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Summary

Wetlands have a high biodiversity, and are key 
regulators of the flow of water and the fluxes of 
mineral and nutrients from land to sea. Wetlands 
only cover a few percent of the global land surface, 
but their soils contain as much carbon as the entire 
biosphere. Yet the extent, volume and carbon content 
of the world’s wetlands are not accurately known, 
in particular, for tropical and sub-tropical regions. 
Despite their importance, wetlands have historically 
been regarded as wastelands, and have largely been 
ignored in studies of climate change. Improved maps 
of the distribution of global tropical wetlands, their 
volumes and carbon contents are urgently needed. 
Because wetlands are characterised by their water, 
soil and vegetation conditions, they are difficult to 
identify from satellite images of earth. Few of the 
existing efforts at mapping the global land surface 
have attempted to identify wetlands.

Wetlands exclusively occur under certain topographic 
conditions, and where the soil and water conditions 
are such that inundation can, and actually does, 
occur on a regular (annual) basis. Taking this as 
a starting point, a set of novel indexes relating to 
wetlands was developed. The first index is a climatic 
topographic wetness index. Using a global digital 
elevation model, combined with global climate 
data, a tropical global map of surface wetness was 

created. Using global optical satellite images from 
the moderate resolution imaging spectroradiometer 
(MODIS) a second wetness index was developed. 
Compared to previous satellite-based wetness indexes, 
the index attempts to remove the vegetation influence 
and focus on the soil surface wetness. From an 
annual time-series of MODIS images, the inundation 
cycle of the global tropics was captured. The two 
wetness indexes are strong candidates for mapping 
the distribution of global tropical wetlands. 

Traditional image classification is based on reference 
data, and usually attempts to delineate features 
from a single image. As wetlands are characterised 
by annual variations in inundation, an approach 
for classifying wetlands from a chrono-sequence 
of annual MODIS images was developed. In the 
chrono-sequence, only locations with similar 
climatic seasonality, and within spatial proximity 
were classified based on a reference site. Wetlands, 
often with vegetation and wetness phenology out 
of phase compared to adjacent dry lands, can thus 
be delineated. 

Initial results are promising for all approaches 
developed in this study; however, lack of reference 
sites and reference data has hitherto prevented the 
development of a global tropical wetland map.



1.	 Introduction

Wetlands are hotspots of biological diversity, 
productivity and reproduction. They are key 
regulators of water flow and biogeochemical cycles, 
including that of carbon. They control the flow of 
nutrients and pollutants from land to sea and protect 
the land from erosion. Wetlands are of interest to 
many scientific disciplines and are widely defined 
as ‘lands transitional between terrestrial and aquatic 
systems where the water table is usually at or near 
the surface or the land is covered by shallow water’ 
(Cowardin et al. 1979).

Wetlands can contain peat, the accumulated remains 
of organic tissue. Peat forms where anaerobic 
conditions, resulting from water inundation, suppress 
the decomposition of dead organic matter. Peat can 
form in most climatic zones; in tropical climates as 
mangrove and peat swamp forests, in sub-tropical 
and temperate climates as reed/sedge peat and forest 
peat, and as moss peat in boreal, subarctic and 
arctic regions.

The definition of peat relates to the amount (per 
cent of dry mass) of dead organic matter (or organic 
carbon) making up the soil. The actual per cent 
varies, but 30% organic matter is widely used as a 
threshold for defining peat. Peatlands are defined 
as areas with a naturally accumulated top (or near 
top) layer of peat. The minimum depth of peat 
for an area to qualify as peatland varies between at 
least 20 and 70 cm according to the discipline and 
region (Montanarella et al. 2006), but commonly 
is around 30 cm. For instance, Joosten and Clarke 
2002 define peat as “sedentarily accumulated material 
consisting of at least 30% (dry mass) of dead organic 
matter”, and peatland as “an area, with or without 
vegetation, with a naturally accumulated peat layer at 
the surface”.

Bogs are ombrotrophic (ombrogenic) peatlands 
that rely solely on precipitation, whereas fens are 
minerotrophic peatlands fed by groundwater inflow 
and upstream nutrient supply. In regions with high 
precipitation, ombrotrophic peatlands dominate 
(e.g. in Indonesia and Malaysia). Peatlands in more 
arid regions, and away from the coast, are in general 
minerotrophic fens. Many wetlands receive water 
and nutrient inputs from both precipitation and 
groundwater flow, and even from fog (Price 1992). 
Riparian wetlands where peat might form can be seen 
as a special kind of fen.

In soil classification schemes, peat is classified 
differently in different regions and disciplines, but 
internationally peat is classified as histosol (FAO 
1998). To qualify as a histosol the groundwater 
table must reach the peat (histic) surface for at least 
one month per year. The FAO (1998) classification 
includes more detailed definitions, and divisions into 
sub-classes.

