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Abstract

Using the finite volume method we compute within effective mass approxi-
mation the single-particle eigenstates for electrons and holes in a InGaAs/GaAs
quantum well – nanobridge – quantum dot structure. It is shown that hybrid states
appear in this complex system. The interaction between the eigenvalues may be
an explanation for the additional photoluminescence peak measured for inverted
structures with smaller nanobridge lengths.

1 Introduction

The tunnel injection structures consist of a quantum well layer and a quantum dot layer
separated by a spacer layer (i.e. host material playing the role of a barrier). They were
developed in the last years for improving the performances of diode lasers [1, 2, 3, 4].
They have a special conduction band alignment, namely the ground state of the electron
in the quantum well (QW) is between the ground and excited state in the quantum
dot (QD) [1, 2, 3, 4]. In such a way, the electronic quantum dot ground state may
be efficiently populated by tunnel injection from the quantum well ground state. The
distance between these two active layers, QW as collector (injector) and QD as emitter,
may be varied as an additional optimization parameter. Very recently the growth sequence
of these structures was changed, such that the QD layer is grown first, followed by the
barrier and after that by the QW [1, 4]. In these so-caled inverted structures was found
that for distances h < 5 nm new features appear, like ultrafast carrier exchange [1] and
an additional photoluminescence peak for a specific range of h values [4]. It was clearly
shown that additional electronic states appear in this configuration and that distinct
connections (called nanobridges) appear between the QW and QDs. In order to explain
these features the electron and hole states were computed inside a cylinder with the
same dimensions as the nanobridge [4]. There are also other attempts to model the
electron and hole states inside such complex nanostructures. In Refs. [2, 3] two co-
existing quantum-confined systems are considered (i.e. quantum well – wetting layer and
quantum well – quantum dot) which can be treated as independent.

In this paper we present the electron and hole states of the combined system, i.e. quantum
well, nanobridge and quantum dot computed within a three-dimensional model. It is
considered that the nanobridge can also confine states within it. The strain is neglected.
The In concentration within the nanobridge can be considered linearly distributed.
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2 Model

2.1 Electronic structure

We consider a quantum well – nanobridge – quantum dot structure embedded in a
”virtual” cylinder, as sketched in Fig. 1. The radius R and the height H of the cylinder
are considered as free parameters in our model.

We assume the quantum dot as a truncated cone of height hQD, with a (lower) base
radius rQD and the radius of the upper base equals the radius of the nanobridge. The
nanobridge is considered as a cylinder with diameter D and height h.

Figure 1: Sketch of a quantum well (QW) – nanobridge (NB) – quantum dot (QD)
structure embedded in a ”virtual” cylinder of a GaAs as host material.

The electronic structure is computed within single band effective mass approximation.
In turn, the electronic states and the hole states are computed separately, as solutions
of the Schrödinger-type equation for the envelope function[

−~2

2
∇ ·
(
M (r)−1∇

)
+ V (r)

]
Ψ(r) = EΨ(r), r ∈ Ω, (1)

where M(r) is the effective mass tensor (for electrons and holes, respectively) and V (r)
contains the (conduction and valence) band offsets of the heterostructure materials. The
material parameters are taken from Refs. [5] and are summarized in Appendix A. The
domain Ω is the virtual cylinder, on which surface Dirichlet boundary conditions are
imposed. Due to the cylindrical symmetry, the solutions of Eq. (1) can be written as

Ψ(r) =
eimθ√

2π
ψ(z, r), (2)

where the magnetic quantum number m = 0,±1,±2, ... is integer and the z-axis is
the cylinder axis. The eigenvalue problem (1) reduces in such a way to a series of two-
dimensional eigenvalue problems [6]. Every eigenvalue problem, for a specific m value,
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can be solved independently on the others using a finite volume method for cylindrical
symmetric systems [7].

