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Abstract:  
We re-conceptualize the role of science policy makers, envisioning and illustrating their move from 
being simple investors in scientific projects to entrepreneurs who create the conditions for 
entrepreneurial experiments and initiate them. We argue that reframing science policy around the 
notion of conducting entrepreneurial experiments – experiments that increase the diversity of 
technical, organizational and institutional arrangements in which scientific research is conducted – 
can provide policy makers with a wider repertoire of effective interventions. To illustrate the power 
of this approach, we analyze the Human Genome Project (HGP) as a set of successful, 
entrepreneurial experiments in organizational and institutional innovation. While not designed as 
such, the HGP was an experiment in funding a science project across a variety of organizational 
settings, including seven public and one private (Celera) research centers. We assess the major 
characteristics and differences between these organizational choices, using a mix of qualitative 
and econometric analyses to examine their impact on scientific progress. The planning and 
direction of the Human Genome Project show that policy makers can use the levers of 
entrepreneurial experimentation to transform scientific progress, much as entrepreneurs have 
transformed economic progress.  
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1. Introduction 

The traditional role of science policy has been to establish and allocate government funding of 

scientific research.  Policy makers within the key funding agencies serve as investors in the 

scientific community.  Rather than simply responding to the supply of scientific projects, they 

use a variety of programmatic structures and research themes to shape both the level and 

direction of scientific progress.  This role is justified by the long-held notion that public R&D 

spending should emphasize support of research in areas that are critically underinvested because 

they are subject to market failures (Bush, 1945; Arrow, 1962).  While funding remains key to 

high levels of scientific output, science policy has recently been subjected to a variety of 

criticisms: observers have argued that the funding agencies are too conservative in their 

investment approach, focusing on a limited number of low-risk research projects (Kolata, 2009; 

Groopman, 2001).  Others have pointed to the funding preferences towards older scientists with 

proven record of productivity thus reducing diversity (Stephan, 2008).  Finally, there is limited 

attention paid to the diversity of the particular organizational and institutional arrangements 

within which scientific research is undertaken (Murray and Stern, 2007; Jones et al., 2008; 

Huang, 2009). Together, these criticisms point to the limited diversity of scientific research.  

This finding underscores the need for science policy makers and scholars to respond to recent 

economic theory that argues for more significant diversity in early stage research (and 

researchers) to ensure that the full landscape of scientific paths is explored and that suggests the 

importance of particular institutional choices in enabling such diversity (Aghion et al., 2008; 

Acemoglu, 2009; Acemoglu et al., 2009; Murray et al., 2009).   

To meet the goal of increasing the diversity of scientific research, researchers and organizational 

arrangements, we argue that the government should re-conceptualize its role in science policy 

from investor to entrepreneur.  Specifically, we suggest that science policy be reframed so that 

its core mission is to seed and support entrepreneurial experiments, encouraging the use of 

diverse technical, individual, organizational and institutional approaches to solve a particular 

problem.  The experimentation perspective on entrepreneurship highlights the power of 

entrepreneurs to initiate a wide variety of economic experiments in the economy in order to 

rapidly learn about the effectiveness of different technologies, market needs and organizational 

arrangements (Rosenberg, 1992; Stern, 2005).  While the government may not undertake all such 
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experiments directly, within the realm of science policy there is strong potential to act as an 

entrepreneur by seeding experiments and focusing proactively on assessing their results from this 

perspective (Greenstein 2007).  Doing so, we argue, would move the government from its more 

typical role as a reactive investor to an entrepreneur that initiates a wide repertoire of effective 

interventions into the scientific community.  With a proactive agenda of learning from the richly 

diverse set of entrepreneurial experiments, the government would also be able to promote the 

broader “science of science and innovation” or “science of science management” agenda.  

Implementing this broader agenda requires an understanding of the determinants of scientific 

progress and a more analytic approach to assessing the impact of technical, individual and 

organizational choices on scientific productivity (Lane, 2009).  

In this paper, we illustrate the power of the experimentation approach to shed light on the impact 

of organizational diversity on scientific progress, using a large-scale entrepreneurial experiment 

organized by the U.S. government. While recognizing the benefits of science policy experiments 

ever since the Manhattan project developed the atomic bomb during World War II (Nelson, 

1961), the funding orientation of the U.S. government has not been explicitly characterized as 

government engagement in valuable entrepreneurial experiments that the market alone would not 

provide nor has it been analyzed as such. In particular, by viewing each of the parallel scientific 

paths sponsored by government agencies (including those under the auspices of the Small 

Business Innovation Research (SBIR)) as an “experiment” provides a framework for analyzing 

how a particular scientific challenge can be more or less effectively accomplished using a variety 

of different technical and organizational choices. This in turn deepens our understanding of the 

link between organizational arrangements and scientific productivity.   

The entrepreneurial experiment we explore in this paper is the Human Genome Project (HGP), 

(or more precisely the Human Genome Projects) funded by the United States Department of 

Energy (DOE)1 and the National Institutes of Health (NIH)2 , as well as the Wellcome Trust in 

                                                 
1 After the atomic bomb was developed and used, the U.S. Congress charged DOE's predecessor agencies (the 
Atomic Energy Commission and the Energy Research and Development Administration) with studying and 
analyzing genome structure, replication, damage, and repair and the consequences of genetic mutations, especially 
those caused by radiation and chemical by-products of energy production. From these studies grew the recognition 
that the best way to study these effects was to analyze the entire human genome to obtain a reference sequence. 
Planning began in 1986 for DOE's Human Genome Program and in 1987 for the National Institutes of Health's 
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the United Kingdom.  While typically regarded as one monolithic science project, in fact this 

massive effort to sequence the entire human genome was carried out in seven public research 

centers each with different organizational arrangements.  Moreover, about eight years after the 

public Projects’ initiation, start-up Celera Genomics began a separate, privately funded quest to 

complete a full genome sequence, using an alternative technical approach and carried out with an 

entirely distinctive organizational model: both the organization of the work and the institutions 

governing data access contrasted sharply with the public Projects.  

The remainder of this paper proceeds as follows: In Section 2 we provide a deeper understanding 

of the nature of entrepreneurial experiments and their application to science policy.  In Section 3 

we then use this framework to describe the Human Genome Project(s) as an entrepreneurial 

experiment.  In Section 4 we analyze the impact of different organizational choices on the 

productivity of the different HGP groups illustrating the potential for program evaluation of 

different experiments.  In Section 5 we provide a broader framework for the design and 

evaluation of economic experiments in the science policy setting. 

2. Economic experimentation 
 

We are all familiar with the central role of scientific experimentation in the pursuit of technical 

progress; it has become a foundational tenet of progress (Merton 1966) not least because even 

with the most detailed theoretical models, it is rarely possible to predict ex ante the most 

appropriate research line an advance of an experiment. While scientific or technical experiments 

are widely understood, economic experiments are harder to envision.  An economic experiment 

can be defined as the choice of a particular combination of technical, market and economic 

characteristics that form the basis of an opportunity that will hopefully create value and 
                                                                                                                                                             
program. The DOE-NIH U.S. Human Genome Project formally began October 1, 1990, after the first joint 5-year 
plan was written and a memorandum of understanding was signed between the two organizations. 
2 The National Institutes of Health (NIH), founded in 1887, is one of the world's premier medical research centers, 
and the federal focal point for medical research in the U.S.  The NIH, comprising 27 separate Institutes and Centers, 
is one of eight health agencies of the Public Health Service which, in turn, is part of the U.S. Department of Health 
and Human Services. The primary mission of NIH is to “acquire new knowledge to help prevent, detect, diagnose, 
and treat disease and disability, from the rarest genetic disorder to the common cold…[and] to uncover new 
knowledge that will lead to better health for everyone.”  By its key involvement in the HGP, NIH works toward that 
mission and advances human health by “conducting research in its own laboratories; supporting the research of non-
Federal scientists in universities, medical schools, hospitals, and research institutions throughout the country and 
abroad; helping in the training of research investigators; and fostering communication of medical and health 
sciences information.” 
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economic gain (Rosenberg 1992).  With our focus on experiments designed to increase the 

degree of scientific productivity (rather than on economic value per se), we use the term 

entrepreneurial experiment because as Stern (2005, p. 16) notes, “While economic experiments 

can be (and are) implemented in established companies (and can even be found in the public 

sector), economic experimentation is at the heart of the entrepreneurial process.” Thus we can 

consider experiments in science policy as key entrepreneurial experiments. 

 

In the realm of science policymaking and the allocation of government research funding, we 

argue for the critical importance of entrepreneurial experiments expanding, varying and testing 

the causal impact of different technical, organizational and institutional arrangements on the 

creation of scientific value.  This follows from the view that experimentation should focus not 

only on generating information about the best technical path but also determine the best 

organizational or institutional approach – in much the same way that companies experiment with 

the most effective market application or business configuration (Greenstein, 2007).   The analogy 

is simple: scientists might use economic experiments to reduce the uncertainty about the way in 

which particular factors increase or decrease their probability of success.  These factors can 

involve particular combinations of technical approaches, but they can and should also be 

organizational.  Although some argue that science cannot be “managed” and is a black box inside 

which “unmanageable” individuals ply their craft, evidence suggests that specific interventions 

in organization, incentives, governance do in fact shape scientific productivity as do broader 

institutional interventions such as ownership, sharing and exchange (Furman and Stern 2006; 

Henderson and Cockburn, 1994; Murray and Stern, 2007; Huang and Murray, in press; Huang, 

2009).  If these interventions do in fact shape the outcome of scientific projects, then 

opportunities for economic experiments abound well beyond the traditional technical domain.  

The government is well placed to serve as an entrepreneur in seeding and promoting these 

experiments, thus increasing the diversity of scientific research along many dimensions.   

 

Entrepreneurial experiments are of potentially significant value because, as Rosenberg (1992, p. 

