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Abstract

The aim of this paper, which deals with a class of singular functionals in-
volving difference quotients, is twofold: deriving suitable integral conditions
under which a measurable function is polynomial and stating necessary and
sufficient criteria for an integrable function to belong to a kth-order Sobolev
space. One of the main theorems is a new characterization of W k,p(Ω), k ∈ N
and p ∈ (1,+∞), for arbitrary open sets Ω ⊂ Rn. In particular, we provide
natural generalizations of the results regarding Sobolev spaces summarized
in Brézis’ overview article [Russ. Math. Surv. 57 (2002), pp. 693-708] to
the higher-order case, and extend the work by Borghol [Asymptotic Anal.
51 (2007), pp. 303-318] to a more general setting.

1. Introduction

The main motivation for this work was the overview paper by Brézis [5] on the question of
how to recognize constant functions through integral conditions, where the author essentially
collects the basic ideas of the work by Bourgain, Brézis & Mironescu [3, 4] regarding the
characterization of Sobolev and BV spaces in terms of singular integrals. Interestingly, this
problem turns out to be relevant for improved models in image and signal processing due to
its close relation with the nonlocal functionals recently proposed by Gilboa & Osher [8, 9]
to avoid the undesirable staircase effect (see [11, 1]). Further applications and connections
pointed out in [5] include lifting maps with values on the unit sphere, degree theory for
classes of discontinuous functions, and the space VMO of functions with vanishing mean
oscillation.

In what follows, we focus on extending the results of [5] regarding the characterization of
first-order Sobolev spaces to the higher-order case. This will also yield criteria for recognizing
polynomials.

Let us start by recalling one of the results in [5] concerning integral conditions only
satisfied by constant functions.

Proposition 1.1 ([5, Proposition 2]). Let Ω ⊂ Rn be a connected open set and let f : Ω→
R be a measurable function such that

∫

Ω

∫

Ω

|f(x)− f(y)|p
|x− y|n+p

dy dx < +∞ (1.1)

for some p ∈ [1,+∞). Then f is a constant function.

In [5], the proof of Propositions 1.1 follows from a more general result (see [5, Theorem 1]),
which asserts that if (ρε)ε is a family of mollifiers such that for all ε > 0,

ρε ∈ L1
loc(0,+∞), ρε ≥ 0,

∫

Rn
ρε(|h|) dh = 1, (1.2)

and for all γ > 0,

lim
ε→0+

∫

{|h|>γ}
ρε(|h|) dh = 0, (1.3)

then the only measurable functions f : Ω→ R satisfying

lim
ε→0+

∫

Ω

∫

Ω

|f(x)− f(y)|p
|x− y|p ρε(|x− y|) dy dx = 0, (1.4)

with p ∈ [1,+∞) and Ω ⊂ Rn open and connected, are the constant functions. Provided
(1.1) holds true, then (1.4) is satisfied for the specific choice of mollifiers

ρε(r) :=
ε

Hn−1(Sn−1) rn−ε
χ(0,1)(r), r ∈ (0,+∞), ε > 0.

Moreover, if Ω is open and connected and f is constant on any ball contained in Ω, then f
is constant in Ω; thus, it suffices to assume that (1.1) or (1.4) hold on any such ball.
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In turn, the proof of the sufficiency of condition (1.4) for f being constant is based on a
new characterization of Sobolev and BV spaces for smooth, bounded domains summarized
in the following result, which was first proved by Bourgain, Brézis & Mironescu [3, 4] in the
Sobolev setting and in the BV setting for n = 1, and by Dávila [6] in the BV setting for
any n ∈ N.

Theorem 1.2 ([5, Theorems 2 and 3, Remark 7]; see also [3, 4, 6]). Let Ω ⊂ Rn be either
a smooth, bounded, and open set or the whole space Rn. Let f ∈ Lp(Ω), with p ∈ [1,+∞),
and let (ρε)ε be a family of mollifiers satisfying (1.2) and (1.3). Then

{
f ∈W 1,p(Ω) if p > 1,
f ∈ BV (Ω) if p = 1,

if and only if

lim sup
ε→0+

∫

Ω

∫

Ω

|f(x)− f(y)|p
|x− y|p ρε(|x− y|) dy dx < +∞, (1.5)

in which case

lim
ε→0+

∫

Ω

∫

Ω

|f(x)− f(y)|p
|x− y|p ρε(|x− y|) dy dx = Kn,p

∫

Ω

|∇f(x)|p dx, (1.6)

where Kn,p is a constant only depending on n and p, and for p = 1,
∫

Ω
|∇f(x)| dx denotes

the total variation of the distributional derivative of f .

Several questions related to Proposition 1.1 and Theorem 1.2 were raised in [5]. Let us
emphasize here three of them (see [5, Remark 1, Problem 2, Remark 5]).

Question A. Is there a direct, elementary proof of Proposition 1.1, that is, without
involving Sobolev or BV spaces?

Question B. Given a smooth, connected, and open set Ω ⊂ Rn and a continuous function
ω : [0,+∞) → [0,+∞) such that ω(0) = 0 and ω(t) > 0 for all t > 0, what additional
conditions (if any) on ω and/or on f should be imposed so that replacing (1.1) with

∫

Ω

∫

Ω

ω

( |f(x)− f(y)|
|x− y|

)
1

|x− y|n dy dx < +∞, (1.7)

still entails that f is constant?
Question C. If Ω ⊂ Rn is an open and bounded set whose boundary ∂Ω is not smooth,

it is possible to construct an example of a function f ∈ W 1,p(Ω) for which (1.5) fails. For
such sets Ω, what condition should replace (1.5) in order to derive an analogous result to
Theorem 1.2?

Question A was addressed for p = 1 by De Marco, Mariconda & Solimini [7], who provide
two different arguments with no connections to BV or Sobolev spaces. Their first proof uses
a convolution argument, while the second one is based on a kind of non-smooth mean value
theorem.

Question B was discussed in detail by Ignat [10]. For instance, in [10, Theorem 1.3] it is
proved that if ω is, in addition, such that lim inft→+∞ ω(t)/t > 0, then the only measurable
functions satisfying (1.7) are constants. We refer to [10] for other statements related to
Question B.

Regarding Question C, an answer was given by Leoni & Spector [11], who provide a
characterization of the spaces W 1,p(Ω), p ∈ (1,+∞), and BV (Ω) for arbitrary open sets
Ω ⊂ Rn (hence not necessarily smooth or bounded) by replacing condition (1.5) with

lim
λ→0+

lim sup
ε→0+

∫

Ωλ

∫

Ωλ

|f(x)− f(y)|p
|x− y|p ρε(|x− y|) dy dx < +∞, (1.8)

where Ωλ := {x ∈ Ω: |x| < 1/λ, dist(x, ∂Ω) > λ} (see [11, Theorems 1.5 and 1.9] as well as
[12] for the full result).

The main goal of this paper is to extend Proposition 1.1, or more generally [5, Theorem 1]
(cf. (1.4)), and Theorem 1.2 to the higher-order case addressing simultaneously Questions A,
B, and C. Before stating our main results, we start by mentioning that a generalization of
Theorem 1.2 to the context of Sobolev and BV spaces of higher-order, which yields criteria
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for recognizing polynomials, was studied by Borghol [2]. However, the results in [2] only
hold for bounded, open, smooth, and convex sets Ω ⊂ Rn. Here, besides treating the case of
arbitrary open sets, we present different integral conditions involving higher-order difference
quotients that require only weak assumptions on the function to be characterized, and that
seem better suited for the application in image denoising models with nonlocal regularization
terms in the spirit of [8, 9, 1].

Given a measurable function f : Rn → R, we define the forward differences ∆hf : Rn → R
by ∆hf(x) := f(x + h) − f(x) for x, h ∈ Rn. Setting ∆1

hf := ∆hf , kth-order forward
differences are defined inductively by

∆k
hf(x) := ∆h

(
∆k−1
h f(x)

)
, x, h ∈ Rn, k ∈ N, k ≥ 2. (1.9)

The following proposition, which is a consequence of Theorem 1.4 below, is a natural
generalization of Proposition 1.1 to the higher-order case for functions defined on Rn.

Proposition 1.3. Let k ∈ N, p ∈ [1,+∞), and f : Rn → R a measurable function such
that ∫

Rn

∫

Rn

|∆k
hf(x)|p
|h|n+kp

dh dx < +∞. (1.10)

Then f coincides with a polynomial of degree at most k − 1 almost everywhere in Rn.

