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1 Introduction

There has been an extensive and long-running discussion as to whether demand- or supply-

side factors determine innovative activities across different industries. The controversy

between advocates of the “demand-pull” and those of the “technology-push” theories has

been resolved by pointing out the importance of both the information flows of scientific

and technical knowledge and information from users of products and processes for inno-

vative activities (Freeman, 1994). Consequently, this paper studies the contribution of

demand-side variables (market size) and supply-side variables (technological opportuni-

ties) to innovative activities using data from the U.S. pharmaceutical industry. On the

one hand, the importance of demand for innovation in this sector has been pointed out by

many scholars (e.g., Cerda, 2007; Acemoglu and Linn, 2004). On the other hand, there is

much evidence that innovative activities in this sector rely on scientific advances, particu-

larly in the field of biotechnology (e.g., Rasmussen, 2010; McKelvey, 1996; Gambardella,

1995). Hence, the pharmaceutical industry provides an almost ideal case to analyze the

importance of demand- and supply-side variables for innovative output.

While researchers studying the determinants of innovation can apply a broad range of

usually quite well defined demand-side variables, some important supply-side variables

lack a clear definition or operationalization. In particular, the concept of technological

opportunities has been found to be a key variable for explaining innovative activities across

different industries, but there is no clear consensus concerning its empirical approximation

(e.g., Klevorick et al., 1995). Early studies of the importance of technological opportu-

nities relied mostly on industry dummies or survey-based indicators of the importance

of different knowledge sources. In contrast to these contributions, I will use a quantita-

tive proxy for technological opportunities, following an idea proposed by Andersen (1999,

1998), and operationalize technological opportunities by the growth rate of the knowledge

stock in a given field of research.

The empirical analysis is performed on a unique dataset that encompasses data from

different sources. Data concerning new pharmaceuticals comes from the Drugs@FDA

database. Cinical trials data is obtained from ClinicalTrials.gov. Market size is con-

structed using the March Supplement of the U.S. Current Population Survey and the
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Medical Expenditure Panel Survey (MEPS).1 Publication data from the Web of Science

databases is used to construct proxies for technological opportunities. The data is an-

alyzed using an “entry stock” Poisson quasi-maximum likelihood estimator (QMLE), as

suggested by Blundell et al. (1995), since it accounts for dynamic feedback and unob-

served heterogeneity. Moreover, the Poisson QMLE is consistent under the assumption

of a correctly specified mean and does not require Poisson-distributed data.

The results indicate a significantly positive response of the number of new pharmaceuticals

to market size. This result holds true for new molecular entities as well as for new drug

approvals and is rather robust against different specifications of the market size proxy.

Technological opportunities have a significantly positive relation with the number of new

pharmaceuticals. I find, however, no robust significant relation between technological op-

portunities in biotechnology and basic research and the number of new pharmaceuticals.

This result may be driven by the construction of the database and the knowledge stocks,

which may better account for applied research. I take time lags of seven years into ac-

count, which corresponds to the average time needed from the first clinical testing of a

promising compound to the approval of a new drug. The results suggest no clear-cut rela-

tionship between lagged market size, lagged technological opportunities, and the number

of pharmaceutical innovations. By instrumenting market size by market size five years

previously, I find no evidence for reverse causality. The number of phase II and phase

III clinical trials, a proxy for new compounds under development, respond positively to

(potential) market size and to technological opportunities at the beginning of the clinical

research process.

This paper contributes to the literature in three ways. First, the relationship between

demand and pharmaceutical innovation is often analyzed on a rather aggregated level,

e.g., drug categories or disease groups. I use instead a more disaggregated level of analy-

sis, namely medical indications. Second, by operationalizing technological opportunities

1This paper uses predominantly data from the U.S., one of the largest markets for pharmaceuticals

in the world. Many new pharmaceuticals introduced in the U.S. are marketed worldwide and approval

decisions in many countries are based on the corresponding decision by U.S. authorities (Kremer, 2002).

Therefore, the results presented in this paper may to a large extent account for the relationships in the

world market for pharmaceuticals.
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as growth rates of knowledge stocks, I add a quantifiable proxy for this variable to the

analysis. Third, the publication data used to construct the knowledge stocks is more

closely related to the definition of technological opportunities than are patents or other

types of data previously used in the literature. Particularly in a science-based industry

such as pharmaceuticals, publications may reflect the possibilities for innovative activities

more directly than, e.g., patents, which can be seen as a realization of specific possibilities

for innovation. Additionally, the number of approved drugs and the number of clinical

trials provide a more appropriate measure for the industry’s innovative activities as com-

pared to patent counts. Due to the specificities of the industry’s R&D process, almost all

promising compounds are patented before their therapeutic potential is fully examined

but only few new compounds are approved for marketing since the vast majority does not

meet expectations in terms of safety and efficacy. Hence, the number of patents might

considerably overestimate the number of successfully developed products.

This paper is structured as follows. Section 2 reviews the related literature on the demand-

and supply-side determinants of innovative activities. Section 3 presents the empirical

strategy and Section 4 explains the construction of the variables and the different data

sources. The empirical results can be found in Section 5. Finally, Section 6 concludes.

2 Related Literature

2.1 Demand and Innovation

The importance of demand in explaining the rate of innovation across sectors has been

recognized in economics for many decades. In his seminal contribution, Schmookler (1966)

suggested that cycles of capital good patents usually lag behind cycles of capital goods’

output and capital expenditures in downstream industries. This finding led to the conclu-

sion that demand side stimuli are the most important for explaining the rate and direction

of inventive activities. Along with other early contributions, these results have been crit-

icized in the “demand-pull” versus “technology-push” debate. The corresponding studies

often lacked a clear definition of demand, neglected supply-side influences, and did not

conclusively demonstrate the importance of demand for the rate and direction of inno-

vation (Mowery and Rosenberg, 1979). Replications of Schmookler’s (1966) results have
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pointed to a somewhat weaker relationship between demand and innovative activities than

in the original study. However, the relation remains significant in most cases (Scherer,

1982). Furthermore, there may be a mutual dependency between demand and innovation,

rather than a clear, unidirectional causality (Kleinknecht and Verspagen, 1990).

Analyzing innovative activities in the United Kingdom, Geroski and Walters (1995) find

that variations in demand Granger-cause major innovation counts and patents. Walsh

(1984) offers a more differentiated view, by analyzing sub-sectors of the chemical in-

dustry in more detail. The results obtained suggest that exogenous major innovations

create their own demand, which subsequently leads to a rising number of incremental

innovations. Thus, the importance of supply- and demand-side influences may vary over

a life cycle. In some industries, heterogeneous demand as well as lead or experimental

users play a dominant role in shaping the rate and direction of technological development

(Malerba et al., 2007; Adner and Levinthal, 2001; von Hippel, 1976).

As to the pharmaceutical industry, it is often argued that demand-side variables deter-

mine the rate and the direction of the industry’s investment in R&D activities and, conse-

quently, the number of new drugs in different therapeutic categories. Empirical evidence

suggests that pharmaceutical companies’ R&D decisions are determined by the expected

return and cash flow variables, which should be connected with the size of the correspond-

ing markets and with real drug prices (Giaccotto et al., 2005; Grabowski and Vernon,

2000). Expected returns are an important determinant of R&D spending not only for large

U.S. but also for Japanese pharmaceutical companies (Mahlich and Roediger-Schluga,

2006). These results support earlier findings, indicating that variables related to the ex-

pected returns explain chemical and pharmaceutical firms’ R&D intensity (Grabowski,

1968).