181) has persuasively argued, “The freedom to conduct experiments is essential to any society 

that has a serious commitment to technological innovation or to improved productive 

efficiency….Only the opportunity to try out alternatives, with respect both to technology and to 
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form and size of organization, can produce socially useful answers to a bewildering array of 

questions that are continually occurring in industrial (and in industrializing) societies.” By 

creating the conditions for economic experimentation (by entrepreneurs and others), this 

approach also has the potential to drive much greater technical, market and organizational 

diversity into the innovation system.  For example, early entrepreneurs providing Internet 

services engaged in a variety of market experiments and in organizational experiments around 

how to construct the value chain for effective competitive advantage (Greenstein, 2007), and 

similar patterns of experimentation appeared among early dot-com start-ups (Goldfarb et al., 

2007).   Even among those attempting to monetize and seek economic value based on the early 

developments in biotechnology we see a wide range of market, organizational and institutional 

experiments (Kaplan and Murray, in press).  

 

While entrepreneurs have high incentives to engage in economic experiments, recent economic 

theory has argued that current incentive systems push scientists to follow a too narrow set of 

potential paths or research lines (Acemoglu, 2009), leading to insufficient diversity in the scope 

of early stage R&D projects.  This gap in experimentation suggests a potentially important role 

for science policy makers within the government (as well as not-for-profits) to serve as 

entrepreneurs, creating the conditions for economic experiments linked not simply to immediate 

value-creating outcomes but also to the productivity of scientific knowledge.  Such diversity and 

experimentation must highlight not only the technical dimension experimentation but also along 

the market and organizational dimensions.  Such an approach is particularly salient in R&D 

because, as a highly risky endeavor subject to uncertainty in outcomes (Nelson, 1959), it requires 

government effort to ensure the appropriate level investment in R&D. It also suggests that 

government explicitly view themselves as providing diverse types of investment that the market 

would not otherwise provide (Nelson, 1961).   

 

Government efforts at parallel R&D funding are not entirely new.  As Nelson (1961, p.353) 

quoted in his paper on parallel research, when James Conant wrote to Vanevaar Bush in 1942 

regarding the parallel experimental approaches to the Manhattan Project “All five methods will 

be entering very expensive pilot plant development during the next six months. . . . [But] while 

all five methods now appear to be about equally promising, clearly the time to production . . . by 
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the five routes will certainly not be the same but might vary by six months or a year because of 

un- foreseen delays. Therefore, if one discards one or two or three of these methods now, one 

may be betting on the slower horse unconsciously."   

 

More contemporary examples of current government efforts in furthering experimentation 

include the SBIR Program (see Link and Scott in this volume for a thorough analysis of 

experiments in this program) and a variety of competition-based procurement processes such as 

the Advanced Technology Program (Link and Scott, 2001) now transformed into the Technology 

Innovation Program.  For example, the 2009 Technology Innovation Program (TIP) competition 

held by the U.S. National Institute of Standards and Technology (NIST) highlighted, among 

other areas, a competition for proposals “accelerating the incorporation of materials advances 

into manufacturing processes” (National Institute of Standards and Technology, 2009). This 

requires a variety of organizational approaches including diverse collaborations and partnerships.  

Similarly, the recent the surge of interest in R&D prizes by the government also provides another 

potential mechanism for diversity and experimentation along a variety of dimensions (Horrobin, 

1986; Kalil, 2006). 

 

While these specific examples hint at the government’s potentially powerful role in shaping 

entrepreneurial experiments, a framework for the consistent and thorough analysis of these 

experiments is missing.  In the realm of R&D and the funding of scientific research projects, we 

argue that the government has an important opportunity to structure its experimentation along 

three key dimensions: technical, individual and organizational.  By widening the scope of 

approaches to a particular research challenge, critical diversity can be introduced into the system 

and experimentation can entail exploring multiple lines research (Murray et al., 2009).  Such 

efforts can potentially overcome strong criticism directed towards government funding agencies 

for their low-risk, conservative approach towards funding of research in areas such as cancer 

(Kolata, 2009; Groopman, 2001).  In addition, by broadening the range of individuals and 

organizations participating in R&D and receiving funding, such as through new investigator 

programs or collaborative approaches, individual diversity can also contribute to experimentation 

(Jones et al., 2008).  Lastly, as Foray (2000, p.1) has noted, “policy makers must themselves be 

willing to experiment with new institutional arrangements,” reminding us that entrepreneurial 
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experiments undertaken in the policy domain should attend to the diversity of organizational 

forms (Stern, 2005).  By more explicitly experimenting with the organization of research, the 

government can add variety of a different sort, one that reflects the growing variety of 

organizational approaches to the kind of creative work that is coming to dominate our economy 

(Bechky and Hargadon, 2007).  Specifically, while some evidence exists that particular 

organizational choices are correlated with more productive scientific outcomes, the current range 

of organizational experiments is limited.  Likewise, with regards to institutional arrangements, 

heated debate has arisen over the role of IP rights governing particular aspects of scientific 

knowledge (Heller and Eisenberg, 1998; Walsh et al., 2005; Murray and Stern, 2007; Huang and 

Murray, in press) suggesting that institutional experimentation must continue.  However, in the 

absence of more carefully designed entrepreneurial experiments followed by careful analysis, we 

cannot have definitive answers that allow for thorough policy guidance.  We illustrate the value 

of entrepreneurial experimentation in the area of scientific research by examining the sequencing 

of the entire human genome in the context of distinctive organizational and institutional choices.  

Although these choices are not as fully documented as one might prefer in a consciously 

designed experiment (and have not been assessed using recent advances in program evaluation), 

we capture and analyze their impact on a variety of outcome measures. These measures include 

commercialization activities, technology transfer decisions and broad impact, as well as 

measures of knowledge production, its diffusion, accumulation and translation into commercial 

outcomes.   

 

3. The Human Genome Project as an entrepreneurial experiment 
 
 
3.1. Organization of the Human Genome Project and historical overview  

The Human Genome Project was a 13-year, $3.8 billion research effort funded and coordinated 

by the U.S. Department of Energy and the National Institutes of Health.  It was also the most 

expensive and arguably the most significant life science research project undertaken in the 

history of U.S science. The human genome is the entirety of hereditary information of Homo 

sapiens, stored in 23 chromosome pairs and contains approximately 23,688 protein-coding genes. 

The explicit goals of the HGP were to identify all 23,688 genes in the human DNA, sequence its 

3 billion nucleotide base pairs (adenine, guanine, cytosine, thymine abbreviated as A, G, C, T 
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respectively), store this information, develop the methods and tools for data analyses and transfer 

related technologies to the private sector.   The HGP grew from an ambitious idea in the minds 

of scientists, legislators and government agencies to a set of landmark scientific achievements 

that redefined the life sciences landscape, gaining broader public support along the way. It 

culminated in the successful sequencing and publication of the draft sequence of the human 

genome in 2001 and the complete sequence in 2003.3

 

As an entrepreneurial experiment organized by the government, the different stakeholders that 

comprised the HGP exemplified the diversity in talent, approach and organization. The seven 

major public genome centers, led by the U.S.-based Whitehead Institute for Genome Research at 

Massachusetts Institute of Technology in Cambridge Massachusetts, and the Wellcome Trust 

Sanger Institute in Cambridgeshire, U.K., also included Washington University Genome 

Sequencing Center in St. Louis Missouri, Baylor Human Genome Sequencing Center in Houston 

Texas, University of Washington Genome Center in Seattle Washington, Stanford Human 

Genome Center in Palo Alto California, and the Department of Energy Joint Genome Institute. 

These centers made up the main thrust of the public effort by completing altogether more than 

99% of the sequencing. The private effort was spearheaded by Celera Genomics, which started 

competing against the public project in 1998. While these centers all engaged in aspects of the 

same overall project, they differed in their origins, organizational characteristics, size, talent pool, 

and incentives, particularly choices governing disclosure and intellectual property (IP) policies 

which varied sharply between the public and private efforts but even within the public project 

depending on the local institutional rules surrounding intellectual property rights. 

 

Before examining the specific variations along different dimensions of each genome center and 

the competition between the public vs. private sequencing efforts, it is important to first 

understand the major historical and scientific milestones of the HGP and the role of government  

in organizing and funding the genome centers to ensure early completion of this mammoth 

project.  

 

                                                 
3 DOE Major Timeline: http://www.ornl.gov/sci/techresources/Human_Genome/project/timeline.shtml
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The first serious push to sequence the human genome began in 1984, when Robert Sinsheimer, a 

distinguished molecular biologist and senior administrator at the University of California, 

proposed to the University of California President David Gardner that an institute be established  

for this purpose on the University of California Santa Cruz (UCSC) campus.  Although the 

proposal was not funded, Sinsheimer continued the discussion with other molecular biologists at 

UCSC then including Harry Noller, Robert Edgar, and Robert Ludwig. 

 

Sinsheimer held a meeting of researchers in UCSC in May 1985, proposing that the entire human 

genome should not only be mapped with scattered but specific “road-markers”, but also 

sequenced to determine the order of each A, G, C and T.  A number of distinguished biologists 

active in genetics and gene mapping were present during the meeting, including Harry Noller, 

now the Sinsheimer Professor of Molecular Biology at UCSC; geneticist David Botstein, now 

the director of the Lewis-Sigler Institute for Integrative Genomics at Princeton University; Leroy 

Hood, now the President of the Institute for Systems Biology in Seattle; and the 1980 Nobel 

laureate in Chemistry, Walter Gilbert of Harvard University, who later became an enthusiastic 

advocate of this notion.  At around the same period of time, other scientists made independent 

proposals for the sequencing of the human genome, notably Renato Dulbecco of the Salk 

Institute and Charles DeLisi of the U.S. DOE.    

 

The proposal seemed idealistic and almost logistically impossible (Lander and Weinberg, 

2000) – the human genome encompasses about 3 billion bases of DNA and the technology then 

only allowed reading lengths of about 300 bases in each analysis.  Decades of work by a huge 

number of research scientists and technicians would be required to perform and complete the job.  

In addition, analysis of a single base would cost over $10 at that time and it often required more 

than a day to sequence 50 to 100 bases.  Such suggestion to sequence the genome then was not 

only ambitious but also prohibitively expensive.  

 

Furthermore, opponents argued that sequencing the human genome would be a vast waste of 

effort as majority of it, maybe as high as 95%, does not encode useful protein or regulatory 

information, known as “junk DNA”.  Such enormous effort to obtain detailed sequence 
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information about DNA, as they argue, would have little hope of shedding useful insight into 

biological function.  However, the proposal prevailed.    