Globally, peatlands cover approximately 3% of the 
land surface. They contain 550 gigatonne (Gt) of 
carbon, or about one-third of global soil carbon 
(Bain et al. 2011). Thus, the peat carbon stock equals 
the carbon stock in the total global biomass, and is 
double the carbon stock in world forests. The extent, 
volume and carbon content of the world’s tropical 
peatlands are, however, not very accurately known. 
Page et al. (2011) estimate that tropical peatlands 
cover 441 025 km2, an area which falls between 
earlier estimates of 275 000 to 571 000 km2. More 
than half the world’s tropical peat is found in South 
East Asia, where Indonesia has the lion’s share. The 
same study estimates the total volume of tropical 
peat at 1758 cubic gigametre (Gm3), about three-
quarters of it in South East Asia. The carbon pool of 

Figure 1.  Tropical distribution of histosols from the Harmonized World Soil Database (HWSD). Only histosols have 
fully saturated colours (maroon), all other soil classes are in faded colours (default HWSD colour ramp)
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tropical peatlands is estimated to be 88.6 Gt (Page 
et al. 2011), which is higher than estimates in most 
previous studies.

The conversion of natural tropical wetlands to 
agriculture and agroforestry causes rapid subsidence 
and oxidation of peat accumulated in wetlands, with 
subsequent release of carbon to the atmosphere. The 
conversion of wetlands is especially intense in South 
East Asia (Gibbs et al. 2010).

The world’s largest peatlands (in extent) are all 
situated on alluvial fans in tropical and sub-tropical 
regions. The largest is the Pantanal in South America, 
straddling the borders of Brazil, Bolivia and Paraguay 
(fed by the Paraguay River). This is followed in size 
by the Sudd in Sudan (fed by the White Nile) and 
the Okavango in Botswana (fed by the Okavango 
River). The Niger Inland Delta in Mali (fed by 
the Niger River) is partly converted to agriculture, 
but was originally larger than the Okavango. The 
Niger Inland Delta is reported to have shrunk from 
37 000 km2 to 15 000 km2 between 1950 and 1990 
(Niasse et al. 2004). Landmann et al. (2010), in 
a recent study using moderate resolution optical 
satellite imagery, estimated the area of the Niger 
Inland Delta wetland at about 9000 km2. McCarthy 
et al. (2003) showed that the flooded area of the 
Okavango Inland Delta (Botswana) has varied 
considerably in historical times, but put the present 
area of the Okavango wetland at about 9000 km2. 
The considerable variations in area of these large 
wetlands, as well as the rapid conversion of wetlands 
to agriculture and agroforestry, call for new and rapid 
methods for mapping global wetlands.

1.1	 Wetland mapping
Wetlands are almost universally shown on 
topographic maps. Topographic maps stemmed 

from military needs for information on terrain, and 
the location of wetlands was important. Hence, the 
coverage of wetlands on topographic maps is usually 
good. But topographic maps only cover parts of 
the tropics and only very restricted areas are openly 
accessible in digital form. Thematic maps, and 
generalised maps, on smaller scales than traditional 
topographic maps, very seldom include information 
on wetlands, even if they are easier to access. Many 
remote regions, including the world’s largest tropical 
forests in the Amazon Basin (South America) and 
the Congo Basin (Africa), have never been properly 
ground surveyed. Recent studies using satellite images 
show that both the Amazon Basin (e.g. Lähteenoja 
et al. 2012) and the Congo Basin (Bwangoy et al. 
2010) contain large areas of wetlands. These studies 
indicate that the total wetland area of the tropics 
might be larger than hitherto estimated.

Global mapping of the earth’s land surface from 
earth observing satellite (EOS) images has mainly 
focused on land cover and topography. Global 
thematic maps which show wetlands are still mostly 
based on data compiled from national surveys and 
are usually at scales of 1:1 million (1:1M) or coarser. 
The most useful map of the global land surface might 
still be the Digital Chart of the World (DCW); the 
1:1M operational navigation chart developed by the 
United States Defence Mapping Agency. The DCW 
does show wetland classes, but they are not reliable 
and cannot be used as a basis for estimating global 
tropical wetlands. Some of the global land cover 
maps developed from EOS images do show wetland 
classes. These global maps, however, focus primarily 
on vegetation classes, and, hence, most tropical 
wetland areas are categorised as forest, shrubland or 
grassland. Figure 2 shows the moderate resolution 
imaging spectroradiometer (MODIS) global land 
cover product (MCD12Q1) (Friedl et al. 2010). 
Version 051 of the MODIS land cover product uses a 

Figure 2.  The standard MODIS land cover product (MCD12Q1 version 051) for 2010. Permanent wetlands have a fully 
saturated (blue) colour; other land cover classes have the default hue used for the International Geosphere-Biosphere 
Programme classification scheme of MCD12Q1, but with faded saturation



 Mapping global tropical wetlands from earth observing satellite imagery      3

decision tree classification algorithm that is iteratively 
improved by comparing results against a validated set 
of training data.