Following the empirical evidence on firms’ R&D decisions being at least partly shaped

by variables affected by market size, one would expect firms to invest in R&D and to

introduce new pharmaceuticals, particularly for medical conditions that have a high ex-

pected market size and consequently, high expected returns. Acemoglu and Linn (2004)

analyze the effect of (potential) market size on new drugs approved by the U.S. Food and
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Drug Administration (FDA), making use of exogenous changes in the potential market

size driven by demographic trends. Their results indicate that a 1 percent increase in

the potential market size of a drug category is associated with a 4 to 6 percent increase

in the entry of new molecular entities. The response as to new non-generic drugs is ap-

proximately 4 percent. Moreover, their results show responses to 5-year leads in market

size. Taking the time needed for development into account, pharmaceutical R&D seems

to respond to anticipated changes in the market size with a lead of 10 to 20 years. The

results are robust against the introduction of controls for a variety of supply-side factors.

Using U.S. demographical data, Cerda (2007) provides additional evidence for the im-

portance of market size for the introduction into the market of new molecular entities.

Moreover, the author shows that there are important feedback effects, since new drugs

affect the market size through their impact on the mortality rate. Market size related

variables affect not only the introduction of new molecular entities and new non-generics,

but also generic entry (Reiffen and Ward, 2005; Morton, 1999).

The importance of market size for the rate and direction of innovative activities related to

new drugs has been particularly emphasized regarding diseases which affect individuals in

developing countries. Small markets make it less attractive for pharmaceutical companies

to engage in research and drug development for the corresponding medical conditions

and the appropriate delivery of medications in developing countries (Lichtenberg, 2005a;

Kremer, 2002). Similar problems may occur regarding rather rare diseases in developed

countries. Supply-side incentives such as tax credits may lead to an increase in innovative

activities related to such medical conditions. However, firms may still concentrate on the

more prevalent conditions among the rare diseases (Yin, 2008).

2.2 Technological Opportunities and Innovation

The importance of demand-side variables has been contradicted by advocates of the

technology-push hypothesis, claiming that scientific and technological progress are the pri-

mary drivers of the rate and direction of innovative activities. The generation of new scien-

tific and technological knowledge leads to a steady renewal of the pool of technological op-

portunities, i.e., an industry’s set of possibilities for innovative activities (Klevorick et al.,
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1995). Technological opportunities reflect the state of knowledge at a particular point in

time, which determines the cost and difficulty of successful innovative activities (cf., Jaffe,

1986). Technological opportunities are bound to technological paradigms determining the

scope of potential innovations and the effort necessary to achieve these along specific tra-

jectories. New paradigms generate new opportunities for previously infeasible product

development and productivity increases. It is, however, the expected economic returns

that lead to dedicating resources to the exploitation of the existing opportunities (Dosi,

1988).

The theoretical contributions clearly indicate that technological opportunities are a key

factor in explaining (persistent) differences in innovative activities across industries (e.g.,

Nelson, 1988). However, empirical investigations of this widely accepted view turned out

to be more difficult since there is no clear consensus concerning the precise operationaliza-

tion of the concept of technological opportunities (Cohen and Levin, 1989). Consequently,

a broad variety of proxies for technological opportunities has been used in empirical re-

search. Many studies rely on industry categories or technology groups using different levels

of aggregation. Although these binary variables may capture more than mere differences

in technological opportunities, they explain a considerable fraction of inter-industry and

inter-firm differences in innovative activities (e.g., Jaffe, 1989a, 1986; Scherer, 1965).

Other studies have relied on survey data addressing the sources of knowledge at the firm

or industry level, particularly the importance of various basic and applied sciences for the

industries’ technological change, as well as the contribution of external knowledge sources,

such as universities, suppliers, and customers (Klevorick et al., 1995; Levin et al., 1987).

These studies have found that technological opportunities, particularly the closeness to

science and extra-industry sources of knowledge, positively affect innovative activities

and the rate of technical change (Nelson and Wolff, 1997; Cohen and Levinthal, 1989;

Cohen et al., 1987; Levin et al., 1985). Another approach has used patent data to an-

alyze technological opportunities and their development. Andersen (1999, 1998) defines

technological opportunities as the growth of the stock of patents in different technology

groups. The analysis of technology dynamics reveals opportunity differences across tech-

nologies and their changing sources over time.
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The pharmaceutical industry is traditionally regarded as an industry with a rather high

level of technological opportunities. Particularly, the transformation from “random screen-

ing” to a “guided drug discovery” process, and advances in molecular biology and genetic

engineering, have opened up new technological opportunities (Galambos and Sturchio,

1998; McKelvey, 1996; Gambardella, 1995). A broad variety of studies have illustrated

the importance of scientific research, particularly that conducted in universities and pub-

lic research institutions, for the creation of new knowledge. This new knowledge leads to

a renewal and expansion of the available set of technological opportunities. The set of

technological opportunities itself builds a foundation for the development of new pharma-

ceuticals (e.g., Cohen et al., 2002; Klevorick et al., 1995; Mansfield, 1991; Jaffe, 1989b).

In line with these results, public research funding has been found to be another supply-

side variable influencing the introduction of new pharmaceuticals to the market, since it

should translate into the generation of new knowledge (Toole, 2012).

Against this background, it seems to be rather surprising that supply-side variables, and

among them particularly the concept of technological opportunities, have received rela-

tively little attention from scholars analyzing innovative activities in the pharmaceutical

industry. Griliches et al. (1991) show that technological opportunities linked to patent

activity are positively related to the pharmaceutical industry’s innovativeness. In order

to control for different technological opportunities when analyzing the influence of orga-

nizational competence on firms’ research productivity, Henderson and Cockburn (1994)

use dummy variables for therapeutic classes. While clearly focusing on the (potential)

market size as the main determinant of pharmaceutical innovation, Acemoglu and Linn

(2004) use pre-existing trends in the number of drug approvals to control for scientific

opportunities across therapeutic categories.

Despite numerous theoretical arguments emphasizing the importance of technological op-

portunities for pharmaceutical innovation, difficulties with the operationalization of this

concept may be one reason for the marked scarcity of empirical evidence in the literature.

By using growth rates of knowledge stocks as a proxy for technological opportunities,

as proposed in Andersen (1999, 1998), I will address this shortcoming of the previous
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empirical literature.