 

From early 1986, the government officially started a series of important initiatives and meetings 

to organize this major effort. From the Office of Health and Environmental Research (OHER) of 

U.S. DOE,4 (now the Office of Biological and Environmental Research (BER)), biophysicist and 

administrator Charles DeLisi5 joined David A. Smith6, director of the DOE Human Genome 

Program, to organize and hold a conference in Santa Fe.  The goal of the meeting, a follow-up to 

the previous Santa Cruz meeting, was to assess the feasibility of a human genome initiative and 

the role of DOE in sequencing the entire human genome,. Following the Santa Fe conference, 

OHER of DOE, announced the Human Genome Initiative.  With $5.3 million, pilot projects first 

began at DOE national laboratories to develop critical technologies and resources.  Three 

genome research centers were established between 1988 and 1989 at Lawrence Berkeley 

National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Los 

Alamos National Laboratory (LANL). 

 

Legislation to begin planning a mammoth project, resulting in a detailed analysis of all the genes 

in the human body, was introduced in the Senate in December 1987, sponsored by Senator Pete 

Domenici (R-N.M.), Edward M. Kennedy (D-Mass.), Lawton Chiles (D-Fla.), Patrick J. Leahy 

(D-Vt.) and Bob Graham (D-Fla.).  The bill focused on establishing a freestanding National 

Biotechnology Policy Board and Advisory Panel in order to ensure a high level of 

competitiveness for the biotechnology industry in the U.S.; these groups would foster policies to  

“enhance the efficient and timely advance of basic and applied biotechnology-related research”.  
                                                 
4 After the atomic bomb was developed and used, the U.S. Congress charged DOE's predecessor agencies (the 
Atomic Energy Commission and the Energy Research and Development Administration) with studying and 
analyzing genome structure, replication, damage, and repair and the consequences of genetic mutations, especially 
those caused by radiation and chemical by-products of energy production. From these studies grew the recognition 
that the best way to study these effects was to analyze the entire human genome to obtain a reference sequence. 
Planning began in 1986 for DOE's Human Genome Program and in 1987 for the National Institutes of Health's 
program. The DOE-NIH U.S. Human Genome Project formally began October 1, 1990, after the first joint 5-year 
plan was written and a memorandum of understanding was signed between the two organizations.  
5 DeLisi, Charles (July 2001). “Genomes: 15 Years Later. A Perspective by Charles DeLisi, HGP Pioneer.” Human 
Genome News, Vol.11, No. 3-4. 
http://www.ornl.gov/sci/techresources/Human_Genome/publicat/hgn/v11n3/05delisi.shtml
6 Smith, David A. (September-December 1995). “Evolution of a Vision: Genome Project Origins, Present and 
Future Challenges, and Far-Reaching Benefits”. Human Genome News, 7(3-4): 2. 
http://www.ornl.gov/sci/techresources/Human_Genome/publicat/hgn/v7n3/02smithr.shtml
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The bill also centered on a huge project to map and sequence the human genome.  However, the 

bill only authorized enough funds to support the Board through 1993 (The Washington Post, 

1987).   

 

In the same year, congressionally chartered DOE advisory committee, Health and Environmental 

Research Advisory Committee (HERAC),7 boldly recommended a 15-year, multidisciplinary, 

scientific, and technological undertaking to map and sequence the human genome.  DOE also 

designated important multidisciplinary human genome centers in the U.S. that year, including the 

Whitehead Institute for Genome Research at Massachusetts Institute of Technology, Washington 

University School of Medicine Genome Sequencing Center, and University of Washington 

Genome Center. National Institute of General Medical Sciences (NIGMS) at National Institutes 

of Health started funding the genome projects that year.  

 

In 1988, congressional Office of Technology Assessment (OTA) and National Academy of 

Sciences (NAS) National Research Council (NRC) committees recommended a concerted 

genome research program.  Over the next year, DOE and NIH held several other meetings and 

independent hearings by OTA and by NAS to discuss the plans for the HGP. Also in the same 

year, the Human Genome Organization (HUGO)8 was founded by scientists to coordinate efforts 

internationally.  The first annual Cold Spring Harbor Laboratory meeting on human genome 

mapping and sequencing was also held. That year, Congress funded both the DOE and the NIH 

to start further exploration of the human genome, and DOE and NIH signed a formal 

Memorandum of Understanding (U.S. Department of Energy, 1990a), which outlined plans for 

cooperation on genome research to “coordinate research and technical activities related to the 

human genome”. 

  

These activities and the reports published culminated in 1988 when the government established 

the Genome Office at the National Institutes of Health and appointed Nobelist James Watson as 

its head (The Washington Post, 1989). This subsequently became the National Center for Human 

Genome Research (NCHGR) in October 1989 by Congressional authorization to carry out the 

                                                 
7 http://www.ornl.gov/sci/techresources/Human_Genome/project/herac2.shtml
8 http://www.gene.ucl.ac.uk/hugo/ 
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role of NIH in the HGP. NCHGR was created to support the development of resources and 

technology that would accelerate genome research and its application to human health.  In 1997, 

the NCHGR at NIH was restructured and renamed the National Human Genome Research 

Institute (NHGRI) by the U.S. Department of Health and Human Services (DHHS) to allow 

NHGRI to operate under the same legislative authorities as other NIH research institutes.  It 

became one of the 27 institutes and centers that make up of NIH.  Advisory boards were created 

to serve both the NIH and DOE.9  Meetings were held twice annually on succeeding days since 

several committees were "joint", especially the one on data (Joint Informatics Task Force).  

 

In 1989, the biology community called for a $3 billion project to identify and decipher each of 

the (then) estimated 30,000 genes that were understood to govern the form and function of the 

human body (Chicago Sunday Times, 1989).10  The largest funding agency of such activities, 

NHGRI, was funded yearly through Congressional appropriation through a standard budget 

process.11  In turn, the NHGRI was guided by a series of five-year plans outlining the priorities 

and goals of the project.  These plans detailed the objectives of the program to the scientific 

community and informed the public while ensuring measurable aims to steer the work and 

determine NHGRI’s progress.  In allocating funds, NHGRI published its areas of research 

interest in program announcements so that individual scientists or academic institutions, non-

profit organizations, community hospitals and companies could apply for research funding.  A 

two-tier, peer-review process evaluated all applications and NHGRI funded the highest ranked 

                                                 
9 http://www.genome.gov/10000905 
10 The Human Genome Project is sometimes reported to have a cost of about $3 billion.  However, this figure refers 
to the total projected funding over a 13-year period (1990–2003) for a wide range of scientific activities related to 
genomics.  These include studies of human diseases, experimental organisms (such as bacteria, yeast, worms, flies, 
and mice); development of new technologies for biological and medical research; computational methods to analyze 
genomes; and ethical, legal, and social issues related to genetics.  Human genome sequencing represents only a 
small fraction of the overall 13-year budget.  
11 Every year, the President submits a budget request for the entire federal government to Congress, which then 
conducts hearings on that budget request.  Different committees have the authority to approve specific sections of 
the federal budget. Representatives of NHGRI testify before the House and Senate subcommittees on Labor; Health 
and Human Services; Education; and related agencies, where Congress is updated on the accomplishments, needs 
and opportunities of NHGRI. Congress also hears testimony from public witnesses such as experts in genetic 
research, or representatives of genetic disease advocacy groups.  

After listening to the testimony, the House of Representatives determines a funding level for NHGRI and sends its 
recommendation to the Senate. After the Senate conducts hearings, both bodies of Congress meet to agree on 
funding levels for all of the institutes and centers of the National Institutes of Health (NIH), including NHGRI. 
Congress then sends an appropriation bill with the recommended funding levels to the President. After the President 
signs the budget, NHGRI receives its funding.  

See http://www.house.gov/rules/budget_pro.htm and http://www.genome.gov/10000933 
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proposals that were within the program priorities. 12  NHGRI eventually funded the various 

genome centers in the U.S..13       

 

These events culminated in the 5-year U.S. Human Genome Project (HGP) plan jointly presented 

by DOE and NIH to the Congress in 1990. The report scrutinized the present state of genome 

science and detailed the complementary approaches of the two agencies for attaining scientific 

goals, while laying out concrete plans for governing research agendas.  The report also explained 

the collaborative effort among U.S. and international agencies and presented the budget of 

“…about $200 million per year for approximately 15 years” (U.S. Department of Energy, 1990b). 

The estimated 15-year project formally began in that year.  Several projects had already begun to 

mark gene sites on chromosome maps as sites of mRNA expression, while research and 

development were also underway for efficient production of more stable, large-insert Bacterial 

Artificial Chromosomes (BACs), which were essential tools for constructing genomic maps.14  

The promise and benefits of the now formalized Human Genome Project started to receive wider 

media attention in major newspapers and magazines such as the Washington Post (1990), the 

Wall Street Journal (1990) and Business Week (1990). 

 

In 1991, the human chromosome mapping data repository, Genome Database (GDB), 15  an 

international collaboration in support of the human genome project, was established.  RTI 

International, a prominent research institute located in the Research Triangle Park in North 

Carolina, hosted it. During the same period, the technology and science were improving 

dramatically to produce high cost reduction in sequencing efforts. For example, the cost of 

sequencing 10,000 bases in a single day has dropped to about a dollar a base (Hunkapiller et al, 

1991). By 1993, many laboratories concurrently used robotic analyzers to sequence 500,000 

bases daily and they cost about $0.10 to $0.15 a base. 

                                                 
12 NHGRI Budget and Financial Information, 2004. http://www.genome.gov/10000933
13 For example, the Whitehead Institute for Biomedical Medical Research, Cambridge, Massachusetts, received 
approximately $35 million from the NHGRI of NIH, to participate in the first year of the full-scale effort to 
sequence the human genome. NHGRI also funded Washington University Genome Sequencing Center, Baylor 
College of Medicine Human Genome Sequencing Center, University of Washington Genome Center, and the 
Stanford Human Genome Center. In contrast, the Sanger Institute in the U.K. is funded primarily by the Wellcome 
Trust. 
14 Bacterial Artificial Chromosomes (BACs) comprised one of the most utilized resources . 
15 http://www.gdb.org/

 15

http://www.genome.gov/10000933
http://www.gdb.org/


 

The ensuing years saw continued and promising development and improvement of resources, 

technologies and scientific techniques, and optimism for the potential for commercialization of 

the human genome sequences (Business Week, 1992).  In 1992, low-resolution genetic linkage 

map of entire human genome was published.  The guidelines for data release and resource 

sharing of the human genome project were also announced by DOE and NIH to encourage data 

and resource sharing (U.S. Department of Energy, 1993).  