While in the case k = 1 measurability of a function f satisfying (1.10) implies its local
integrability almost immediately (see Remark 3.2 (ii)), for k > 1 this issue is non-trivial and
to our knowledge has not been treated before in the context of higher orders. In Section 3
we give detailed proofs, showing in particular the local integrability of a measurable function
satisfying (1.10). The arguments use ideas from Stein & Zygmund [15].

We now state a refined and more flexible version of Proposition 1.3 inspired by (1.4) and
Question B. Throughout the paper, we assume that

ω : [0,+∞)→ [0,+∞) is a strictly increasing, convex function with ω(0) = 0. (1.11)

Theorem 1.4. Let k ∈ N, Ω ⊂ Rn a connected open set, ω a function as in (1.11), and
(ρε)ε a family of mollifiers satisfying (1.2) and (1.3). Suppose that f : Ω → R is a locally
integrable function such that for every x0 ∈ Ω, there exists r0 > 0 with B(x0, (k+ 1)r0) ⊂ Ω
and

lim
ε→0+

∫

B(x0,r0)

∫

B(0,r0)

ω

( |∆k
hf(x)|
|h|k

)
ρε(|h|) dh dx = 0. (1.12)

Then f coincides almost everywhere in Ω with a polynomial of degree smaller than or equal
to k − 1.

Remark 1.5. (i) Local character of (1.12). We note that if x0 ∈ Ω and r0 > 0 are as
in Theorem 1.4, then the integrand of the double integral on the left-hand side of (1.12)
is well-defined for every (x, h) ∈ B(x0, r0) × B(0, r0). As it will become clear within the
proof of Theorem 1.4, condition (1.12) implies that f coincides with a polynomial of degree
at most k − 1 almost everywhere in a neighborhood of x0. As Ω is open and connected, a
covering argument yields the same conclusion in Ω.

(ii) Local integrability vs. measurability of f . Under an extra assumption on (ρε)ε, which
we call hypothesis (H) and which is stated in Definition 3.3, the condition f ∈ L1

loc(Ω) in
Theorem 1.4 can be weakened by requiring only measurability of f , see Corollary 3.5.

(iii) Comparison with [10, Theorem 1.3]. Concerning the assumptions on the function ω,
our arguments rely crucially on the monotonicity and convexity of ω. Since these hypotheses
imply that lim inft→+∞ ω(t)/t > 0, Theorem 1.4 can be viewed as a particular case of [10,
Theorem 1.3] for k = 1 (cf. (1.7)).

One way to prove Theorem 1.4 - at least in the case where ω features standard p-growth
with p ∈ [1,+∞) - is by an excursion through the theory of Sobolev spaces, that is, by
considering it a corollary of Theorem 1.6 below (see also Remark 5.2 for the case p =
1). Alternatively, we provide an independent proof using only elementary arguments in
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Section 4. We would like to stress that these arguments differ from the ones in [7], for which
reason our proof can be seen as another answer to Question A valid for any k ∈ N.

Finally, the next theorem provides a characterization of higher-order Sobolev spaces of
functions defined on arbitrary open subsets of Rn. It extends Theorem 1.2 and addresses
Question C. For an explanation of the special notation used here we refer to Section 2.

Theorem 1.6. Let k ∈ N, Ω ⊂ Rn an open set, (ρε)ε a family of mollifiers satisfying (1.2)
and (1.3), and f ∈ Lploc(Ω) for some p ∈ (1,+∞). Assume that, in addition to (1.11), ω
has p-growth, i.e.,

mtp ≤ ω(t) ≤Mtp (1.13)
for all t ∈ [0,+∞), with 0 < m ≤ M . For any x ∈ Ω, let rx ∈ (0,+∞] denote rx :=
dist(x, ∂Ω)/k. Then f ∈W k,p

loc (Ω) with Dkf ∈ Lp(Ω; Rnk) if and only if

lim sup
ε→0+

∫

Ω

∫

B(0,rx)

ω

( |∆k
hf(x)|
|h|k

)
ρε(|h|) dh dx < +∞, (1.14)

in which case the following equality and bounds hold 1 :

lim
ε→0+

∫

Ω

∫

B(0,rx)

ω

( |∆k
hf(x)|
|h|k

)
ρε(|h|) dh dx

=
∫

Ω

−
∫

Sn−1
ω
(
|σk(h)∇(Dk−1f)(x)h|

)
dHn−1(h) dx,

(1.15)

and

mKn,p,k

∫

Ω

|Dkf(x)|p dx ≤
∫

Ω

−
∫

Sn−1
ω
(
|σk(h)∇(Dk−1f)(x)h|

)
dHn−1(h) dx

≤M
∫

Ω

|Dkf(x)|p dx,
(1.16)

where 0 < Kn,p,k ≤ 1 is a constant depending on n, p, and k.

Remark 1.7. (i) Basic choice for ω. The most common choice for ω is to set ω(t) := tp

for t ∈ [0,+∞). In this case (1.15) specializes to

lim
ε→0+

∫

Ω

∫

B(0,rx)

|∆k
hf(x)|p
|h|kp ρε(|h|) dh dx =

∫

Ω

−
∫

Sn−1
|σk(h)∇(Dk−1f)(x)h|p dHn−1(h) dx,

and (1.16) holds with m = M = 1.
(ii) More general growth conditions for ω. If Ω has finite measure, condition (1.13) may

be replaced by
mtp − c ≤ ω(t) ≤Mtp + C

for all t ∈ [0,+∞), with 0 < m ≤ M and c, C ≥ 0. In this case, (1.15) remains un-
changed, while a lower bound and an upper bound on (1.16) are given, respectively, by
mKn,p,k

∫
Ω
|Dkf(x)|p dx− c|Ω| and M

∫
Ω
|Dkf(x)|p dx+ C|Ω|.

(iii) Local integrability vs. measurability of f . In view of Corollary 3.5, we can take a
measurable function f instead of f ∈ Lploc(Ω) as a starting point in Theorem 1.6, provided
the sequence of mollifiers satisfies (H) (cf. Definition 3.3).

(iv) First-order Sobolev spaces. If k = 1, then the constant Kn,p,k, which follows from a
minimization problem (see (5.1)), can be computed explicitly and we find that it equals the
constant Kn,p in Theorem 1.2 (see Remark 5.1). Moreover, having in mind that σ1(h) = 1
and D0f = f , for the choice ω(t) = tp, t ∈ [0,+∞), the inequalities in (1.16) may be
replaced by the identity∫

Ω

−
∫

Sn−1
|∇f(x)h|p dHn−1(h) dx = Kn,p

∫

Ω

|∇f(x)|p dx.

Hence, our result provides another integral condition, namely (1.14), which allows recovering
the semi-norm Kn,p

∫
Ω
|∇f(x)|p dx on W 1,p(Ω) for arbitrary open sets Ω ⊂ Rn and is

1As we will detail in Section 2, σk(h)∇(Dk−1f)(x)h =
Pn

i1,...,ik=1
∂kf

∂xi1 ... ∂xik
(x)hi1 · · · hik .
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different from (1.5) and (1.8) if Ω 6= Rn. For Ω = Rn and k = 1, a change of variables
transforms the left-hand side of (1.14) into

lim sup
ε→0+

∫

Rn

∫

Rn
ω

( |f(x+ h)− f(x)|
|h|

)
ρε(|h|) dh dx

= lim sup
ε→0+

∫

Rn

∫

Rn
ω

( |f(x)− f(y)|
|x− y|

)
ρε(|x− y|) dy dx.

We also refer to the work by Nguyen [13, 14] for another characterization of W 1,p(Rn).
(v) Equivalent norms for higher-order Sobolev spaces. Note that (1.15) provides an equiv-

alent semi-norm on W k,p(Ω) and, in view of the Gagliardo-Nirenberg interpolation inequal-
ities, equivalent norms on W k,p(Ω′) for Ω′ ⊂⊂ Ω sufficiently regular.

(vi) The case p = 1. In this work we do not deal with the BV setting. Nevertheless,
the arguments used here yield partial results in this direction, which are summarized in
Remark 5.2.

