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Abstract

We consider optimal experiment design for parametric prediction error system identification of
linear time-invariant multiple-input multiple-output (MIMO) systems in closed-loop when the true sys-
tem is in the model set. The optimization is performed jointly over the controller and the spectrum
of the external excitation, which can be reparametrized as a joint spectral density matrix. We have
shown in [18] that the optimal solution consists of first computing a finite set of generalized moments
of this spectrum as the solution of a semi-definite program. A second step then consists of con-
structing a spectrum that matches this finite set of optimal moments and satisfies some constraints
due to the particular closed-loop nature of the optimization problem. This problem can be seen as a
moment extension problem under constraints. Here we first show that the so-called central extension

always satisfies these constraints, leading to a constructive procedure for the optimal controller and
excitation spectrum. We then show that, using this central extension, one can construct a broader set
of parametrized optimal solutions that also satisfy the constraints; the additional degrees of freedom
can then be used to achieve additional objectives. Finally, our new solution method for the MIMO
case allows us to considerably simplify the proofs given in [18] for the single-input single-output
case.

1 Introduction

Optimal experiment design for system identification has seen an intense development in the last decade.

This advance was initiated by the appearance of modern convex optimisation methods in the nineties,

most notably semi-definite programming. Accordingly, most of the recent work in optimal input design

focusses on casting different input design problems as semi-definite programs. Once an optimization

problem is available in the standard format of a semi-definite program, it can be solved by commercially

or freely available solvers. One of the pioneering contributions introducing semi-definite programming

into optimal input design for open loop identification was [25]. For further motivation and an extensive

reference list we refer to [20].

However, converting optimisation problems into semi-definite programs is often far from trivial. Some-

times this is due to the NP-hardness of the problem. If a semi-definite description cannot be obtained,

one usually tries to relax the problem in order to construct a semi-definite approximation. Often such a

relaxation is easily at hand, but nothing about its quality is known.

In this paper we provide an optimal solution to a general class of optimal experiment design problems for

the identification of parametric linear time-invariant (LTI) systems operating in closed loop. The degrees

of freedom which are relevant for closed-loop experiment design problems are the power spectrum of

the external excitation signal fed into the system and the feedback controller transfer function. Both can

easily be converted into a joint power spectrum of some signals present in the loop. These spectra are

frequency-dependent functions and as such infinite-dimensional objects. Their infinitely many degrees

of freedom have to be condensed into a finite-dimensional vector of design variables. A semi-definite

description of optimal experiment design problems in this class has for years been elusive.

Two basic approaches to the choice of the design variables can be distinguished in the literature. The

first is based on a finite dimensional approximation of the joint spectrum, the second, often called partial
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correlation approach, is based on expressing the criterion and the constraints as a function of a finite

number of linear functionals of the joint spectrum, called generalized moments. In both cases, the optimal

experiment design problem is then transformed into a semi-definite program expressed in terms of the

parameters of the finite dimensional approximation for the first approach, and the generalized moments

for the second approach.

In [19] the finite dimensional approximation approach was used. A solution was obtained by first parametriz-

ing the joint spectrum mentioned above using a Youla-Kucera parametrization to constrain the solution

set to deliver a stabilizing closed loop controller, and then using a finite dimensional approximation of this

joint spectrum. The finite set of design variables are obtained as the coefficients of a truncated series

development of the input power spectrum and of the Youla parameter. The optimal design problem is

then reduced to a convex optimization problem under linear matrix inequality (LMI) constraints over the

coefficients of this finite dimensional approximation. Given that the solution space is restricted by the

finite dimensional approximation, it leads to a suboptimal solution.

In [18] we provided an optimal solution based on the partial correlation approach. Our solution applies

to a wide class of optimal design problems in which the criterion and the constraints are expressed as

integral functions over the frequency range.

In this framework the criterion and the constraints can be expressed as linear functions of a finite set

of n + 1 generalized moments, which are linear functionals of the joint power spectrum. They become

the design variables of the optimal design problem. The conditions on the vector of design variables to

correspond to a realizable experiment design are then shown to be equivalent to the satisfaction of an

LMI, possibly involving additional auxiliary variables. The optimal moment sequence is then obtained

by solving a standard semi-definite program. Geometrically, the optimization is performed over a finite-

dimensional projection of the infinite-dimensional cone of possible joint power spectra. The optimal finite

moment sequence will then in general correspond to an infinite set of spectral density matrices rather

than a single spectrum, and every possible spectrum is represented by some point in the cone generated

by the finite set of optimal moments, thus resulting in a truly optimal solution.

The construction of a spectrum or a set of spectra whose first n + 1 generalized moments coincide

with the optimal moments that solve the semi-definite program is known as the Carathéodory extension

problem. The case of scalar-valued moments has been well studied in the last century [8], [30], [2],

[24], [21], [1]. The scalar theory can be generalized to the case of matrix-valued moments [27], [28],

[3], [23], [11], [12]. The key result for solving the Carathéodory extension problem is the Carathéodory-

Fejer theorem. This theorem implies that a given finite sequence of moments is indeed generated by

a positive power spectrum if and only if it satisfies a certain LMI [22, Chapter VI, Theorem 4.1]. Such

a spectrum can be represented in a number of equivalent ways. This includes the representation as a

matrix-valued positive semi-definite measure on the unit circle, as an infinite sequence of moments, or as

a Carathéodory function, i.e., a matrix-valued holomorphic function defined on the open unit disc whose

Hermitian part is positive semi-definite. The representations can easily be transformed in one another

[27, Section II].

The set of all possible infinite extensions of a finite moment sequence may be parametrized by an infinite

sequence of complex numbers in the unit disc (in the scalar case) or complex contractive matrices (in the

matrix case) [11, Theorem 1]. Here the first k matrices in the sequence define the first k undetermined

moments of the extension, i.e., the first k moments which follow the n+1 moments given by the solution

of the semi-definite program. In this way, fixing the contractive matrices one by one, the user can con-

secutively construct all moments of the extension. These matrices hence represent a choice sequence.

The contractive matrices can be defined in different ways and carry different names, e.g., Schur param-
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eters, Szegö parameters, reflection parameters, or canonical moments [1], [28], [27], [4]. In [10] it was

shown that they are all essentially identical to the Verblunsky coefficients, see also [9] and [29, p.30] for

a discussion.

The particular extension corresponding to the case when all Verblunsky coefficients vanish is called

central extension [11], [12], [31, Section 3.6], and the measure on the unit circle which defines the cor-

responding positive semi-definite spectrum is called central measure [4, Remark 8.4, p.104]. In [11] it

was shown that this measure can be characterized as the solution of an entropy minimization problem.

In the scalar case this approach has been used in [7] to characterize all extensions with the same de-

gree as the central extension. In [6] these results have been generalized to the matrix-valued case. If a

non-degeneracy condition is satisfied, then the power spectrum defined by the central measure can be

expressed in closed-form as a rational function with coefficients depending in an explicit manner on the

problem data, i.e., on the optimal truncated moment sequence [27], [31].

A more compact way to parametrize the set of all possible extensions of a given finite moment sequence

is via the representation of the extensions as Carathéodory functions. The set of all such functions which

can be obtained from the finite moment sequence is given by a linear-fractional transformation (LFT)

of a single parameter. This parameter takes values in the Schur class, i.e., the set of all holomorphic

matrix-valued functions on the open unit disc which are contractive. The coefficients of the LFT depend

explicitly on the problem data, i.e., the original finite moment sequence [5, Theorem 1.1]. The central

extension corresponds to the case when the Schur function is identically zero. The Carathéodory function

corresponding to the central measure is hence a rational function with coefficients depending explicitly

on the problem data [13], [5, Theorem 1.3]. If this function is continuously extendible to the closed unit

disc, then the power spectrum defined by the central measure is also rational.