 

In 1993, the international Integrated Molecular Analysis of Gene Expression (IMAGE) 

Consortium was established to coordinate efficient mapping and sequencing of gene-representing 

cDNAs (U.S. Department of Energy, 1995a).  The consortium produced highly cited scientific 

papers that made significant contribution to the progress of the Human Genome Project (The 

Scientist, 1999).  At the same time, DOE and NIH revised their initial 5-year plan for the Human 

Genome Project due to rapid advances in genome research and more in-depth understanding of 

how to attain long-term objectives (Collins and Galas, 1993). In terms of technology advances, 

Lawrence Berkeley National Laboratory (LBNL) of DOE implemented a novel transposon-

mediated chromosome-sequencing system while Gene Recognition and Analysis Internet Link 

(GRAIL) sequence-interpretation service maintained by Oak Ridge National Laboratory (ORNL) 

of DOE started to provide Internet access. 16  

 

1994 brought in encouraging news that the genetic-mapping 5-year goal presented by DOE and 

NIH was achieved one year ahead of schedule (U.S. Department of Energy, 1994). The second-

generation DNA clone libraries representing each human chromosome were also completed that 

same year by Lawrence Livermore National Laboratory (LLNL) and Lawrence Berkeley 

National Laboratory (LBNL).   

 

In terms of scientific breakthroughs, LANL and LLNL respectively announced in 1995 the 

completion of high-resolution physical maps of chromosome 16 and 19 (U.S. Department of 

Energy, 1995b). Moderate-resolution maps of chromosomes 3, 11, 12, and 22 maps were also 

published (U.S. Department of Energy, 1995c). Research led by scientists from the MIT 

Whitehead Institute Center for Genome Research and Genethon revealed and published the 

                                                 
16 http://genome.ornl.gov/ 
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physical map of the human genome with more than 15,000 sequence tagged site (STS) markers 

(U.S. Department of Energy, 1996a).   

 

In 1996, DOE and National Center for Human Genome Research (NCHGR) at National 

Institutes of Health issued human subject guidelines for large-scale sequencing projects (U.S. 

Department of Energy, 1996b). Another landmark event that occurred during that year is the 

large-scale sequencing strategy meeting for international coordination of human genome 

sequencing in Bermuda held from 25 to 28 February, 1996. It was sponsored by the Wellcome 

Trust, U.K. Medical Research Council. About 50 scientists from countries publicly supporting 

large-scale human genome sequencing attended the conference. The conference was designed to 

coordinate, compare, and evaluate human genome mapping and sequencing strategies; consider 

the potential role of new technologies in sequencing and informatics; and discuss scenarios for 

data release.  A consensus was reached that the eventual sequencing outcome representing the 

first human genome sequence should be conducted at a high degree of accuracy. 

 

Participants (participating organizations and funding agencies) in the HGP agreed on sequencing 

data release policy at the Second International Strategy Meeting on Human Genome Sequencing 

in 1997.17  That year, in order to implement high-throughput activities, DOE also formed the 

Joint Genome Institute (JGI), an effort to tie the expertise and resources in genome mapping, 

DNA sequencing, technology development, and information sciences pioneered at DOE genome 

centers: Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National 

Laboratory (LLNL), and Los Alamos National Laboratory (LANL) by forming).  The institute 

would start with sequencing and functional genomics (U.S. Department of Energy, 1996c).  

 

3.2. Private Celera Genomics versus public Human Genome Sequencing Consortium 

June 1998 marked the moment when a true market-driven entrepreneurial experiment joined the 

previously government dominated efforts in human genome sequencing; a competing private 

quest to sequence the human genome was launched by Celera Genomics (co-founded by Applera 

                                                 
17 Held in Bermuda from 27th February 1997 to 2nd March 1997. 
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Corporation (then called PE Corporation) and Dr. J. Craig Venter).18 The effort was also headed 

by Venter19 who had been a scientist at the NIH during the early 1990s, when the HGP was 

started, .  He left NIH to start the Institute for Genomic Research (TIGR) in 1992, which led the 

first successful sequencing of an entire organism’s genome (Haemophilus influenzae bacterium). 

Celera’s mission was to generate and commercialize genomic information.  Specifically, it aimed 

to sequence the entire human genome and provide its putative clients, pharmaceutical and 

biotechnology companies,  with early access to the resulting data. The firm aimed to complete 

the sequencing of the human genome at a faster pace (within three years) and at a fraction of the 

cost of the publicly funded project ($300 million vs. $3 billion). Figure 1 illustrates the 

organization of the HGP, mapping the relationship among the key stakeholders and competitors. 

------------------------------- 
Insert Figure 1 about here 
---------------------------------- 

 

When Celera entered the competition, more than eight years into the Human Genome Project, it 

had the advantage of freely obtaining the existing publicly available data from GenBank (nearly 

one-third of the human genome sequence in finished or draft form), as well as building on the 

technical groundwork laid by the public consortium. Using state-of-the-art sequencing 

technology supplied by Applied Biosystems Group of the Applera Corporation and sophisticated 

internally-developed informatics, it pioneered a technique, whole genome shotgun sequencing, 

that had been used to sequence bacterial genomes of only up to six million base pairs in length,   

far fewer than the three billion base pair human genome. 

 

Collaboration and pooling of efforts with the public consortium would facilitate faster 

completion of the sequencing project, and win Dr. Venter more friends in the academic scientific  

community from which he came. 20  However, this option disappeared, pardly due to rival 

agendas; in particular, there was disagreement about access to sequencing data (Venter refused to 

                                                 
18 Celera Genomics belonged to the Applied Biosystems Group business unit of the Applera Corporation until it was 
spun off in July 2008 to become an independent publicly traded company. 
19 Dr. Craig Venter headed Celera from its founding to early 2002, when he was fired due to a conflict with the main 
investor, Tony White who had also been with the company since its founding. 
20 In fact, according to an interview on November 14, 1999, Dr. Paul Gilman, a senior executive at Celera then, 
commented that Dr. Venter was open to the idea of collaboration with the public consortium but that no specific 
proposal was under discussion. 

 18



 

deposit Celera’s data in the unrestricted public database GenBank) and about the direction of the 

project.  

 

In terms of disclosure and IP, Celera initially announced that it would seek patent protection on 

"only 200 to 300" genes, but later amended this to seek “intellectual property protection” on 

“fully-characterized important structures” (or any commercially valuable DNA sequences) 

amounting to 100 to 300 targets. The firm eventually filed preliminary (“place-holder”) patent 

applications on 6,500 whole or partial genes (BBC News, 1999). In fact, since Celera’s founding 

in 1998 to the completion of the HGP in 2003, it had filed 259 granted genomics, methods and 

tools patents according to the United States Patent and Trademark Office (USPTO). Out of 

which, at least 65 patents claimed part of a gene or gene sequences (Jensen and Murray, 2005). 

While the company’s initial policy was to hold back data from sections of the genome they 

sequenced for commercial exploitation, Celera later amended its policy in response to critics and 

promised to publish their findings in accordance with the terms of the 1996 “Bermuda 

Statement”,21 by releasing new data annually (while the publicly funded HGP released its new 

data daily). Nevertheless, it would not permit free redistribution or commercial use of the data 

and had set a maximum threshold for amount of sequence data a researcher could download at 

any given time, unlike the publicly funded project. Celera also planned to profit from its 

sequencing effort by establishing a value-added database of genomic data that users could 

subscribe to for a fee. Essentially, Celera had incorporated the public data into their genome 

while restricting public use of Celera data. 

 

In March 2000, President Clinton announced that the genome sequence could not be patented, 

and should be made freely available to all researchers (although it was not clear if it was binding). 

The statement sent Celera's stock plummeting and dragged down the biotechnology-heavy 

Nasdaq. The biotechnology sector lost about $50 billion in market capitalization within two days. 

 

The “working draft” DNA sequence of the human genome was jointly announced in June 2000 

by the HGP leaders Ari Patrinos (director of DOE Human Genome Program and Biological and 

Environmental Research Program) and Francis Collins (director, NIH National Human Genome 

                                                 
21 http://en.wikipedia.org/wiki/Bermuda_Principles
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Research Institute), as well as Craig Venter (head of Celera Genomics) and then U.S. president 

Bill Clinton. The International Human Genome Sequencing Consortium, led by NHGRI and 

DOE and Celera, soon followed by publishing details of their drafts in February 2001. A special 

issue of Nature (International Human Genome Sequencing Consortium, 2001) on 15 February 

2001 published the public consortium’s scientific results one day ahead of Celera’s publication 

in Science (Venter et al., 2001). These papers described the methods used to produce the draft 

sequence and offered analysis of the sequence. These drafts covered about 83% of the genome 

(90% of the euchromatic regions with 150,000 gaps and the order and orientation of many 

segments not yet established). In February 2001, at the time of the joint publications, press 

releases announced that the project had been completed by both groups.  

 

The fierce private versus public competition had spurred the publicly funded genome centers to 

modify their strategy in order to accelerate progress. The Wellcome Trust Sanger Institute from 

the public consortium had completed the sequencing of chromosome 20 by 2001.22  This was the 

third (following chromosomes 22 and 21) and the largest of the human chromosomes to be 

completed to the high scientific standard specified by the Human Genome Project. On April 14, 

2003, the public consortium announced the successful completion of the Human Genome Project 

more than two years ahead of schedule (Reuters Health, 2003).23 In the same year, the finished 

sequences of chromosomes 14 (January), 24  Y (June), 25  7 (July) 26  and 6 (October) 27  were 

published. These were followed by the finished sequences of chromosomes 13 28  and 19 29  

published in April 2004. 