While the related characterization of Sobolev spaces in [2, Theorem 4 and 5] is restricted
to open, bounded, convex sets Ω ⊂ Rn with smooth boundary only, Theorem 1.6 gives nec-
essary and sufficient conditions for Sobolev functions on general open sets. This particularly
includes the case Ω = Rn.

In [2] the author uses as integrands a special type of kth-order differences that are com-
patible with the two identical integration domains Ω. Then, for the sake of well-definedness
Ω needs to be convex. Precisely, the counterpart of (1.14) in [2] reads

lim sup
ε→0+

∫

Ω

∫

Ω

∣∣∣∣
k∑

j=0

(−1)j
(
k

j

)
f

(
(k − j)x+ jy

k

)∣∣∣∣
p

|x− y|−kpρε(|x− y|) dy dx < +∞.

The assumption of convexity for the set Ω, though, is rather restrictive. We instead chose to
work with classical forward differences - central differences would be equally suited - for the
integrand. In our approach there is full generality for the first domain Ω, while the second
domain of integration needs to be adapted suitably, so that symmetry with respect to the
two variables is lost. Depending on the focus and the applications in mind, different kinds
of double integral conditions appear reasonable. One requirement and constraint, however,
when working with functions defined on a bounded set Ω is to adjust the integrand and the
integration domains in such a way that the expressions are well-defined. To us there seems
to be no way around a compromise between structure or symmetry and generality.

This paper is organized as follows. After introducing some notation related to difference
quotients and Taylor series in Section 2, we give a useful integral condition under which a
measurable function is locally integrable in Section 3 that allows removing the local inte-
grability hypotheses in Theorems 1.4 and 1.6 provided the mollifiers satisfy an additional
hypothesis. Section 4 is devoted to the proof of Theorem 1.4 and an immediate consequence
formulated in Proposition 1.3. In Section 4, Theorem 1.4 will be proved only using elemen-
tary arguments. Finally, in the last section we prove Theorem 1.6 and, as a corollary, we
provide an alternative proof of Theorem 1.4.

2. Notation and preliminaries

Throughout these notes let Mmn be the set of m × n matrices with entries in R. For
F ∈Mmn we denote by |F | the Frobenius norm of F . The Lebesgue measure of a set E ⊂ Rn
is written as |E|, whereas Hn−1(E) stands for its (n − 1)-dimensional Hausdorff measure.
Moreover, χE is the characteristic function of a set E ⊂ Rn, meaning that χE(x) = 1 if
x ∈ E and χE(x) = 0 otherwise. For x ∈ Rn and r > 0 let B(x, r) stand for the open ball
in Rn of radius r around x. The unit sphere in Rn is referred to as Sn−1.

For a measurable function f : Rn → R, the kth-order forward differences introduced in
(1.9) are alternatively given by the explicit formula

∆k
hf(x) =

k∑

j=0

(−1)k−j
(
k

j

)
f(x+ jh), x, h ∈ Rn, (2.1)
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where
(
k
j

)
= k!

j!(k−j)! for j = 0, . . . , k. If k = 2, for instance, we have ∆2
hf(x) = f(x+ 2h)−

2f(x+ h) + f(x) for x, h ∈ Rn.
If f is smooth, i.e., f ∈ Ck+1(Rn), the Taylor expansion of f about a fixed x ∈ Rn is

given by

f(x+ h) = f(x) + f ′(x)h+
1
2!
f ′′(x)h2 + · · ·+ 1

k!
f (k)(x)hk +R(k)(h;x), (2.2)

where for h ∈ Rn,

f (k)(x)hk :=
n∑

i1,...,ik=1

∂kf

∂xi1 ... ∂xik
(x)hi1 · · · hik .

Here R(k) denotes the Taylor remainder of f , which can be represented as

R(k)(h;x) =
1

(k + 1)!
f (k+1)(x+ θh)hk+1 (2.3)

for some θ ∈ (0, 1) depending on x and h. From this it follows that

∆k
hf(x) = f (k)(x)hk + R̃(k)(h;x), h ∈ Rn, (2.4)

where R̃(k)(h;x) is a linear combination (with coefficients depending only on k) of R(k)(lh;x)
with l ∈ {1, . . . , k} and therefore,

lim
|h|→0+

R̃(k)(h;x)
|h|k = 0. (2.5)

For instance, if k = 2, since ∆2
hf(x) = f(x + 2h) − f(x) − 2(f(x + h) − f(x)), using (2.2)

yields ∆2
hf(x) = f ′′(x)h2 +R(2)(2h;x)− 2R(2)(h;x) and thus

R̃(2)(h;x) = R(2)(2h;x)− 2R(2)(h;x).

Let us rewrite (2.2) in a vectorial form that will be useful in the sequel to clarify the
presentation when proving Theorem 1.6. Given a C1-function g : Rn → Rm, we denote by
∇g the m× n matrix

∇g =
( ∂gi
∂xj

)
1≤i≤m
1≤j≤n

∈Mmn.

Let ψn,m : Mmn → Rnm be defined by

ψn,m(A) := (a11 · · · a1n a21 · · · a2n · · · am1 · · · amn)T , A = (aij) 1≤i≤m
1≤j≤n

∈Mmn.

We now define recursively the functions Dlf : Rn → Rnl and σl : Rn → M1nl−1 with
l ∈ {1, · · · , k} by setting

D0f := f,

D1f := ψn,1(∇f),

Dlf := ψn,nl−1(∇(Dl−1f)), 2 ≤ l ≤ k,
and for h ∈ Rn,

σ1(h) := 1 ∈ R,
σl(h) :=

(
h1(σl−1(h)) · · · hn(σl−1(h))

)
, 2 ≤ l ≤ k.

By construction σl is (l − 1)-homogeneous and

|σl(h)| = |h|l−1, h ∈ Rn. (2.6)

Under these notations, (2.2) and (2.4) can be rewritten as follows:

f(x+ h) = f(x) + σ1(h)∇f(x)h+
1
2!
σ2(h)∇(D1f)(x)h+ · · ·

+
1
k!
σk(h)∇(Dk−1f)(x)h+R(k)(h;x),

(2.7)

and

∆k
hf(x) = σk(h)∇(Dk−1f)(x)h+ R̃(k)(h;x). (2.8)
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If the real-valued function f is not defined on the entire space, but only in an open set
Ω ⊂ Rn, then the definitions above apply locally.

3. Local integrability

The following lemma gives an integral condition involving higher-order difference quo-
tients that is sufficient for a measurable function to be locally integrable. This result is
the essential tool that allows us to formulate Theorem 1.4 and Theorem 1.6 for measurable
instead of locally integrable functions, provided the mollifiers ρε satisfy the condition (H) in
Definition 3.3. Our result relies on the arguments used by Stein & Zygmund [15, Lemma 13],
where first-order differences were considered.

Lemma 3.1. Let k ∈ N, Ω ⊂ Rn an open set, ω a function as in (1.11), and f : Ω → R
a measurable function. Assume that x0 ∈ Ω is such that there exists r0 > 0 for which
B(x0, (k + 1)r0) ⊂ Ω and ∫

B(0,r0)

ω
(
|∆k

hf(x)|
)

dh < +∞ (3.1)

for almost every x ∈ B(x0, r0). Then f is locally integrable in B(x0, r0). In particular, if
the requirements above hold true for almost every x0 ∈ Ω, then f ∈ L1

loc(Ω).

Proof. Let x0 ∈ Ω and r0 > 0 be as in the assumption. For N ∈ N we define

EN :=
{
x ∈ B(x0, r0) : |f(x)| ≤ N,

∫

B(0,r0)

ω
(
|∆k

hf(x)|
)

dh ≤ N
}
.

Observe that EN ⊂ EN+1 for all N ∈ N and |B(x0, r0) \⋃+∞
N=1EN | = 0. By FN we denote

the set of density points of EN , i.e.,

FN :=
{
x ∈ EN : lim

η→0+
−
∫

B(x,η)

χEN (w) dw = 1
}
.

Owing to Lebesgue’s density theorem, |EN \FN | = 0 for all N ∈ N. We will prove that f is
integrable in a neighborhood of every point in

⋃+∞
N=1 FN , from which we may immediately

conclude the statement.
In the following let N ∈ N be fixed, and write E = EN and F = FN . Then,

∫

E

∫

B(0,r0)

ω(|∆k
hf(x)|) dh dx ≤ N |E|.