The classical Carathéodory-Fejer theorem holds only if no restrictions are imposed on the spectrum other

than to produce the truncated sequence of moments under consideration, and positivity. In other words, a

finite sequence of moments can be extended to an infinite sequence of moments of a positive spectrum if

and only if it satisfies the LMI condition, but no additional constraint on the moments of this extension can

be guaranteed to be satisfied. However, in closed-loop optimal experiment design, where the controller

is part of the design variables, constraints have to be imposed on the matrix-valued joint power spectrum

under consideration. These constraints reflect the fact that the controller must produce a stable closed

loop, and that the signals defining the joint power spectrum are not all part of the design variables, which

implies that some elements of the joint spectrum are fixed. The constraints on the joint power spectrum

translate into additional constraints on the infinite moment extensions in order for these extensions to

define an admissible spectrum.

In [18] we have shown that the Carathéodory-Fejer theorem also holds for the type of structured gen-

eralized moment problem arising in closed-loop optimal optimal experiment design. Namely, if a finite

sequence of moments satisfies the additional stability constraints, then the LMI condition given by the

Carathéodory-Fejer theorem not only insures the existence of a general extension of this moment se-

quence, but the existence of an extension which also satisfies the constraints.

The proof of this main result in [18] had several drawbacks. First it was written for single-input single-

output (SISO) systems, even though an extension to multiple-input multiple-output (MIMO) is easily ob-

tained. More importantly, it proved the existence of an extension that satisfies the constraints on the

joint spectrum, but it was not constructive. Finally, the proof was very long and complicated, as it relied

on the partial positive definite matrix completion theorem from [16], which itself required to appeal to

graph-theoretical properties of the Töplitz matrix made up of the generalized moments.

The present paper makes progress in several directions with respect to [18]. First we allow the system
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to have multiple inputs and outputs. Our main contribution is to show that the stability constraints are

satisfied by the central extension, which under a non-degeneracy condition can be explicitly computed

from the set of n + 1 optimal moments. The central extension defines a unique power spectrum, which

solves the optimal experiment design problem. Thus once the optimal truncated moment sequence has

been obtained by solving the semi-definite program, an optimal joint power spectrum can be immediately

written down in closed form, shortcutting the somewhat ad hoc and complicated recovery step in [18].

Our second main contribution is to show that the set of all extensions which satisfy the additional con-

straints on the joint power spectrum can also be parametrized by a choice sequence of contractive

matrices. These matrices have a smaller size than the Verblunsky coefficients, because at each step, a

part of the degrees of freedom given by the Verblunsky coefficient is fixed by the additional constraint

on the corresponding moment. We may call these contractive matrices restricted Verblunsky coefficients.

The central extension corresponds to the case when all restricted Verblunsky coefficients vanish. This re-

sult allows one to generate a finite-dimensional, explicitly parametrized family of optimal solutions by first

fixing a finite number of restricted Verblunsky coefficients, constructing the corresponding finite moment

extension, and then using the central extension of this already finitely extended moment sequence. In

the simplest case one would extend the n + 1 optimal moments with a family of an (n + 2)-nd moment,

parametrized by the corresponding restricted Verblunsky coefficient. The resulting (n + 2)-tuples of mo-

ments then also satisfy the stability constraints. Computing the central extension for this extended family

yields a parametrized family of admissible optimal spectra. This procedure can be repeated one step at

a time, yielding a doubly infinite family of admissible optimal spectra, etc. These additional degrees of

freedom can be used to satisfy additional performance criteria, constraints, or robustness properties that

the user may want to inject into the problem.

Feasibility of the central extension actually implies the validity of the Carathéodory-Fejer theorem for the

structured generalized moment problem. This allows us to significantly shorten the proof of this result

given in [18]. For this reason, and in order to make the present contribution self-contained, we also

provide the new proof of the structured Carathéodory-Fejer theorem here.

The remainder of the paper is organized as follows. In the next section we define the class of input design

problems to be solved. In Section 3 we introduce the concepts of central extensions, central measures,

Carathéodory functions and Verblunsky coefficients. Our main result is in Section 4, where we show the

feasibility of the central extension for optimal closed-loop experiment design and parametrize the set of

all feasible solutions by the choice sequence of restricted Verblunsky coefficients. In Section 5 we present

a complete solution algorithm for the proposed class of problems, including a semi-definite description of

the feasible set of truncated moment sequences. In Section 6 we illustrate via an example that even in the

case where the Töplitz matrix made up of the n + 1 optimal moments is singular, the central extension

may produce an optimal spectrum that remains finite. In the Appendix we provide auxiliary results on a

special case of the partial positive matrix completion problem.

2 Problem formulation

In this section we define the class of optimal experiment design problems treated in this paper. We intend

to perform parametric prediction error identification of a MIMO LTI system in closed loop. The system

dynamics is given by the relation

y = G0(q)u + H0(q)e, (1)

where the signal u is of dimension m, and e, y are of dimension p. Here G0 is the plant transfer function

matrix, H0 the noise transfer function matrix, q the forward-shift operator, e a vector-valued zero mean
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white noise with (co-)variance λ0Ip, Ik being the k × k identity matrix, u is the input vector, and y
is the output vector of the system1. The transfer function matrices G0(z),H0(z) are embedded in a

model structure G(z; θ),H(z; θ) and correspond to some true parameter value θ0, G0(z) = G(z; θ0),

H0(z) = H(z; θ0). We assume that the plant transfer function G0 is stable, and the noise model H0 is

stable and inversely stable.

The parameter vector θ0 is to be identified by an experiment, which consists in closing the loop according

to the relation

u = −K(q)y + r, (2)

where r is a quasistationary process of dimension m, and collecting a set of input-output data u, y. The

design variables at our disposal are thus the power spectrum Φr(ω) of the external vector-valued input

signal r and the m × p matrix-valued feedback controller K(q). The configuration of the identification

experiment is schematically depicted in Fig. 1. The estimator θ̂ of the true parameter value θ0 is then

evaluated as the minimizer of some prediction error criterion. Our goal is to design an experiment by

choosing the spectrum of an external input r and a controller K such that some cost function of Φr,K
is minimized and some constraints on the pair (Φr,K) are satisfied.

Following [19], we first move from the quantities Φr,K to the spectra Φu,Φue, which, as long as we work

in the frequency domain and use formulas that are asymptotic in the number of data, yield an equivalent

description of the experimental conditions. The power spectrum Φr of r and the controller K determine

Φu,Φue by the formulas

Φu(ω) = λ0(Im + KG0)
−1KH0H

∗
0K∗(Im + KG0)

−∗

+(Im + KG0)
−1Φr(ω)(Im + KG0)

−∗, (3)

Φue(ω) = −λ0(Im + KG0)
−1KH0, (4)

where the transfer functions on the right-hand side are evaluated at z = ejω. By A∗ we denote the

complex conjugate transpose of the matrix A and by A−∗ the inverse of A∗. On the other hand, Φr and

K can be recovered from Φu,Φue by the formulas

Φr = (Im + KG0)(Φu − λ−1
0 ΦueΦ

∗
ue)(Im + KG0)

∗,

K = −Φue(λ0H0 + G0Φue)
−1. (5)

Thus there is a one-to-one relationship between (Φr,K) and (Φu,Φue). Parametrizing the experimental

conditions by the joint power spectrum

Φχ0
=

(

Φu Φue

Φ∗
ue λ0Ip

)

(6)

of the signals u, e instead of the quantities Φr,K has the advantage that the feasible set becomes

convex, which is a prerequisite for a semi-definite representation [19]. The matrix Φχ0
is of size (m +

p) × (m + p).

Within the framework of the partial correlation approach, the ultimate design variables are a finite set

of moments of the joint power spectrum Φχ0
. Accordingly, the cost criterion and the constraints of the

optimal input design problem have to be expressible in a tractable manner in terms of these moments.