3 Empirical Strategy

The empirical analysis draws upon the literature concerning the “demand-pull” versus

“technology-push” debate, and takes into account demand- and supply-side factors as the

explanatory variables for pharmaceutical innovation. This approach goes beyond recent

contributions to the field, which mainly concentrate on the demand-side effects (e.g.,

Cerda, 2007; Acemoglu and Linn, 2004). Innovation is measured as the number of new

drugs approved by the FDA over time. 2 Hence, a Poisson model for the conditional

mean of new pharmaceuticals can be derived:

E [Nit|ζi, Xit] = exp (β0 + β1 ln (MKSi,t−a) + β2TOi,t−b + βCi,t−c + ζi + µt) . (1)

Here, Nit denotes the number of new pharmaceuticals for medical indication i in year t,

ζi represents time-constant medical indication intercepts capturing heterogeneity among

diseases, and Xit refers to all explanatory variables at t and earlier. More precisely,

MKSi,t−a accounts for the (potential) market size in i at t − a, TOi,t−b refers to the

corresponding technological opportunities, Ci,t−c is a vector of control variables, and µt is

a set of dummy variables for each year included in the analysis to capture common year

specific effects.

Pharmaceutical innovation is a dynamic and non-linear process. Econometric models

used to analyze innovative activities in the drug industry have to take this into account.

More precisely, dynamic feedback can occur, since scientific breakthroughs in t may influ-

ence technological opportunities in t and subsequent years and, hence, innovative output.

Given the typical time structure of the industries’ R&D and innovative activities, possi-

ble effects on innovation may occur around 12 years after the original discovery, or even

2The definition of innovation as a newly approved drug uses the specificities of the innovation process

in the pharmaceutical industry. After several phases of pre-clinical and clinical testing, a new drug

has to be approved by a regulatory body, the FDA in the United States, before being marketed (see,

Gambardella, 1995). This allows of clearly identifying the number of new drugs approved for marketing

in a specific year. Additionally, the number of clinical trials in a specific phase can be used in a robustness

check as a proxy for the number of new compounds under development.
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later. The presence of feedback processes violates the strict exogeneity assumption of

conventional fixed or random effects panel estimators. Therefore, I follow Toole (2012) in

applying an “entry stock” Poisson QMLE, as suggested by Blundell et al. (1995), which

accounts for feedback and unobserved heterogeneity among medical indications. Monte

Carlo simulations show that this empirical approach performs quite well if the sample

size is rather small and the explanatory variables are highly persistent (Blundell et al.,

2002). A high level of persistence over time can be found particularly for the market size

measures. According to this approach, Equation (1) can be transformed to

E
[

Nit|N ip,Mip, TOip, Xit

]

=exp(β0 + β1 ln (MKSit−a) + β2TOi,t−b + βCi,t−c

+ φN ip + θMip + ρTOip + µt)
, (2)

where N ip denotes the pre-sample mean of new pharmaceuticals, Mip represents the pre-

sample prevalence of indication i, and TOip accounts for the pre-sample technological

opportunities in i.

The Poisson QMLE is applied to a population average model in order to estimate (2).3

The Poisson QMLE is consistent under the assumption of the correct specification of

the conditional mean. This implies that the data need not be Poisson distributed (cf.,

Gourieroux et al., 1984). Throughout the analysis, I use Huber–White robust standard

errors in order to account for the possibility of overdispersion and non Poisson-distributed

data.

4 Data and Variable Construction

4.1 Pharmaceutical Innovation

Data on new drugs was obtained from the U.S. Food and Drug Administration (FDA)

using the Drugs@FDA database.4 Each record contains information on the trade name

of the drug, its generic name, the components that provide its pharmacological activity,

3This specification does not allow to compute traditional goodness of fit measures like the Akaike

Information Criterion. The quasi-likelihood under the independence model criterion (QIC) provides an

alternative for Poisson quasi-maximum likelihood models (Pan, 2001). Since it is not available for all

model specifications used throughout the analysis, the results are available on request.
4http://www.fda.gov/Drugs/InformationOnDrugs/ucm135821.htm
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its approval date, and a classification of the newness of the drug formulation. I construct

two different proxies for the number of innovations Nit. The first follows most of the

literature on pharmaceutical innovation, by defining an innovation as a new molecular

entity (NME) (Cerda, 2007; Grabowski and Wang, 2006). This measure refers to an ac-

tive ingredient that has never been marketed before in the United States. Second, I use

the number of new drug approvals (NDA) as a broader measure of pharmaceutical inno-

vation. This proxy encompasses NMEs as well as new chemicals derived from marketed

active ingredients, new formulations and dosages of already marketed ingredients, and

new combinations of marketed ingredients in the year of their approval by the FDA.

The data on new drugs was matched with the diseases or medical indications used in this

paper based on their active ingredients which determine their therapeutic use. Therefore, I

follow Cerda (2007) in consulting the 19th edition of the Drug Information Handbook pub-

lished by Lexi-Comp and the American Pharmaceutical Association (Lacy et al., 2010).

This handbook is comparable to a pharmaceutical dictionary, providing a list of drugs’ ac-

tive ingredients, the medical conditions the drug is used for, and further information such

as adverse effects. I take into account only those medical conditions which can be found

on the FDA approved label. Hence, unlabeled and investigational uses are not taken into

account. For the period 1974 to 2008, 599 unique NMEs and 1,665 unique NDAs have

been approved by the FDA in the 203 diseases or medical indications analyzed in this

study. However, an NME or NDA may be used as therapy for several medical indications.

In this case, an NME or NDA is counted as an innovation for all the medical indications

for which it is approved. Figure 1 shows the number of unique NME and NDA throughout

the years included in the analysis.5

4.2 Clinical Trials

New pharmaceuticals have to go through several phases of clinical testing before they can

be approved for marketing by the regulatory authorities. I make use of this specificity

of the pharmaceutical innovation process and use the number of phase II and phase III

clinical trials as an alternative indicator for innovative activities in a robustness check.

If market size and technological opportunities are related to the number of new drugs,

5Table 6 in the Appendix provides more descriptive statistics for the variables used in the analysis
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Figure 1: Number of NDA and NME per Year

Source: Drugs@FDA

they should also be related to the number of clinical trials used to test drug candidates.

Although a single drug candidate is usually tested in several clinical trials, the num-

ber of clinical trials might serve as a proxy of the number of new drug candidates that

might be approved for marketing in the future. Phase II (Ph2Trialsit) and phase III

(Ph3Trialsit) focus mainly on the effectiveness of new compounds involving an increas-

ingly larger number of more diverse test persons over longer periods of time. During these

phases, accurate profiles of the tested drug candidates are developed, including dosages

and adverse effects occurring with small probabilities or after longer time periods (for a

more detailed overview see, Gambardella, 1995).

The clinical trials data is collected from ClinicalTrials.gov, a comprehensive registry of

clinical trials maintained by the United States National Library of Medicine at the Na-

tional Institutes of Health. It was established in 2000 and contains detailed information

on each clinical study including design of the study, the locations where it is conducted,

and the disease and condition that is addressed. Clinical trials listed in the database

are conducted in the U.S. and over 180 other countries. The conditions specified in the

clinical trials data have been used to match clinical trials with the medical indications

used in this paper. Concentrating on drug related clinical trials that have been started
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during the years 2000 to 2008 I obtain 7208 phase II and 5301 phase III unique clinical

trials.

4.3 Market Size

Similar to related studies, market size is constructed based on demographic data using

population sizes in different age groups and individual income. In doing so, I link market

size to the potential purchasing power of individuals since a higher income allows higher

drug expenditures (cf., Cerda, 2007; Acemoglu and Linn, 2004). There are two arguments

for the use of demographic data in the construction of the market size measure. First, drug

consumption is likely to change with age. The elderly may spend more on drugs than do

younger individuals. However, it is very likely that they are affected by different medical

indications than younger members of the population. Second, market size variations due

to demographic changes are largely exogenous to scientific achievements, the entry of new

drugs, and the endogeneity of market size and innovation (Acemoglu and Linn, 2004).

