dt
B(c) ≥ 2rΘB(c).

4.3 A system with quadratic nonlinearity

We consider a system with two species Xu and Xv with densities u, v ≥ 0 interacting through
one reaction of the type Xu

⇀↽ 2Xv. Normalizing the densities suitably, this leads to the fol-
lowing system for c = (u, v):

u̇ = δu∆u+ k
(
v2−u

)
,

v̇ = δv∆v + 2k
(
u−v2

)
,

(4.3)

which has the conserved quantity

Q(c) =

∫
Ω

2u(x)+v(x) dx = 2u+ v, i.e. Q = (2 1) ∈ R1×2.

Depending on the given value q = Q(c(0)) we have the unique steady state

wq = (uq, vq) with u2
q = vq and 2uq + vq = q.

We apply the theory of Section 3.3 to the functional H(c|wq), giving a lower dissipation
boundD(c) ≥

∫
Ω

Φ(c(x)) dx−ruF1(u)−rvF1(v) with (ru, rv) = (ρLSi(δu), ρLSi(δv)) and

Φ(u, v) = ruF1(u) + rvF1(v) + kG(u, v) with G(u, v) := (v2−u) log(v2/u) ≥ 0.

The entropy decay for the reaction-rate equation ȧ = −R(a) with Qa(0) = q is given by
H(a(t)|wq) ≤ e−λR(q)tH(a(0)|wq) for t > 0, where the decay rate is λR(q) = kσG(q) with

σG(q) := inf
{ G(u, v)

H(u, v|wq)

∣∣∣ (u, v) ∈ Cq, (u, v) 6= wq

}
, (4.4)

Proposition 4.4 below gives an explicit estimate of the form σG(q) ≥ max{2/5,
√

8q−2/5}.
The main result for the reaction-diffusion system (4.3) is the following decay estimate.
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Theorem 4.2 Along the solutions c = (u, v) of (4.3) with Q(c(t)) = q we have the estimate
H(c(t)|wq) ≤ e−λ(q)tH(c(0)|wq), where

λ(q) = min
{ σG(q)

µ∗+σG(q)
ru , rv, kσG(q)

}
≥ 1

5
min{ru, 5rv, 2k}, (4.5)

where µ∗ = 1/κ∗ ≈ 1.1675 with κ∗ ≈ 0.8565 specified in Lemma 4.3.

The estimate for λ(q) is close to optimal since the three terms in the minimum are clearly
identified as the two diffusion terms and the reaction term. However, we will show in Section 4.4
that λ(q) stays positive even in the case δv = 0.

The proof of the above theorem is a slight modification of the theory in Section 3.3, since we
do not construct the convexification of Φµ but omit the term F1(v). Without this term one can
use a scaling argument to reduce the convexification to a one-dimensional problem.

Lemma 4.3 For κ > 0 consider the function φκ : [0,∞[2 → [0,∞] with

φκ(u, v) = F1(u) + κG(u, v) with G(u, v) = (v2−u) log(v2/u).

Then, we have the lower bound

F1(u) + κG(u, v) ≥ 4κ

1 + 4κ
F1(v) for all (u, v). (4.6)

Moreover, φκ is convex for κ ∈ [0, κ∗] where κ∗ ≈ 0.8565. In particular, we have

φ∗∗κ (u, v) ≥ φmin{κ∗,κ}(u, v) = F1(u) + min{κ∗, κ}G(u, v). (4.7)

For κ ≥ 1 the convexification is given in the form

φ∗∗κ (u, v) = v2gκ(u/v
2) + 2u log v + 1− v2

with gκ(z) =

{
F1(z) + κ(z−1) log z for z ∈ [0, Zκ],
2z log z −Bκz + 1 for z ≥ Zκ

(4.8)

where Bκ = 1 + κ1−Zκ
Zκ

logZκ ∈ [1, 1+1/e] and Zκ > 1 is the unique solution z of log z +
(κ−1)z/κ = 1. In particular, for κ = 1 we have Z1 = e and B1 = 1+1/e.

The proof of Lemma 4.3 is given in Section A.1.

Remark: Adding F1(v) to φκ does not help to increase the threshold κ∗, since the scaling
properties of φκ(u, v) and F1(v) are different.

Proof of Theorem 4.2: We now return to the full estimate in the general Section 3.3 but do a
slight variation because of the different handling of F1(u) and F1(v). The solutions c = (u, v)
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satisfy the estimate

− d

dt
H(u, v|wq) =

∫
Ω

δu
|∇u|2

u
+ δu
|∇v|2

v
+ kG(c) dx

≥
∫

Ω

ruvF1(u/u) + rvvF1(v/v) + kG(c) dx

≥ rθ

∫
Ω

H(c(x)|c) dx+ θru

∫
Ω

F1(u)−F1(u)+ k
θru

G(c) dx

= rθ

(
H(c|wq)−H(c|wq)

)
+ θru

∫
Ω

φk/(θru)(c) dx− θruF1(u)

(4.7)
≥ rθ

(
H(c|wq)−H(c|wq)

)
+ min{θruκ∗, k}G(c)

≥ rθH(c|wq) +
(

min{θruκ∗, k}σG(m)− rθ
)
H(c|wq),

where, for the last step, we used the definition of σG and Q(c) = Qc = q. The desired
result (4.5) follows by choosing θ as small as possible under the constraint that the prefactor of
H(c|wq) ≥ 0 remains nonnegative. This leads to the choice

1−θ = min{κ∗σG/(1+κ∗σG), rv/ru, kσG/ru},

and the first estimate in (4.5) is establish. The second estimate follows from σG ≥ 2/5 and the
given value of κ∗.

Finally we give the explicit estimate for the function σG that was used above.

Proposition 4.4 Define for q > 0 the value µq > 0 as solution of 2µ2 +µ = q. Then, we have
the estimate

σG(q) ≥ max
{8µ(1+2µ)

1 + 4µ
,

1 + 2µ

1 +
(
µF1(1+ 1

2µ
)
)−1

}
≥ max{2/5,

√
8q−2/5}.

Proof: For fixed q > 0 every (u, v) ∈ Cq can be written in the form

u = µ2
(
1 + 1−β

2µ

)
, v = βµ with β ∈ [0, 2µ+1].