We compute nev eigenvalues for a specific m and index them by i. After computing
for all m, with m < mmax, the eigenvalues are sorted ascending, so that a pair (m, i)
becomes an index n. The setup of the numerical parameters nev and mmax establishes
the accuracy of the numerical calculations. Because we are interested in the bound states,
i.e. energies lower than the conduction/valence band offsets, we consider

E(0)
nev > ∆Ec,v, E

(mmax)
i=1 ' E

(mmax)
r,1 > ∆Ec,v. (3)

We consider the first confined energy in the r-direction E
(m)
r,1 = (~2/2m∗r)(xm,1/R)2 as

a first approximation for the first eigenvalue for m = mmax. In the above expression xm,1
is the first root (j = 1) for the Bessel function of first kind Jm(x) and m∗r is the effective
mass of the host material in the r-direction.

In the next subsections we will consider every subsystem separately and after that we
will combine them.

2.2 Optical matrix elements

In order to describe the optical processes (i.e. absorption and emission of light) in semi-
conductor structures we follow Refs. [8, 9], where the interaction between photons and
electrons in semiconductors is described in detail. The net transition rate that describes
the absorption and emission processes can be computed using the Fermi’s golden rule,
in which the matrix elements of the minimal coupling perturbation Hamiltonian, called
optical matrix elements, play the most important role. Using Coulomb gauge and the
dipole (long wavelength) approximation, one can express them in terms of the momen-
tum matrix elements or in terms of the electric dipole moment. We will follow the former
variant.

For low-dimensional heterostructures, one often uses the envelope-function approxima-
tion, so that the single-particle wave function (for electrons or holes) may be written as
[9, Eq. (1.52)]

ψk0να(r) =
√

Ωψk0να(r)φk0ν(r), (4)

where ν is the crystal band index and k0 is the wavevector at an extrema, i.e. minima or
maxima, of the band ν. The envelope function ψk0να is computed as a solution of the
envelope-function equation and φk0ν(r) is the (three-dimensional) Bloch state. In such
a way, the optical matrix elements for nanostructures are given by the formula [9, Ch.
1.2.2, Eq. (1.55.)]

H ′
ν′α′,να

∝ penv
ν,α′α

δνν′ + f env
ν′α′,να

pbulk
νν′ , (5)

where

penv
ν,α′α

=

∫
Ω

ψ
∗
να′(r)[−i~∆Aψνα(r)]d3r (6)
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are dipole matrix elements between the envelope functions,

f env
ν′α′,να

=

∫
Ω

ψ
∗
ν′α′(r)ψνα(r)d3r (7)

are corresponding overlap integrals, and pbulk
νν′ = p0,νν′ denote the bulk dipole matrix

elements evaluated in k0 = 0 and related to the Kane energy Ep that is a material
parameter. The indexes ν and ν ′ are the crystal band indexes, i.e. conduction- or valence-
band. The generic index α denotes a set of quantum numbers, whose nature (discrete
or continuous) depends on the particular shape and dimensionality of the nanostructure
under consideration. As one can see, there are two different types of optical processes
[9, Ch. 1.2.2]

� the first term in (5) describes intraband transitions, i.e. processes within the same
band ν. It describes absorption/emission processes in the infrared spectral region
between different subbands α→ α′ of the same band ν.

� the second term in (5) describes processes connecting different bands (ν 6= ν ′),
called interband transitions. It describes absorption/emission processes around the
visible spectral region, connecting valence- to conduction-band states.

We will consider the interband transitions, i.e. the second term, so that one computes the
overlap integrals (7) between the envelope functions of electrons and holes, i.e. different
bands. For cylindrical geometry, the envelope functions have the form [6]

ψνα(r) = ψνα(r, θ, z) =
eimθ√

2π
Ψ(ν)
mn(z, r), (8)

so that the generic index α = (mn) contains information about the magnetic quantum
number m and the discrete index n due to the confinement inside the closed cylinder.
The band index ν will be h for holes and e for electrons. The index k0 = 0 has been
omitted. The Ψ

(ν)
mn(r) are computed (up to a sign) within finite volume method. The

overlap integral is computed over the whole cylinder. Due to the orthogonality relation

1

2π

∫ 2π

0

eimθe−im
′θdθ = δmm′ (9)

one has non-zero overlap integrals only for the same magnetic quantum number m for
electrons and holes. This expresses an optical selection rule for cylindrical symmetric
systems.