Performing the change of variables x = 1
2 (y + z) and h = 1

2 (y − z), i.e., considering on
M :=

{
(y, z) ∈ Rn × Rn : 1

2 (y + z) ∈ E , 1
2 (y − z) ∈ B(0, r0)

}
⊂ Ω× Ω the diffeomorphism

ϕ :M→ E ×B(0, r0), (y, z) 7→ (x, h) =
(

1
2 (y + z), 1

2 (y − z)
)
,

entails ∫

M
ω
(∣∣∆k

y−z
2
f
(
y+z

2

)∣∣
)

d(y, z) ≤ 2nN |E| < +∞, (3.2)

where we used the equality |det∇ϕ| = 2−n. Notice that (2.1) implies

∆k
y−z

2
f
(
y+z

2

)
=

k∑

j=0

(−1)k−j
(
k

j

)
f
(

(j+1)y−(j−1)z
2

)

=
k∑

j=0,j 6=1

(−1)k−j
(
k

j

)
f
(

(j+1)y−(j−1)z
2

)
+ (−1)k−1kf(y)

(3.3)

for all (y, z) ∈M.
Let us define N :=

{
(y, z) ∈ M : 1

2

(
(j + 1)y − (j − 1)z

)
∈ E , j = 2, . . . , k

}
. Note that if

(y, z) ∈ N , then y ∈ Ω and 1
2

(
(j + 1)y− (j − 1)z

)
∈ E for all j ∈ {0, . . . , k} \ {1}. Hence, in

view of the properties of E and the fact that

ω

( |ξ1|
2

)
≤ 1

2
ω(|ξ2 − ξ1|) +

1
2
ω(|ξ2|) (3.4)
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for all ξ1, ξ2 ∈ Rn, owing to the monotonicity and convexity of ω, we derive from (3.2) and
(3.3) that
∫

N
ω
(
k
2 |f(y)|

)
d(y, z) ≤ 1

2

∫

N
ω
(∣∣∣∆k

y−z
2
f(y+z

2 )− (−1)k−1kf(y)
∣∣∣
)

d(y, z) + 2n−1N |E|

≤ 1
2
|N |ω

(
N

k∑

j=0,j 6=1

(
k

j

))
+ 2n−1N |E| < +∞.

(3.5)
For y ∈ Rn let us set

ζ(y) :=
∫

Rn
χB(0,r0)

(
y−z

2

)
χE
(
y+z

2

) k∏

j=2

χE
(

(j+1)y−(j−1)z
2

)
dz.

It follows from (3.5) together with Fubini’s theorem that
∫

Ω

ω
(
k
2 |f(y)|

)
ζ(y) dy =

∫

N
ω
(
k
2 |f(y)|

)
d(y, z) < +∞. (3.6)

The next step consists in deriving a lower bound on ζ. In the following we denote
ψE := 1− χE . For y ∈ Rn and η > 0 one obtains

ζ(y) ≥
∫

B(y,η)

χE
(
y+z

2

) k∏

j=2

χE
(

(j+1)y−(j−1)z
2

)
dz

≥ |B(y, η)| −
∫

B(y,η)

ψE(y+z
2 ) dz −

k∑

j=2

∫

B(y,η)

ψE
(

(j+1)y−(j−1)z
2

)
dz

= ηn|B(0, 1)| − 2n
∫

B(y, η2 )
ψE(w) dw − 2n

k∑

j=2

(j − 1)−n
∫

B(y, (j−1)η
2 )

ψE(w) dw.

(3.7)

The estimates in (3.7) may be proved arguing inductively, observing that if B, A1, and A2

are three measurable sets in Rn, then∫

B

χA1(w)χA2(w) dw =
∫

B

χA1(w) dw −
∫

B

χA1(w)ψA2(w) dw

≥
∫

B

χA1(w) dw −
∫

B

ψA2(w) dw

= |B| −
∫

B

ψA1(w) dw −
∫

B

ψA2(w) dw.

Let ȳ ∈ F , where we recall F is the set of density points of E . Then,

lim
δ→0+

−
∫

B(ȳ,δ)

ψE(w) dw = 0.

Consequently, for y ∈ B(ȳ, η), it holds that
∫

B(y, η2 )
ψE(w) dw ≤

∫

B(ȳ, 3η2 )
ψE(w) dw =

(
3
2

)n
ηn|B(0, 1)| −

∫

B(ȳ, 3η2 )
ψE(w) dw = o(ηn)

(3.8)
as η → 0+, and for j = 2, . . . , k,∫

B(y, (j−1)η
2 )

ψE(w) dw ≤
∫

B(ȳ, (j+1)η
2 )

ψE(w) dw

=
(
j + 1

2

)n
ηn|B(0, 1)| −

∫

B(ȳ, (j+1)η
2 )

ψE(w) dw = o(ηn)
(3.9)

as η → 0+. From (3.7), (3.8), and (3.9), we conclude that if η > 0 is sufficiently small
(depending on ȳ ∈ F), then B(ȳ, η) ⊂ Ω and

ζ(y) ≥ 1
2
|B(0, 1)|ηn
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for all y ∈ B(ȳ, η). Plugging this into (3.6) entails
∫

B(ȳ,η)

ω
(
k
2 |f(y)|

)
dy ≤ 2

|B(0, 1)|ηn
∫

Ω

ω
(
k
2 |f(y)|

)
ζ(y) dy < +∞.

Finally, in view of the properties of ω there exists a linear lower bound on ω of the form
l : [0,+∞)→ R, l(t) = mt− c with m, c > 0. This implies

∫

B(ȳ,η)

|f(y)| dy ≤ 2
km

∫

B(ȳ,η)

ω
(
k
2 |f(y)|

)
+ c dy < +∞. (3.10)

Hence, f ∈ L1(B(ȳ, η)). �

Remark 3.2. (i) Let p ∈ [1,+∞) and assume that the function ω in Lemma 3.1 satisfies
a p-coercivity condition, i.e.,

ω(t) ≥ mtp − c (3.11)

for t ∈ [0,+∞), with constants m > 0 and c ≥ 0. Then we even obtain f ∈ Lploc(Ω). To see
this, simply replace (3.10) by an analogous reasoning with (3.11) instead of the lower bound
l.

(ii) In the case of first-order differences, i.e., for k = 1, the proof of Lemma 3.1 can be
shortened by choosing a simpler change of variables better suited for this context. Indeed,
fix x0 ∈ Ω and let r0 > 0 be such that (3.1) holds with k = 1. Then, for almost all
x ∈ B(x0, r0),

+∞ >

∫

B(0,r0)

ω(|f(x+ h)− f(x)|) dh =
∫

B(x,r0)

ω(|f(y)− f(x)|) dy

≥
∫

B(x,r0)

2ω( 1
2 |f(y)|) dy − ω(|f(x)|)|B(0, r0)|,

where we used (3.4). In analogy to (3.10) we derive f ∈ L1(B(x, r0)) for almost all x ∈
B(x0, r0), and thus f ∈ L1(B(x0, r0)).

To formulate a helpful implication of the previous lemma we make the following definition.

Definition 3.3. We say that a family of mollifiers (ρε)ε satisfies hypothesis (H), if for
each ε > 0 there exist constants δε > 0 and cε > 0 such that ρε(r) ≥ cε for all r ∈ (0, δε).

As the next example shows, a family of mollifiers satisfying (1.2) and (1.3) does not
necessarily satisfy (H). Nevertheless, there is a number of interesting families of mollifiers
that, in addition to (1.2) and (1.3), satisfy (H).

Example 3.4. For 0 < ε < 1, let ρ1
ε, ρ

2
ε, ρ

3
ε : (0,+∞) → [0,+∞) be the functions intro-

duced in [5, Remark 8] by setting

ρ1
ε(r) :=

ε

Hn−1(Sn−1) rn−ε
χ(0,1)(r), ρ2

ε(r) :=
n

Hn−1(Sn−1) εn
χ(0,ε)(r),

ρ3
ε(r) :=

1
Hn−1(Sn−1)| log ε| rnχ(ε,1)(r),

for r ∈ (0,+∞). Then (ρ1
ε)ε and (ρ2

ε)ε satisfy (1.2), (1.3), and (H), whereas (ρ3
ε)ε satisfies

(1.2) and (1.3), but not (H).