Apart from this compatibility requirement, we do not impose any condition on the cost criterion and the

constraints.
1For simplicity, we have assumed a white noise (co-)variance λ0Ip; however, our results apply equally well for any symmetric

positive definite (co-)variance matrix Σ.
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Figure 1: Experimental setup

Assumption 1. There exist integers N ≥ 0, n ≥ s ≥ 0 and a polynomial d(z) =
∑s

l=0 dlz
l of degree

s with the following properties. The coefficients dl are real, obey d0 6= 0, ds 6= 0, and the polynomial

d(z) has all roots outside the closed unit disk. Define (m + p) × (m + p) matrices

mk =
1

2π

∫ +π

−π

1

|d(ejω)|2 Φχ0
(ω)ejkω dω (7)

for integral k. Then the constraints of the input design problem can be written as a linear matrix inequality

∃ x1, x2, . . . , xN : A(m0,m1, . . . ,mn, x1, x2, . . . , xN ) � 0 (8)

in the elements of the n + 1 matrices mk, k = 0, . . . , n, and N additional auxiliary variables xl,

l = 1, . . . , N , and the cost function of the input design problem is given by a linear function

f0(m0,m1, . . . ,mn, x1, x2, . . . , xN ) =

n
∑

k=0

〈Ck,mk〉 +

N
∑

l=1

clxl, (9)

where Ck are fixed matrices, and cl are fixed reals.

Here 〈A,B〉 = trace(ABT ) is the usual scalar product in the space of matrices. The matrices mk

defined by (7) are called the generalized moments of the spectrum Φχ0
. Note that the moments mk are

real and obey the relation mk = mT
−k.

In [17],[18] we presented a semi-definite description of the set of finite moment sequences (m0, . . . ,mn)
corresponding to valid experiment designs. This allows to obtain the optimal truncated moment sequence

(m0, . . . ,mn) by solving a semi-definite program.

Under some mild assumptions the asymptotic in the number of data average per data sample information

matrix of the experiment is given by [26]

M =
1

2πλ0

p
∑

k=1

∫ +π

−π
Fk(ejω)Φχ0

(ω)F ∗
k (ejω) dω, (10)

where the l-th row of the matrix Fk is given by the k-th row of the matrix [H−1
0 G′

θl(θ0), H−1
0 H ′

θl(θ0)].
Here G′

θl , H ′
θl denote the gradients of G(z; θ),H(z; θ) with respect to the l-th entry of the parameter
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vector θ. If the model structure is rational, then (10) is affine in the moment matrices m0,m1, . . . ,mn

for a suitably chosen polynomial d(z). In addition, most experiment design criteria are formulated as

scalar functions of M . Therefore, Assumption 1 covers a wide variety of problem formulations in closed-

loop optimal experiment design, see also [25],[20],[19]. In particular, all classical designs (D-optimal,

A-optimal, L-optimal etc.) subject to variance constraints on the signals fall within the framework of

Assumption 1.

3 Central extensions

In this section we introduce the concept of moment extensions, and in particular, central extensions.

Before we focus on the generalized moments (7) of the structured power spectrum (6), we will first con-

sider the case of moment sequences of general power spectra. First we shall consider different ways

to represent a positive semi-definite power spectrum in Subsection 3.1. Then the set of all possible

moment extensions and its parametrizations is considered in Subsection 3.2. In Subsection 3.3 we intro-

duce the central extension, which is a particular moment extension, under the assumption of a certain

non-degeneracy condition. Finally, we consider the central extension in the general case in Subsection

3.4.

3.1 Representations of power spectra

Let Φ(ω) be an integrable 2π-periodic matrix-valued complex-Hermitian positive semi-definite function

of size l × l, possibly containing a singular part consisting of Dirac δ-functions. Define the moments of

Φ by

mk =
1

2π

∫ +π

−π
Φ(ω)ejkω dω. (11)

Note that m−k = m∗
k. Then the block-Töplitz matrices

Tk =















m0 m∗
1

. . . m∗
k−1 m∗

k

m1 m0
. . . m∗

k−2 m∗
k−1

. . .
. . .

. . .

mk mk−1
. . . m1 m0















(12)

are positive semi-definite for all k ≥ 0. On the other hand, given an infinite sequence of matrices mk,

k ∈ Z, satisfying m−k = m∗
k and such that all block-Töplitz matrices Tk, k ≥ 0, are positive semi-

definite, there exists a unique positive semi-definite function Φ(ω) producing the matrices mk as in

(11) [27, Theorem 1]. Note that if Φ(−ω) = Φ(ω)T , then all moments mk are real, and the complex

conjugate transpose in (12) becomes the ordinary transpose.

There exist other representations of the function Φ(ω) than by its infinite moment sequence. One of

these is the Carathéodory function

F (z) =
1

2π

∫ π

−π

ejω + z

ejω − z
Φ(ω)dω, (13)

which is an analytic function defined on the open unit disc such that its Hermitian part 1
2(F (z)+F ∗(z))
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is positive semi-definite and F (0) is Hermitian. The spectrum can be recovered from F as the limit

Φ(ω) = lim
r→1−

1

2
(F (rejω) + F ∗(rejω)). (14)

If Φ has a singular part, then the limit has to be understood in the sense of a distribution [27, Section

II]. The Carathéodory function F (z) can be also determined from the moment sequence by the Taylor

expansion F (z) = m0 + 2
∑∞

k=1 m−kz
k.

3.2 Moment extensions

An obvious necessary condition for a finite sequence m0, . . . ,mn of l × l matrices to be extendable to

an infinite sequence m0, . . . ,mn,mn+1, . . . which can be obtained from some positive semi-definite

function Φ by formula (11) is that the block-Töplitz matrix Tn is positive semi-definite, Tn � 0. The

Carathéodory-Fejer theorem (see, e.g., [22, Chapter VI, Theorem 4.1]) states that this is also a suffi-

cient condition. We shall call such infinite sequences m0, . . . ,mn,mn+1, . . . an (infinite) extension

of the finite sequence m0, . . . ,mn. Since the condition Tk � 0 implies Tk′ � 0 for all k′ ≤ k, it

makes also sense to speak of extensions by a finite number mn+1, . . . ,mn′ of matrices. The sequence

m0, . . . ,mn,mn+1, . . . ,mn′ is a finite extension of the sequence m0, . . . ,mn if and only if Tn′ � 0.

We first parameterize all extensions of the finite sequence m0, . . . ,mn by one additional matrix mn+1.

We have the following result, where we comment that m−k = mT
k for all k.

Theorem 1. Let m0, . . . ,mn be a sequence of real l× l matrices such that the block-Töplitz matrix Tn

defined by (12) is positive semi-definite. Then the l× l matrix mn+1 extends the sequence m0, . . . ,mn

in such a way that Tn+1 � 0 if and only if it can be written as

mn+1 =







m−n
...

m−1







T

T †
n−1







m1
...

mn






+






m0 −







m−n
...

m−1







T

T †
n−1







m−n
...

m−1













1/2

∆n+1






m0 −







m1
...

mn







T

T †
n−1







m1
...

mn













1/2

with ∆n+1 a real l × l matrix satisfying σmax(∆n+1) ≤ 1, where T †
n−1 denotes the pseudo-inverse of

Tn−1.

Proof. The matrices m0, . . . ,mn partially specify the entries of the block-Töplitz matrix Tn+1. By the

condition Tn � 0 this partially specified matrix is partial positive semi-definite. The claim of the theorem

now follows by application of Lemma 2 in the Appendix.

In the complex case Theorem 1 is equivalent to [31, Theorem 3.4.1] or [4, Theorem 2.11b]. The contrac-

tive matrix ∆n+1 will be called Verblunsky coefficient [9]. It has been shown in [10] that up to a possible

sign change it is equal to the Schur or Szegö parameters, which are contractive matrices defined in a

different way [1], [27], [28].