   

3.3. The genome centers and their organizational choices governing disclosure and IP 

While the public genome centers within the International Human Genome Sequencing 

Consortium had similar goals – scientific sequencing and data release standards – they varied 

along specific dimensions. Table 1 summarizes the key attributes of each of the seven public 

                                                 
22 Nature, December 20, 2001.  
23 Also see: http://www.ornl.gov/sci/techresources/Human_Genome/project/50yr/press4_2003.shtml 
24 Nature, January 2003  
25 Nature 423, 810-813 (19 June 2003) 
26 Nature 424, 157-164 (10 July 2003)
27 Nature 425, 805-811 (23 October 2003) 
28 Nature 428, 522-528 (01 April 2004) 
29 Nature 428, 529-535 (01 April 2004)
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genome centers in terms of founding year, leadership, affiliations, percentage of human genome 

sequence completed, chromosomes sequenced, operating budget, funding or employment size.  

------------------------------ 
Insert Table 1 about here 
--------------------------------- 

 

We now focus on the variations in the different organizational choices governing disclosure and 

IP policy for each center. These variations enable a more precise analysis of the economic 

experiment organized by NHGRI and DOE (to be described in the Section 4).  

  

The Whitehead Institute/ MIT Center for Genome Research (WIBR) chose to actively patent and 

license its genome research outputs.  However, it practiced forms of data release in accordance 

with the data release policy endorsed by both the Wellcome Trust Sanger Institute and NIH 

(Bentley, 1996).30  This formed an interesting and contrasting variation with most of the other 

genome centers in terms of how it governed information disclosure, production and 

dissemination of scientific knowledge and intellectual property rights for commercialization of 

biotechnologies.    

 

In contrast, the Wellcome Trust Sanger Institute was one of the major proponents of the “no 

patent” policy, believing in the immediate and free release of genomic sequence information to 

the public domain.  This policy (i) permits coordination; (ii) is of immediate value to others and 

is not misleading; and (iii) promotes maximum accessibility of the human genome sequence for 

interpretation and exploitation.  Furthermore, the Institute believes that such “activities should 

flourish in both the academic and commercial sectors….” and “withholding the genomic 

sequence ingredient from any academic or commercial laboratory with such knowledge impedes 

scientific progress and is not in the international public interest.”  It has taken the stand that 

“patenting of raw human genomic DNA sequence or partial or complete gene sequences of 

unknown function is inappropriate,” as it may “discourage further research and development by 

others, for fear that future inventions downstream of the gene sequence itself could not be 

adequately protected… Free release of sequence data will also encourage exploitation by a 

                                                 
30 This paper was written on behalf of the Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, 
UK, and Genome Sequencing Center, Washington University, St. Louis. 
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maximum number of commercial and academic centers that are keen to compete in the 

development of new therapeutic agents.” (Bentley, 1996).  This serves as a sharp contrast to the 

patent policy adopted by the Whitehead Institute. 

 

The Washington University Genome Sequencing Center (WUGSC), like the Sanger Institute, was 

a champion of the non-patenting policy on all its HGP research output, believing this choice will 

maximize the dissemination and utilization of knowledge and commercialization (Bentley, 1996). 

On a much smaller scale than the MIT Whitehead Institute, the Baylor College of Medicine 

Human Genome Sequencing Center (BCM-HGSC) selectively patents some of the related 

technologies derived from the sequencing of the human genome.  

 

Although University of Washington Genome Center (UWGC) “emphasizes innovative 

technology development and high quality sequence production”, it “decided to not to patent any 

of the sequences and it holds no patents on anything…”31  This was in line with the non-

patenting policy of the Sanger Institute and the Washington University Genome Sequencing 

Center. Like most other human genome centers, Stanford Human Genome Center (SHGC) 

follows a non-patenting policy on its HGP research output. Finally, DOE Joint Genome Institute, 

like most its counterparts in the HGP including the SHGC, adopts a rapid disclosure of 

information and non-patenting policy on its HGP research output. 

 

4. Analyzing the Human Genome Project experiments 

 
4.1. Data and Measures  
 
Economic experimentation by government in large-scale scientific projects such as the HGP 

introduces diversity and variety on different dimensions (e.g. talent, approach and disclosure 

incentives) as described in the previous sections. These variations produced by government’s 

experimentation, specifically on organizational disclosure and IP policy, provide an 

“experiment” in which to analyze the impact of a pro-patenting policy vs. full and rapid 

disclosure of scientific knowledge in the genome centers. Table 2 summarizes the organizational 

                                                 
31 According to informal interview with the Computer Support Analyst from the University of Washington Genome 
Center (2003). 
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choices in disclosure and patenting policy of the seven public genome centers vs. private Celera 

Genomics. The Whitehead/MIT Center and Baylor Human Genome Sequencing Center, from the 

public consortium, and the corporate Celera Genomics allowed for patenting.  In contrast, the 

other five public genome centers, namely Sanger Institute (U.K.), Washington University 

Genome Sequencing Center, University of Washington Genome Center, Stanford Human 

Genome Center and DOE Joint Genome Institute, established a full disclosure and strictly no 

patenting policy. 

------------------------------ 
Insert Table 2 about here 
--------------------------------- 

 

These seven public centers provide a matched and well-controlled opportunity to examine the 

impact of patent and disclosure policy on scientific knowledge produced by the genome centers. 

The heterogeneity of genomic research data is reduced by focusing only on knowledge related to 

human genome sequencing. In addition, these centers do not have knowledge ex ante on the 

choice and fruitfulness of the pieces of chromosomes they sequence.  All the public centers, as 

part of the same consortium, follow similar research and publication strategy (although not IP 

and disclosure policy) in the collaborative sequencing of the human genome. 

 

To understand the effects of IP and disclosure policy on knowledge production and 

commercialization by the genome centers, we collected data on all publications, patents and 

commercialization efforts from the HGP by the seven public genome centers as well as private 

Celera Genomics for comparison. Table 3 describes the variables in this study. Table 4 provides 

the summary statistics while Table 5 shows the correlation matrix for the key variables.  

------------------------------ 
Insert Table 3 about here 
--------------------------------- 
------------------------------ 
Insert Table 4 about here 
--------------------------------- 
------------------------------ 
Insert Table 5 about here 
--------------------------------- 
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The publication data is obtained from the ISI Web of Science, which provides the most 

comprehensive coverage of peer-reviewed scientific research articles available. These 

publications are cross-checked with the publication records announced by each genome center or 

listed on their website. This yielded a total of 1484 publications from January 1990, the year in 

which the HGP started, to December 2003, the year it ended. The number of publications across 

the seven public genome centers and Celera Genomics shows a generally increasing trend from 

1990 to 2003, all peaking at 2002 or 2003 (with the exception of Baylor which peaked at 1995), 

near or at the completion of the HGP, when most results are published (see Figure 2).  

------------------------------- 
Insert Figure 2 about here 
---------------------------------- 

 

The dependent variable is the number of cumulative forward citations to each scientific 

publication. We use publication citations to each genomic paper (i.e. peer-reviewed publications 

citing the focal paper) as a proxy for the importance of the scientific knowledge in the form of 

follow-on knowledge accumulation. Our citation-based approach follows a long literature using 

citations to trace the flow of ideas and their follow-on accumulation in later knowledge 

production (de Solla Price, 1965; Hall, Jaffe, & Trajtenberg, 2001; Posner, 2000).  

 

The independent variables are paired patent and patenting policy. We recognize in our data the 

presence of a paired patent to a corresponding scientific paper, indicating that the same piece of 

scientific knowledge is captured and disclosed in both the form of a scientific paper and a formal 

patent (which is only possible in a genome center that allows for patenting). This is an important 

feature known as a patent-paper pair (Ducor, 2000; Murray, 2002; Huang and Murray, in press). 

We code paired patent as a binary variable (1 to denote if a scientific paper is matched to a 

patent pair and 0 otherwise). To examine the effect of an organizational policy allowing for 

patenting, we also include patenting policy and code it as a binary variable – 1 denotes that a 

genome center allows for patents (i.e. Whitehead, Baylor or Celera) and 0 otherwise. 

 

We also include a number of control variables: number of authors, article type (binary variable 1 

to denote if the paper is an article or review and 0 otherwise), journal impact factor (to account 
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for the quality of publication), 32  number of centers (that collaborate on a publication), and 

industry collaboration (binary variable 1 to denote if the paper results from the collaborative 

effort of the genome center and a private firm and 0 if it doesn’t). In addition, we include dummy 

variables for each publication year (to account for unobserved heterogeneity across each 

publication cohort) and for each publication genome center, namely Whitehead, Sanger, 

Washington University, Baylor, University of Washington, Stanford, JGI and Celera, (to account 

for unobserved heterogeneity across each center where the publications come from). Finally, we 

differentiate and control for the knowledge characteristics of the HGP publications in terms of 

the type of research output they capture: (i) specific human gene sequence – chromosome and 

genes including characterization of different types of genes like disease genes or DNA; (ii) gene 

sequences of other organisms – mouse, rat, zebrafish, worm, and bacteria, including their disease 

or chromosome-specific characterization; and (iii) techniques, methods or procedures on 

sequencing or sequencing tools including both hardware and software. To do this, we coded the 

following binary variables (1 denoting yes and 0 otherwise) for each publication accordingly: (i) 

specific human gene sequencing; (ii) research on human or application to human; and (iii) 

techniques, methods or tools.  

 

As verification of genome center patent policy and to match a patent to its corresponding paired 

scientific paper, we obtain patent data for the Whitehead/MIT Center, Baylor and Celera 

Genomics from the USPTO, crossed checked by patenting and licensing associates from the 

relevant genome centers. Each patent entry includes patent number; title; inventor names; 

number of inventors; patent publication date; patent publication country; assignee names; 

assignee location; assignee code; patent application number; and patent application date.   