Next we prove a consequence of Lemma 3.1 that, as announced before, allows us to
remove the hypotheses of local integrability and local p-integrability of f in Theorem 1.4
and in Theorem 1.6, respectively, provided that the family (ρε)ε satisfies condition (H).

Corollary 3.5. Let k ∈ N, Ω ⊂ Rn an open set, ω a function as in (1.11), and (ρε)ε a
family of mollifiers satisfying (1.2), (1.3), and (H).
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(i) Suppose that f : Ω → R is a measurable function such that for every x0 ∈ Ω there
exists r0 > 0 for which B(x0, (k + 1)r0) ⊂ Ω and

lim sup
ε→0+

∫

B(x0,r0)

∫

B(0,r0)

ω

( |∆k
hf(x)|
|h|k

)
ρε(|h|) dh dx < +∞. (3.12)

Then, f ∈ L1
loc(Ω). In addition, if ω also fulfills (3.11) for some p ∈ [1,+∞), then

f ∈ Lploc(Ω).
(ii) If f : Ω→ R is a measurable function satisfying (1.12), then f ∈ L1

loc(Ω).
(iii) Let f : Ω→ R be a measurable function satisfying (1.14) and let ω meet in addition

the coercivity condition (3.11) for some p ∈ [1,+∞). Then f ∈ Lploc(Ω).

Remark 3.6. In the case k = 1 Theorem 1.4 holds for f measurable without requiring
the family (ρε)ε to satisfy hypothesis (H). In fact, as suggested in [7], it suffices to replace
f with arctan f : if f satisfies (1.12), then so does arctan f , which is a locally integrable
function. On the other hand, if arctan f is constant, then so is f .

Proof. To prove (i), let x0 ∈ Ω. By assumption, there exist r0 > 0 and ε > 0 such that the
double integral ∫

B(x0,r0)

∫

B(0,r0)

ω

( |∆k
hf(x)|
|h|k

)
ρε(|h|) dh dx

is finite. By hypothesis (H), we deduce that for r̃0 := min{δε, r0, 1},
∫

B(x0,r0)

∫

B(0,r0)

ω

( |∆k
hf(x)|
|h|k

)
ρε(|h|) dh dx ≥ cε

∫

B(x0,r̃0)

∫

B(0,r̃0)

ω
(
|∆k

hf(x)|
)

dh dx.

Thus, ∫

B(0,r̃0)

ω
(
|∆k

hf(x)|
)

dh < +∞

for almost every x ∈ B(x0, r̃0). From Lemma 3.1 and the arbitrariness of x0 ∈ Ω, we
conclude that f ∈ L1

loc(Ω). If, in addition, ω satisfies (3.11) for some p ∈ [1,+∞), then by
Remark 3.2 (i) we obtain f ∈ Lploc(Ω).

Statement (ii) is an immediate consequence of (i).
To show (iii), we fix x0 ∈ Ω and define r0 := dist(x0, ∂Ω)/(2k). Then, B(x0, (k+ 1)r0) ⊂

Ω. Moreover, for all x ∈ B(x0, r0),

rx =
dist(x, ∂Ω)

k
≥ dist(x0, ∂Ω)

k
− |x− x0|

k
≥ 2r0 −

r0

k
≥ r0,

and consequently, (iii) follows from (1.14) in conjunction with (i). �

4. Characterization of polynomials

This section is devoted to the proof of Theorem 1.4 and Proposition 1.3. As we will
show at the end of Section 5, in the case where ω satisfies, in addition, (3.11) with c = 0,
Theorem 1.4 is essentially a corollary of Theorem 1.6 and Remark 5.2. Nevertheless, we
think that even in this case it is interesting to give an elementary proof without using the
connection to Sobolev or BV spaces.

Proof of Theorem 1.4. The proof is divided into two steps, where we prove the assertion
first for f smooth and then for f locally integrable.

Step 1: Let us assume first that f ∈ C∞(Ω).
Inspired by [7], we start by showing that there is a positive sequence (rj)j with rj → 0+

such that

lim inf
j→+∞

∫

B(x0,r0)

ω

(
|∆k

rjθ
f(x)|

|rjθ|k

)
dx = 0 (4.1)

for almost all θ ∈ Sn−1. Defining

ψ(h) :=
∫

B(x0,r0)

ω

( |∆k
hf(x)|
|h|k

)
dx, h ∈ B(0, r0) \ {0},
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we have by hypothesis that

lim
ε→0+

∫

B(0,r0)

ψ(h)ρε(|h|) dh = 0.

A representation of the above expression in polar coordinates yields

lim
ε→0+

∫ r0

0

ψ̄(r)ρε(r)rn−1 dr = 0 with ψ̄(r) :=
∫

Sn−1
ψ(rθ) dHn−1(θ). (4.2)

We claim that one can find a positive sequence (rj)j with rj → 0+ such that

lim
j→+∞

ψ̄(rj) = 0. (4.3)

Indeed, assume that there exist 0 < δ < r0 and c > 0 such that for all r ∈ [0, δ] one has
ψ̄(r) ≥ c. Then, in view of (4.2), (1.2), and (1.3),

0 = lim
ε→0+

∫ δ

0

ψ̄(r)ρε(r)rn−1 dr ≥ c lim
ε→0+

∫ δ

0

ρε(r)rn−1 dr

=
c

Hn−1(Sn−1)
lim
ε→0+

∫

B(0,δ)

ρε(|h|) dh =
c

Hn−1(Sn−1)
> 0,

which is a contradiction. Thus (4.3) holds, and by Fatou’s lemma, lim infj→+∞ ψ(rjθ) = 0
for almost every θ ∈ Sn−1. This finishes the proof of (4.1).

Now we exploit the smoothness of f and apply the identity (2.4). Setting h = rjθ with
rj and θ as in (4.1) gives

0 = lim inf
j→+∞

∫

B(x0,r0)

ω

(∣∣∣f (k)(x)θk +
R̃(k)(rjθ;x)
|rjθ|k

∣∣∣
)

dx ≥
∫

B(x0,r0)

ω(|f (k)(x)θk|) dx.

Here we have used Fatou’s lemma, the continuity of ω, and (2.5). In view of the remaining
properties of the function ω, and using the fact that f ∈ C∞(Ω), we infer that

f (k)(x)θk = 0 (4.4)

for every x ∈ B(x0, r0). Since (4.4) holds for almost all θ ∈ Sn−1, the Taylor expansion for
f about x0 shows that f is a polynomial of degree at most k− 1 in B(x0, r0). The assertion
follows, as Ω is connected.

Step 2: Assume that f ∈ L1
loc(Ω) and let (ηδ)δ be a family of standard mollifiers, i.e.,

ηδ ∈ C∞c (Rn) with supp ηδ ⊂ B(0, δ) for δ > 0, ηδ ≥ 0, and
∫

Rn ηδ dx = 1.
We start by proving that the condition (1.12) is robust regarding convolution with ηδ,

i.e., the smooth functions fδ := f ∗ ηδ also satisfy (1.12) with some r̃0 > 0, provided δ > 0
is sufficiently small.

Let x0 ∈ Ω and let r0 > 0 be given by the hypothesis. Fix δ0 ∈ (0, r0) such that
x0 ∈ Ωδ0 := {x ∈ Ω : dist(x, ∂Ω) > δ0}. Let r1 > 0 be such that B(x0, (k + 1)r1) ⊂ Ωδ0 ,
and define r̃0 = min{r1, r0 − δ0}.

We observe that if δ ∈ (0, δ0), the difference quotient ∆k
hfδ(x) is well-defined for all

x ∈ B(x0, r̃0) and h ∈ B(0, r̃0), and moreover,

|∆k
hfδ(x)| ≤

∫

B(0,δ)

|∆k
hf(x− y)|ηδ(y) dy.

Since
∫
B(0,δ)

ηδ(y) dy = 1, the set function µδ(E) :=
∫
E
ηδ(y) dy, defined for all Borel

sets E ⊂ B(0, δ), defines a probability measure on B(0, δ). Using the monotonicity and the
convexity of ω, together with Jensen’s inequality for the previous probability measure, leads
to

ω

( |∆k
hfδ(x)|
|h|k

)
≤ ω

(∫

B(0,δ)

|∆k
hf(x− y)|
|h|k ηδ(y) dy

)

≤
∫

B(0,δ)

ω

( |∆k
hf(x− y)|
|h|k

)
ηδ(y) dy

(4.5)
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for x ∈ B(x0, r̃0) and h ∈ B(0, r̃0) \ {0}. Consequently, by Fubini’s theorem,
∫

B(x0,r̃0)

∫

B(0,r̃0)

ω

( |∆k
hfδ(x)|
|h|k

)
ρε(|h|) dh dx

≤
∫

B(0,δ)

(∫

B(x0,r̃0)

∫

B(0,r̃0)

ω

( |∆k
hf(x− y)|
|h|k

)
ρε(|h|) dh dx

)
ηδ(y) dy.