The absorption energies are computed as

~ω = Ee − Eh = Eel. + Eg −∆Ec − (−Eh. + ∆Ev), (10)

where Eg = 1.424 eV is the band gap of GaAs, ∆Ec = 0.423 eV, ∆Ev = 0.332 eV.
The electron energies Eel. and the hole energies Eh. are computed as eigenvalues of
the single-band Schrödinger type equation for the envelope functions. Anyway, for the
optical matrix elements only the states below the band offsets are considered, so that
~ω ≤ Eg.
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3 Results for electronic structure

3.1 Isolated cylindrical nanobridge with graded In concentration

In order to compare with the previous results [4] we consider the InxGa1−xAs nanobridge
as an isolated cylinder with diameter D and length h embedded in a GaAs cylinder of
radius R and length H as host material. In such a way, one takes into account the finite
band offsets ∆Ec (∆Ev) between the conduction (valence) bands of the nanobridge and
of the host material. We consider the following parameters: R = 5 nm, H = 30 nm
and the diameter of the nanobridge D = 2 nm. The nanobridge is always located in the
middle of the virtual cylinder. Within our formalism we can consider a linearly graded In
concentration in the cylindrical nanobridge

x(z) = x0 + (z − z0)
x1 − x0

z1 − z0

, (11)

where z0 and z1 are the z-coordinates of the begin and the end of the cylindrical
nanobridge, and x0 and x1 are the In concentration at the begin and the end of the
cylindrical nanobridge, respectively. We consider x0 = 0.15 and x1 = 0.6, while the
length of the cylindrical nanobridge h = z1 − z0 is considered of different values from 1
to 10 nm.

For every triangular finite element (i) the material parameters are computed correspond-

ing to the In concentration at the z-coordinate of the circumcenter z
(i)
U . We consider

the minimum of the valence/conduction band offset as reference energy. So that, the
potential energy due to the heterostructure is for electrons

Ve(z, r) =

{
∆Ec(x = 0.60)−∆Ec(x(z)), r < rNB, z0 < z < z1

∆Ec(x = 0.60), otherwise
(12)

and for holes

Vh(z, r) =

{
∆Ev(x = 0.60)−∆Ev(x(z)), r < rNB, z0 < z < z1

∆Ev(x = 0.60), otherwise
(13)

A sketch of the heterostructure potential on the axis of the cylinder (i.e. r = 0) is
presented in Fig. 2.

Figure 2: Sketch of the heterostructure potential for a cylindrical nanobridge with graded
In concentration.
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Fig. 3 shows the first four eigenenergies for electrons and holes inside a InxGa1−xAs
cylindrical nanobridge with linearly graded In concentration, as a function of the cylinder
height h. The number of grid points in the z-direction is Nz = 600 and in the r-
direction Nr = 100, so that the mesh grid is hz = hr = 0.05 nm. On the same plot are
presented the eigenenergies for constant In concentration. In order to compare the data,
the results for x = 0.15 were shifted with ∆E = 0.302 eV for the electron energies and
with ∆E = 0.237 eV for the hole energies, respectively.

(a) Hole energies. (b) Electron energies.

Figure 3: First four eigenenergies (solid lines with symbols) for electrons and holes inside
a InxGa1−xAs cylindrical nanobridge vs. height h (D = 2 nm). The In concentration x is
considered linearly graded from 0.15 until 0.6. The dashed lines indicate the values for
x = 0.60 while the dot-dashed lines indicate the values for x = 0.15.

As expected [4], there are confined hole states inside the nanobridge, but there are no
confined electron states. The variations of the eigenenergies with the In concentration is
stronger for holes as for electrons.