A longer extension m0, . . . ,mn′ of the sequence m0, . . . ,mn can be obtained step by step. We pro-

ceed by first choosing a contractive matrix ∆n+1 and calculating the next moment mn+1 from it. Then

we choose a matrix ∆n+2 and compute mn+2. Note that mn+2 then depends also on ∆n+1 via its de-

pendence on mn+1. Then we choose ∆n+3 and so on, until the final choice of ∆n′ which determines the

last moment matrix mn′ of the extension. In this way, all extensions m0, . . . ,mn′ can be parametrized

by n′ − n contractive l × l matrices ∆k, k = n + 1, . . . , n′. In the same way, an infinite extension

8



is determined by an infinite sequence of matrices ∆n+1,∆n+2, . . . , and the set of all such extensions

is parametrized by all such sequences. Note, however, that in the case when the block-Töplitz matrices

Tk are degenerate different choices of the matrices ∆k can lead to the same extension. In the extreme

case, all sequences of ∆k lead to the same, unique, extension. This happens if and only if the resulting

spectrum Φ(ω) is discrete [5, Theorem 6.7].

A more compact way to parameterize the set of all extensions of a finite sequence m0, . . . ,mn is via

the Carathéodory function (13). In order to formulate this result, we need a couple of definitions. Let the

positive semi-definite l × l matrices L,R be given by

L =






m0 −







m1
...

mn







T

T †
n−1







m1
...

mn













1/2

, R =






m0 −







m−n
...

m−1







T

T †
n−1







m−n
...

m−1













1/2

.

For k ≥ 1, define the l × (k + 1)l matrix-valued polynomial

Uk(z) =
(

zkIl zk−1Il · · · Il

)

(15)

and the lower-triangular block-Töplitz matrix

Sk =











m0 0 . . . 0
2m1 m0 0

...
. . . 0

2mk . . . 2m1 m0











.

Note that Tk = 1
2(Sk + S∗

k). Let the polynomials an, bn, cn, dn be given by

an(z) = m0 + zUn−1(z)Sn−1T
†
n−1

(

mn . . . m1

)∗
,

bn(z) = Il − zUn−1(z)T †
n−1

(

mn . . . m1

)∗
,

cn(z) = m0 + zn
(

m−1 . . . m−n

)

T †
n−1Sn−1U

T
n−1(z

−1),

dn(z) = Il − zn
(

m−1 . . . m−n

)

T †
n−1U

T
n−1(z

−1). (16)

These are formally polynomials of degree n. For a polynomial f(z) which is formally of degree n, define

the reciprocal polynomial f̃ [n](z) = znf∗(1/z̄).

Proposition 1. [5, Theorem 1.1] Let m0, . . . ,mn be a finite sequence of l × l matrices such that the

block-Töplitz matrix (12) satisfies Tn � 0. Then the Carathéodory function (13) obtained from an infinite

extension of the sequence m0, . . . ,mn has the general form

F (z) =
(

an(z) − zc̃[n]
n (z)L†φ(z)R

)(

bn(z) + zd̃[n]
n (z)L†φ(z)R

)−1

=
(

dn(z) + zLφ(z)R†b̃[n]
n (z)

)−1 (

cn(z) − zLφ(z)R†ã[n]
n (z)

)

,

where φ(z) is an arbitrary Schur function of size l × l, i.e., an analytic function on the open unit disc

which is contractive. Moreover, the denominator matrices are invertible.

The function F (z) is hence a matrix-valued LFT of the Schur function φ(z), with coefficients given by

polynomials which are explicit functions of the moments m0, . . . ,mn. For a given Schur function φ, the

spectrum Φ(ω) can be recovered from F by the limit (14).
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3.3 Central extension in the regular case

In this subsection we introduce a special moment extension, the central extension. Let m0, . . . ,mn be

a finite sequence of l × l matrices. Following [27], in this subsection we consider only the case when

the matrix Tn constructed from this sequence is positive definite, Tn � 0. We return to the general case

Tn � 0 in the next subsection.

Following [27], define the l × l matrix-valued polynomial

An(z) = Un(z)T−1
n UT

n (0) =

n
∑

k=0

Ak
nzk.

The matrix coefficient Ak
n of zk is given by the (n + 1 − k, n + 1)-th l × l block of the inverse T−1

n .

Note also that An(0) = A0
n is positive definite.

Define the l × l matrix-valued function

Φ(ω) = An(ejω)−∗An(0)An(ejω)−1. (17)

Note that Φ is rational when considered as a function of z = ejω on the unit circle. The order of the

components in the matrix Un in (15) differs from that in [27, eq. (9)] because the definition (11) is different

from [27, eq. (7)]. By [27, Theorem 6] the polynomial An(z) has no zeros in the closed unit disk, by [27,

Theorem 3] the function Φ is positive definite at all ω, and by [27, Theorem 9] the matrices m0, . . . ,mn

are the first n + 1 moments of Φ.

Let mn+1,mn+2, . . . denote the subsequent moments of Φ, defined as in (11). Then the infinite se-

quence m0,m1, . . . ,mn,mn+1, . . . is an extension of the original finite sequence m0, . . . ,mn. This

extension is called the central extension. If the matrices m0, . . . ,mn are real, then the coefficients Ak
n

are also real, and Φ(−ω) = Φ(ω)T . In this case all moments of the central extension will be real. By

[27, Theorem 9] the central extension of the sequence m0, . . . ,mn,mn+1, . . . ,mn′ coincides with the

central extension of m0,m1, . . . ,mn for every n′ ≥ n.

The advantage of the central extension is that the corresponding spectrum has the comparatively simple

explicit expression (17) as a function of the moments m0, . . . ,mn, and it is given by a rational function.

However, this holds only if the non-degeneracy condition Tn � 0 is satisfied. In the next subsection we

will consider a generalization to the case of positive semi-definite matrices Tn.

3.4 Central extension in the general case

In Subsection 3.2 we have seen that in the regular case every extension of a finite sequence m0, . . . ,mn

is determined by the choice of a sequence of contractive l×l matrices ∆n+1,∆n+2, . . . . In [31, Section

3.6] it has been shown that the central extension, as defined in the previous subsection, corresponds to

a specific choice of these matrices, namely ∆k = 0 for all k ≥ n + 1.

One might then define the central extension in the case of a singular matrix Tn by the relation ∆k = 0,

k ≥ n + 1 [4, Def. 2.12]. However, in this case the central measure Φ(ω) does not have the nice repre-

sentation (17) anymore. Nevertheless, one can still give a closed-form expression for the Carathéodory

function (13) defined by the central measure.

Proposition 2. [13, Prop. 2.2, Theorem 2.3], [5, Theorem 1.3] Let m0, . . . ,mn be a finite sequence of

l × l matrices such that the block-Töplitz matrix (12) satisfies Tn � 0. Then the Carathéodory function

10



(13) obtained from the central extension of the sequence m0, . . . ,mn is given by the rational functions

F (z) = an(z)b−1
n (z) = d−1

n (z)cn(z),

where an, bn, cn, dn are the polynomials defined in (16).

The central measure can then be recovered from the Carathéodory function F (z) by the limit (14). If the

rational function F has poles on the unit circle, then the corresponding spectrum Φ might have a singular

part, and the limit is to be considered in the sense of a distribution. Otherwise Φ is just the restriction of

the Hermitian part of F on the unit circle and is also rational.

4 Moment extensions for closed-loop experiment design

In this section we return to our optimal closed-loop experiment design problem described in Assump-

tion 1. In Subsection 4.1 we describe the constraints on the infinite generalized moment sequence

m0, . . . ,mn, . . . which result from the particular structure (6) of the joint spectrum and the constraint (4)

on Φue. We show that these constraints impose linear relations between s successive moments, where

s is the degree of d(z). In Subsection 4.2 we determine necessary and sufficient conditions such that

a finite moment sequence m0, . . . ,mn is extendable to an infinite moment sequence satisfying these

specific constraints. We do this by showing that the central extension is a suitable infinite extension. In

particular, we can use the central extension of the truncated moment sequence (m0, . . . ,mn) to recover

the joint power spectrum (6) which realizes the sequence according to formula (7). In Subsection 4.3 we

parameterize all infinite extensions corresponding to valid experiment designs by a choice sequence

of restricted Verblunsky coefficients. The central extension corresponds to the case when all restricted

Verblunsky coefficients are zero.