Step 1: The fraction γ(β) in the definition of σG can be written in the form U(β)/L(β), and
for β ∈ ]0, 2µ+1[ we have

L(β) = F1

(
1+1−β

2µ

)
+ 1

µ
F1(β) ≤ 2F2

(
1+1−β

2µ

)
+ 2

µ
F2(β) = 1+4µ

4µ2 (β−1)2,

where we used (3.2). For U we use (v2−u) log(v2/u) ≥ 4(v−
√
u)2 and obtain

U(β) ≥ 4
(
β −

(
1+1−β

2µ

)1/2
)2

≥ (1+4µ)2

4µ2 (β−1)2,

since
(
1+1−β

2µ

)1/2 ≥ 1 − β−1
4µ

for β ∈ [1, 2µ+1]. Together we found the estimate γ(β) =

U(β)/L(β) ≤ 1+4µ for β > 1.
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Step 2: Similarly we may obtain an estimate on the interval β ∈ ]0, 1[ by keeping the upper

bound for L(β). For U we now estimate
(
1+1−β

2µ

)1/2 ≥ 1 +
(
(1+1/(2µ))1/2−1

)
(1−β) and

obtain as aboveU(β) ≥ 4(1+ 1
2µ

)(β−1)2. Thus we arrive at γ(β) = U(β)/L(β) ≥ 8µ(1+2µ)
1+4µ

for β ∈ [0, 1]. Since the bound for β > 1 gave a lower constant we arrive at the first lower
bound, namely σG(2µ2+µ) ≥ 8µ(1+2µ)

1+4µ
.

Step 3: Since the lower bound in Step 2 vanishes for µ → 0, we improve the estimate for
γ(β) for β ∈ ]0, 1[. For this we use the rescaling z = (1−β)/(2µ) and need to consider
z ∈ ]0, 1/(2µ)[. Again we write γ(z) = U(z)/L(z) with

L(z) = F1(1+z) + 1
µ
F1(1−2µz) ≤ F1(1+z) + 4µz2 ≤

(
1+cµ)F1(1+z)

where we used F1(u) ≤ 2F2(u) = (u−1)2. Moreover, since z2/F1(1+z) increases for
z > 0, we can choose cµ = 1/

(
µF1(1+ 1

2µ
)
)

giving cµ → 0 for µ → 0+ and cµ/µ → 8 for
µ→∞. For z ∈ ]0, 1/(2µ)[ we have

U(z) =
(
z + 4µz(1−µz)

)
log

1+z

(1−2µz)2
≥
(
z + 4µz 1

2

)(
log(1+z)− 2 log(1−2µz)

)
≥ (1+2µ)z

(
log(1+z) + 0

)
≥ (1+2µ)F1(1+z).

Thus, for 0 < z < 1/(2µ) we obtain γ(z) = U(z)/L(z) ≥ 1+2µ
1+cµ

1+2µ, which strictly

decreases from 1 at µ = 0 to 1/4 for µ→∞.

Step 4: Combining Steps 2 and 3 gives the first assertion. The final estimate is obtained by
a numerical comparison of the two functions.

4.4 The quadratic system with δv = 0

We consider the same system as in Section 4.3, but now allow for δv = 0 and show that it is pos-
sible to derive a decay estimate independent of δv ≥ 0. Thus, the system under consideration
is

u̇ = div
(
δ∇u

)
+ k(v2−u), v̇ = 2k(u−v2). (4.9)

We have the same equilibria wq = (uq, vq) defined via q = Qwq = 2uq + vq and uq = v2
q

and the same free energy as above:

H(c|wq) =

∫
Ω

H(c(x)|wq) dx with H(u, v|uq, vq) = uqF1(u/uq) + vqF1(v/vq).

Our main result is the following.

Theorem 4.5 Assume that ru := ρLSi(δ) > 0 and k > 0 in (4.9). Then, for all q > 0 there
exists λ(q) > 0 such that the solutions c of (4.9) withQ(c(0)) = Qc(0) = q satisfy

H(c(t)|wq) ≤ e−λ(q)tH(c(0)|wq) for all t > 0. (4.10)

In particular, we have the explicit lower bound

λ(q) ≥ min{ru, 2k }min{ q/10 , 7/100 } > 0.
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We note that the asymptotic behavior of λ(q) in the limits q → 0+ and q → ∞ is optimal.
Linearizing around the steady state wq = (uq, vq) = (µ2, µ) with 2µ2 + µ = q gives the
smallest nontrivial eigenvalue

λexact(q) =
r̂

2

(
1 + ρ̂+ 4µ−

(
(1+ρ̂+4µ)2 − 4ρ̂µ)1/2

)
,

where ρ̂ = k/r̂, and r̂ is the Poincaré constant (first nontrivial eigenvalue) of the operator
u 7→ − div

(
δ∇u

)
with Neumann boundary conditions. Clearly, we have λexact(q) = O(q) for

q → 0 and λexact(q)→ λ∗ > 0 for q →∞.

Proof: The energy-dissipation balance leads to the estimate

− d
dt
H(c|wq) = D(c) =

∫
Ω

δ |∇u|
2

u
+ kG(c(x)) dx ≥

∫
Ω

ruuF1(u(x)/u) + kG(c(x)) dx,

where G(u, v) = (v2−u) log(v2/u). As in Sections 3.5 and 4.2 we define the auxiliary func-
tion

Φθ(u, v) = (1−θ)rF1(u) + kG(u, v)− θrF1(v).

Then the dissipation can be estimated from below via

D(c) ≥
∫

Ω

ruF1(u)+kG(c) dx−ruF1(u) = θruH(c|wq)+
∫

Ω

Φθ(c(x)) dx+θruF(wq)−ruF1(u).

Thus, we have to find suitable lower bounds for Φ∗∗θ , namely

Φ∗∗θ (c) + θruH(wq) ≥ ruF1(u) for all c = (u, v) ∈ Cq, (4.11)

or the equivalent form (4.13) given below, which is obtained via simple rearrangements. Proposi-
tion 4.7, which is given below, guarantees, for each q > 0, the existence of a positive θ∗(q) such
that the lower bound for Φ∗∗θ∗(q) holds. Hence, we can set λ(q) = ruθ∗(q) and the existence of
a positive decay rate is established.

To obtain the explicit lower bound, we set γ = min{ru, 2k}. Then, we can replace ru and k
in the above estimates by γ and γ/2, respectively. Hence we are in the situation ρ = 1/κ = 2
and can apply the explicit estimates stated at the end of Proposition 4.7.

The estimate (4.11) (or equivalently (4.13) below) is derived using two different arguments.
First, in Lemma 4.6 we show that for all (u, v) with v > 0 we have Φ∗∗θ (u, v) = Φθ(u, v) for
sufficiently small θ depending on (u, v). Second we use that G(u, v) → ∞ for uv → 0 while
u+ v ≥ c0 > 0.