Performing the change of variables z = x−y for fixed y ∈ B(0, δ), the previous triple integral
is bounded by

∫

B(0,δ)

(∫

B(x0,r̃0+δ)

∫

B(0,r̃0)

ω

( |∆k
hf(z)|
|h|k

)
ρε(|h|) dh dz

)
ηδ(y) dy

≤
∫

B(x0,r0)

∫

B(0,r0)

ω

( |∆k
hf(z)|
|h|k

)
ρε(|h|) dh dz.

We let ε→ 0+ and account for the hypothesis on f to conclude that for x0 ∈ Ω there exists
δ0 > 0 such that fδ satisfies (1.12) with r̃0 > 0 for all δ ∈ (0, δ0).

Consequently, by Step 1 each fδ with δ ∈ (0, δ0) is a polynomial of degree at most k − 1
in B(x0, r̃0). Since fδ → f pointwise almost everywhere in Ω as δ → 0+, f coincides with
a polynomial of degree at most k − 1 almost everywhere in B(x0, r̃0), and by a covering
argument even almost everywhere in Ω. �

As already mentioned in the introduction, Proposition 1.3 follows from Theorem 1.4. The
key is simply to specify the mollifiers (ρε)ε in a suitable way, which was suggested in [5].

Proof of Proposition 1.3. Let (ρ1
ε)ε be the family of mollifiers introduced in Example 3.4,

that is,

ρ1
ε(r) =

ε

Hn−1(Sn−1) rn−ε
χ(0,1)(r), r ∈ (0,+∞).

We recall that (ρ1
ε)ε satisfies (1.2), (1.3), and (H). Moreover, for each x0 ∈ Rn, we have

that

lim
ε→0+

∫

B(x0,1)

∫

B(0,1)

|∆k
hf(x)|p
|h|kp ρ1

ε(|h|) dh dx

≤ lim
ε→0+

ε

Hn−1(Sn−1)

(∫

B(x0,1)

∫

B(0,1)

|∆k
hf(x)|p
|h|n+kp

dh dx

)
= 0,

(4.6)

owing to the boundedness of the double integral in brackets by (1.10).
Applying Corollary 3.5 (i) with ω(t) = tp for t ∈ [0,+∞), we conclude that f ∈ Lploc(Rn),

which together with (4.6), allows us to apply Theorem 1.4 with the same function ω. Con-
sequently, f coincides with a polynomial of degree at most k − 1 almost everywhere in
Rn. �

5. Characterization of Sobolev spaces

In this section we prove Theorem 1.6 and, as a corollary, we also provide an alternative
proof of Theorem 1.4 in the case where ω satisfies, in addition, condition (3.11) with c = 0.
The basic idea of the proof of Theorem 1.6 is to approximate f by smooth functions, for
which we establish the desired relations using the classical Taylor formula. Several of our
arguments were inspired by those in [5, 11].

We start by mentioning that the constant Kn,p,k in (1.15) is given through the minimiza-
tion problem

Kn,p,k := min
{
−
∫

Sn−1
|σk(h)F h|p dHn−1(h) : F ∈Mn(k−1)n, |F | = 1

}
, (5.1)

with the notations as in Section 2. Note that Kn,p,k ∈ (0, 1].



13

Remark 5.1. If k = 1 and F ∈M1n, then

−
∫

Sn−1
|σ1(h)F h|p dHn−1(h) = −

∫

Sn−1
|FT · h|p dHn−1(h).

On the other hand, −
∫
Sn−1 |e · h|p dHn−1(h) = −

∫
Sn−1 |e′ · h|p dHn−1(h) for all e, e′ ∈ Sn−1.

Hence, Kn,p,1 = Kn,p = −
∫
Sn−1 |e · h|p dHn−1(h), where e is any unit vector in Rn and Kn,p

is the constant in Theorem 1.2. For k > 1, the invariance of the integral in the definition
of Kn,p,k is, in general, no longer true. For instance, take k = 2, n = 2, and consider the
two matrices F = 1√

2
diag (1, 1) and F ′ = 1√

2
diag (1,−1). Then, −

∫
S1 |σ2(h)F h|p dH1(h) =

2−p/2 −
∫
S1 |h|2p dH1(h) = 2−p/2 > 2−p/2 −

∫
S1 |h2

1 − h2
2|p dH1(h) = −

∫
S1 |σ2(h)F ′ h|p dH1(h).

Proof of Theorem 1.6. The proofs for the necessary and sufficient condition are presented in
two steps. Then, (1.15) and the estimates (1.16) will follow directly from (5.2) and (5.17).

Step 1: We prove that if (1.14) holds, then f ∈W k,p
loc (Ω) with Dkf ∈ Lp(Ω; Rnk) and

mKn,p,k

∫

Ω

|Dkf(x)|p dx ≤
∫

Ω

−
∫

Sn−1
ω
(
|σk(h)∇(Dk−1f)(x)h|

)
dHn−1(h) dx

≤ lim inf
ε→0+

∫

Ω

∫

B(0,rx)

ω

( |∆k
hf(x)|
|h|k

)
ρε(|h|) dh dx.

(5.2)

Substep 1.1: Let (ηδ)δ be a family of standard smooth mollifiers as in Step 2 of the proof
of Theorem 1.4 (see Section 4). For δ > 0 let fδ := f ∗ ηδ, defined on Ωδ := {x ∈ Ω :
dist(x, ∂Ω) > δ}. We prove that each fδ satisfies the inequality
∫

Ωδ

∫

B(0,rx,δ)

ω

( |∆k
hfδ(x)|
|h|k

)
ρε(|h|) dh dx ≤

∫

Ω

∫

B(0,rx)

ω

( |∆k
hf(x)|
|h|k

)
ρε(|h|) dh dx,

where rx,δ := dist(x, ∂Ωδ)/k and ε > 0 is fixed.
As in (4.5), we have that for all x ∈ Ωδ and for all h ∈ B(0, rx,δ)\{0},

ω

( |∆k
hfδ(x)|
|h|k

)
≤
∫

B(0,δ)

ω

( |∆k
hf(x− y)|
|h|k

)
ηδ(y) dy.

Consequently, the change of variables z := x− y for y ∈ B(0, δ) implies
∫

Ωδ

∫

B(0,rx,δ)

ω

( |∆k
hfδ(x)|
|h|k

)
ρε(|h|) dh dx

≤
∫

Ωδ

∫

B(0,rx,δ)

∫

B(0,δ)

ω

( |∆k
hf(x− y)|
|h|k

)
ηδ(y)ρε(|h|) dy dh dx

≤
∫

Ω

∫

B(0,rz)

∫

B(0,δ)

ω

( |∆k
hf(z)|
|h|k

)
ηδ(y)ρε(|h|) dy dh dz

=
∫

Ω

∫

B(0,rz)

ω

( |∆k
hf(z)|
|h|k

)
ρε(|h|) dh dz,

where in the second inequality we also used the simple geometrical inclusion
{(x, h, y) ∈ Rn × Rn × Rn : x ∈ Ωδ, h ∈ B(0, rx,δ), y ∈ B(0, δ)}

⊂ {(z + y, h, y) ∈ Rn × Rn × Rn : z ∈ Ω, h ∈ B(0, rz), y ∈ B(0, δ)} .
This concludes Substep 1.1.

Substep 1.2: Let fδ be as in Substep 1.1. We prove that∫

Ωδ

−
∫

Sn−1
ω
(
|σk(h)∇(Dk−1fδ)(x)h|

)
dHn−1(h) dx

≤ lim inf
ε→0+

∫

Ωδ

∫

B(0,rx,δ)

ω

( |∆k
hfδ(x)|
|h|k

)
ρε(|h|) dh dx.