Throughout this section, the moments m0, . . . ,mn, . . . are defined by formula (7). This means that the

mk are the generalized moments of the joint power spectrum Φχ0
. Since in Section 3 the moments have

been defined by formula (11), the power spectrum Φ(ω) from this section has to be identified with the

quotient 1
|d(ejω)|2

Φχ0
(ω).

4.1 Structure of the infinite moment sequence

In this subsection we deduce linear relations between the moments m0 = mT
0 ,m1, . . . ,mn, . . . from

the particular structure of the power spectrum Φχ0
in (7). Set m−k = mT

k and partition the l × l
matrix moments mk into 4 blocks mk,11,mk,12,mk,21,mk,22, according to the partition of R

l into a

sum R
m ⊕ R

p. The moment matrices mk depend on the spectra Φu,Φue, which in turn determine the

experimental conditions. However, as a result of the constraints (3), (4) and (6), not all pairs (Φu,Φue),

and hence not all sequences (m0, . . . ,mn, . . . ), correspond to valid experiment designs.

From (7) it follows that

mk,22 =
1

2π

∫ +π

−π

λ0Ip

|d(ejω)|2 ejkω dω (18)

for all k ∈ Z. The positivity of the joint power spectrum Φχ0
implies by the Carathéodory-Fejer theorem
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that the block-Töplitz matrix

Tk =















m0 mT
1

. . . mT
k−1 mT

k

m1 m0
. . . mT

k−2 mT
k−1

. . .
. . .

. . .

mk mk−1
. . . m1 m0















(19)

is positive semi-definite for all k ≥ 0. Further, the transfer functions from the signals r, e to the signals

u, y are stable. Let T ⊂ C be the unit circle. Then the function fue : T → C
m×p, defined by the cross

spectrum Φue by means of fue(e
jω) = Φue(ω), can be extended to a holomorphic function outside of

the unit disc, including the point at infinity (compare also [19]). From

mk,12 =
1

2π

∫ +π

−π

1

d(ejω)

Φue(ω)

d(e−jω)
ejkω dω

it follows that
s
∑

i=0

dimk+i,12 =
1

2πj

∫

T

fue(z)

d(z−1)
zk−1 dz.

Since all zeros of d(z−1) are in the open unit disc, the ratio fue(z)/d(z−1) is also holomorphic outside

of the unit disc. It follows that
∑s

i=0 dimk+i,12 = 0 for all k < 0, and hence

s
∑

i=0

dimk−i,21 = 0 (20)

for all k > 0. Similarly it follows that the matrices (18) satisfy

s
∑

i=0

dimk−i,22 = 0 (21)

for all k > 0. The next result shows that these relations are also sufficient.

Theorem 2. Let m0 = mT
0 , . . . ,mn, . . . be an infinite sequence of real l × l matrices, and set

m−k = mT
k , k > 0. Then the sequence m0, . . . ,mn, . . . is generated by formula (7) from a joint

power spectrum Φχ0
as in (3),(4),(6) if and only if Tk � 0 for all k ≥ 0, and relations (18),(20) hold for

all k ∈ Z and k > 0, respectively.

Proof. The only if part has been demonstrated above. Let us show the if part.

Assume that Tk � 0 for all k ≥ 0, and relations (18),(20) hold. We have to show that the moment

sequence m0, . . . ,mn, . . . is generated by some joint power spectrum Φχ0
such that its lower right

p×p subblock is given by λ0Ip, as required in (6), and its upper right m×p subblock is a stable transfer

function. This allows to construct the controller and external input spectrum K,Φr in (3),(4) by virtue of

(5), obtaining a stable control loop.

By [27, Theorem 1] there exists a unique positive semi-definite power spectrum Φ(ω) which produces

the moment sequence m0, . . . ,mn, . . . as in (11). Set Φχ0
(ω) = |d(ejω)|2Φ(ω). Then (7) holds.

Let Φχ0,22 be the p × p lower right subblock of Φχ0
. Relations (7) and (18) imply that

∫ +π
−π

ejkω

|d(ejω)|2
(Φχ0,22(ω) − λ0Ip)dω = 0 for all k. Again from [27, Theorem 1] it then follows that

Φχ0,22(ω) = λ0Ip.

12



Denote the upper right m × p subblock of Φχ0
by Φue. Relation (20) implies

∑s
i=0 dimk+i,12 = 0 for

all k < 0. Writing this out, we obtain
∫ +π
−π

Φue(ω)
d(e−jω)

ejkω dω = 0 for all k < 0. It follows that the function

f̃ue : T → C
m×p defined by f̃ue(e

jω) = Φue(ω)
d(e−jω)

can be extended to a holomorphic function outside of

the unit disc, including the point at infinity. The product fue(z) = f̃ue(z)d(z−1) is then a holomorphic

extension of the function fue : T → C
m×p defined by fue(e

jω) = Φue(ω). Thus Φue represents a

stable transfer function, which concludes the proof.

4.2 Feasibility of the central extension

In this subsection we consider finite sequences m0 = mT
0 ,m1, . . . ,mn of real l× l matrices and their

central extensions in relation to Theorem 2. Set m−k = mT
k for k = 1, . . . , n.

In order for the finite sequence (m0, . . . ,mn) to be extendable to an infinite sequence m0, . . . ,mn, . . .
satisfying the conditions of Theorem 2, it must clearly satisfy the following necessary conditions:

Tn � 0, (22)

mk,22 =
1

2π

∫ +π

−π

λ0Ip

|d(ejω)|2 ejkω dω, k = 0, . . . , n, (23)

s
∑

i=0

dimk−i,21 = 0, k = 1, . . . , n. (24)

In [18, Theorem 1] we have shown for the SISO case that conditions (22)—(24) are also sufficient

to guarantee the existence of a positive semi-definite joint power spectrum (6), satisfying Φχ0
(ω) =

Φχ0
(−ω)T , such that Φue represents a stable transfer function, which reproduces the truncated moment

sequence (m0, . . . ,mn) by formula (7). This proof extends without modifications also to the MIMO case

considered here. The result [18, Theorem 1] is, however, non-constructive, because it does not yield an

explicit power spectrum Φχ0
, but merely proves its existence.

We will now give a constructive proof by showing that the explicit power spectrum obtained by virtue of

the central extension yields a feasible optimal experiment.

Theorem 3. Let m0 = mT
0 ,m1, . . . ,mn be a finite sequence of real l×l matrices, and set m−k = mT

k

for k = 1, . . . , n. Assume that conditions (22)—(24) hold. Then the central extension of the sequence

(m0, . . . ,mn) satisfies the conditions of Theorem 2.

Proof. The condition Tk � 0 is fulfilled for all k ≥ 0 because the central extension is by definition a

positive semi-definite moment extension. It remains to show the equality conditions (18),(20) for k > n.

This can be done by induction over k. Indeed, the central extension m0, . . . ,mn,mn+1, . . . of the finite

sequence (m0, . . . ,mn) coincides with the central extension of the finite sequence (m0, . . . ,mn,mn+1).

Suppose we are able to show that the moment matrix mn+1 satisfies the conditions (18),(20) for k =
n + 1. Incrementing n by one and repeating the reasoning will then prove the conditions for k = n + 2.

Repeating the process, we prove the conditions for all k > n.

We shall hence consider the case k = n + 1. Note that

s
∑

i=0

di

(

1

2π

∫ +π

−π

λ0Ip

|d(ejω)|2 ej(n+1−i)ω dω

)

=
1

2πj

∫

T

λ0Ip

d(ejω)
ejnω dejω = 0,
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because the integrand in the second integral can be extended to a function which is holomorphic inside

the unit disc. It follows that (18) is valid for k = n + 1 if and only if (21) is valid for k = n + 1.