Lemma 4.6 Let ρ = ru/k = 1/κ and assume ρκ∗ > 1. Then for all c ∈ ]0,∞[2 there exists
Θ(ρ, c) such that

θ ∈ [0, 1] and ρθ ≤ Θ((1−θ)ρ, c) =⇒ Φ∗∗θ (c) = Φθ(c). (4.12)

Moreover, Θ(ρ, u, v) = vΞ(ρ, u/v2) with ∂ρΞ(ρ, z) ≥ 0 and ξ(ρ) = inf{Ξ(ρ, z) | z >
0 } > 0. Numerically, we find ξ(3/2) ≥ 1.3037.
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The proof of this result is given in Section A.2.

Proposition 4.7 If ρκ∗ > 1, then

∀ q > 0 ∃ θ∗ > 0 ∀ c ∈ Cq : Φ∗∗θ∗(c)− (1−θ∗)ruF1(u) + θ∗ruF1(v) ≥ θ∗ruH(c|wq).
(4.13)

In particular, if ρ = 1/κ = 2, we can choose θ∗ = min{ q/10 , 7/100 }

Proof: Throughout we fix q > 0, and consider c ∈ Cq = { ((q−v)/2, v) | v ∈ [0, q] }. Recall
(uq, vq) = (µ2, µ) with 2µ2 + µ = q.

Step 1: We fix a constant β0 ∈ ]0, 1/2] to be optimized later. Restricting our attention to
(u, v) ∈ Cq with v ≥ β0vq, we can use Lemma 4.6. Choose θ1 ∈ ]0, 1] such that

θ1 ≤ β0vq ξ
(
(1−θ1)ρ) ≤ Θ((1−θ1)ρ, u, v),

then for all θ ∈ [0, θ1] we have Φ∗∗θ (c) = Φθ(c). Thus, condition (4.13) reduces to kG(c) ≥
θrH(c|wq). With σG(q) defined in (4.4) we obtain

∀ (u, v) ∈ Cq with v ≥ β0vq : (4.13) holds for 0 ≤ θ ≤ θ2 := min{θ1, κσG(q)}. (4.14)

Step 2: To estimate Φθ(u, v) from below for small v, we do not use convexity but coercivity,
namely G(u, v)→∞ for v → 0+. With η := 1 + ρ/4 we have

1

r
Φθ(c) = (1−ηθ)

(
F1(u) +

1

ρ
G(c)

)
+ θ
(
ηF1(u) +

η

ρ
G(c)− F1(v)

)
≥ (1−ηθ)φmin{κ∗,1/ρ}(c) + 0

where we used (4.6) and the definition of η to obtain the last 0. Since φκ is convex for 0 ≤
κ ≤ κ∗, we obtain 1

r
Φ∗∗θ (c) ≥ (1−ηθ)F1(u) + (1−ηθ) min{κ∗, 1/ρ}G(c). Thus, using the

equivalent form (4.11) we see that (4.13) is a consequence of

(1−ηθ)G(c) ≥ θ(1+η)ρF1(u). (4.15)

We establish this estimate for (u, v) = (µ2+µ(1−β)/2, βµ) ∈ Cq where µ = vq and 0 ≤
β ≤ β0 ≤ 1/2. For these (u, v) we find the estimates

F1(u) ≤ max{1, F1(q/2)},
G(c) = (u−v2) log(u/v2) =

(
µ2+µ

2
(−β)−β2µ2

)
log
(
(2µ+1−β)/(2µβ2)

)
≥ 3µ3+µ

4
log(1/β2) ≥ q

2
log(1/β).

Hence choosing θ3 > 0 such that (1−ηθ3) q
2

log(1/β0) ≥ θ3(1+η)ρmax{1, F1(q/2)}, con-
dition (4.15), and hence (4.13) for the appropriate c ∈ Cq, is satisfied for θ ∈ [0, θ3].

Step 3: Summarizing Steps 1 to 3 for β0 = 1/2, we have already constructed one desired
θ∗, namely θ∗ = min{θ1, θ2, θ3}.
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Step 4: We finally optimize β0 for the case ρ = 2 and provide a more explicit bound for θ.
We assume θ ≤ 1/4 such that (1−θ)ρ ≥ 3/2. With ξ(3/2) ≥ 1.3 (see the end of Section
A.2) and σG(q) ≥ 2/5 (cf. Proposition 4.4), Step 1 leads to the bound

θ2 = min{1
4
, β0vq1.3 ,

1
2

2
5
} = 1

10
min{2, 13β0vq}.

Using η = 3/2 and θ3 ≤ 1/5 the condition of Step 3 gives θ ≤ θ3 := 7 q log(1/β0)
100 max{1,F1(q/2)} .

Now, we are in the situation where we can optimize with respect to β0, since θ3 improves for
smaller β0 while θ2 deteriorates. For q ≤ 3 we have F1(q/2) ≤ 1 and µ ≤ 1, which implies
µ = vq ≥ m/3. Thus, choosing β0 = 0.234, both bounds involving β0 can be estimated from
below by q/10, i.e. we can choose θ∗ := min{1/5, q/10} for q ≤ 3.

For q ≥ 3 we choose β0 = 1/(10
√
q). Using vq = µ ≥

√
q/3 we first obtain θ2 ≥ 0.075.

Moreover, we have θ3 =
7 q log(10

√
q)

100 max{1,F1(q/2)} ≥ 7/100 for all q ≥ 3. Thus, we found the bound

θ∗ = 7/100 for all q ≥ 3, and the result is established.

5 Possible further applications

Finally, we give a outlook to further models which might be attacked by the theory developed in
this paper.

5.1 Inhomogeneous reaction-diffusion systems

We now consider reaction-diffusion systems with inhomogeneous coefficients, also called het-
erostructures in [GlH97]. In this case the equilibrium states wq will be functions on Ω that are
strongly related to the local thermodynamic equilibrium density weq : Ω → ]0,∞[I which is
considered to be given as material datum. We may allow for the situation that Ω is unbounded,
but we always assume that

weq =

∫
Ω

weq(x) dx ∈ ]0,∞[I

is finite. In particular, we will no longer use the normalization |Ω| = 1, but we will normalize with
respect toweq.

As before, the relative density is defined via H(c|weq) =
∫

Ω
H(c(x)|weq(x)) dx and the

equilibriawq are again defined via

wq = argmin{H(c|weq) | Q(c) = Qc = q } for q ∈ C.

The strict convexity ofH(·|weq) shows thatwq is well defined. By the Lagrange multiplier rule
for constraint minimizers we find that there is a constant vector λq ∈ Rm such that

wq(x) = eQTλqweq(x), i.e.
(

log
(
wq,i(x)/weq

i (x)
))

i=1,..,I
= QTλq = const. (5.1)
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As in the previous case, where weq was constant and normalized to (1, .., 1), we have the
following identities:

Q(c) = Qc = q =⇒ H(c|wq) = H(c|weq)−H(wq|weq), (5.2a)

H(c| c
weqw

eq) = H(c|weq)−H(c|weq), (5.2b)

H(wq|weq) = H(wq|weq) = min{H(a|weq) | a ∈ [0,∞[I , Qa = q }. (5.2c)

For the last relation we essentially use (5.1). In (5.2b) the concentration vector c
weqweq means(

ci
weq
i
weq
i (x)

)
i=1,..,I

.