Therefore, market size per medical indication is proxied by the sum of the purchasing

power of five-year age groups a from 0–4 to 85+ for different medical indications, using

appropriate weights. More precisely, market size per medical indication i in year t is

defined by

MKSit =
∑

a

ωiapopatincat. (3)

Here, ωia is a weight for medical indication i in age group a, popat is the total population

in age group a at t, and incat is the individual income of persons in age group a in year t.

Following Acemoglu and Linn (2004), I compute ωia as the average share of expenditure

for drugs assigned to indication i divided by the total individual income of individuals in

age group a. To construct this proxy, I use data on drug expenditures and income from

the MEPS for the years 1996 to 1998.6 I use the 9th revision of the International Classi-

fication of Diseases Clinical Modification (ICD-9-CM) published by the National Center

of Health Statistics to match the data on the drug spending to the medical indications

included in this study. The weights are not time varying, in order to rule out changes

caused by new possibilities of diagnosing a disease, new pharmaceuticals to treat it, and

6This is exactly the timespan used in Acemoglu and Linn (2004). Moreover, it is available for drug

expenditure data and for mortality data used as a robustness check.
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other causes of differences in the prevalence rates.

Population sizes per age group and year (popat) were obtained from the March Sup-

plement of the U.S. Current Population Survey (CPS) provided by the Bureau of the

Census for the Bureau of Labor Statistics. The CPS surveys monthly the members of

about 50,000 households selected to represent the U.S. non-institutional population. Each

member of the surveyed households is assigned to its age group according to the reported

age. In addition to the demographic variables, the March Supplement provides informa-

tion about income. Individual income incat is proxied by the median of the household

income divided by the number of persons in the household. I use this proxy instead of

the reported individual income because the latter hardly allows computing meaningful

market size measures for those groups who have no or only very little own-income, par-

ticularly children, students, and non-working spouses. The income data is adjusted for

inflation using the U.S. Consumer Price Index (CPI) for all urban consumers provided by

the Bureau of Labor Statistics. It is the logarithms of the market size measures which

enter into the regression analysis.

4.4 Technological Opportunities

It is widely accepted in the literature on technological change that technological oppor-

tunities play an important role in explaining differences in innovative activities across

sectors and over time. However, there is no general consensus concerning the precise def-

inition of this theoretical concept, and particularly its empirical operationalization. Not

surprisingly, empirical research has applied a broad variety of indicators for technological

opportunities, e.g., industry dummies, survey based measures on the sources of technical

advance, and innovation expenditures as share of total expenditures (e.g., Castellacci,

2007; Becker and Peters, 2000; Nelson and Wolff, 1997; Jaffe, 1986; Levin et al., 1985).

In this paper, I follow a different approach, proposed by Andersen (1999, 1998) in which

the rate of growth of a knowledge stock serves as a proxy for the technological opportuni-

ties in a particular technology area. Using this operationalization, high growth rates are

associated with high technological opportunities.

The knowledge stock consists of the scientific publications (Pubit) related to medical
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indication i and published in year t that are assigned to categories related to pharmaceu-

tical research. Publication data was obtained in the following way. A list of 203 medical

indications was drawn from the BioPharmInsight database.7 Each indication describes a

condition or disease which allows of the development of a drug. These medical indications

were used to conduct a keyword search in the Web of Science databases (WoS) in order to

gather publication data. Publications that contain at least one medical indication in the

title have been taken into account. Moreover, I restrict the sample to publications that

are related to pharmaceutical research, i.e., that have been assigned to one of the cat-

egories “Biochemistry & Molecular Biology”, “Biotechnology & Applied Microbiology”,

“Chemistry, Applied”, “Chemistry, Medicinal”, “Medicine, Research & Experimental”,

“Pharmacology & Pharmacy”, or “Toxicology”.8 I exclude all publications that are not

labeled as journal articles. For the period from 1974 to 2008, I obtained 147,092 articles.

Knowledge stocks are created using the perpetual inventory method. The basic idea

can be expressed as in Bitzer and Stephan (2007):

Kit = λ0Pubi,t + λ1Pubit−1 + · · ·+ λTPubit−T with 0 < λ ≤ 1. (4)

Here, λ denotes the share of knowledge of the corresponding vintage that is still in use,

and T is the age of the oldest vintage of knowledge still used in t. Assuming geometric

depreciation of knowledge, (4) can be transformed into

Kit = Pubit + (1− δ)Ki,t−1 with δ =
λτ−1 − λτ

λτ−1

, (5)

where δ is the depreciation rate of the knowledge stock. Following previous work by

Cockburn and Henderson (2001), I set δ to 20%.

According to Andersen (1999, 1998), technological opportunities can be proxied by the

rate of growth of the knowledge stock. More formally, technological opportunities can be

expressed as

TOit =
Ki,t −Ki,t−1

Ki,t−1

∗ 100. (6)

7http://www.biopharminsight.com/index.html
8A description of these categories can be found at http://scientific.thomsonreuters.com/mjl/.
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4.5 Regulatory Stringency

Since the vast majority of new drugs have to be approved by the regulatory author-

ities, such as the FDA in the United States, the strictness of these authorities influ-

ences the number of new drugs that are approved for marketing. Regulatory stringency

(ApprovalLength) is taken into account by calculating the average number of days needed

for FDA approval of a new drug in the therapeutic area, i.e., a broader disease category

to which a new drug belongs. More precisely, this is the average time between the sub-

mission of a new drug approval to the FDA and its final approval (cf., Grabowski et al.,

1978). The data was obtained from the Drugs@FDA database which contains information

concerning the original drug application.

4.6 Pre-sample Variables

Following the empirical strategy described in Section 3, pre-sample means were con-

structed in order to account for unobserved heterogeneity among medical indications.

The pre-sample mean of new pharmaceuticals
(

N ip

)

is the average number of NMEs or

NDAs approved by the FDA from 1940 to 1983 per year:

N ip =

∑T=1983
t=1940 Nit

T − t
. (7)

Another source of unobserved heterogeneity may be differences in the prevalence of medial

indications. One may account for this aspect by introducing pre-sample market size into

the analysis. However, this strategy may bias the results, since pre-sample market size is

rather highly correlated with the market size variable. Therefore, I use the mortality rate

per medical indication in 1983 to account for differences in the pre-sample prevalence of

medial indications:

Mip =

∑

aDeathit
∑

a popat
∗ 100, 000 with t = 1983. (8)

Pre-sample technological opportunities are constructed as the average annual growth rate

of the knowledge stock from 1979 to 1983:

TOip =

(

(

Kit=1983

Kit=1979

)1/5

− 1

)

∗ 100 (9)
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5 Empirical Results

5.1 Determinants of Pharmaceutical Innovation

Table 1 presents the results of the Poisson QML estimation without taking lagged vari-

ables into account. In models (1) and (4) I analyze the relationship between market size

(MKSit), technological opportunities (TOit), and the number of pharmaceutical innova-

tions, i.e., NMEit or NDAit. I find a positive and significant response of the number of

new drugs to market size. This result is robust against the introduction of technological

opportunities in models (3) and (6). Since market size enters in logarithmic form, we can

interpret the coefficient as an elasticity. Consequently, the results presented in Table 1

suggest that a 1% increase in the market size leads to an increase in the number of NME

and in the number of NDA by approximately 0.3%. This is considerably smaller than

found by other studies. On a more aggregated level, Toole (2012) finds an elasticity be-

tween 6.8 and 12.7 and Acemoglu and Linn (2004) find a response rate of 6% to increases

in the market size.