The localization probabilities, i.e. |Ψ(En; z, r)|2 in [nm−3/2] in the domain (zr) ∈
[−15, 15] × [0, 5], are represented in Fig. 4 as color maps for the first four hole states
for h = 10 nm. As one can observe, the states are strongly localized to the end of
the nanobridge with higher In content. The state n = 4 is weaker localized inside the
nanobridge because its energy is above the valence band offset.

h = 10 nm
hole n = 1 hole n = 2 hole n = 3 hole n = 4

Figure 4: Localization probabilities as (zr)-maps for the first four hole eigenstates for h =
10 nm. Bright means high values. The white lines sketch the domain of the nanobridge.
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The eigenenergies of the hole states in Fig. 3(a) above the valence band offset, which re-
main almost constant, correspond to the states that are localized outside the nanobridge
but inside the ”virtual” cylinder. They are due to Dirichlet boundary conditions on its
surface.

3.2 Isolated quantum dot

We present in this section the hole and electron states in a truncated cone In0.6Ga0.4As
quantum dot. The radii are r1 = rNB = 1 nm and r2 = rQD = 9 nm and the height
of the truncated cone is hQD = 4 nm. The dot is considered alone into the ”virtual”
cylinder with dimensions R = 15 nm and H = 16 nm. The numerical parameters are
mmax = 8 and nev = 10 for electrons and nev = 30 for holes. The number of grid points
are specified on the plot.

The hole and electron eigenvalues are presented in Fig. 5, where also their distribution
over magnetic quantum number m is shown. There are more hole states than electron
states due to larger effective mass of the hole. It is clear that inside the quantum dot
there are at least two electron bound states. The sequence of the magnetic quantum
numbers m in the eigenvalues depends on the dimensions of the quantum dot, i.e. the
ratios hQD/r2 and hQD/r1, and on the effective mass. The sequence of the m values in
the lowest eigenvalues differs for electrons and holes because of the finite confinement
potential, i.e. finite band offsets and also due to the difference of the effective masses in
the quantum dot and in the host material.

(a) Hole energies. (b) Electron energies.

Figure 5: The eigenvalues inside a truncated cone In0.6Ga0.4As quantum dot.

The effect of the dimensions of the virtual cylinder is evidenced in Fig. 6, together with
the number of grid points. The considered values for R and H extend over the confined
region (i.e. the quantum dot) with 3, 6 and 9 nm, respectively.

The bound-states (i.e. the eigenvalues under the valence band or conduction band offset)
do not change with R and H. The other values, above the band offset, of course
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change with R and H, because they are confined by the homogeneous Dirichlet boundary
conditions inside the ”virtual” cylinder with different dimensions. In order to get stable
electron eigenvalues one has to consider at least R = 18 nm.

(a) Hole energies. (b) Electron energies.

Figure 6: The hole and electron eigenvalues inside a truncated cone In0.6Ga0.4As quantum
dot for different dimensions of the virtual cylinder. The grids Nz × Nr are specified in
the legend.

The localization probabilities, i.e. |Ψ(En; z, r)|2 in [nm−3/2] in the domain (zr) ∈
[−15, 15] × [0, 18], for the first four hole eigenfunctions and for the first two electron
eigenfunctions (i.e. bound-states) are presented in Fig. 7 for the case R = 18 nm and
H = 22 nm. They are localized inside the truncated cone. As one can see also in Fig. 5,
they correspond to different m values.

n = 1 n = 2 n = 3 n = 4

(a) Hole states.

n = 1 n = 2

(b) Electron states.

Figure 7: Localization probabilities as (zr)-maps for the first hole and electron eigenstates
in the truncated quantum dot. Bright means high values. The white lines sketch the
domain of the quantum dot.
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3.3 Isolated quantum well

In this section, we model the hole and electron energies inside the In0.15Ga0.85As quantum
well with the width hQW = 11 nm.

3.3.1 Effective one-dimensional model

Fig. 8 shows the solutions of the one-dimensional effective mass Schrödinger equation for
a square well potential [10, Complement HI ]. The same effective mass is considered over
whole structure, namely the value for the In0.15Ga0.85As as in Table 1, m∗ = 0.495m0

for holes and m∗ = 0.057m0 for electrons.

The eigenvalues Ez,i obtained in the one-dimensional model are the minimum energies
of the energy subbands (i.e. energy ladder) that appear in a planar nanostructure. The
dispersion relation for the carriers confined in a quantum well is

E = Ei,z +
~2k2

x

2m∗x
+

~2k2
y

2m∗y
, (14)

where kx and ky are the wave vectors in the x and y-directions that take continuous
values, kx, ky ∈ (−∞,+∞) showing the free motion in these directions.