 

In addition, we collect the commercialization data of the Whitehead Institute based on its HGP 

patents from the MIT Technology Licensing Office (TLO). The commercialization data includes 

the number of cases with agreements (including licensing or joint venture); number of cases to 

start-ups; and start-up company names. As an overview, Whitehead Institute generated about 101 
                                                 
32 As the impact factor (and the rank ordering) across the set of journals in our data set is stable over time, we used 
2003, the last paper publication year in our sample. All genome centers (including Celera) have a significant 
proportion (about 13% to 30%) of scientific publications in the top 10 journals (i.e. impact factor greater than 25) 
such as “Science” and “Nature”. This speaks to the high quality of research and consistency in publication quality 
across the centers.  
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patents in the period 1990 to 2003, of which 40 belong to genome research; only 12 of the 40  

patnets are specifically related to the human genome project.  They cover a wide range of areas, 

from gene sequencing techniques, technological tools to genes themselves.  Table 6 shows the 

growing trend of patenting activities from 1990 to 2003, including the HGP-related patents.  

------------------------------ 
Insert Table 6 about here 
--------------------------------- 

 

In addition, based on MIT TLO data, there have been more than 60 licenses to these patents, and 

the licensees include Alnylam Pharmaceuticals, Ariad Pharmaceuticals, Cell Genesys, Genitrix, 

LLC, Microbia, Inc., Millennium Pharmaceuticals and Noxxon Pharma AG. Whitehead HGP 

technologies have also resulted in biotechnology start-ups such as Agencourt Bioscience, which 

specializes in DNA sequencing and genomic services. 

 

The Whitehead Institute commercialization data covers all the commercialization efforts (beyond 

patents) from the public consortium as Baylor did not have any start-ups based on their patents 

from the HGP until the end of 2003. Together with the complete publication and patent data 

from the genome centers, we have a comprehensive and nuanced data set for our analyses.     

 

4.2. Model specification and estimation 

As the dependent variable, number of cumulative forward citations to a scientific paper is a 

highly right-skewed count variable that takes on non-negative integer values.  We use a 

nonlinear regression approach to avoid heteroskedastic, non-normal residuals (Hausman et al., 

1984). Furthermore, the dependent variable exhibits over-dispersion with conditional variance 

significantly greater than the conditional mean (Cameron and Trivedi, 1998).33 Therefore, we 

choose negative binomial regression models (NBRM) over Poisson regression models in our 

estimation, as NBRM overcomes the problem of over-dispersion by assuming a gamma 

distribution for the conditional mean of the dependent count variable and allows the conditional 

mean and variance to vary.34 This choice is consistent with previous works employing citation 

                                                 
33 This is supported by the likelihood-ratio test where H1: E(yit)<Var(yit).  
34 The use of negative binomial regression model is further supported by the results from the goodness-of-fit test 
which rejected the Poisson distribution assumption. 
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based measures as dependent variables (Zeidonis, 2004; Hoetker and Agarwal, 2007; Murray and 

Stern, 2007; Huang and Murray, in press).35  

 

Based on this, we developed the following specifications. Equation (1) shows the baseline 

specification (with controls only) for the negative binomial regression model with robust 

standard errors estimate:36

 
CFCi = f (εi; δNUMBER_OF_AUTHORSi + νARTICLE_TYPEi  

+ μJOURNAL_IMPACT_FACTORi + φNUMBER_OF_CENTERSi  
+ σINDUSTRY_COLLABORATIONi  
+ χHGP_OUTPUT_CHARACTERISTICSi)      (1) 

  
From the baseline model, it is possible to develop two further specifications. In addition to the 

baseline controls specified in Equation (1), the marginal effects model in Equation (2) includes 

the independent variables paired patent and patenting policy.  

 
CFCi = f (εi; αPAIRED_PATENTi + ßPATENTING_POLICYi  

+ δNUMBER_OF_AUTHORSi + νARTICLE_TYPEi 
+μJOURNAL_IMPACT_FACTORi + φNUMBER_OF_CENTERSi  
+ σINDUSTRY_COLLABORATIONi  
+ χHGP_OUTPUT_CHARACTERISTICSi)     (2) 

  
 

Finally, the full fixed-effects negative binomial regression model in Equation (3) incorporates 

both publication year fixed effects and center fixed effects to account for unobserved 

heterogeneities across paper publication cohorts (i.e. each publication year) and across individual 

genome centers, respectively.  

 
CFCi = f (εi; αPAIRED_PATENTi + ßPATENTING_POLICYi  

+ δNUMBER_OF_AUTHORSi + νARTICLE_TYPEi 
+μJOURNAL_IMPACT_FACTORi + φNUMBER_OF_CENTERSi  
+ σINDUSTRY_COLLABORATIONi  
+ χHGP_OUTPUT_CHARACTERISTICSi  
+ ηPUBLICATION_YEAR Fixed Effects,t + ψCenter Fixed Effects,i) (3) 

 

                                                 
35 Alternative Poisson regression models with robust standard errors produced similar results. 
36 We employ the robust standard errors, using Huber-White sandwich estimator (Allison and Waterman, 2002; 
Greene, 2004) to account for possible heteroscedasticity, and lack of normality in the error terms. 
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4.3. Empirical results 

Our first analysis focuses on how a patenting policy resulting in paired patents relates to the 

importance of scientific knowledge and genomic innovation. In all our models, we report the 

coefficients as incidence rate ratios (IRR), which can be derived by exponentiating the 

coefficients, βk of the independent variable xk of the negative binomial regression models. In our 

case, the IRR can be interpreted as the factor change in annual citations received in a given year 

due to a unit increase in the regressor. For example, an IRR of 2.03 in the coefficient indicates a 

103% increase in the dependent variable for a unit increase in the independent variable, all else 

being equal.  

 

Table 7 shows the impact of paired patent and patenting policy on knowledge accumulation. 

Model 7-1 shows the baseline regression model with controls only. Model 7-2 shows the 

marginal effects regression model with the independent variables paired patent and patenting 

policy included. Model 7-3 shows the full negative binomial regression model (with robust 

standard errors) incorporating publication year fixed effects and center fixed effects. As a 

robustness check, the fixed-effects Poisson regression model (with robust standard errors) shown 

in Model 7-4 produced similar results to Model 7-3.37      

------------------------------ 
Insert Table 7 about here 
--------------------------------- 

 
The coefficients and statistical significance of the independent and control variables remain 

stable and similar across Models 7-1, 7-2 and 7-3.38 In the most stringent model, Model 7-3, 

which includes publication year and center fixed effects, we find that publications with a “paired 

patent” is significant (at the 1.6% level), strongly and positively associated with the number of 

cumulative forward citations. Specifically, a scientific paper with a paired patent is associated 

                                                 
37 The Poisson model provides a consistent estimate of the conditional mean function, even if the variances are mis-
specified (Wooldridge, 1999). However, when there is over-dispersion (as in this case), the Poisson process may 
result in consistent but inefficient estimates. On the other hand, negative binomial (fixed effects) should yield 
consistent but efficient estimates in the case of well-specified conditional variance. To assure the readers, fixed-
effects Poisson regression model (with robust standard errors) was performed as a robustness check and yielded 
similar results.  
38 An alternative specification of fixed-effects negative binomial models with robust standard errors, clustered by the 
eight genome centers to account for possible correlations in the errors for publications within each center produced 
only slight variation in the magnitude of the standard errors but no change in statistical significance and results 
across all variables.   
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with an increase in cumulative citations by more than a factor of two (factor of 2.03). While we 

cannot be certain that the patent serves as a signal (Hsu and Ziedonis 2007) to enhance the 

cumulative forward citations on a piece of scientific knowledge or innovation over its lifetime, 

this finding suggests that an organizational pro-patenting policy generates patents that are 

associated with the most highly cited and important scientific findings and innovations. 

 

Furthermore, publications from centers with a patenting policy (i.e. Whitehead, Baylor and 

Celera Genomics) accrue significantly (at the 1% level) more cumulative citations by a factor of 

1.63, relative to the other genome centers. This further supports the notion that an institutional 

pro-patenting policy enhances the visibility and influence of its scientific research and 

publications. 

 

In terms of the type of the scientific research, specific human gene sequencing variable is 

significant and negative (by a factor of 0.63), while techniques, methods or tools variable is 

significant and strongly positive (by a factor of 2.28). This suggests that if a publication captures 

research on specific human gene sequencing information, it is not as highly cited or influential as 

those potentially more practical and industry driven scientific applications in techniques, 

methods or tools.  

 

The other control variables largely behaved as expected. The number of authors is significant (at 

the 0.1% level) and positive.  This suggests that the higher the number of authors, the higher the 

cumulative forward citations. While the magnitude of the increase is small (adding another 

author increases the forward citations by just 1%), the relatively small mean number of authors 

(about 15), with the standard deviation more than twice as large (about 31), suggest that a more 

substantial change in the percentage of authors would have a correspondingly larger effect on 

citations. More authors could signal larger scale or more complex research projects that appeal to 

a wider network of scientists and hence may be cited more. Article type is significant and 

strongly positive.  This is expected because publications that are classified as “articles” or 

“reviews” are the most noticeable forms of knowledge outputs and therefore most highly cited 

among other types of publications. Journal impact factor is significant and positive.  This is 

expected as it measures a journal’s relative importance and “visibility” and provides a proxy for 
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its quality, especially in comparison with others in the same field.  A high impact journal is also 

one that is more frequently cited. Number of centers collaborating on a particular scientific 

innovation is significant (at the 0.1% level) and positive.  This suggests the higher the number of 

collaborating institutions, the higher the cumulative forward citations.  This is reasonable for 

similar reason as number of authors. Finally, industry collaboration is not significant. This 

suggests that teaming up with industry scientists in genomic research and publication may not 

increase cumulative forward citations to the publications. 

 

4.4. Implications 

Through interviews, quantitative analyses and qualitative evidence, we find that patents 

generated by the genome centers with a patent policy are associated with the most important and 

influential scientific publications (measured by cumulative citations to these publications) at both 

patent- and organizational- levels of observation. These paired patents lead to agreements, 

licensing and start-ups. Focusing on organizational governance in IP and disclosure, if the 

government organizes and funds a variety of scientific projects but allows individual 

organizations to control their own IP decisions (with little or no regulatory oversight), there are 

more incentives for instituting a patenting policy from a commercialization perspective, as in the 

cases of Whitehead/MIT and Celera Genomics.  