As to technological opportunities, I find a positive and significant relation to NME and

NDA. The coefficient remains significant also in models (3) and (6), in which the mar-

ket size is included as well. These results suggest that the number of NME and NDA

responds not only to demand- but also supply-side variables. However, the coefficient is

rather small, which may be a consequence of the operationalization, as growth rates of

knowledge stocks. Regulatory stringency (ApprovalLenght) is not significantly related to

the number of new pharmaceuticals. The estimates for pre-sample mortality Mip do not

indicate a significant relation to the number of NME and NDA. Pre-sample technological

opportunities TOip show no significant effect on NME or NDA.

Pre-sample drug innovations proxied by the average number of NME (NMEip) and NDA

(NDAip) prior to the analyzed period are positively and significantly related to the num-

ber of new pharmaceuticals. This finding suggest that those medical indications for which

a high number of new drugs were introduced in the past still appear attractive for inno-

vation. Past innovations may indicate high profit margins, which make it attractive to

introduce novelties in these markets to ensure current and future profits. Another possible
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explanation may be that a large number of past innovations shows that there has been

a large amount of research in the corresponding medical indications, which may build

the basis for later discoveries and further exploitation of technological opportunities in

subsequent years. The positive response to pre-sample innovations contradicts the empir-

ical evidence presented by Toole (2012), who finds a negative response at a much more

aggregated level.

(1) (2) (3) (4) (5) (6)

Dependent Variable NMEit NMEit NMEit NDAit NDAit NDAit

MKSit 0.3293*** 0.3322*** 0.3146*** 0.3163***

TOit 0.0002** 0.0003** 0.0002*** 0.0002***

ApprovalLength -0.0009 0.0006 -0.0008 -0.0008 0.0005 -0.0008*

Mip 0.0029 0.0070*** 0.0031 -0.0030 0.0011 -0.0030

TOip -0.0016 -0.0006 -0.0025 -0.0014 0.0013 -0.0019

NMEip 0.5506*** 0.4254*** 0.5456***

NDAip 0.6427*** 0.5109*** 0.6397***

Year Dummies Yes Yes Yes Yes Yes Yes

Constant -8.6975*** -3.1544*** -8.7496*** -7.2651*** -1.8633*** -7.2726***

N 4250 4166 3991 4250 4166 3991

Indications 170 175 168 170 175 168

∗ p < 0.01, ∗∗ p < 0.05, ∗∗∗ p < 0.01

All market size measures enter in logarithmic form into the analysis.

Table 1: Determinants of Pharmaceutical Innovation

5.2 Time Structure

So far, the analysis does not take into account the specific time structure of the innovation

process in the pharmaceutical industry. Subsequent to the discovery of a new promising

compound, a considerable period of time is needed in order to pass all stages of pre-

clinical and clinical testing and obtain regulatory approval. On average, it takes slightly

more than 7.5 years from the first clinical testing to marketing approval. The approval

phase itself accounts for around 1.5 years out of this timespan. Before a new compound

can enter clinical testing, researchers spend almost 5 years on pre-clinical investigations.

Hence, on average, it takes 12.5 years from the discovery of a promising new compound

to its approval (DiMasi and Grabowski, 2007).

In Table 2, I use time lags in order to account for delays caused by the specificities
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of the industry’s innovation process. More precisely, I introduce a time lag of 7 years to

the market size (models (1), (2), (5), and (6)) and technological opportunities variables

(models (3), (4), (7), and (8)). This corresponds to the time needed on average from

clinical testing to approval.

Models (1) and (5) show a significant and positive relationship between the lagged market

size and the number of NME and NDA. In models (2) and (6), in which contemporary

and lagged market size are introduced simultaneously, the coefficients of the lagged mar-

ket size turn out to be negative. However, contemporary and lagged market size are

not significantly related to the number of NME and NDA in this case. These findings

may indicate that market size when the project started, as well as the market size when

the new drug is introduced to the market, play a role in pharmaceutical R&D decisions.

The positive results for lagged market size may indicate that firms base their R&D deci-

sions at least to some extent on forecasts of the market size for the years in which they

expect that a new drug may enter the market. However, the estimation results do not

allow for any clear-cut conclusion as to which market size measure dominates the decision.

Regarding technological opportunities, the results suggest differences between NME and

NDA. The coefficients of TOit−7 are positive, but not significantly associated to the num-

ber of NME. In the case of NDA, the results suggest that contemporaneous and lagged

technological opportunities are significantly and positively related to the number of new

pharmaceuticals. This finding may indicate that the development of NDA builds upon a

slightly different knowledge base than the more innovative NME. Past technological op-

portunities seem to be less important for the development of the more innovative NME.

In general, the results for the control variables are comparable to those presented in Table

1.

In order to account also for the pre-clinical phase, I use 12 year time lags for market

size and technological opportunities.9 The results are rather similar to those presented in

Table 2. However, lagged technological opportunities have a non-significant coefficient.

Hence, technological opportunities at the beginning of the pre-clinical research phase are

9The results can be found in Appendix A.2.
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(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variable NMEit NMEit NMEit NMEit NDAit NDAit NDAit NDAit

MKSit 1.3370 0.3444*** 0.3457*** 0.7309 0.3514*** 0.3521***

MKSit−7 0.3375*** -1.0035 0.3474*** -0.3847

TOit 0.0003*** 0.0003*** 0.0003** 0.0002*** 0.0002*** 0.0002***

TOit−7 0.0002 0.0002 0.0002* 0.0002*

ApprovalLength -0.0011* -0.0010* -0.0012* -0.0012* -0.0009* -0.0009* -0.0009* -0.0009*

Mip 0.0032 0.0029 0.0032 0.0032 -0.0036 -0.0039 -0.0046 -0.0046

TOip -0.0022 -0.0027 -0.0023 -0.0021 -0.0015 -0.0018 -0.0015 -0.0014

NMEip 0.5340*** 0.5428*** 0.5315*** 0.5354***

NDAip 0.6177*** 0.6232*** 0.6214*** 0.6243***

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

Constant -8.6722*** -8.7788*** -8.7829*** -8.8204*** -7.7737*** -7.8400*** -7.8847*** -7.9121***

N 2964 2964 2817 2817 2964 2964 2817 2817

Indications 168 168 167 167 168 168 167 167

∗ p < 0.01, ∗∗ p < 0.05, ∗∗∗ p < 0.01

All market size measures enter in logarithmic form into the analysis

Table 2: Determinants of Pharmaceutical Innovation With Time Lags

not significantly related to the number of NME and NDA. A possible explanation for

this finding may be found in the high uncertainty accompanying pharmaceutical R&D.