Inside the quantum well there are at least four hole subbands and two electron subbands.

(a) holes (b) electrons

Figure 8: The eigenenergies and the real eigenfunctions for holes and electrons confined
inside an one-dimensional rectangular quantum well.

3.3.2 ”Quantum well” embedded inside the ”virtual” cylinder

We consider a layer of In0.15Ga0.85As embedded inside a GaAs cylinder. In our three-
dimensional modeling, the quantum well is embedded inside the ”virtual”cylinder. In this
case, it is abusive to speak about a quantum well, because the electrons do not have
two degrees of freedom for the motion inside this subsystem. They are also confined
in the lateral directions (i.e. r-direction and θ-direction) so that the quantum well is a
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quantum dot with the same radius as the nanowire, and in consequence has discrete
energy spectrum.

We will consider a fixed length of the ”virtual” cylinder, H = 30 nm. As is shown in
Fig. 8, the wave functions for both electrons and holes inside the quantum well vanish
at ±15 nm. We consider three different values for R, namely R = 12 nm, R = 15 nm
and R = 18 nm, respectively, the same as for the QD calculations. The other numerical
parameters are mmax = 8 and nev = 10 for electrons and nev = 30 for holes. The mesh
grid used is for all cases hz = hr = 0.05 nm.

In comparison with the previous subsection of the planar quantum well, the virtual cylin-
der provides a supplemental confinement, so that the energy spectrum of the carriers
becomes discrete

En = Ez,i + E
(m)
r,j , (15)

where E
(m)
r,j are the discrete energies due to the confinement in the r-direction. They

depend also on the magnetic quantum number m, due to the confinement in the θ-
direction, and are given by the expression

E
(m)
r,j =

~2

2m∗r

(xmj
R

)2

, (16)

where xmj is the j-th root of the Bessel function of the first kind Jm(x).

The potential for the quantum well is separable, because the well extends over the whole
radius of the cylinder. In turn, one can write for the eigenfunctions

Ψn(z, r) = ϕi(z)ξ
(m)
j (r). (17)

We compute directly En, without writing out in explicit detail the indexes (i, j,m) for
a specific n. The information about m is numerically available. The information about i
and j may be obtained counting the nodes of the eigenfunctions in the z and r-direction,
respectively.

In Fig. 9 are presented, in ascending order, the eigenvalues of a quantum well embedded
inside the virtual cylinder. As one can see the eigenvalues are discrete. The number of
eigenvalues below the valence or conduction band offsets increases with R, because the
energies E

(m)
r,j decrease. In the inset are shown the first eigenvalues, with respect to the

first confined energy in the z-direction, Ez,1. For R < ∞ the eigenvalues E are larger
than Ez,1 and decrease with increasing R.

Due to the cylindrical symmetry used in our model, the eigenstates for m 6= 0 values have
a node at r = 0 that is not physically correct for planar quantum wells. This indicates
that one should consider the eigenstates for m = 0 for cylinders with large R.

After the separate treatment of the subsystems, we can conclude that indeed the electron
ground state in the quantum well is between the ground- and first excited state in
the quantum dot, as shown in Fig. 10. With dashed lines are represented the electron
eigenvalues for the one-dimensional model, while with symbols are represented the lowest
eigenvalues computed within the finite volume method for the isolated quantum dot and
quantum well as discussed in the previous sections.
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(a) Hole energies (b) Electron energies

Figure 9: The eigenenergies for holes and electrons confined inside the quantum well of
width w = 11 nm and embedded in the cylinder of radius R. The first confined energy
in the z-direction, Ez,1, is shown in the inset with dashed line.

Figure 10: Comparison between the first electron states in QW and QD.
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(a) Hole energies (b) Electron energies

Figure 11: Hole and electron energies sorted in increasing order for a specific length of
the nanobridge h.