Following the analysis and modeling in [GGH96, GlH97, Gli04, Mie11] we consider the RDS
given as the gradient system

ċ = −K(c)DcH(c|weq) (5.3)

where the Onsager operator consists of a diffusion part and a reaction part:

K(c)ξ = −
(

div
(
aici∇ξi

))
i=1,..,I

+ K(x, c)ξ with

K(x, c) =
R∑
r=1

kr(x, c)Λ
(

cα
r

weq(x)αr
, cβ

r

weq(x)βr

)
(αr−βr)⊗(αr−βr),

where Λ(µ, ν) = µ−ν
log(µ/ν)

, see [Mie11, GlM12]. We find the RDS

ċ = div
(
aiw

eq
i ∇

(
ci/w

eq
i

))
i=1,..,I

−R(x, c) withR(x, c) = K(x, c)
(

log(ci/w
eq
i )
)
i=1,..,I

.

Here the detailed-balance condition is already built intoR via the matrix K.

SinceQ(c(t)) = Q(c(0)) = q we can use (5.2a) and obtain the entropy balance

− d

dt
H(c(t)|w) = − d

dt
H(c(t)|weq) = Ddiff(c) +DR(c),

where Ddiff(c) =
I∑
i=1

Di(ci) with Di(ci) :=

∫
Ω

ai(w
eq
i )2

ci

∣∣∇( ci
weq
i

)
∣∣2 dx

and DR(c) =

∫
Ω

G
(
x, c(x)/weq(x)

)
dx withG(x,v) := log v ·K(x, c) log v.

The dissipation obtained from diffusion can again be estimated from below by a suitable
version of the log-Sobolev inequality. For this we must assume that all the probability densities
ζi = 1

weq
i
weq
i ∈ L1(Ω) satisfy a log-Sobolev estimate, namely∫

Ω

1

v(x)
|∇v(x)|2ζi(x) dx ≥ ρ̂LSi(ζi)

∫
Ω

H(v(x)|〈v〉ζi)ζi(x) dx for smooth v > 0, (5.4)

where 〈v〉ζi =
∫

Ω
v(x)ζi(x) dx is the average with respect to the probability measure ζi dx.

Now, setting v = ci/w
eq
i in the definition ofDi and using the identity 〈v〉ζi = ci/w

eq
i , we obtain

the estimate

Di(ci) ≥ weq
i inf
x∈Ω

ai(x)

∫
Ω

1

v
|∇v|2ζi dx ≥ r̂i

∫
Ω

H(v|〈v〉ζi)ζi dx =
r̂i
weq
i

∫
Ω

H
(
ci| ciweq

i

)
dx,
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where we used weq
i = weq

i ζi and the 1-homogeneity H(a|b)ζ = H(ζa|ζb) for the last identity.
Adding up the different components we obtain the vector-valued log-Sobolev inequality

Ddiff(c) ≥ rH
(
c| c
weqw

eq) with r := min{ ρ̂LSi(
weq
i

weq
i

) inf
x∈Ω

ai(x) | i = 1, .., I }.

We are now in the position of mimicking the approach in Section 3.3, where we still have to
use the final ingredient, namely a suitable generalization of Jensen’s inequality allowing us to
extract information about c from pointwise estimates over the whole domain Ω. Using Q(c) =
Qc = q, the relations (5.2) give the identity

rH(c| c
weqw

eq) = rH(c|weq)− rH(c|weq)

= (r−µθ)H(c|wq)− (r−µθ)H(c|wq) + θ
(
µH(c|weq)− µH(c|weq)

)
for all µ ≥ 0 and θ ∈ ]0, 1]. Thus, after adding the dissipation from the reactions, namely DR,
we need to find sµ(q) such that

Q(c) = q =⇒
∫

Ω

µH(c(x)|weq(x))+G
(
x, c(x)

weq(x)

)
dx−µH(c|weq) ≥ sµ(q)H(c|wq).

Then, we obtain the decay rate λ̂(q) as in Theorem 3.1.

In the case that weq is spatially homogeneous, we could use Jensen’s inequality for the
convexification of the integrand. For nonconstant weq it is not obvious how convexification can
be used in general. However, there is one case where we can still use Jensen’s inequality but
now for a measure associated toweq. We assume that

weq(x) = ζ(x)weq for some ζ ∈ L1(Ω), ζ ≥ 0,

∫
Ω

ζ dx = 1. (5.5)

As in all the previous sections, there is no loss in generality by assuming weq = (1, .., 1). For
the vector of relative densities v = c/weq, we have

H(c(x)|weq(x)) = F(v(x))ζ(x), where as before F(a) = H(a|(1, .., 1)).

Similarly, we can assume that the reaction rates kr(x, c) satisfy a lower bound kr(x, c) ≥
krζ(x) for all x ∈ Ω and all c, where kr > 0. Then, we find the lower estimate

G(x,v) ≥ ζ(x)G(v) (5.6)

for a suitable function G satisfying the properties in Section 3.3. Applying Jensen’s inequality to
the probability measure ζ dx and Φµ(v) := µF(v) + G(v) yields∫

Ω

µH(c(x)|weq(x)) +G
(
x, ci(x)

weq
i (x)

)
dx ≥

∫
Ω

Φµ(v(x))ζ(x) dx ≥ Φ∗∗µ

(∫
Ω
vζ dx

)
.

In particular, assuming that Φµ is convex and using
∫

Ω
vζ dx = c, we find∫

Ω

µH(c(x)|weq(x)) +G
(
x, ci(x)

weq
i (x)

)
dx− µH(c|weq) ≥ µF(c) + G(c)− µF(c) = G(c).
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Thus, imposing the three assumptions (5.4), (5.5), and (5.6), we see that the convexification
theory of Section 3.3 can be transferred to the case of inhomogeneous thermodynamic equilib-
rium states weq, providing explicit decay rates. It would be interesting to generalize the rather
restrictive assumption (5.5). By the compactness theory developed in [GGH96, GlH97, Gli04] it
is clear that under natural conditions the decay rates λ(q) are positive even in the general case
of inhomogeneousweq.

5.2 A semiconductor model

We conjecture that the theory may be applied to the semiconductor model without electrostatic
potential, namely

u̇ = δu∆u+ k(1−uv),

v̇ = δv∆v + k(1−uv).
(5.7)

The conserved quantity is

Q(c) =

∫
Ω

u(x)− v(x) dx = Q(u, v) = u− v.