High technological opportunities at the beginning of the pre-clinical research phase may

lead to extensive exploration, but most of the possible compounds do not obtain mar-

ket approval. In contrast, a high level of technological opportunities at the beginning of

the clinical research phase may enable pharmaceutical companies to improve promising

compounds that may have a higher probability of finally obtaining market approval.

5.3 Clinical Trials

In order to examine further the robustness of the relationship between market size, techno-

logical opportunities and new pharmaceuticals in the clinical phases of the R&D process,

I use the number of clinical trials in phase II and in phase III as dependent variables.

These dependent variables serve as proxies for the number of new compounds under de-

velopment. The focus on clinical testing requires different the lag structures compared to

the lags used in the regressions using NMEs and NDAs as dependent variables. Following

DiMasi and Grabowski (2007) drug candidates need on average around 1 year to enter

phase II clinical trials. Therefore, I use a time lag of one year for market size and tech-

nological opportunities in the models in Table 3 in which the number of phase II clinical
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trials is the dependent variable. With respect to phase III clinical trials I use a time lag of

3 years for market size and technological opportunities. This time lag corresponds to the

approximately 3 years of clinical testing new compounds need on average to enter phase

III clinical trials (see, DiMasi and Grabowski, 2007).

As in the previous regressions, the coefficients for market size and lagged market size

are positive and significant. Exceptions can be found in models (3) and (8) in Table 3,

in which market size is introduced together with lagged market size. The results for con-

temporaneous technological opportunities do not indicate a robust significant relation to

the number of clinical trials. However, lagged technological opportunities are positively

and significantly related to the number of phase II and phase III clinical trials. These

results suggest that the number of clinical trials responds to both market size and (lagged)

technological opportunities. Hence, supply side and demand side variables might increase

the number of new compounds that are tested and might be approved as new drugs in

the future.

The results of the control variables differ partly from those obtained in the previous

analyses. Regulatory stringency (ApprovalLenght) is positively related to the number

of phase III clinical trials. A possible explanation for this finding might be that the

regulatory authorities demand further phase III clinical tests during the examination of

new compounds. These additional clinical studies should provide further evidence for the

safety and efficacy of a new compound. In contrast, the number of phase II clinical trials

may be more directly influenced by demand and supply side factors as indicated by the

significant coefficients for the prevalence of medical indications and pre-sample techno-

logical opportunities. The pre-sample mean of new drug approvals is positively related to

phase II and phase III clinical trials. As in the case for NMEs and NDAs, these findings

may indicate that medial indications for which successful innovation took place in the

past still attractive and profitable markets.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Dependent Variable Ph2Trialsit Ph2Trialsit Ph2Trialsit Ph2Trialsit Ph2Trialsit Ph3Trialsit Ph3Trialsit Ph3Trialsit Ph3Trialsit Ph3Trialsit

MKSit 0.2540*** 0.9848* 0.2564*** 0.2558*** 0.4657*** 0.6055 0.4699*** 0.4700***

MKSit−1 0.2506*** -0.7307

MKSit−3 0.4665*** -0.1405

TOit -0.0002 -0.0002 -0.0002 -0.0002* -0.0001 -0.0001 -0.0001 0.0000

TOit−1 0.0001*** 0.0001***

TOit−3 0.0003*** 0.0003***

ApprovalLength -0.0008 -0.0008 -0.0007 -0.0008 -0.0008 0.0024** 0.0023** 0.0024** 0.0024** 0.0024**

Mip 0.0056* 0.0057* 0.0055* 0.0056* 0.0056* -0.0037 -0.0033 -0.0038 -0.0036 -0.0036

TOip 0.0131* 0.0131* 0.0129* 0.0133* 0.0132* 0.0014 0.0016 0.0013 0.0018 0.0018

NDAip 0.5474*** 0.5473*** 0.5512*** 0.5515*** 0.5502*** 0.7173*** 0.7206*** 0.7171*** 0.7258*** 0.7261***

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Constant -3.4790* -3.4292* -3.5439* -3.5398* -3.5223* -9.9965*** -9.9851*** -9.9987*** -10.1187*** -10.1228***

N 1508 1508 1508 1507 1507 1508 1508 1508 1502 1502

Indications 168 168 168 168 168 168 168 168 168 168

∗ p < 0.01, ∗∗ p < 0.05, ∗∗∗ p < 0.01

All market size measures enter in logarithmic form into the analysis

Table 3: Determinants of Clinical Trials
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5.4 Robustness Checks

Table 4 presents several robustness checks. As pointed out by Acemoglu and Linn (2004),

changes in the insurance coverage of drug expenditures can be another source of market

size variation. In order to proxy drug expenditure coverage, I multiply the market size

measure by the fraction of privately insured persons in age group a at time t, (insat). The

data was obtained from the Medical Expenditure Panel Survey (MEPS), a large scale

survey of U.S. families and individuals, their medical providers, and employers. Equation

3 can be modified to M̃KSit =
∑

a ωiapopatincatinsat. Models (1) and (7) present the

regression analysis using M̃KSit. The results are rather similar to the results presented

above. As in Table 1, I find a positive and significant response for NME and NDA to

both market size and technological opportunities. The results stay qualitatively the same

if the insurance coverage encompasses also other types of health insurance.

In models (2) and (8) in Table 4, market size is constructed using weights represent-

ing the average fraction of individuals dying because of a specific indication divided by

the total number of deaths in an age group for the years 1996 to 1998 (cf., Cerda, 2007).

Again, the weights are not time varying, in order to rule out changes in the use of drugs

for a certain medical indication due to price and quality changes as well as the introduc-

tion of new pharmaceuticals. The data on multiple causes of death in the United States

was obtained from the National Vital Statistics System of the National Center of Health

Statistics. The results suggest a positive but not significant relation between market size

and the number of new pharmaceuticals. Technological opportunities are again positively

associated with the number of NME and NDA.

In (3) and (9), technological opportunities are constructed by only taking biotechnology

publications into account. These are journal articles assigned to the categories “Biochem-

istry & Molecular Biology” and “Biotechnology & Applied Microbiology” in the WoS

databases. Whereas the market size variable is still significantly positive related to the

number of NME and NDA in this setting, the coefficient for technological opportunities

is insignificant. In models (4) and (10), I employ only basic research articles to construct

technological opportunities using the CHI classification of journals (Hamilton, 2003). The

CHI classification categorizes each article according to the type of research prevalent in the
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journal in which it was published. Taking only “basic biomedical research” into account,

the response of the number of new pharmaceuticals to market size remains significantly

positive whereas the coefficient for technological opportunities is insignificant for NDA in

model (10). The insignificance of basic research and biotechnology technological oppor-

tunities may be caused by the construction of the publication database. Since a keyword

search for medical indications was used, the data may capture mainly applied research

and only a few basic and biotechnology research papers building the basis for new phar-

maceuticals for several medical indications. In particular, the data may not include new

research methods which encompass a considerable amount of innovation in biotechnology

and may be more indirect in how they affect the number of new pharmaceuticals. More-

over, the relevant knowledge stocks for basic research may differ from the ones for more

applied research.