3.4 Quantum well - nanobridge - quantum dot system

We consider in this section the complete system quantum well - nanobridge - quantum dot
embedded inside the ”virtual” cylinder. The radius and the length of the virtual cylinder
are R = 18 nm and H = 43 nm, respectively. The nanobridge In content is considered
linearly distributed between x = 0.15 and x = 0.6 at the ends. Different values for the
length of the nanobridge are considered, h = 1, 2, ..., 10 nm. The numerical parameters
are mmax = 6 and nev = 10 for electrons, while mmax = 25 and nev = 30 for holes. The
mesh grid is hz = hr = 0.05 nm.

In Fig. 11 are presented the hole and electron energies for the complete system. As
expected, there are much more hole than electron states. This is especially due to the
states inside the quantum well, but there are also states localized purely inside the
quantum dot.

In Fig. 12 are shown in detail the evolution of the hole states with the length of the
nanobridge, i.e. the thickness of the layer between QW and QD. The energy intervals
in Fig. 12 are around the values for the first and second hole states inside the isolated
nanobridge, because we want to pay a particular attention to the role of the nanobridge
in this complex low-dimensional structure. We marked with red ellipses the regions of
crossing points between the eigenvalues. Around these crossing points hybrid states
appear. They are localized not only in one subsystem (i.e. QW, QD or NB), but over
several of them, as denoted in the last row of each table in Fig. 13. As one can see,
there are hybrid states, for holes as well as for electrons, that are localized also inside
the nanobridge. Notice that, the isolated nanobridge does not support localized electron
states, see Sect. 3.1. The next section will establish if these hybrid states are optically
active, so that they contribute to the photoluminescence spectrum.
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(a) (b)

Figure 12: Details of hole states from Fig. 11: around (a) the first and (b) the second
localized state inside an isolated nanobridge, see Fig. 3. The red ellipses mark the regions
for which hybrid states appear.

n = 23 (h = 5) n = 36 (h = 9) n = 49 (h = 3) n = 49 (h = 5)

QD+NB QD+NB QD+NB+QW QD+NB+QW
(a) Hole hybrid states

n = 3 (h = 5) n = 7 (h = 5) n = 9 (h = 5) n = 12 (h = 5)

QD+QW NB+QW QD+NB+QW QD+QW
(b) Electron hybrid states

Figure 13: Localization probabilities for some hybrid states as (zr)-maps for z ∈
[−21.5, 21.5] nm and r ∈ [0, 18] nm. At each state are specified the order and the
h values. Bright means high values. The dashed white lines sketch the regions of QD,
NB and QW. The last row in every table indicates over which regions the hybrid state
extends.
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4 Optical properties: oscillator strengths

In the following are presented the absolute value squared of the overlap integrals between
a hole (ν = hole) state α ≡ nh ≡ (mh, ih) and an electron (ν ′ = electron) state
α′ ≡ ne ≡ (me, ie)

Iν′α′,να ' |〈ψne , |ψnh
〉|2 =

∣∣∣∣∫
Ω

ψ
∗
ν′α′(r)ψνα(r)d3r

∣∣∣∣2 , (18)

called oscillator strength. The quantum numbers (mi) represent the magnetic quantum
number m for which the two-dimensional Schrödinger-type eigenvalue problem is solved
and the i is the order of the computed eigenvalue for this m value. So that these
labels (mi) identify uniquely the electron or hole state. The absolute value squared
of the overlap integral enters the absorption coefficient for the transition (mh, ih) →
(me, ie). Computing the absolute value squared of the overlap integrals cancels the sign
uncertainty in the numerical computation of the envelope functions. For every allowed
transition there is a line denoted by the indexes (me, ie;mh, ih). There are also presented
the absolute value squared of the corresponding wave functions for z ∈ [−15, 15] nm and
r ∈ [0, R] nm. The plots are given for different lengths h of the nanobridge. By changing
h the absorption lines that are due to states purely in quantum dot or in quantum well
should not change their position, while the absorption lines due to the mixed (i.e. hybrid)
states change their position.

For all further calculations H = 43 nm and the In concentration in the nanobridge
x = 0.29. The mesh grid is hz = hr = 0.05 nm.