The main difference is now that Cq is not compact. The equilibria are defined via

wq = (uq, vq) with uq − vq = q and uqvq = 1.

Writing G(u, v) = (uv−1) log(uv) we have

σG(m) := inf
{ G(u, v)

H(u, v|wq)

∣∣∣ (u, v) ∈ Cq, (u, v) 6= wq

}
> 0.

There is hope that the theory can be applied even in this case where Cq is not compact.
However, the main challenge would be to include the electrostatic interaction as was done in
[GGH96, GlH97, Gli04]. However, it is not clear how the log-Sobolev inequality can be used for
this situation.

5.3 A system with three concentrations

One may apply the theory to the reaction model currently investigated by Desvillettes & Fellner,
namely

u̇ = δu∆u + kα(wγ−uαvβ),

v̇ = δv∆v + kβ(wγ−uαvβ),

ẇ = δw∆w − kγ(wγ−uαvβ).

(5.8)

Here α, β, and γ are positive exponents. The conserved quantities for c = (u, v, w) are

Q(c) =

∫
Ω

Qc(c) dx = Qc with Q =

(
γ 0 α
0 γ β

)
.
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Now the sets Cq are compact, viz. Cq = { 1
γ
(q1−αw, q2−βw, γw) | w ∈ [0,min{ q1

α
, q2
β
}] }.

Moreover, there are no steady states on the boundary of [0,∞[3, which implies that wq is the
only steady state in Cq. Hence, the theory of Section 3.3 applies.

However, it remains a highly nontrivial task to derive explicit estimates for λ(q). The major
difficulty will be to characterize the convexification Φ∗∗µ of

Φµ : a 7→ µF(a) + G(a) with G(u, v, w) = (uαvβ−wγ)
(

log(uαvβ)− logwγ
)
.

Nevertheless the arguments in Section 3.3 imply the following result.

Theorem 5.1 For each q ∈ im+Q = ]0,∞[2 there exists λ(q) > 0 such that the solutions
c(t) of (5.8) withQ(c(0)) = q satisfy

H(c(t)|wq) ≤ e−λ(q)tH(c(0)|wq) for all t > 0.

5.4 A temperature-dependent model

Following [HMM13] it would be interesting to study a simplified system where one species Xc

with density c can be absorbed by or released from the background. The equilibrium density
w for c depends on the temperature θ. Following the arguments in [AGH02, Mie11, LiM12,
Mie13] we formulate the system as a gradient flow driven by minus the physical entropy. We use
using the density c (of the non-absorbed species) and the internal energy u as the dependent
variables, rather than the temperature θ. The coupled system reads

ċ = δ∆c− k(c, u)(c−w(u)), u̇ = δ∆u in Ω, ∇c · ν = ∇u · ν = 0 on ∂Ω. (5.9)

Clearly, the only conserved quantity is the total energy Q(c, u) = u = q. Obviously, there is a
unique steady state for each q, namelywq = (w(q), q).

The physical entropy is S(c, u) =
∫

Ω
S(c(x), u(x)) dx and the Onsager operator is

K(c, u)ξ = − div
(
δ(−D2S(c, u)−1)∇ξ

)
+

(
κ(c, u) 0

0 0

)
ξ,

where we assume, in accordance with physical requirements, that the entropy density S is a
strictly concave function of the extensive variables c and u. Hence, the Einstein relation for
the mobility tensor M(c, u) = −δD2S(c, u)−1 gives a positive definite mobility. Then, (5.9)
has the form ∂t(c, u) = K(c, u)DS(c, u) if S and κ > 0 are chosen appropriately. In fact,
we can choose S(c, u) = s0u

σ − w(u)F1(c/w(u)) with w(u) = w0u
γ , and κ(c, u) =

k(c, u)(c−w(u))/ log(c/w(u)), where w0, s0 > 0 and σ, γ ∈]0, 1[, cf. [HMM13, Mie13].

For this system we define a nonstandard convex relative entropy

F̂q(c, u) :=

∫
Ω

s1q
σFσ

(u(x)

q

)
+ w(u(x))F1

( c(x)

w(u(x))

)
dx with s1 = s0σ(1−σ)

and Fσ from (3.1). Hence, we have F̂q(c, u) = −S(c, u) + c0 + c1u and F̂q(c, u) ≥ 0 with
equality if and only if (c, u) ≡ wq.
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To see the structure of the dissipation estimate we use Hessian of S given via

−D2S(c, u) =

(
1
c
−γ
u

−γ
u

cγ
u2

)
+

(
0 0
0 s2

u2−σ − w2

u2−γ

)
with

s2 = s0σ(1−σ),
w2 = w0γ(1−γ).

To proceed further we recall thatw(u) = w0u
γ was considered to be given by the system (5.9).

However, we are able to choose s0 = 2w0 and σ = γ. Then, we can estimate −D2S(u, c)
from below by −

(
ξ
η

)
·D2S(c, u)

(
ξ
η

)
≥ 1−γ

c
ξ2 + w2

u2−γ η
2 and the dissipation satisfies

D(c, u) ≥
∫
Ω

(1−γ)δ |∇c|
2

c
+w2δ

|∇u|2
u2−γ +G(c, u) dx, G(c, u) = k(c, u)Λ(w(u), c)

≥
∫

Ω

rcF1(c) + ruq
σFbγ(uq )+ G(c, u) dx− rcF1(c),

where rc = ρLSi(δ) = δρ(Ω, 1, 1) and ru = δρ(Ω, γ, γ̂), cf. (3.6). The hope is that there
exists some γ̂ ≥ γ such that ru > 0 and that the last integrand provides an upper bound for a
small multiple of F̂q. This will be considered in subsequent work.

A Appendices

A.1 Proof of Lemma 4.3

Proof: For deriving the lower bound (4.6) we use F1(z) ≥ 1
2
F1/2(z) = (

√
z−1)2 and

G(u, v) ≥ 4(v−
√
u)2 to obtain

F1(u) + κG(u, v) ≥ (
√
u−1)2 + 4κ(v−

√
u)2 ≥ 4κ

1+4κ
(v−1)2,

where we have minimized explicitly with respect to
√
u. The estimate follows using (z−1)2 =

2F2(z) ≥ F1(z).