(5.3)

Fix δ > 0 and let Ω′δ ⊂⊂ Ωδ. In view of (2.8) applied locally, one finds for all x ∈ Ω′δ and
h ∈ B(0, r′x,δ), with r′x,δ := dist(x, ∂Ω′δ)/k, that

∆k
hfδ(x) = σk(h)∇(Dk−1fδ)(x)h+ R̃

(k)
δ (h;x), (5.4)
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and by (2.3) there exists a positive constant cδ depending only on k and ‖fδ‖Ck+1(Ω′δ)
such

that

∣∣∣R̃(k)
δ (x;h)

∣∣∣ ≤ cδ|h|k+1. (5.5)

It follows from Schwartz’s inequality and (2.6) that for all x ∈ Ω′δ and h ∈ B(0, r′x,δ)\{0},

|σk(h)∇(Dk−1fδ)(x)h|
|h|k ≤ |Dkfδ(x)| ≤ ‖fδ‖Ck+1(Ω′δ)

,

and, by (5.4) and (5.5), also

|∆k
hfδ(x)|
|h|k ≤ ‖fδ‖Ck+1(Ω′δ)

+ cδ diam Ω′δ =: Cδ.

Thus, due to the local Lipschitz continuity of ω, there exists a constant Lδ, depending only
on Cδ, such that

∣∣∣∣ω
( |σk(h)∇(Dk−1fδ)(x)h|

|h|k
)
− ω

( |∆k
hfδ(x)|
|h|k

) ∣∣∣∣ ≤ Lδcδ|h|

for all x ∈ Ω′δ and h ∈ B(0, r′x,δ)\{0}, where once again we used (5.4) and (5.5).
Consequently, one obtains that

∫

Ω′δ

∫

B(0,r′x,δ)
ω

( |σk(h)∇(Dk−1fδ)(x)h|
|h|k

)
ρε(|h|) dh dx

≤
∫

Ωδ

∫

B(0,rx,δ)

ω

( |∆k
hfδ(x)|
|h|k

)
ρε(|h|) dh dx+ Lδcδ|Ω′δ|

∫

B(0,diam Ω′δ)
|h|ρε(|h|) dh

(5.6)
for every ε > 0. We observe that the second term in (5.6) vanishes in the limit ε → 0+,
since

lim
ε→0+

∫

B(0,diam Ω′δ)
|h|ρε(|h|) dh = 0. (5.7)

Indeed, for all 0 < γ < diam Ω′δ, we have that

lim sup
ε→0+

∫

B(0,diam Ω′δ)
|h|ρε(|h|) dh

≤ lim sup
ε→0+

(
γ

∫

B(0,γ)

ρε(|h|) dh+
∫

B(0,diam Ω′δ)\B(0,γ)

|h|ρε(|h|) dh
)

≤ γ + (diam Ω′δ) lim
ε→0+

∫

{|h|>γ}
ρε(|h|) dh = γ,

where we used (1.2) and (1.3). Letting γ → 0+, we obtain (5.7).
Next we prove that

lim
ε→0+

∫

Ω′δ

∫

B(0,r′x,δ)
ω

( |σk(h)∇(Dk−1fδ)(x)h|
|h|k

)
ρε(|h|) dh dx

=
∫

Ω′δ

−
∫

Sn−1
ω
(
|σk(h)∇(Dk−1fδ)(x)h|

)
dHn−1(h) dx.

(5.8)
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Let x ∈ Ω′δ. Writing h ∈ B(0, r′x,δ) in spherical coordinates, i.e., h = rθ with θ ∈ Sn−1

and r > 0, and using the (k − 1)-homogeneity of σk results in
∫

B(0,r′x,δ)
ω

( |σk(h)∇(Dk−1fδ)(x)h|
|h|k

)
ρε(|h|) dh

=
∫ r′x,δ

0

∫

Sn−1
ω
(
|σk(θ)∇(Dk−1fδ)(x) θ|

)
ρε(r)rn−1 dHn−1(θ) dr

=
(∫ r′x,δ

0

ρε(r)rn−1 dr
)∫

Sn−1
ω
(
|σk(θ)∇(Dk−1fδ)(x) θ|

)
dHn−1(θ)

=
(

1−Hn−1(Sn−1)
∫ +∞

r′x,δ

ρε(r)rn−1 dr
)
−
∫

Sn−1
ω
(
|σk(θ)∇(Dk−1fδ)(x) θ|

)
dHn−1(θ).

(5.9)
Here we used the equalities

1 =
∫

Rn
ρε(|h|) dh = Hn−1(Sn−1)

∫ +∞

0

ρε(r)rn−1 dr. (5.10)

Moreover, we observe that

lim
ε→0+

∫ +∞

r′x,δ

ρε(r)rn−1 dr = 0

by (1.3). Then, equality (5.8) is achieved by integrating (5.9) over Ω′δ and using Lebesgue’s
dominated convergence theorem, taking into account that ω is locally bounded.

In view of (5.6), (5.7), and (5.8), we finally obtain
∫

Ω′δ

−
∫

Sn−1
ω
(
|σk(h)∇(Dk−1fδ)(x)h|

)
dHn−1(h) dx

≤ lim inf
ε→0+

∫

Ωδ

∫

B(0,rx,δ)

ω

( |∆k
hfδ(x)|
|h|k

)
ρε(|h|) dh dx,

from which (5.3) follows by letting Ω′δ ↗ Ωδ under consideration of Lebesgue’s monotone
convergence theorem.

Substep 1.3: We conclude the proof of Step 1.
Let fδ and Ωδ be as in Substep 1.1. Let Ω′ ⊂⊂ Ω and consider δ > 0 sufficiently small

such that Ω′ ⊂ Ωδ. Then, by Substep 1.2,∫

Ω′
−
∫

Sn−1
ω
(
|σk(h)∇(Dk−1fδ)(x)h|

)
dHn−1(h) dx

≤ lim inf
ε→0+

∫

Ωδ

∫

B(0,rx,δ)

ω

( |∆k
hfδ(x)|
|h|k

)
ρε(|h|) dh dx.

(5.11)

On the one hand, by the definition of Kn,p,k and (1.13),

mKn,p,k

∫

Ω′
|Dkfδ(x)|p dx ≤ m

∫

Ω′
−
∫

Sn−1
|σk(h)∇(Dk−1fδ)(x)h|p dHn−1(h) dx

≤
∫

Ω′
−
∫

Sn−1
ω
(
|σk(h)∇(Dk−1fδ)(x)h|

)
dHn−1(h) dx.

(5.12)

On the other hand, by Substep 1.1 and the hypothesis, it follows that

lim inf
ε→0+

∫

Ωδ

∫

B(0,rx,δ)

ω

( |∆k
hfδ(x)|
|h|k

)
ρε(|h|) dh dx

≤ lim inf
ε→0+

∫

Ω

∫

B(0,rx)

ω

( |∆k
hf(x)|
|h|k

)
ρε(|h|) dh dx < +∞.

(5.13)

Therefore, from (5.11), (5.12), and (5.13), we infer that

mKn,p,k

∫

Ω′
|Dkfδ(x)|p dx ≤ lim inf

ε→0+

∫

Ω

∫

B(0,rx)

ω

( |∆k
hf(x)|
|h|k

)
ρε(|h|) dh dx < +∞.

(5.14)
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In particular, (Dkfδ)δ is uniformly bounded in Lp(Ω′; Rnk) and thus, up to a not relabeled
subsequence, Dkfδ ⇀ g weakly in Lp(Ω′; Rnk) for some g ∈ Lp(Ω′; Rnk). Since fδ → f
in Lploc(Ω), the kth-order distributional derivative of f , i.e., Dkf , coincides with g. More-
over, using once more the definition of Kn,p,k and (1.13), by the sequential weak lower
semicontinuity in Lp of the nonnegative convex functional

W 7→
∫

Ω′
−
∫

Sn−1
ω (|σk(h)W h|) dHn−1(h) dx, W ∈ Lp(Ω′; Mn(k−1)n),

together with (5.11) and (5.13), we conclude that

mKn,p,k

∫

Ω′
|Dkf(x)|p dx ≤

∫

Ω′
−
∫

Sn−1
ω
(
|σk(h)∇(Dk−1f)(x)h|

)
dHn−1(h) dx

≤ lim inf
ε→0+

∫

Ω

∫

B(0,rx)

ω

( |∆k
hf(x)|
|h|k

)
ρε(|h|) dh dx < +∞.