4.1 R = 18 nm

We present first the results for R = 18 nm. In Fig. 14 are represented the transition lines
at the corresponding transition energies together with the oscillator strengths, exemplar-
ily for a specific h value, i.e. h = 10 nm. In Fig. 15 are represented the localization
probabilities for the electron and hole states that contribute to the transitions.

The evolution of the transition energies (labeled as in Fig. 14) with the nanobridge
length h is plotted in Fig. 16. For h = 10 nm, the states get well separated between
the subsystems, so that it is easier to name the transition energies with respect to the
subsystem in which the highest localization is. This is done in Fig. 16 for every transition
line. The electron state (0, 4) and the hole state (0, 8) remain hybrid states for all h
values, evolving from QW/QD hybrid state to a QW/NB hybrid state.

As expected, there is a weak sensitivity of the optical transitions to the length of the
nanobridge [2]. Furthermore, the lowest transitions are QD-like for this combined system,
because for both holes and electrons the lowest eigenstates are strongly localized inside
the quantum dot.
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Figure 14: Transition lines together with the calculated oscillator strengths, for R = 18
nm.

4.2 R = 36 nm

Increasing the R value one gets even more electron and hole states. The lowest tran-
sition lines remain the same, reflecting the stability of the numerical calculations. The
transition lines together with the oscillator strengths for h = 10 nm and for R = 36
nm are presented in Fig. 17. The evolution of the transition energies show the same
weak sensibility to the h values as in the previous case. Even for this case, there exist
a ”hybridization” effect between two electron states, namely (0, 5) and (0, 6) that takes
place for small h values.

In Fig. 18 are presented the transition energies together with the oscillator strengths

electron states
(0,1) (0,1) (1,2) (1,2) (0,2) (1,1) (1,2) (2,1) (0,3) (3,1) (0,4)

(0,1) (0,2) (1,1) (1,2) (0,5) (1,5) (1,3) (2,3) (0,7) (3,3) (0,8)
hole states

Figure 15: Localization probabilities for z ∈ [−15, 15] nm and r ∈ [0, 18] nm for the
states contributing to the transitions in Fig. 14.
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Figure 16: Transition energies versus the nanobridge length h, for R = 18 nm.

versus the length of the nanobridge h. The transitions (0, 5; 0, 11) and (0, 6; 0, 9) take
place for all h values. For smaller h values, due to the ”interaction”between the electron
states (0, 5) and (0, 6) new transitions appear, namely (0, 5; 0, 9) and (0, 6; 0, 11). These
transitions have a significant oscillator strength (i.e. higher than 0.1) and at the same
time they weaken the oscillator strengths for the other two transitions. The localization
probabilities for these states for h < 6 nm are presented in Fig. 19. One can clearly see,
how the electron states (0, 5) and (0, 6) hybridize. For h > 6 nm there is no significant
change in the localization probabilities of these states. One can also observe, that for
h = 1 nm, the electron state (0, 6) and the hole state (0, 9) extend over QD and QW.

One can conclude that for h ≈ 5 nm a ”hybridization” phenomena [11] takes place
between eigenvalues that cross and in such a way the oscillator strengths of other tran-
sition lines are weakened, producing a maximum around this h value. This may explain
the additional PLE peak that appears only for certain h values [4].

4.3 R = 54 nm

The transition energies around 1.3 eV and the corresponding overlap integrals versus the
lenght h of the nanobridge in case of R = 54 nm are presented in Fig. 20. One can see,
that for small h values there are a few pairs of states that interact (”hybridize”) and the
overlap integrals get modified, such that for h ∈ [4, 6] nm a maximum appears.

4.4 R = 72 nm

In case of R = 72 nm, the hole states (0, 11) and (0, 12) interact significantly for small
h values. The transition energies and the corresponding overlap integrals versus the
lenght h of the nanobridge are presented in Fig. 21. The overlap integral between the
electron state (0, 8) and hole state (0, 12) gets saturated for h > 5 nm. The localization
probabilities are presented in detail in Fig. 22.
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Figure 17: Transition lines together with the calculated oscillator strengths, for R = 36
nm.