For the analysis of the convexity the basic observation is that φκ has the scaling property

φκ(s
2u, sv) = s2φκ(u, v) + 2s2u log s+ 1− s2,

which follows from G(s2u, sv) = s2G(u, v) and (3.3). Since this scaling is affine in (u, v, φ)
(for each s), this property is inherited by the convexification φ∗∗κ . Introducing hκ(z) = φκ(z, 1)
and gκ(z) = φ∗∗κ (z, 1), we have the representations

φκ(u, v) = v2hκ(u/v
2) + 2u log v + 1− v2, (A.1)

φ∗∗κ (u, v) = v2gκ(u/v
2) + 2u log v + 1− v2, (A.2)

A direct calculation of D2φ∗∗κ shows that φ∗∗κ defined as in (A.2) is convex if and only if

g′′κ(z) ≥ 0 and g′′κ(z)
(
gκ(z)− zg′κ(z) + 3z − 1) ≥ 2. (A.3)

Inserting hκ : z 7→ F1(z) + κ(z−1) log z into this criterion one obtains convexity of φκ for
κ ∈ [0, κ∗] with κ∗ ≈ 0.8564998142, where at z ≈ 12.683 the second criterion in (A.3) holds
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with equality. In fact, for hκ the second criterion in (A.3) can be rewritten, after dividing by κ > 0,
in the form

z2 + 3z − z log z ≥ κ
(
z2 − 1 + (1+z) log z

)
for all z > 0.

Using log z ≤ log 3 + z/3 − 1 it is easy to see that the estimate holds for κ = 1/2, and
we conclude κ∗ ≥ 1/2. Moreover, since the right-hand side is positive for all z > 0 while the
left-hand side is negative for z < 1, we have the explicit characterization

κ∗ := inf{ z2+3z−z log z
z2−1+(1+z) log z

| z > 1 }.

For κ ≥ 1 we obtain an upper bound on gκ by estimating gκ(z) = φ∗∗κ (z, 1) with (1−θ)φκ(0, 0)+
θφκ(z/θ, 1/θ). Using φκ(0, 0) = 1, (A.1), and defining r = 1/θ > 1, yields

gκ(z) ≤ rhκ(z/r) + 2z log r + 1− r = hκ(z) + βκ(r, z).

with βκ(r, z) = (rk−kz+z) log r − k(r−1) log z.

Analyzing βκ(·, z) on the interval [1,∞[, we find the following: Define Zκ as in the statement
of the lemma (where we use κ ≥ 1); then Z1 = e and κ 7→ Zκ decreases monotonously with
Z∞ = 1. For z ≤ Zκ we have βκ(r, z) ≥ βκ(1, z) = 0. For z > Zκ the unique minimizer r
of βκ(·, z) is given as r = z/Zκ. Thus, for z > Zκ we have

gκ(z) ≤ hκ(z) + βκ(z/Zκ, z) = 2z log z −Bκ + 1,

with Bκ as given in the statement of the lemma. Note that B1 = 1 + 1/e and that κ 7→ Bκ

decays monotonously with B∞ = 1.

It remains to be shown that φ∗∗κ in (A.2) with gκ defined in (4.8) is convex. For this we check
(A.3). For z ≥ Zκ this is immediate, since the second estimate holds with equality. For z ≤ Zκ
we consider hκ and obtain

aκ(z) := h′′κ
(
hκ − zh′′κ + 3z − 1)− 2 =

κ

z2

(
κ− κz2 + 3z + z2 −

(
κ+ z + κz

)
log z

)
.

For z ≤ 1 we immediately have aκ(z) > 0. For z > 1 we can rearrange to

aκ(z) =
κ

z2
(1+z)(z+ log z−1)

(
f1(z)f2(z)− κ

)
with f1(z) = z

z+ log z−1
and f2(z) = 3+z− log z

1+z
.

We have f2(z) ≥ 2+e
1+e

> 1.268 for z ∈ [1, e]. Moreover f ′1(z) < 0 for z > 1 which gives, for
all z ∈ [1, Zκ] the estimate f1(z) ≥ f1(Zk) = κ. Using Zκ ≤ e we obtain f1(z)f2(z)− κ ≥
0.268κ > 0 and conclude aκ(z) > 0. Thus, the convexity of φ∗∗κ given in (4.8) is established,
and Lemma 4.3 is proved.

A.2 Proof of Lemma 4.6

Proof: We have to show that for each a = (a, b) there exists Θ(a) such that Φ∗∗θ (a) = Φθ(a)
for θ ∈ [0,Θ(a)]. The argument relies on the fact that for θ < 1 − k/(rκ∗) the function
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c 7→ (1−θ)rF1(u) + kG(c) is strictly convex and coercive. Hence subtracting θF2(v) with
sufficiently small θ produces a function that still coincides with its lower convex hull in a large
region. To be more precise, we have to show that Φθ lies above its Taylor polynomial T1

aΦθ of
first order expanded in a:(

T1
aΦθ

)
(c) := Φθ(a) + DΦθ(a) · (c−a).

For this we use special relations for the entropy functions F0 and F1, namely

F1(z) =
(
T1
wF1

)
(z) + wF1(z/w) and F0(z) =

(
T1
w

)
F0(z) + F0(z/w).

For G(u, v) = Γ(u, v2) = v2Γ(u/v2, 1) we use the relation Γ(z, 1) = F0(z) + F1(z) and
obtain

G(u, v) = v2
(
F1

(
a
b2

)
+F0

(
a
b2

))
+
(
F ′1
(
a
b2

)
+F ′0

(
a
b2

))(
u−av2

b2

)
+v2

(
a
b2
F1

(
ub2

v2a

)
+F0

(
ub2

v2a

))
.

Note that F0, F1, and G(·, v) are convex functions, hence the last term in the expansion, which
represents the remainder with respect to the first-order Taylor polynomial, is nonnegative and
vanishes at c = a.

Thus, we obtain the decomposition of the remainderR for Φθ in the form

Ra(c) := 1
k

(
Φθ(c)−

(
T1
aΦθ

)
(c)
)

= M(a, v) +N(1−θ)ρ(a, u, v)− θρbF1(v
b
) with

M(a, v) :=
(
v2

b2
− 1
)(

G(a)−aDaG(a)
)
−DbG(a)(v−b) =

(
G(a)−aDaG(a)

)(
v
b
−1
)2

Neρ(a, u, v) := ρ̃aF1(u
a
) + v2

(
a
b2
F1

(
ub2

v2a

)
+F0

(
ub2

v2a

))
≥ 0.

To show positivity for all c we first minimize Nθ(a, u, v) with respect to u, which occurs in
a convex manner. The assumption ρ = 1/κ > 1/κ∗ and the convexity of φκ (cf. Lemma 4.3)
guarantee M(a, v) +Nθ(a, c) ≥ 0. In particular, setting

n̂(ρ̃,a, v) = min{Neρ(a, u, v) | u > 0 } ≥ 0

we obtain M(a, v) + Neρ(a, c) ≥ M(a, v) + n̂(ρ̃,a, v). Thus, we have Ra(c) ≥ 0 if
ρθ ∈ [0,Θ((1−θ)ρ,a)] where

Θ(ρ̃,a) := inf
{ M(a, v) + n̂(ρ̃,a, v)

bF1(v/b)

∣∣∣ v ≥ 0, v 6= b
}
.