But the validity of (20),(21) for k = n + 1 follows from Lemmas 2 and 3 in the Appendix. Indeed, set

A = m0, B =
(

mT
1 . . . mT

n

)

, C = Tn−1, DT =
(

mn,21 mn,22 . . . m1,21 m1,22

)

,

E = m0,22, XT =
(

mn+1,21 mn+1,22

)

. Then the assumptions of Lemma 2 are satisfied by

virtue of the condition Tn � 0. The relation X = BC†D follows from the definition of the cen-

tral extension in Subsection 3.4. Let further F T consist of the last p rows of the l × (n + 1)l matrix
(

0 0 · · · 0 dsIl ds−1Il · · · d0Il

)

. Then the relation
(

C D
)

F = 0 follows from (20),(21)

for k = 1, . . . , n. It then follows from Lemma 3 that
(

B X
)

F = 0 which is equivalent to (20),(21) for

k = n + 1. This completes the proof.

Theorem 4. Let m0 = mT
0 ,m1, . . . ,mn be a finite sequence of real l×l matrices, and set m−k = mT

k

for k = 1, . . . , n. Then (m0, . . . ,mn) is extendable to an infinite sequence m0, . . . ,mn, . . . satisfying

the conditions of Theorem 2 if and only if conditions (22)—(24) hold.

Proof. The only if part follows from the fact that the conditions in Theorem 2 imply (22)—(24). The if part

follows from Theorem 3.

Theorem 4 identifies (22)—(24) as the conditions on a finite sequence m0 = mT
0 ,m1, . . . ,mn of real

l × l matrices to be realizable as a truncated sequence of generalized moments as in formula (7), with

the joint power spectrum Φχ0
defining valid experimental conditions by virtue of (5),(6). This allows us

to rewrite experiment design problems satisfying Assumption 1 as a semi-definite program satisfying the

constraints (22)—(24), which will be accomplished in Section 5.

In the case when the block-Toeplitz matrix Tn is positive definite we have the following main result.

Theorem 5. Let (m0, . . . ,mn) be a (n + 1)-tuple of real l × l matrices satisfying m0 = mT
0 , and

define m−k = mT
k for all k = 1, . . . , n. Suppose that these matrices satisfy conditions (23),(24), and

Tn � 0. Then the rational power spectrum Φχ0
(ω) = |d(ejω)|2 ·Φ(ω), where Φ(ω) is given by (17) as

an explicit function of m0, . . . ,mn, satisfies the following properties: it is of the form (6), positive definite,

satisfies Φχ0
(ω) = Φχ0

(−ω)T , its upper right block Φue represents a stable transfer function, and it

reproduces the truncated moment sequence (m0, . . . ,mn) by formula (7).

Proof. The theorem follows from Theorem 2, Theorem 4, and the explicit formula (17) for the power

spectrum corresponding to the central extension in case that Tn is invertible.

We shall conclude by giving an explicit formula for the transfer function Φue in the non-degenerate case.

By (23),(24) the last p rows of the l × (n + 1)l matrix

(

0 0 · · · 0 dsIl ds−1Il · · · d0Il

)

Tn

are given by
(

0 0 · · · 0
∑s

i=0 dim−i,21
∑s

i=0 dim−i,22

)

.

Recall that the last l rows of the inverse T−1
n are given by ((An

n)T (An−1
n )T . . . A0

n). It follows that

(

0 dkIp

)

=
(
∑s

i=0 dim−i,21
∑s

i=0 dim−i,22

)

(Ak
n)T ,
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where we put dk = 0 for k > s by convention. Multiplying by zk and summing over k, we obtain after

transposition
(

0
d(z)Ip

)

= An(z)

(∑s
i=0 dimi,12

∑s
i=0 dimi,22

)

. (25)

The upper right m × p block Φue of Φχ0
(ω) then equals

(

d(ejω)Im

0

)∗

Φ(ω)

(

0
d(ejω)Ip

)

=

(

d(ejω)Im

0

)∗

An(ejω)−∗A0
n

(∑s
i=0 dimi,12

∑s
i=0 dimi,22

)

= d(e−jω)

(

Im

0

)T

An(e−jω)−T

(

0
d0Ip

)

. (26)

Here we used (17), (25) for the first relation and the constant term in (25) for the second one.

4.3 Parametrization of all feasible extensions

In Theorem 1 of Subsection 3.2 we have given the general form of the extended moment mn+1 in

terms of the Verblunsky parameter ∆n+1. However, this extension does not take account of the con-

straints (18), (20) imposed by the closed-loop setup of the experiment design problem. Here we present

a parametrization of all feasible extensions, i.e. extensions that are compatible with these constraints.

Let (m0, . . . ,mn) be a finite sequence of real l× l matrices satisfying conditions (22)—(24). The previ-

ous subsection dealt with a specific infinite moment extension of (m0, . . . ,mn) satisfying the conditions

of Theorem 2, namely the central extension. In this subsection we shall parameterize all extensions

satisfying (18), (20)Ê in terms of a choice sequence.

First we determine all real l × l matrices mn+1 such that the block-Toeplitz matrix Tn+1 is positive

semi-definite and relations (18),(20) hold for k = n + 1. By virtue of d0 6= 0 the p lower rows of mn+1

are uniquely determined by the equivalent relations (20),(21) for k = n + 1. Namely, we have

mn+1,2α = −d−1
0

s
∑

i=1

dimn+1−i,2α, α = 1, 2.

The upper m rows of mn+1 can be parameterized by virtue of Lemma 4 of the Appendix. Namely,

set A = E = m0, B =
(

mT
1 . . . mT

n

)

, C = Tn−1, DT =
(

mn . . . m1

)

, XT
1 =

(

mn+1,11 mn+1,12

)

, XT
2 =

(

mn+1,21 mn+1,22

)

. Let the matrices D,E be partitioned as in

Lemma 4. The relation X2 = BC†D2 then follows from the definition of the central extension in Sub-

section 3.4. By Lemma 4, the matrix X1 containing the remaining blocks of mn+1 is parameterized as

in (28) of that lemma by a contractive l × m matrix ∆̂. We will denote this matrix by ∆̂n+1 and call it

restricted Verblunsky parameter.

Having determined the moment mn+1 by the choice of the restricted Verblunsky parameter ∆̂n+1, we

may proceed in an analogous manner to the definition of the next moment mn+2 by the choice of the

restricted Verblunsky parameter ∆̂n+2. In this way, all the infinite moment extensions of the sequence

(m0, . . . ,mn) which satisfy the conditions of Theorem 2 can be parameterized by the infinite choice

sequence ∆̂n+1, ∆̂n+2, . . . of contractive l × m matrices.

By Lemma 5 in the Appendix, the choice ∆̂k = 0 for all k > n leads to the central extension of the

sequence (m0, . . . ,mn). In the same way, the choice ∆̂k′ = 0 for all k′ > n + k leads to the central

extension of the sequence (m0, . . . ,mn,mn+1, . . . ,mn+k). Here the moments mn+1, . . . ,mn+k

are parameterized by the remaining k free restricted Verblunsky parameters ∆̂n+1, . . . , ∆̂n+k. In this
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way, we obtain a set of infinite moment extensions which is parameterized algebraically by the klm
elements of these matrices.

Note that if only the first parameter ∆̂n+1 is free, while the other parameters are fixed to zero, then Tn+1

is affine in ∆̂n+1. By Proposition 2 the Carathéodory function associated to the joint power spectrum

Φχ0
is then rational in ∆̂n+1.

5 Solution algorithm

In this section we outline a general scheme for the solution of optimal experiment design problems sat-

isfying Assumption 1. The scheme consists of two steps. First we find the optimal truncated moment

sequence by solving a semi-definite program, and then we recover the experimental conditions, i.e., the

power spectrum Φr of the external input and the controller K from this moment sequence.