(a) Transition energies (b) Oscillator strengths

Figure 18: Transition energies and oscillator strengths for the states that participate to
the hybridization phenomena in case of R = 36 nm.
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h=1 h=2 h=3 h=4 h=5 h=6
electron (0,5)

electron (0,6)

hole (0,9)

hole (0,11)

Figure 19: Localization probabilities for z ∈ [−15, 15] nm and r ∈ [0, 36] nm for the
states that interact strongly in case of R = 36 nm for different lengths h of the
nanobridge.

(a) Transition energies (b) Oscillator strengths

Figure 20: Transition energies and oscillator strengths for the states that participate to
the hybridization phenomena in case of R = 54 nm.
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(a) Transition energies (b) Oscillator strengths

Figure 21: Transition energies and oscillator strengths for the states that participate to
the hybridization in case of R = 72 nm.

h=1 h=2 h=3 h=4 h=5
hole (0,11)

hole (0,12)

Figure 22: Localization probabilities for z ∈ [−15, 15] nm and r ∈ [0, 72] nm for the
states that interact strongly in case of R = 72 nm for different lengths h of the
nanobridge.
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5 Conclusions

We performed electronic structure calculations within single band effective mass approx-
imation for a complex low-dimensional structure: quantum well – nanobridge – quantum
dot. In order to provide a realistic three-dimensional model, we embedded the complete
system inside a ”virtual” cylinder. This model yields some artefacts, even some physical
features of the system are well described. We solved the eigenvalue problem within finite
volume method, in order to take into account the position dependent properties of the
heterostructure materials.

We reproduced the previous results for isolated nanobridge calculations. Furthermore, we
computed the effect of a linear distribution of the In content inside the nanobridge. We
could also check the functionality of a tunnel injection structure: the electron ground
state in the quantum well is energetically between the ground and the first excited
electron state in the quantum dot. For combined system states appear that extend over
different subsystems, i.e. quantum well, quantum dot or nanobridge; not all of them are
optically active.

The computed oscillator strengths reveal the weak sensitivity of the transition energies
on the nanobridge length h. There are states that interact strongly for small distances
between the quantum well and the quantum dot layers. We call this a ”hybridization”
phenomenon and it appears between eigenstates close to the crossing points of the
eigenvalues. Moreover, due to the hybridization, the overlap integrals for some transitions
get a maximum for a limited interval of h values, close to the experimental values. The
”hybridization” phenomenon may be an explanation for the additional features of such
structures for small h values.
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A Material parameters

In this appendix we summarize the material parameters used in our modeling.

The x-dependence of the InxGa1−xAs material parameters are taken from [5]. The ef-
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Material h r ∆Ec ∆Ev m∗e m∗h
[nm] [nm] [eV] [eV] [m0] [m0]

QW In0.15Ga0.85As 11 R 0.121 0.095 0.057 0.495
QD In0.60Ga0.40As 4 9 0.423 0.332 0.038 0.45
NB InxGa1−xAs h 1 (22) (21) (19) (20)

In0.30Ga0.70As 4 9 0.232 0.182 0.050 0.480
host GaAs H R – – 0.063 0.51

Table 1: Material parameters of the In(Ga)As/GaAs structure.

fective electron and hole masses are

m∗e =
(
0.023 + 0.037(1− x) + 0.003(1− x)2

)
m0, (19)

m∗h = (0.41 + 0.1(1− x))m0, (20)

where m0 is the free electron mass. The band discontinuities between InxGa1−xAs/AlyGa1−yAs
are

∆Ec[eV ] = ∆Eg −∆Ev, (21)

∆Ev[eV ] = 0.44 ∆Egg, (22)

∆Egg[eV ] = 1.247y + 1.5x− 0.4x2, (23)

∆Eg[eV ] =

{
∆Egg, for y < 0.45,
0.476 + 0.125y + 0.143y2 + 1.5x− 0.4x2, for y > 0.45,

(24)

where ∆Egg is the difference between Γ-valleys in InxGa1−xAs and AlyGa1−yAs. In our
case y = 0.
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