Since n̂ ≥ 0 and M(a, v) grows quadratically with v, the infimum has to be achieved at a
finite value of v. Since nominator and denominator are smooth functions and strictly positive for
v 6= b, it suffices to control the behavior for v → b.

Writing w = a/b2 and v = b+δ we have

M(a, v) = µ(w)δ2 with µ(w) = 1− logw−w and n̂(a, v) =
2(1+w)(ρ̃w)

1 + w + ρ̃w
δ2+O(|δ|3).
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We see that µ(w) + 2(1+w)(eρw)
1+w+eρw > 0 for all w > 0 if and only if ρ̃ > 1/κ∗ with κ∗ defined in

Lemma 4.3. Thus, we have proved Θ(ρ̃,a) > 0, but without an explicit lower bound.

From the definition of n̂ via Neρ it is clear that ∂bρn̂ ≥ 0, which implies the monotonicity
of Θ(·,a). Using scaling arguments one finds M(a, v) + n̂(a, v) = b2

(
M(a/b2, 1, v/b) +

n̂(a/b2, 1, v/b)
)
. By scaling the denominator as well we obtain

Θ(ρ̃, a, b) = bΞ(ρ̃, a/b2) with Ξ(ρ̃, w) = Θ(ρ̃, w, 1).

From Neρ ≥ 0 we easily see

Ξ(ρ̃, w) ≥ inf{M(w, 1, v)/F1(v) | v > 0 } = µ(w) inf{ (v−1)2/F1(v) | v > 0 } = µ(w),

which gives a positive lower bound for w < 1. To see the behavior for w ≥ 1 we express n̂ in
terms of the Legendre transform γ∗ of γ(z) = (z−1) log z:

γ∗(ζ) = sup{ zζ − γ(z) | z > 0 }

Obviously γ∗ ∈ C∞(R; R) with γ′∗(ζ) > 0 everywhere. The behavior is

γ∗(ζ) ≈ − log |ζ| for ζ � 1, γ∗(0) = 0, γ∗(ζ) ≈ eζ for ζ � 1.

Using the scaling laws for F1 and F0, see (3.4), we have

αF1(s) + F0(s) = F1(αs) + F0(αs)− s(α log a+ α− 1) + α + logα− 1

and conclude min{αF1(s)+F0(s)−βs|s > 0 } = α+logα−1−γ∗
(
β/α+ logα+1−1/α

)
.

We use this expression for Neρ with b = 1, u = asv2 and α = (1+ρ̃)a to obtain

n̂(ρ̃, a, 1, v) = v2
(
α+ logα− 1− γ∗

(
1+ logα− 1/α− ρ̂ log v2

))
− αρ̂(v2−1)

with ρ̂ = eρ
1+eρ > 1

1+κ∗
. Now the infimum Ξ(ρ̃, a) can be found numerically by minimizing(

µ(a)(v−1)2 + n̂(ρ̃, a, 1, v)
)
/F1(v) with respect to v > 0.

Moreover, the function ξ(ρ) := inf{Ξ(ρ, a) |a > 0 } can be obtained directly by minimizing
h(a, ρ, v, w) = (1−a− log a)(v−1)2 +aρF1(wv)+v2(aF1(w/v)+F0(w/v)) with respect
to a > 0 first. Using (v−1)2 = F1(wv)− 2vF1(w) + v2F1(w/v) we obtain

H(ρ, v, w) := inf
a>0

h(a, ρ, v, w) = (v−1)2
(

2 + log
(2vF1(w)+(ρ−1)F1(wv)

(v−1)2

))
+ v2F0(w

v
)

and conclude

ξ(ρ) = inf
{ H(ρ, v, w)

F1(v)

∣∣∣ 1 6= v > 0, w > 0
}
.

Clearly ξ(1/κ∗) = 0, and numerically we find ξ(1/κ∗) = 0, ξ(1.36976) ≈ 1.0, ξ(1.5) =
1.3038, ξ(2) = 1.99374, and ξ(3) = 2.669. This concludes the proof of Lemma 4.6.

33



Acknowledgments. The authors are grateful for helpful comments and stimulating discus-
sions with Klemens Fellner, Annegret Glitzky and Konrad Gröger. The research was partially
supported by DFG under SFB 910 Subproject A5 and by the European Research Council under
ERC-2010-AdG 267802.

References

[AGH02] G. ALBINUS, H. GAJEWSKI, and R. HÜNLICH. Thermodynamic design of energy models of
semiconductor devices. Nonlinearity, 15(2), 367–383, 2002.

[AM∗01] A. ARNOLD, P. MARKOWICH, G. TOSCANI, and A. UNTERREITER. On convex Sobolev inequal-
ities and the rate of convergence to equilibrium for Fokker-Planck type equations. Comm. Partial
Differential Equations, 26(1-2), 43–100, 2001.

[AMT00] A. ARNOLD, P. A. MARKOWICH, and G. TOSCANI. On large time asymptotics for drift-diffusion-
poisson systems. Transport Theory and Statistical Physics, 29, 571–581, 2000.

[CHS78] E. CONWAY, D. HOFF, and J. SMOLLER. Large time behavior of solutions of systems of non-
linear reaction-diffusion equations. SIAM J. Appl. Math., 35, 1–16, 1978.

[CJ∗01] J. A. CARRILLO, A. JÜNGEL, P. A. MARKOWICH, G. TOSCANI, and A. UNTERREITER. En-
tropy disipation methods for degenerate parabolic problems and generalized sobolev inequali-
ties. Monatshefte Math., 133, 1–82, 2001.

[CL∗02] J. A. CARRILLO, C. LEDERMAN, P. A. MARKOWICH, and G. TOSCANI. Poincaré inequalities for
linearizations of very fast diffusion equations. Nonlinearity, 15(3), 565–580, 2002.

[DeF06] L. DESVILLETTES and K. FELLNER. Exponential decay toward equilibrium via entropy methods
for reaction-diffusion equations. J. Math. Anal. Appl., 319(1), 157–176, 2006.

[DeF07] L. DESVILLETTES and K. FELLNER. Entropy methods for reaction-diffusion systems. In Discrete
Contin. Dyn. Syst. (suppl). Dynamical Systems and Differential Equations. Proceedings of the 6th
AIMS International Conference, pages 304–312, 2007.

[DeF08] L. DESVILLETTES and K. FELLNER. Entropy methods for reaction-diffusion equations with de-
generate diffusion arising in reversibly chemistry. In Proceedings of EQUADIFF 2007, page To
appear, 2008.