 

In other words, while patenting is critical for commercialization to occur in the form of licensing 

and start-ups, a consequence of organizations with a patenting policy is to generate patents that 

are, on the average, associated with the more important pieces of research. This finding is of 

concern to policy and decision makers because if patent grant has an adverse temporal impact to 

long-run supply of public (genomic) knowledge (Huang and Murray, in press), it implies that 

follow-on research and innovation on the more important scientific knowledge are more 

adversely affected than other knowledge. Hence in the long-run, the supply of the more 

important public knowledge may be reduced. This would be detrimental to both public research 

efforts into critical disease areas and private firms that rely on the supply of this public 

knowledge. 
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As a result of government experimentation, we are better able to understand variations in 

organizational policy specifically in IP and disclosure. In addition to the diversity of approach 

introduced by the government (which is beneficial to the economy), this natural experiment 

setting has allowed for better policy evaluation. Government has the information and tools to 

intervene in policy settings through targeted restrictions of patenting on important government-

funded projects to maximize rapid and full disclosure of important scientific knowledge. This 

will make important scientific knowledge widely available for firms, organizations and 

individuals who depend on such public knowledge to further innovate. 

 
5. Roadmap for designing and analyzing experimentation  
 
Reinterpreted through the lens of economic experiments, the human genome project becomes a 

setting for a much richer understanding of the ways in which organizational and institutional 

choices shape scientific productivity.  Richly described, these organizational dimensions 

included the presence or absence of intellectual property, co-located versus distributed work, 

freedom to publish or not and the imposition of particular forms of copyright and trade secrets 

over knowledge production.  Through careful analysis of this experiment we have demonstrated 

the power of entrepreneurial experimentation as a way to create diversity in talent, approach and 

organization and as a starting point for more effective program evaluation.  The diversity 

introduced by the government incorporated different characteristics into the organizations 

undertaking the same scientific project (in this case, we focused on organizational disclosure and 

IP choices).  Consequently, different types of knowledge and associated commercially oriented 

outputs were generated at different speed even by the genome centers within the same public 

consortium. Private Celera genomics had demonstrated a shortened timeline and dramatically 

different organizational IP strategy in completing the project alongside the public centers.         

 

In its narrow construction, our study is part of a broader effort to take advantage of such 

experiments to explore the ways in which institutional and organizational arrangements influence 

the productivity of the scientific community (Murray and Stern, 2007; Murray et al., 2009; 

Williams, 2009).  We contribute to an understanding of these issues by showing that an 

organizational pro-patenting policy tends to generate patents associated with the most important 

and influential scientific research. To the extent that such patent grant has an adverse temporal 
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impact on the long-run supply of public (genomic) knowledge (Huang and Murray, in press), 

follow-on research and innovation on the most important scientific knowledge are more 

adversely affected than other knowledge. While patents are key to commercialization as in the 

cases of Whitehead Institute and Celera Genomics, having a policy of no patent and full 

disclosure allows for rapid dissemination of knowledge and encourages downstream research, 

development and innovations.    

 

Our study also demonstrates the potentially powerful role of the government serving as an 

entrepreneur by ensuring a wide range of policy experiments, each of which explores a rich and 

diverse landscape of possible organizational, technical and institutional configurations.  By 

laying the groundwork for such experimentation, the government is facilitating efforts that lie at 

the very core of entrepreneurship – diversity and experimentation.     

 

In the arena of science policy the government can promote experimentation in the scientific 

community by reducing its riskiness and ensuring that the learning is captured across projects – 

not only along the technical dimension but also along critical organizational and institutional 

dimensions.  As the example of the HGP suggests, the particular dimension of experimentation 

that is most novel in our discussion of science policy is organizational diversity. Rosenberg 

(1992) notes that critical dimensions include “size, pattern of ownership, product mix, etc” (p. 

193).  For experiments in R&D we must consider issues of team size, team distribution, and team 

disciplinary diversity as well as institutional rules regarding incentives for freedom and control. 

As Aghion, Dewatripont and Stein (2008) have argued, these are crucial features shaping the 

incentives for scientists to pursue a diverse set of technical paths.  Within the scientific 

community, such experiments may be particularly feasible given the small-scale of typical 

operations, the degree to which individual scientists lead their laboratories in an autonomous 

fashion etc. and the lack of strongly bureaucratic organizations.   

 

The entrepreneurial perspective on the role of science policy in government also allows us to 

reconsider the debate over the rationale for government spending on R&D in areas where private 

funding may potentially be available (suggesting that public funding was not overcoming a 

market failure) – as was the case with the Human Genome Project.  By reframing the role of 

 32



 

government as an opportunity to experiment with alternative organizational and institutional 

arrangements, the focus becomes not on duplicative technical investments but instead on 

investments in alternative (and potentially more productive) organizational and institutional 

choices.   

 

Overall, our argument suggests that the government must create an environment in which 

scientists in the public and private sector, university leaders and corporate leaders have strong 

incentives to experiment with the way in which they attempt to solve the world’s most complex 

questions.  In designing and analyzing economic experimentation, the government can and 

should first proactively identify opportunities to seed a variety of entrepreneurial experiments. 

While the government need not undertake all such experiments directly, it should provide the 

specific framework and compass to guide individual organizational policies toward varying their 

technical and institutional approaches, particularly in their R&D efforts. This should be done in 

addition to provision of any financial resources.  

 

We also suggest that the government transition from being merely an investor in projects to an 

entrepreneur, actively organizing a diversity of economic experiments on a wide variety of 

science and R&D projects (among others).  The results could lead to more and better options in 

terms of production, innovative technologies, and institutional arrangements. Science policy 

could even be designed to purposefully build in competitions or competing groups, employing 

different technical approaches and organizational policies to achieve similar goals.  

   

Finally, government should carefully assess and evaluate the outcomes from each of these 

(intended) experiments. Mechanisms for assessment, data collection and program evaluation 

should be tactfully built in at the start of the project. Continuous evaluation and assessment are 

critical at different stages of the project for the purpose of feedback, gate-keeping and 

interventions when needed. For example, the direction of the project should be altered (or even 

stopped) when certain benchmarks at a predetermined stage or time are not met. To enhance 

efficiency, these mechanisms could be aligned into the incentive structure or organizational 

levers that facilitate the successful completion of the project. The outcome of the evaluations 
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should act as inputs, not only for interventions but for initiation of new entrepreneurial 

experimentations.          

 

Figure 3 outlines the three-stage framework to entrepreneurial experiments that government can 

undertake to foster a diversity of technical, individual, organizational and institutional 

approaches to a particular problem and its solution. 

 
------------------------------- 
Insert Figure 3 about here 
---------------------------------- 

 
If well designed, entrepreneurial experimentation by the government through a variety of 

policies and practices can not only yield much valued diversity but also more effective program 

analysis.  Simply by changing funding mechanisms and by incorporating new goals into existing 

monitoring mechanisms, the government could spur a wide range of economic experiments in 

the scientific community and capture key insights in the process.  This would provide a less 

intrusive means to engage in the science of science management. This agenda holds considerable 

promise for the development of science of science policy grounded in rich evidence and wide-

ranging experimentation. 
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Table 1: Key Attributes of the Seven Public Genome Centers 
 

 Official 
Founding 
Year/ 
Leadership 

Affiliation(s) % Human 
Genome 
Sequence 
Completed 

Chromosomes 
Sequenced 

Operating Budget/ 
Funding/ 
Employment 

Whitehead 
Institute/ 
MIT 
Center for 
Genome 
Research 
 

1990 
Eric Lander 

Massachusetts 
Institute of 
Technology 
(MIT) 

~30% 9, 13, 17, 18 and 
Y 

$26 million (NIH 
grant in 1996), $35 
million (NHGRI grant 
in 1999). $45 to $80 
million (annually) 
>250 people 

Wellcome 
Trust 
Sanger 
Institute 

1993 
John Sulston 

Wellcome 
Trust and the 
UK Medical 
Research 
Council 
(MRC) 
 

>30% 1, 6, 9, 10, 13, 
20, 22, X and 
(part of) 11 

$215 million 
(Cumulative as of 
April 2003); 
$430 million (2001-
2006) 

Washington 
University 
Genome 
Sequencing 
Center 
 

1993 
Robert 
Waterson, then 
Richard K. 
Wilson 

Washington 
University 
Medical 
School 

~25% 2, 7, 14, 22 and 
(part of) X. 
Coordinator for 
2, 4, 7 and Y 

$29.7 million grant 
(from NHGRI & 
NIH). $6.7 million 
from 1996 over 3 
years 
 

Baylor 
College of 
Medicine 
Human 
Genome 
Sequencing 
Center 
 

1996 
Richard Gibbs 

Baylor College 
of Medicine 

~10% 3, 12 and (part 
of) X 

$1.3 million from 
1996 over 3 years 

University 
of 
Washington 
Genome 
Center 
 

1996 
Maynard Olson 

University of 
Washington 

~5% (Part of) 1, 3, 7, 
14 and 15  
 

$1 million from 1996 
over 3 years 

Stanford 
Human 
Genome 
Center 
 

1990 
(established in 
UCSF). 1993 
(moved to 
Stanford). 
Richard Myers 
 

Stanford 
University 

>11% (with 
DOE JGI) 

4, 5, 16 and 19 
(with DOE JGI)

$2.5 million from 
1996 over 3 years. 
~ 50 faculty, 
researchers and staff 

DOE Joint 
Genome 
Institute  

1997 
(Combining 
LBNL, LLNL 
& LANL) 
Eddy Rubin 
   

U.S. 
Department of 
Energy (DOE)

>11% (with 
Stanford 
HGC) 

5, 16, and 19 
(with Stanford 
HGC) 

$60 million 
(annually), 
160 employees 
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Table 2: Organizational Choices Governing Disclosure and IP of the Genome Centers 
 
 Public 

 
Private 

Allow Patenting 
 

Whitehead Institute,  
Baylor  
 

Celera Genomics 

No Patenting Sanger Institute (U.K.), 
Washington University, 
University of Washington, 
Stanford, DOE JGI 
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Table 3: Variable Definitions 
  

Name Definition Source 
Dependent Variables 

Cumulative forward 
citation (CFC) 

Number of cumulative citations made by later papers to the (focal) 
paper previously published 

ISI 

Independent Variables 
Paired patent Binary variable (1/0) denoting if a scientific paper is matched to a 

patent pair 
USPTO 

Patenting policy  Binary variable (1/0) denoting if a genome center allows for HGP 
related patents  