Letting Ω′ ↗ Ω, in view of Lebesgue’s monotone convergence theorem we obtain (5.2).
In particular, Dkf ∈ Lp(Ω; Rnk). To finish the proof of Step 1, it remains to show that
f ∈W k,p

loc (Ω) for k > 1 (k = 1 follows from the hypothesis f ∈ Lploc(Ω) and (5.2)).
By Gagliardo-Nirenberg’s interpolation inequalities (see, for instance, [16, Lemma 4.2.2]),

given q ≥ 1, l ∈ {1, · · · , k − 1}, and an arbitrary ball B compactly contained in Ω, there
exists a constant C, only depending on n, q, l, k, and B, such that

∫

B

|Dlfδ(x)|q dx ≤ C
(∫

B

|fδ(x)|q dx+
∫

B

|Dkfδ(x)|q dx
)
. (5.15)

Using (5.15) with q = p, (5.14), and the hypothesis f ∈ Lploc(Ω) together with the properties
of the smooth mollifiers implies that for all l ∈ {1, · · · , k − 1},

sup
δ>0

∫

B

|Dlfδ(x)|p dx ≤ C̄, (5.16)

where C̄ is a positive constant only depending on n, p, l, k, B, ‖f‖Lp(B), and on the finite limit
in (1.14). Consequently, since B ⊂⊂ Ω was taken arbitrarily, we conclude that f ∈W k,p

loc (Ω).
Step 2: We prove that if f ∈W k,p

loc (Ω) with Dkf ∈ Lp(Ω; Rnk), then (1.14) holds and

lim sup
ε→0+

∫

Ω

∫

B(0,rx)

ω

( |∆k
hf(x)|
|h|k

)
ρε(|h|) dh dx

≤
∫

Ω

−
∫

Sn−1
ω
(
|σk(h)∇(Dk−1f)(y)h|

)
dHn−1(h) dy ≤M

∫

Ω

|Dkf(y)|p dy.
(5.17)

Let ε > 0 be fixed and for δ > 0 let fδ = f ∗ ηδ ∈ C∞(Ωδ) be as in Substep 1.1. Then, in
particular,

Dkfδ → Dkf in Lploc(Ω), (5.18)

and
fδ(x)→ f(x) and Dkfδ(x)→ Dkf(x), (5.19)

for almost every x ∈ Ω, as δ → 0+.
From the fundamental theorem of calculus we conclude that for each x ∈ Ωδ and h ∈

B(0, rx,δ),

∆k
hfδ(x) =

∫

(0,1)k

∂k

∂s1 · · · ∂sk
fδ(x+ s1h+ · · ·+ skh) ds1 · · · dsk

=
∫

(0,1)k
σk(h)∇(Dk−1fδ)(x+ s1h+ · · ·+ skh)h ds1 · · · dsk.

(5.20)

The last equality follows from a straightforward calculation of the involved partial derivatives
under consideration of the notation introduced in Section 2.

Based on the identity (5.20) we now use the monotonicity and convexity of ω together
with Jensen’s inequality, Tonellis’s theorem, the change of variables y = x+ s1h+ · · ·+ skh
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for h ∈ B(0, rx,δ) and si ∈ (0, 1), i ∈ {1, · · · , k}, with Jacobian determinant 1, and the
inclusion

{
(s1, · · · , sk, x, h) ∈ (0, 1)k × Rn × Rn : x ∈ Ωδ, h ∈ B(0, rx,δ)

}

⊂
{

(s1, · · · , sk, y − s1h− · · · − skh, h) ∈ (0, 1)k × Rn × Rn : y ∈ Ωδ, h ∈ Rn
}
,

to derive
∫

Ωδ

∫

B(0,rx,δ)

ω

( |∆k
hfδ(x)|
|h|k

)
ρε(|h|) dh dx

≤
∫

Ωδ

∫

B(0,rx,δ)

∫

(0,1)k

[
ω

( |σk(h)∇(Dk−1fδ)(x+ s1h+ · · ·+ skh)h|
|h|k

)

ρε(|h|)
]

ds1 · · · dsk dh dx

≤
∫

Ωδ

∫

Rn
ω

( |σk(h)∇(Dk−1fδ)(y)h|
|h|k

)
ρε(|h|) dh dy

=
∫

Ωδ

−
∫

Sn−1
ω
(
|σk(h)∇(Dk−1fδ)(y)h|

)
dHn−1(h) dy ≤

∫

Ωδ

ω
(
|Dkfδ(y)|

)
dy

≤M
∫

Ωδ

|Dkfδ(y)|p dy ≤M
∫

Ω

|Dkf(y)|p dy.

Notice that also (5.10), the (k − 1)-homogeneity of σk together with Schwartz’s inequality,
the growth condition (1.13), and the properties of the smooth mollifiers were exploited in
the foregoing estimate.

Passing these inequalities to the limit as δ → 0+ and using Fatou’s lemma and the Vitali-
Lebesgue convergence theorem together with the continuity of ω, (5.18), and (5.19) we get
for a fixed Ω′ ⊂⊂ Ω and r′x := dist(x, ∂Ω′)/k that

∫

Ω′

∫

B(0,r′x)

ω

( |∆k
hf(x)|
|h|k

)
ρε(|h|) dh dx

≤
∫

Ω′
−
∫

Sn−1
ω
(
|σk(h)∇(Dk−1f)(y)h|

)
dHn−1(h) dy ≤M

∫

Ω

|Dkf(y)|p dy.

Finally, Step 2 is achieved by letting Ω′ ↗ Ω and ε→ 0+. �

Remark 5.2. The case p = 1. Assume that the hypotheses of Theorem 1.6 are fulfilled for
p = 1. Arguing as in Step 1 of the proof of Theorem 1.6, we conclude that if (1.14) holds,
then f ∈ W k−1,1

loc (Ω) and Dkf ∈ M(Ω; Rnk), i.e., Dkf is a Radon measure with finite total
variation in Ω. Moreover, denoting by |Dkf |(Ω) the total variation of Dkf in Ω,

mKn,1,k|Dkf |(Ω) ≤ lim inf
ε→0+

∫

Ω

∫

B(0,rx)

ω

( |∆k
hf(x)|
|h|k

)
ρε(|h|) dh dx.

Indeed, from (5.14) and (5.15) with q = 1 we infer (5.16) for p = 1. Using, in addition, the
compact embedding of BV (B; Rm) into L1(B; Rm), and the sequential lower semicontinuity
of the total variation with respect to weak-? convergence inM(Ω; Rm), the statement follows.

We also observe that the arguments in Step 2 of the previous proof imply that if f ∈
W k,1

loc (Ω) is such that Dkf ∈ L1(Ω; Rnk), then (1.14) and (5.17) hold with p = 1.

Finally, we show that Theorem 1.4 can be considered as a corollary of Theorem 1.6 under
an additional condition on the function ω.

Alternative proof of Theorem 1.4 under condition (3.11) with c = 0. Fix x0 ∈ Ω, and let
r0 > 0 be such that B(x0, (k + 1)r0) ⊂ Ω and (1.12) holds. With the definition rx :=
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dist(x, ∂B(x0,
r0
2 ))/k one obtains

0 = lim
ε→0+

∫

B(x0,r0)

∫

B(0,r0)

ω

( |∆k
hf(x)|
|h|k

)
ρε(|h|) dh dx

≥ lim sup
ε→0+

∫

B(x0,
r0
2 )

∫

B(0,rx)

ω

( |∆k
hf(x)|
|h|k

)
ρε(|h|) dh dx.

So, in view of Step 1 of the previous proof, see (5.2) for p ∈ (1,+∞) and Remark 5.2 for
p = 1, where only the lower bound in (1.13) was used, we conclude that f ∈W k,p

loc (B(x0,
r0
2 ))

with Dkf ∈ Lp(B(x0,
r0
2 ); Rnk) and

∫

B(x0,
r0
2 )
|Dkf(x)|p dx = 0, (5.21)

if p ∈ (1,+∞), and f ∈W k−1,1
loc (B(x0,

r0
2 )), Dkf ∈M(B(x0,

r0
2 ); Rnk), and

|Dkf | (B (x0, r0/2)) = 0, (5.22)

if p = 1. Equalities (5.21) and (5.22), together with a covering argument, yield that f
coincides almost everywhere in Ω with a polynomial of degree smaller than or equal to
k − 1. �
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