Apart from the constraints following from the formulation of the particular problem instance under con-

sideration, the moment sequence (m0, . . . ,mn) has to satisfy conditions (22)—(24). Condition (22)

amounts to a linear matrix inequality. Condition (23) determines the blocks mk,22 explicitly, while condi-

tion (24) yields linear relations on the blocks mk,21. The optimal experiment design problem defined in

Assumption 1 is thus turned into the following semi-definite program.

min
mk ,xk

(

n
∑

k=0

〈Ck,mk〉 +

N
∑

k=1

ckxk

)

(27)

with respect to the constraints

A(m0,m1, . . . ,mn, x1, x2, . . . , xN ) � 0,

mk,22 =
1

2π

∫ +π

−π

λ0Ip

|d(ejω)|2 ejkω dω, k = 0, . . . , n,

s
∑

i=0

dimk−i,21 = 0, k = 1, . . . , n,

Tn =















m0 mT
1

. . . mT
n

m1 m0
. . . mT

n−1
. . .

. . .
. . .

. . .

mn mn−1
. . . m0















� 0,

where m−k = mT
k . By solving this semi-definite program, the user obtains the optimal truncated moment

sequence (m0, . . . ,mn) and the optimal value of the cost function.

If the matrix Tn corresponding to the solution happens to be positive definite, then Theorem 5 allows to

explicitly recover the joint power spectrum (6) by the explicit formula

Φχ0
(ω) = |d(ejω)|2 · A(ejω)−∗A(0)A(ejω)−1,

where A(z) = U(z)T−1
n UT (0) and U(z) =

(

znIl zn−1Il · · · Il

)

. Alternatively, the upper right

m × p block Φue of Φχ0
can be obtained by the explicit formula (26). The power spectrum Φr and the

controller K may then be recovered from Φue and the upper left m × m block Φu by formulas (5).
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If the matrix Tn happens to be singular, then Φχ0
can still be recovered as a rational function with

possibly a singular part as outlined in Subsection 3.3. We shall give an example in the next section when

the singular part is absent despite the singularity of Tn.

As is often the case in optimal experiment design, the calculation of the optimal experimental conditions

requires knowledge of the transfer functions G0,H0 to be identified. This obstacle can be circumvented

by performing a preliminary identification experiment and/or applying an iterative procedure, using the

estimates from the previous iteration for the design of the experimental conditions in the current one.

6 Examples

Example 1

In this first example, we illustrate the construction of the central extension on the basis of a moment matrix

made up of the moments m0 and m1. We also show that even when the moment matrix is singular, the

spectrum defined by this central extension remains finite. Consider the moment matrix

T =









1 0 a c
0 1 −c b
a −c 1 0
c b 0 1









.

We have det T = (c2+ab−1−a+b)(c2+ab−1+a−b), and T � 0 if and only if max(|a|, |b|) ≤ 1
and c2 + ab + |a − b| ≤ 1. The polynomial A(z) is given by

A(z) =
1

(c2 + ab − 1 − a + b)(c2 + ab − 1 + a − b)
·

{

z

(

bc2 + a(b2 − 1) c3 + c(ab − 1)
−c3 − c(ab − 1) ac2 + b(a2 − 1)

)

+

(

1 − b2 − c2 c(a − b)
c(a − b) 1 − a2 − c2

)}

,

its inverse by

A−1(z) =
1

z2(c2 + ab) − z(a + b) + 1
·

{

z

(

1 − a2 − c2 −c3 − c(ab − 1)
c3 + c(ab − 1) bc2 + a(b2 − 1)

)

+

(

1 − a2 − c2 −c(a − b)
−c(a − b) 1 − b2 − c2

)}

.

The roots of the polynomial z2(c2 + ab) − z(a + b) + 1 are given by z =
a+b±

√
(a−b)2−4c2

2(c2+ab) . The
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spectrum (17) of the central extension is given by

Φ11(ω) =
(1 − a2)(1 + b2) − c4 − 2abc2 + 2(ba2 + ac2 − b) cos ω

(e2jω(c2 + ab) − ejω(a + b) + 1)(e−2jω(c2 + ab) − e−jω(a + b) + 1)
,

Φ12(ω) =
−2j(c3 + c(ab − 1)) sin ω

(e2jω(c2 + ab) − ejω(a + b) + 1)(e−2jω(c2 + ab) − e−jω(a + b) + 1)
,

Φ22(ω) =
(1 + a2)(1 − b2) − c4 − 2abc2 + 2(ab2 + bc2 − a) cos ω

(e2jω(c2 + ab) − ejω(a + b) + 1)(e−2jω(c2 + ab) − e−jω(a + b) + 1)
.

However, even if (c2 + ab − 1 − a + b)(c2 + ab − 1 + a − b) = 0, implying that T is singular, the

expression e2jω(c2 + ab) − ejω(a + b) + 1 does not become zero in general. Hence the spectrum Φ
remains finite.

For the values a = 0.831471050378134, b = 0.584414659119109, c = 0.516739526518758 for

which the matrix T becomes singular, we have computed Φ(ω) according to the formula above. Figures

2, 3 and 4 show, respectively, the plots of |Φ11|, ImΦ12 and |Φ22|. These plots show that, even in

this so-called degenerate case where T is singular, the feasible optimal spectrum constructed using the

central extension remains finite.
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Figure 2: |Φ11|
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Figure 3: ImΦ12
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Figure 4: |Φ22|

Example 2

In the second example we consider an optimal experiment design problem applied to the identification
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of a stable plant G = θ1z−1

1+θ2z−1 with |θ2| < 1, H = 1. We wish to minimize the output power while

achieving a fixed information matrix. Set d(z) = (1 + θ2z)2.

We have
∂G

∂θ
=

1

(1 + θ2z−1)2

(

z−1 + θ2z
−2

−θ1z
−2

)

,

and the information matrix is given by

M̄ =
1

2πλ0

∫ +π

−π

∂G(ejω)

∂θ
Φu

(

∂G(ejω)

∂θ

)∗

dω = λ−1
0

(

(1 + θ2
2)m0,11 + 2θ2m1,11 −θ1θ2m0,11 − θ1m1,11

−θ1θ2m0,11 − θ1m1,11 θ2
1m0,11

)

.

Further,
(

G H
)

=
1

(1 + θ2z−1)2
(

θ1z
−1 + θ1θ2z

−2 1 + 2θ2z
−1 + θ2

2z
−2
)

,

and the output power is given by

Ēy2 =
1

2π

∫ +π

−π

(

G H
)

Φχ0

(

G H
)∗

dω

= 2θ1θ2m2,21 + 2(θ1(1 + 2θ2
2)m1,21 + θ2

1θ2m1,11 + θ1θ
2
2m1,12)

+θ2
1(1 + θ2

2)m0,11 + 2θ1θ2(2 + θ2
2)m0,12 + λ0

The generalized moments of Φe are given by

m0,22 =
(1 + θ2

2)λ0

(1 − θ2
2)

3
, m1,22 = − 2θ2λ0

(1 − θ2
2)

3
, m2,22 =

θ2
2(3 − θ2

2)λ0

(1 − θ2
2)

3
.

The recursion on mk,21 reads mk,21 = −(2θ2mk−1,21 + θ2
2mk−2,21) for k > 0, which amounts to

m1,21 = −2θ2m0,12 − θ2
2m1,12, m2,21 = 3θ2

2m0,12 + 2θ3
2m1,12. Then the output power simplifies to

Ēy2 = θ2
1((1 + θ2

2)m0,11 + 2θ2m1,11) + λ0.

The output power and the information matrix contain only the moments m0,11,m1,11. As a result, the

output power is fixed by the fact that the information matrix is fixed. It remains to construct a power

spectrum Φχ0
that generates these two moments.

The moments m2,11,mk,12 enter only in the positivity constraint, but not in the output power and the

information matrix. A possible choice for these moments is mk,12 = 0, m2,11 =
m2

1,11

m0,11
, with |m1,11| ≤

m0,11 imposed by the positivity condition.