USPTO/ Genome 
centers publication 
and websites 

Control Variables 
Number of authors Number of authors appearing on the paper ISI 
Article type  Binary variable (1/0) denoting if the paper is an article/review ISI 
Journal Impact Factor Impact factor (2003) of the journal in which the paper is published  ISI/ Journal 

Citation Report 
Number of centers Number of unique genome centers with addresses appearing on the 

paper 
ISI 

Industry collaboration Binary variable (1/0) denoting at least one private address on the 
paper 

ISI 

Publication year Year in which the paper is published ISI 
Specific human gene 
sequencing 

Binary variable (1/0) denoting if the paper is on specific human 
gene sequence or characterization of genes 

ISI 

Research on human 
or application to 
human 

Binary variable (1/0) denoting if the paper is on  
gene sequences of human vs. other organisms such as mouse, rat, 
zebrafish, worm and bacteria (sequenced as part of the HGP) 

ISI 

Techniques, methods 
or tools 

Binary variable (1/0) denoting if the paper is on sequencing 
techniques, methods or tools including both hardware and software 

ISI 

Whitehead Binary variables (1/0) denoting if the paper is published by 
Whitehead Institute/ MIT Center for Genome Research   

ISI 

Sanger Binary variables (1/0) denoting if the paper is published by 
Wellcome Trust Sanger Institute 

ISI 

Washington 
University 

Binary variables (1/0) denoting if the paper is published by 
Washington University Genome Sequencing Center 

ISI 

Baylor Binary variables (1/0) denoting if the paper is published by Baylor 
College of Medicine Human Genome Sequencing Center 

ISI 

University of 
Washington 

Binary variables (1/0) denoting if the paper is published by 
University of Washington Genome Center 

ISI 

Stanford Binary variables (1/0) denoting if the paper is published by 
Stanford Human Genome Center 

ISI 

JGI Binary variables (1/0) denoting if the paper is published by DOE 
Joint Genome Institute 

ISI 

Celera Binary variables (1/0) denoting if the paper is published by Celera 
Genomics 

ISI 
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Table 4: Summary Statistics of Variables  
 

Dependent Variables 
Variable n Mean Std. Dev. Min Max 

Cumulative forward citation 1484 84.59 333.57 0 3984 

Independent Variables 
Paired patent 1484 0.01 0.09 0 1 
Patenting policy  1484 0.36 0.48 0 1 

Control Variables 
Number of authors 1484 14.79 31.23 1 274 
Article type  1484 0.75 0.43 0 1 
Journal Impact Factor 1484 10.50 9.52 0 34.8 
Number of centers 1484 5.05 6.65 1 53 
Industry collaboration 1484 0.10 0.30 0 1 
Specific human gene 
sequencing 

1484 0.19 0.40 0 1 

Research on human or 
application to human 

1484 0.74 0.44 0 1 

Techniques, methods or 
tools 

1484 0.12 0.32 0 1 

Publication year 1484 1999 3.08 1990 2003 
Whitehead 1484 0.13 0.34 0 1 
Sanger 1484 0.47 0.50 0 1 
Washington University 1484 0.08 0.27 0 1 
Baylor 1484 0.18 0.38 0 1 
University of Washington 1484 0.04 0.20 0 1 
Stanford 1484 0.02 0.15 0 1 
JGI 1484 0.03 0.18 0 1 
Celera 1484 0.05 0.21 0 1 
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Table 5: Correlation Matrix 
 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20)
(1) Cumulative 
forward citation 1                    

(2) Paired patent 0.078 1                   
(3) Patenting policy  0.048 0.121 1                  
(4) Number of authors 0.700 -0.012 -0.028 1                 
(5) Article type  0.138 0.034 -0.011 0.143 1                
(6) Journal Impact 
Factor 0.361 0.034 0.045 0.462 0.060 1               

(7) Number of centers 0.625 -0.009 0.052 0.818 0.165 0.410 1              
(8) Industry 
collaboration 0.284 0.046 0.204 0.337 0.040 0.155 0.339 1             

(9) Specific human 
gene sequencing 0.118 -0.006 -0.026 0.173 -0.051 0.030 0.106 -0.036 1            

(10) Research on 
human or application 
to human 

-0.021 0.053 0.185 -0.117 -0.170 -0.065 -0.092 -0.064 0.287 1           

(11) Techniques, 
methods or tools -0.036 0.060 0.000 -0.097 0.079 -0.163 -0.131 0.048 -0.165 0.155 1          

(12) Publication year -0.019 -0.045 -0.301 0.111 0.044 0.024 0.095 0.178 -0.072 -0.149 0.059 1         
(13) Whitehead 0.046 0.119 0.527 -0.005 -0.046 0.105 0.061 -0.043 -0.059 0.057 -0.022 -0.009 1        
(14) Sanger -0.090 -0.085 -0.700 -0.077 -0.054 -0.093 -0.137 -0.208 0.034 -0.123 -0.010 0.215 -0.369 1       
(15) Washington 
University 0.027 -0.026 -0.218 0.127 0.092 0.092 0.075 0.013 -0.037 -0.101 0.063 0.036 -0.115 -0.274 1      

(16) Baylor -0.005 0.018 0.617 -0.065 0.012 -0.058 -0.007 -0.092 0.051 0.172 -0.032 -0.450 -0.181 -0.432 -0.135 1     
(17) University of 
Washington 0.025 -0.019 -0.155 0.016 0.039 0.017 0.036 -0.011 -0.033 0.014 -0.055 -0.001 -0.082 -0.194 -0.061 -0.095 1    

(18) Stanford 0.037 -0.014 -0.114 0.053 -0.028 0.028 0.045 -0.005 0.095 0.060 -0.014 0.016 -0.060 -0.144 -0.045 -0.071 -0.032 1   
(19) JGI 0.025 -0.016 -0.135 0.038 0.023 -0.043 0.054 0.031 -0.011 -0.069 0.005 0.143 -0.071 -0.170 -0.053 -0.083 -0.037 -0.028 1  
(20) Celera 0.042 0.050 0.303 0.059 0.027 0.037 0.031 0.686 -0.056 0.019 0.092 0.140 -0.089 -0.212 -0.066 -0.104 -0.047 -0.035 -0.041 1 
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Table 6: Whitehead Patents from 1990 to 2003 (Cumulative Forward Citations as of June 2004) 
 

Pat. 
Grant 
Year 

90 91 92 93 94 95 96 97 98 99 00 01 02 03

# Patents 
Belong to 
Genome 
Research 

1 0 0 0 1 0 1 2 5 8 4 4 7 7

# HGP 
Related 
Patents 

0 0 0 0 0 0 0 1 1 1 1 2 2 4

Mean 
CFC 0 0 0 0 0 0 0 25 15 5 1 3 0 0
Mean # 
Inventors 0 0 0 0 0 0 0 2 1 1 2 3 3 4
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Table 7: Impact of Paired Patent and Patenting Policy on Cumulative Knowledge Accumulation  
 

Main Results: 
Negative Binomial Regression Model:  
DV = Cumulative Forward Citations 
Coefficients reported as incidence rate ratios, 
IRR  

Robustness Check: 
Poisson Regression 
Model: 
DV = Cumulative 
Forward Citations 
Coefficients reported as 
incidence rate ratios, IRR

  

[7-1]  
Baseline 
Model with 
Controls Only 

[7-2]  
Marginal Effects 
Model with 
Independent 
Variables  

[7-3]  
Full Model with 
Center and 
Publication 
Year Fixed 
Effects 

[7-4]  
Full Model with Center  
and Publication Year  
Fixed Effects 

Independent Variables  
Paired patent   2.86***  

(0.86) 
2.03**  
(0.60) 

2.36***  
(0.75) 

Patenting policy   1.67*** 
(0.22) 

1.63*** 
(0.31) 

1.45**  
(0.25) 

Control Variables 

Number of authors 1.01** 
(0.00) 

1.01*** 
(0.00) 

1.01*** 
(0.00) 

1.01*** 
(0.00) 

Article type  11.4*** 
(2.29) 

11.5*** 
(2.13) 

13.8*** 
(1.90) 

12.2*** 
(1.96) 

Journal impact 
factor 

1.08*** 
(0.01) 

1.08*** 
(0.01) 

1.08*** 
(0.00) 

1.07*** 
(0.01) 

Number of centers 1.04*** 
(0.01) 

1.04*** 
(0.01) 

1.04*** 
(0.01) 

1.01*  
(0.01) 

Industry 
collaboration 

0.84  
(0.12) 

0.68**  
(0.10) 

0.93  
(0.15) 

1.61***  
(0.23) 

Specific human 
gene sequencing 

0.65***  
(0.08) 

0.66***  
(0.08) 

0.63***  
(0.07) 

0.78**  
(0.09) 

Research on 
human or 
application to 
human 

0.96  
(0.17) 

0.89  
(0.14) 

0.95  
(0.09) 

1.31* 
(0.18) 

Techniques, 
methods or tools 

1.98*** 
(0.39) 

2.21*** 
(0.46) 

2.28*** 
(0.41) 

1.95***  
(0.38) 

Center fixed effects     Yes Yes 
 

Publication year 
fixed effects 

  Yes Yes 
 

Regression Statistics 
Log-likelihood -6198 -6168 -6009 -46371 
Wald chi-square (p) 0.000 0.000 0.000 0.000 

Number of 
observations 

1484 1484 1484 1484 

Robust standard errors (of the IRR) in parentheses. *p<0.10; **p<0.05; ***p<0.01 
  

 46



 

Figure 1: Organization of the Human Genome Project: Mapping the Key Stakeholders 
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Figure 2: Human Genome Project Publications from Whitehead, Sanger, Washington University, 
Baylor, University of Washington, Stanford, Joint Genome Institute and Celera Genomics 

8 Center HGP Publications (1990-2003)
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Figure 3: A Three-Stage Framework to Entrepreneurial Experimentations by the Government 

 

I. Identification and 
seeding of (scientific 
and technological) 
opportunities  

II. Organization and 
participation in a  
wide variety of 
entrepreneurial 
experimentations 

III. Assessment, 
evaluation  
and feedback 

Government as 
Entrepreneur 
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