[DFFM08] M. DI FRANCESCO, K. FELLNER, and P. A. MARKOWICH. The entropy dissipation method
for spatially inhomogeneous reaction-diffusion-type systems. Proc. R. Soc. Lond., Ser. A,
464(2100), 3273–3300, 2008.

[DiW08] M. DIFRANCESCO and M. WUNSCH. Large time behavior in wasserstein spaces and relative
entropy for bipolar drift-diffusion-poisson models. Monatshefte Math., 154, 39–50, 2008.

[ErM11] M. ERBAR and J. MAAS. Ricci curvature of finite Markov chains via convexity of the entropy.
arXiv: 1111.2687, 2011.

[FHM97] W. B. FITZGIBBON, S. L. HOLLIS, and J. J. MORGAN. Stability and lyapunov functions for
reaction-diffusion systems. SIAM J. Math. Anal., 28, 595–610, 1997.

[Fis37] R. A. FISHER. The advance of advantageous genes. Ann. eugenics, 7, 335–369, 1937.

[GGH96] A. GLITZKY, K. GRÖGER, and R. HÜNLICH. Free energy and dissipation rate for reaction
diffusion processes of electrically charged species. Appl. Anal., 60(3-4), 201–217, 1996.

34



[GlH97] A. GLITZKY and R. HÜNLICH. Global estimates and asymptotics for electro-reaction-diffusion
systems in heterostructures. Appl. Anal., 66(3-4), 205–226, 1997.

[Gli04] A. GLITZKY. Electro-reaction-diffusion systems with nonlocal constraints. Math. Nachr., 277,
14–46, 2004.

[Gli08] A. GLITZKY. Exponential decay of the free energy for discretized electro-reaction-diffusion sys-
tems. Nonlinearity, 21(9), 1989–2009, 2008.

[Gli11] A. GLITZKY. Uniform exponential decay of the free energy for Voronoi finite volume discretized
reaction-diffusion systems. Math. Nachr., 284, 2159–2174, 2011.

[GlM12] A. GLITZKY and A. MIELKE. A gradient structure for systems coupling reaction-diffusion effects
in bulk and interfaces. Z. angew. Math. Phys. (ZAMP), 2012. To appear. WIAS preprint 1603
(April 2011, doi 10.1007/s00033-0012-207-y).

[Grö83] K. GRÖGER. Asymptotic behavior of solutions to a class of diffusion-reaction equations. Math.
Nachr., 112, 19–33, 1983.

[Grö92] K. GRÖGER. Free energy estimates and asymptotic behaviour of reaction-diffusion processes.
WIAS preprint 20, 1992.

[HMM13] S. HITTMEIR, P. A. MARKOWICH, and A. MIELKE. Energy-reaction-diffusion systems. In prepa-
ration, 2013.

[JüM06] A. JÜNGEL and D. MATTHES. An algorithmic construction of entropies in higher-order nonlinear
pdes. Nonlinearity, 19(3), 633–659, 2006.

[KGP37] A. N. KOLMOGOROV, P. I. G., and N. S. PISKUNOV. Etude de l’équation de la diffusion avec
croissance de la quantité de matiére et son application á un probléme biologique. Bulletin Uni-
versité d’Etat á Moscou, A1, 1–26, 1937.

[LiM12] M. LIERO and A. MIELKE. Gradient structures and geodesic convexity for reaction-diffusion
systems. Phil. Trans. Royal Soc. A, 2012. To appear. WIAS preprint 1701 (April 2012).

[Maa11] J. MAAS. Gradient flows of the entropy for finite Markov chains. J. Funct. Anal., 261, 2250–
2292, 2011.

[MaL01] P. A. MARKOWICH and C. LEDERMAN. On fast-diffusion equations with infinite equilibrium
entropy and finite equilibrium mass. Comm. PDE, 28, 301–332, 2001.

[Mar86] P. A. MARKOWICH. The Stationary Semiconductor Device Equations. Springer Verlag, Wien-
New York, 1986.

[MaR87] P. A. MARKOWICH and C. RINGHOFER. Stability of the linearized transient semiconductor
device equations. ZAMM, 67(7), 319–322, 1987.

[MaV00] P. A. MARKOWICH and C. VILLANI. On the trend to equilibrium for the fokker-planck equation:
an interplay between physics and functional analysis. Matematica Contemporanea (SBM), 19,
1–31, 2000.

[Mie11] A. MIELKE. A gradient structure for reaction-diffusion systems and for energy-drift-diffusion
systems. Nonlinearity, 24, 1329–1346, 2011.

[Mie12] A. MIELKE. Geodesic convexity of the relative entropy in reversible Markov chains. Calc. Var.
Part. Diff. Eqns., 2012. Online 10.1007/s00526-012-0538-8.

[Mie13] A. MIELKE. Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-
interface interactions. Discr. Cont. Dynam. Systems Ser. S, 6(2), 479–499, 2013.

35



[MRS86] P. A. MARKOWICH, C. RINGHOFER, and C. SCHMEISER. Asymptotic analysis of one-
dimensional semiconductor device models. IMA J. Appl. Math., 37, 1–24, 1986.

[MRS90] P. A. MARKOWICH, C. RINGHOFER, and C. SCHMEISER. Semiconductor Equations. Springer
Verlag, Wien-New York, 1990.

[Mur03] J. D. MURRAY. Mathematical Biology II, volume 18 of Interdisciplinary Applied Mathematics.
Springer-Verlag, New York, 2003.

[Pie10] M. PIERRE. Global existence in reaction-diffusion systems with control of mass: a survey. Milan
J. Math., 78(2), 417–455, 2010.

[Rot84] F. ROTHE. Global solutions of reaction-diffusion systems, volume 1072 of Lecture Notes in
Mathematics. Springer-Verlag, Berlin, 1984.

[Smo83] J. SMOLLER. Shock waves and reaction-diffusion equations, volume 258 of Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science]. Springer-
Verlag, New York, 1983.

[Tur52] A. M. TURING. The chemical basis of morphogenesis. Philo. Trans. Roy. Soc. Lond. Ser. B, 237,
5–72, 1952.

[UA∗00] A. UNTERREITER, A. ARNOLD, P. MARKOWICH, and G. TOSCANI. On generalized csiszár-
kullback inequalities. Monatshefte Math., 131, 235–253, 2000.

[Weg02] R. WEGSCHEIDER. Über simultane Gleichgewichte und die Beziehungen zwischen Thermody-
namik und Reaktionskinetik homogener Systeme. Z. Phys. Chemie, 39, 257–303, 1902.

[WMZ08] H. WU, P. A. MARKOWICH, and S. ZHENG. Global existence and asymptotic behavior for
a semiconductor drift-diffusion-poisson model. Math. Models Meth. Appl. Sci. (M3AS), 18(3),
443–487, 2008.

36