Then the moments m0,m1,m2 are diagonal. It is not hard to see that the moments of the central

extension of (m0,m1,m2) are also diagonal, and Φue = 0. The corresponding experiment is hence

open-loop. Moreover, the central extension of the sequence (m0,11,m1,11,m2,11) equals the central

extension of the sequence (m0,11,m1,11). This leads to A(z) =
m0,11−m1,11z

m2

0,11−m2

1,11

,

Φu = Φr =
m0,11(m

2
0,11 − m2

1,11)|1 + θ2e
jω|4

|m0,11 − m1,11ejω|2 .
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7 Conclusions

We have provided a solution to the closed loop optimal experiment design for MIMO systems. The so-

lution uses the so-called partial correlation approach in which the criterion and the constraints are ex-

pressed as a function of a finite set of generalized moments. The optimal moments are then obtained as

the solution of a semi-definite program. The key difficulty of this approach, which had been a stumbling

block so far, is to extend the finite set of optimal moments into an infinite set, or equivalently into a spec-

trum, because the spectrum must obey some constraints which are due to the closed loop setup. Thus,

the classical Carathéodory-Fejer theorem cannot be used to produce a feasible extension.

Our main contribution has been to show that the so-called central extension is a feasible extension, which

satisfies these constraints. In addition, using properties of the central extension, as well as results on the

positive matrix completion theorem, we have shown how to construct families of parametrized optimal

extensions which also obey the constraints of the optimal experiment design problem.

One of the key advantages of the solution method developed in the present paper is that it allows one

to explicitly compute an optimal solution for the spectrum Φr of the external excitation signal and the

feedback controller K . They can be computed straightforwardly from the optimal moments that result

from the solution of the semi-definite program. This is a significant progress over our previous result [18]

which only proved the existence of an optimal spectrum, but without an explicit computational procedure.

Appendix

In this Appendix we provide auxiliary results related to the positive matrix completion problem. This is

the problem of completing a real symmetric matrix, only part of whose entries are specified, to a full

positive semi-definite matrix. A partially specified matrix M is said to be partial positive semi-definite if

all diagonal entries of M are specified, and every principal submatrix of M which is fully specified is

positive semi-definite. A partially specified matrix M is said to be positive semi-definite completable if

there exists a specification of the unspecified entries of M such that the resulting fully specified matrix

is positive semi-definite. Clearly partial positive semi-definiteness is a necessary condition for positive

semi-definite completability. There exist specification patterns for which this condition is also sufficient.

These patterns have been completely described in [16] by graph-theoretic means. We shall need only

a special case of such specification patterns, namely when the unspecified entries can be arranged in

a rectangular block by a suitable permutation of the row and column indices of M . In this case the set

of all completions has a closed-form description as an affine image of a matrix ball. This fact has been

brought to our attention by Keith Glover.

The results in this Appendix, and in particular Lemma 2 and Lemma 4, are required to prove that the

moment extension in Theorem 1 is an admissible extension in that it produces Tn+1 � 0.

Lemma 1. [14, Theorem 16.1, p.435] A real symmetric matrix M =

(

A B
BT C

)

is positive semi-definite

if and only if C � 0, (I −CC†)BT = 0, and A−BC†BT � 0. In this case we have the factorization

M =

(

I BC†

0 I

)(

A − BC†BT 0
0 C

)(

I 0
C†BT I

)

.

Here C† denotes the pseudo-inverse of C , and I denote identity matrices of appropriate size.
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Lemma 2. [15] Let M =





A B ∗
BT C D
∗ DT E



 be a real partial positive semi-definite matrix, where

A,B,C,D,E are blocks of compatible sizes. Then the matrix MX =





A B X
BT C D
XT DT E



 is a positive

semi-definite completion of M if and only if the block X can be written as X = BC†D + (A −
BC†BT )1/2∆(E − DT C†D)1/2, where ∆ is a real matrix satisfying the condition σmax(∆) ≤ 1.

Here σmax denotes the maximal singular value and W 1/2 the positive semi-definite matrix square root

of the positive semi-definite matrix W .

Proof. Since M is partial positive semi-definite, the matrices

(

A B
BT C

)

and

(

E DT

D C

)

are posi-

tive semi-definite. Applying Lemma 1 to these matrices, we obtain that C � 0, (I − CC†)BT = 0,

(I − CC†)D = 0, A − BC†BT � 0, E − DT C†D � 0. Applying Lemma 1 to the matrix




A X B
XT E DT

BT D C



, we obtain that MX � 0 if and only if

(

A X
XT E

)

−
(

B
DT

)

C†
(

BT D
)

=

(

A − BC†BT X − BC†D
(X − BC†D)T E − DT C†D

)

� 0.

The claim of the lemma now easily follows.

The next result deals with the specific choice ∆ = 0.

Lemma 3. Assume the conditions of Lemma 2, and set X = BC†D. Assume that there exists a matrix

F of appropriate size such that
(

C D
)

F = 0. Then we have also
(

B X
)

F = 0.

Proof. Partition F =

(

F1

F2

)

into subblocks of appropriate size. We have CF1 + DF2 = 0, and hence

BF1 + XF2 = B(F1 + C†DF2) = B(I −C†C)F1 = 0. Here the last equality follows from Lemma

1.

Lemma 2 permits to obtain a parametrization of all positive semi-definite matrix completions not only in

the case when the unspecified elements form a rectangular block in the upper right corner, but also when

such a situation can be achieved by a suitable permutation of the row and column indices.

Lemma 4. Assume the conditions of Lemma 2, but let the unknown block be partitioned as X =
(

X1 X2

)

. Let the blocks D =
(

D1 D2

)

, E =

(

E11 E12

ET
12 E22

)

be partitioned in a compatible man-

ner.

Then the partially specified matrix M̂ =









A B ∗ X2

BT C D1 D2

∗ DT
1 E11 E12

XT
2 DT

2 ET
12 E22









, where X2 = BC†D2, is partial
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positive semi-definite. The general form of a positive semi-definite completion X1 of M̂ is given by

(

B X2

)

(

C D2

DT
2 E22

)†(
D1

ET
12

)

+

(

A −
(

B X2

)

(

C D2

DT
2 E22

)†(
BT

XT
2

)

)1/2

∆̂

×
(

E11 −
(

DT
1 E12

)

(

C D2

DT
2 E22

)†(
D1

ET
12

)

)1/2

, (28)

where ∆̂ is any real matrix of size compatible with those of A and E11 such that σmax(∆̂) ≤ 1.

Proof. The choice ∆ = 0 in Lemma 2 leads to Xα = BC†Dα, α = 1, 2. Hence M̂ is positive semi-

definite completable. In particular, it must be partial positive semi-definite. The general form of its positive

semi-definite completion X1 follows by application of Lemma 2 to M̂ , after an appropriate permutation

of rows and columns.

Lemma 5. Assume the conditions of Lemma 2 and Lemma 4. Completing the matrix M by X = BC†D,

i.e., by the choice ∆ = 0, leads to the same result as first setting X2 = BC†D2 and then completing

M̂ by X1 =
(

B X2

)

(

C D2

DT
2 E22

)†(
D1

ET
12

)

, i.e., by the choice ∆̂ = 0.

Proof. We have to show that BC†D1 =
(

B BC†D2

)

(

C D2

DT
2 E22

)†(
D1

ET
12

)

. By Lemma 1 we have

(

C D2

DT
2 E22

)

=

(

I 0
DT

2 C† I

)(

C 0
0 E22 − DT

2 C†D2

)(

I C†D2

0 I

)

,

and hence

(

C D2

DT
2 E22

)†

=

(

I −C†D2

0 I

)(

C† 0
0 (E22 − DT

2 C†D2)
†

)(

I 0
−DT

2 C† I

)

.

It follows that
(

I C†D2

)

(

C D2

DT
2 E22

)†

=
(

C† 0
)

, which implies our claim.
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