In (5) and (11) I use a 10% depreciation rate of the knowledge stock when constructing

the proxy for technological opportunities. The coefficients for technological opportunities

are positive and significant for NME and NDA. Hence, the technological opportunities

measure seems to be robust against changes in the depreciation rate. Market size is still

positively and significantly related to the number of new pharmaceuticals. In regression

models (6) and (12) I use a Poisson QML estimation with fixed effects for medical indi-

cations. In these models, the market size measure is insignificant. This result is rather

surprising but may be the consequence of the fixed effects model. Since I run the analysis

on a rather disaggregated level, there are a considerable number of medical indications

for which no NME or NDA was introduced over the entire period of analysis. These

indications are not taken into account in the fixed effects estimation, and this may have

consequences for the results. Nevertheless, the proxy for technological opportunities is

significantly positively related to the number of NME and NDA. Moreover, the results

presented in Table 1 are generally robust to the use of ten year age groups in the con-

struction of the market size proxy and linear depreciation of the knowledge stock over a

five year period.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Dependent Variable NMEit NMEit NMEit NMEit NMEit NMEit NDAit NDAit NDAit NDAit NDAit NDAit

MKSit 0.3255*** 0.0601 0.3393*** 0.3250*** 0.3362*** 0.5940 0.3452*** 0.0070 0.3354*** 0.3121*** 0.3278*** 1.0149

TOit 0.0003*** 0.0002** -0.0000 0.0008** 0.0013*** 0.0007*** 0.0003*** 0.0002*** -0.0000 0.0005 0.0008** 0.0004***

ApprovalLength -0.0013* 0.0005 -0.0009 -0.0011* -0.0011* -0.0008 0.0005 -0.0005 -0.0009** -0.0011**

Mip 0.0007 0.0041 0.0028 0.0031 0.0032 -0.0046 0.0007 -0.0035 -0.0024 -0.0030

TOip -0.0036 -0.0020 0.0031 -0.0070 -0.0050 -0.0033 0.0012 0.0047 -0.00241 -0.0163

NMEip 0.5088*** 0.4495*** 0.5240*** 0.5272*** 0.5543***

NDAip 0.6251*** 0.5142*** 0.6578*** 0.6312*** 0.6233***

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Constant -8.1387*** -4.3928*** -8.8269*** -8.4010*** -8.5758*** -7.6390*** -2.0039** -7.8283*** -7.0144*** -7.1325***

N 2169 4162 3191 3827 3368 3474 2169 4162 3191 3827 3368 3801

Indications 168 175 155 168 173 144 168 175 155 168 173 158

∗ p < 0.01, ∗∗ p < 0.05, ∗∗∗ p < 0.01

All market size measures enter in logarithmic form into the analysis

In models (1) and (7) market size is multiplied with the share of privately insured individuals in an age group at t,

(2) and (8) market size is constructed using weights representing the average share of individuals dying because of i,

(3) and (9) take only biotechnology publications into account when constructing technological opportunities,

(4) and (10) only basic research publications into account when constructing technological opportunities,

(5) and (11) use an 10% depreciation rate of the knowledge stock used for TOit,

(6) and (12) use Poisson QML estimation with fixed effects

Table 4: Robustness Checks
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A further concern might be that larger markets attract more public or private research,

generating higher technological opportunities. One may check for these feedback effects

by taking only rare diseases into account, since there are only a few market incentives

to develop medications for them. However, the number of rare diseases in the sample is

quite small and the corresponding Poisson models do not converge.

5.5 Reverse Causality

As pointed out by Kleinknecht and Verspagen (1990), there may be a mutual dependency

between market size and innovation instead of a unidirectional causality. Particularly in

the pharmaceuticals industry, new products may introduce the potential for reverse causal-

ity. Lichtenberg (2005b, 2004) shows that new drugs contributed to the longevity increase

observed in many countries over the past few decades. Hence, through their impact on

consumers’ life expectancy, new drugs lead to an endogenous growth of pharmaceutical

markets (Cerda, 2007). However, Acemoglu and Linn (2004) argue that the drug-induced

changes in the population sizes are quite small relative to overall demographic changes.

Nevertheless, they propose a strategy to address this issue. Following their approach, I

instrument current market size by the corresponding market size five years earlier. More

precisely, I use the size and income of those 70–74 years old in 1984 to instrument for

population size and income of those 75–79 years old in 1989. The population size and the

income of those 70–74 years old is highly correlated with the size and the income of those

75–79 years old five years later, but it is unaffected by new pharmaceuticals which were

approved in the meantime.

In the empirical analysis of this instrumental-variable I use a Generalized Methods of

Moments (GMM) estimator for the pooled Poisson regression. Standard errors are boot-

strapped with 1000 replications and clustered on the indication level. The results are

presented in Table 5. These results are quite similar to the baseline results in Table 1.

The number of new NME and NDA responds positively to market size. However, the

coefficients for technological opportunities are insignificant. Consequently, I find no evi-

dence that the problem of reverse causality arises in the analysis.
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(1) (2) (3) (4)

Dependent Variable NMEit NMEit NDAit NDAit

MKSit 0.2391*** 0.2502*** 0.1845*** 0.2063***

TOit 0.0001 0.0001

ApprovalLength -0.0004 -0.0004 -0.0002 -0.0002

Mip 0.0000 0.0011 -0.0029 -0.0023

TOip -0.0022 -0.0029 -0.0013 -0.0027

NMEip 1.0977*** 1.0557***

NDAip 1.3883*** 1.3190***

Year Dummies Yes Yes Yes Yes

Constant -7.3557*** -7.4919*** -5.9523*** -6.2739***

N 4250 3991 4250 3991

Indications 170 168 170 168

∗ p < 0.01, ∗∗ p < 0.05, ∗∗∗ p < 0.01

All market size measures enter in logarithmic form into the analysis

Market size is instrumented with market size of the same age

cohort five years earlier.

Table 5: Determinants of Pharmaceutical Innovation GMM Estimation

6 Conclusion

Recent empirical contributions have stressed the importance of the (potential) market size

for the development of new pharmaceuticals. At the same time, many scholars have em-

phasized the changes in the industry’s R&D process, from “random screening” to “guided

drug development”, and have pointed to the importance of advances in molecular biology

and related fields for the industry’s technological opportunities and innovative capabil-

ities. Against this background, I have analyzed the relationships between (potential)

market size, technological opportunities, and the number of new pharmaceuticals in the

United States. This empirical analysis is based on a unique dataset combining data from

different sources. In the analysis, I use an “entry stock” Poisson quasi-maximum likeli-

hood estimator (QMLE), as suggested by Blundell et al. (1995).

The empirical estimates reveal a significantly positive response of the number of new

pharmaceuticals, i.e., new molecular entities or new drug approvals, to market size and

technological opportunities. Similar results are obtained when the dependent variable is

the number of phase II or phase III clinical trials. In the robustness checks, the market

size measures lose significance when mortality data is used in its construction and when

the PQML fixed effects model is used. As a further robustness check, I constructed the
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technological opportunities proxy by taking only biotechnology or basic research publica-

tions into account. The results from this indicated no significantly robust positive relation

between these two variants of the technological opportunities measure and the number

of new pharmaceuticals. When taking the specific time structure of the pharmaceutical

R&D process into account by including time lags of seven years into the analysis, I found

no clear-cut relationship between lagged market size, lagged technological opportunities,

and the number of new pharmaceuticals.

Overall, the results suggest a quite robust and significantly positive relation between the

(potential) market size and the number of new pharmaceuticals as well as between (po-

tential) market size and the number of clinical trials. These results are in line with recent

contributions by Cerda (2007) and Acemoglu and Linn (2004). I found no evidence for a

reverse causality between market size and the number of new pharmaceuticals. Regard-

ing technological opportunities, I found a significantly positive relation with the number

of new drugs. Technological opportunities at the beginning of the clinical development

phase are positively related to the number of phase II and phase III clinical trials. These

results support earlier studies indicating the importance of technological opportunities in

themselves and the scientific progress which is an important source of new opportunities

for pharmaceutical innovation (e.g., Toole, 2012; Lim, 2004; Griliches et al., 1991). Nev-

ertheless, the results for technological opportunities need further analysis of the role of

advances in biotechnology and basic research for the development of new pharmaceuticals.

Since my results suggest that the (potential) market size influences the rate and direction

of innovative activities in pharmaceuticals, policy makers might introduce and continue

programs creating incentives for the development of drugs for medical indications which

are associated with rather small markets. Nevertheless, these programs have to take into

account the fact that private R&D investment is rather concentrated in the bigger markets

among the small ones (Yin, 2008). The empirical analysis suggests that technological op-

portunities are positively related to the number of clinical trials as well as to the number of

new pharmaceuticals. These results indicate that supply side policies can provide another

promising way to stimulate the development of new pharmaceuticals and new compounds.

Public funding and other support of scientific research directed to certain diseases can
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lead to the generation of new scientific knowledge contributing to a renewal of the techno-

logical opportunities. The latter can be seen as a set of possibilities from which new drugs

can be developed. As a consequence, the number of promising compounds may increase

and translate into new pharmaceuticals after the different stages of clinical research. This

process of generating new technological opportunities and translating these into new phar-

maceuticals may, however, be time consuming. Following DiMasi and Grabowski (2007)

drug development takes on average more than 12 years from the discovery of a promising

compound to market approval. Taking the generation of new technological opportunities

into account, the lag between public research funding and market approval may be close

to the 17 and 24 years suggested by Toole (2012). Hence, public research support has to

have a long-term orientation.

As shown in previous studies, public investments in pharmaceutical research can have

important indirect effects increasing the industry’s innovative activities through the stim-

ulation of private R&D investment (Toole, 2007). Recommendations concerning the sup-

port of different research types to increase the number of new pharmaceuticals need further

evaluations of the role of biotechnology and basic research. However, research addressing

the mechanism of action of drugs and the causes of diseases might be promising since both

are not yet fully understood. Increased knowledge in these areas may help to discover

and to synthesize new compounds with improved safety and efficacy. These quality im-

provements may help to reduce the cost of the clinical phases of the pharmaceutical R&D

process. Regarding regulatory stringency, the empirical analysis does not suggest that re-

ductions in this stringency would be an appropriate method for spurring pharmaceutical

innovation.
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A Appendix

A.1 Descriptive Statistics

Mean Std. Dev. Min Max Observations

NMEit overall 0.1458128 0.440 0.000 5.000 N 5075

between 0.212 0.000 1.880 n 203

within 0.386 -1.734 3.266 T 25

NDAit overall 0.5239409 1.113 0.000 12.000 N 5075

between 0.726 0.000 4.760 n 203

within 0.845 -3.236 11.324 T 25

Ph2Trialsit overall 3.08867 7.782631 0 78 N 1827

between 7.017208 0 52.11111 n 203

within 3.397627 -25.35577 43.19978 T 9

Ph3Trialsit overall 2.310345 5.621068 0 78 N 1827

between 4.715506 0 41.22222 n 203

within 3.075359 -33.91188 39.08812 T 9

MKSit overall 18.18052 1.973 10.887 23.256 N 4800

between 1.970 11.222 22.948 n 192

within 0.172 17.667 18.803 T-bar 25

TOit overall 15.29261 175.750 -20.000 9074.948 N 4786

between 41.838 -20.000 487.966 n 200

within 171.707 -492.673 8602.275 T-bar 23.93

ApprovalLength overall 545.0301 143.466 201.267 780.136 N 5075

between 143.806 201.267 780.136 n 203

within 0.000 545.030 545.030 T 25

Mip overall 5.455496 18.628 0.000 127.006 N 4775

between 18.675 0.000 127.006 n 191

within 0.000 5.455 5.455 T 25

TOip overall 8.13265 13.113 -16.349 96.463 N 4675

between 13.147 -16.349 96.463 n 187

within 0.000 8.133 8.133 T 25

NMEip overall 0.6217778 0.662 0.000 6.000 N 5075

between 0.664 0.000 6.000 n 203

within 0.000 0.622 0.622 T 25

NDAip overall 0.8076554 0.762 0.000 6.000 N 5075

between 0.763 0.000 6.000 n 203

within 0.000 0.808 0.808 T 25

Table 6: Descriptive Statistics
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(1) (2) (3) (4) (5) (6) (7)

(1) MKSit 1

(2) TOit -0.0317* 1

(3) ApprovalLength 0.2823*** -0.0267 1

(4) Mip 0.2007*** -0.0050 0.1576*** 1

(5) TOip 0.1054*** -0.0480** 0.0343* 0.0366* 1

(6) NMEip 0.1311*** -0.0289* -0.0116 0.0355* 0.1080*** 1

(7) NDAip 0.2065*** -0.0239 0.0096 -0.0059 0.1149*** 0.9025*** 1

∗ p < 0.01, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 7: Correlations

A.2 Additional Results

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variable NMEit NMEit NMEit NMEit NDAit NDAit NDAit NDAit

MKSit 0.9085 0.3413*** 0.3436*** 0.7943 0.3584*** 0.3599***

MKSit−12 0.3269*** -0.5845 0.3464*** -0.4500

TOit 0.0003*** 0.0003*** 0.0003** 0.0003*** 0.0003*** 0.0003***

TOit−12 -0.0022 -0.0021 -0.0001 -0.0001

ApprovalLength -0.0013* -0.0012* -0.0016** -0.0016** -0.0008 -0.0008 -0.0009* -0.0009*

Mip 0.0008 0.0005 0.0013 0.0013 -0.0046 -0.0049 -0.0057 -0.0057

TOip -0.0035 -0.0040 -0.0031 -0.0030 -0.0032 -0.0037 -0.0023 -0.0023

NMEip 0.4992*** 0.5099*** 0.4814*** 0.4863***

NDAip 0.6147*** 0.6255*** 0.6070*** 0.6116***

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

Constant -8.2348*** -8.4603*** -8.4407*** -8.4926*** -7.7385*** -7.9334*** -7.9770*** -8.0133***

N 2169 2169 1985 1985 2169 2169 1985 1985

Indications 168 168 163 163 168 168 163 163

∗ p < 0.01, ∗∗ p < 0.05, ∗∗∗ p < 0.01

All market size measures enter in logarithmic form into the analysis

Table 8: Determinants of Pharmaceutical Innovation With 12-year Time Lags
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