The European Space Agency (ESA) GLOBCOVER 
map at 300 m resolution (Figure 3) also attempts to 
show global tropical wetlands (Bontemps et al. 2010). 
GLOBCOVER is primarily based on time series data 
from the medium resolution imaging spectrometer 
(MERIS) sensor on board the ESA ENVISAT satellite. 
GLOBCOVER combines more traditional image 
analysis techniques and relies on extensive ground 
control points. The wetlands classes are partly derived 
from a combination of the MERIS classification 
scheme and ancillary data. A third global land cover 
map is the ESA Global Land Cover 2000 map. This 
latter map is a compilation of various efforts and has 
not been used in this study. The only globally reliable 
map of wetlands available is the recently published 
global mangrove map (Giri et al. 2011).

When comparing the global land cover maps for 
Africa, Kaptué Tchuenté et al. (2011) concluded that 
large scale features were well captured, but that the 
heterogeneous landscapes deserved more attention. 
They suggest that timing and phenology could 
improve the classification of heterogeneous landscapes.

Global land cover products have been directed towards 
identifying vegetation classes and, though they include 
wetland classes, the soil substrate has been largely 
ignored. Global soil maps, in contrast, lack detailed 
information from many parts of the globe (FAO 
et al. 2012), and are too generalised to be used for 
identifying global tropical wetlands (cf. Figure 1).

1.1.1	 Optical EOS images
Wetlands are easy to identify from a ground survey, 
but are more difficult to discern in satellite images. 
This is especially the case if the vegetation cover is 
dominated by trees or if the wetland is a regularly 

flooded plain, which is either wet or dry, but is not 
persistently very wet throughout the year. Green 
et al. (1998) summarise the most common methods 
for mapping mangrove wetlands using EOS images. 
They divide techniques for wetland mapping using 
optical EOS images into six categories:
1.	 Visual interpretation
2.	 Vegetation index based classification
3.	 Unsupervised statistical classification
4.	 Supervised statistical classification
5.	 Statistical classification from band ratio indices or 

linearly transformed indices
6.	 Merged or combined classification.

Almost all attempts to map wetlands using optical 
EOS images take one of these six approaches. A 
merged or combined classification technique will 
generally produce the most accurate classification, 
but will also be the most time consuming and costly. 
The best results are reported in studies which have 
used manual approaches, or a combination of manual 
and automated (statistical) approaches. The recently 
published global map of mangroves (Giri et al. 
2011) combined manual and unsupervised statistical 
methods to identify mangrove from approximately 
1000 Landsat scenes. More than 30 Ph.D. students 
from the tropics and sub-tropics were involved in the 
classification. Most wetland mapping studies using 
optical EOS images are restricted to ecologically and 
climatically homogenous regions, where the use of 
the first five methods listed above is appropriate. 
The assumptions underlying methods 2 to 5 are that 
similar features (wetland categories) can be mapped 
using reference data and that there is statistical 
similarity in one or more bands. The bands can 
be spectral data, a vegetation index, or some other 
index derived from band rationing or band linear 
transformations and combinations, for example 
principal component analysis (PCA). The basic 
assumption of similarity is eroded when adopting 
methods 2 to 5 over extended regions. Differences in 
species composition, soil conditions, and local and 

Figure 3.  ESA GLOBCOVER 2009 version 2. All classes are shown by the default hue, with faded saturation for all 
classes except wetlands
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annual climate cycles prevent a statistical approach 
based on similarity. One tractable alternative is to use 
time series data and adjust the classification based on 
the local phenology of climate, surface wetness and 
vegetation. Landmann et al. (2010) used time series 
MODIS data to identify West African wetlands from 
the phenological characteristics of vegetation. But 
their approach also used extensive ground data for 
calibrating the image classification.

1.1.2	 Radar EOS images
All radar data have the advantage of being more or 
less unaffected by atmospheric conditions (including 
clouds). The shorter radar wavelengths (C-band) are 
scattered by leaves, woody biomass and water. Hence, 
radar is widely used for biomass mapping. The longer 
radar wavelengths (L-band) are less affected by leaves 
and penetrate herbaceous biomass. The L-band 
is commonly used for mapping woody biomass 
and surface wetness conditions. Hence L-band 
radar, in particular, has led to advances in wetland 
mapping (Costa et al. 2007; Hoekman 2007). The 
interpretation of surface (water) conditions from 
radar data is, however, not straightforward. The 
backscatter received by the satellite sensors – usually 
expressed as a normalised measure, sigma nought 
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is the double bounce backscatter.

As radar images are usually taken at a steep angle 
of incidence (and not perpendicularly), open water 
surfaces deflect the radar signal away from the sensor, 
and the return signal from a smooth (calm) water 
surface will be extremely low. A dense forest will have 
a higher backscatter than any other vegetation type 
(composed of all four scatter components). If the 
ground in the forest is flooded the backscatter will 
increase even more, as a consequence of the double 
bounce (
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) component.

However, when an herbaceous plain (e.g. a floodplain 
dominated by grassland) is flooded, the water 

surface will deflect the scatter away from the sensor, 
and the backscatter recorded by the satellite sensor 
will be lower than under non-flooded conditions. 
The type, height and volume of the vegetation will 
hence determine how the backscatter changes with 
variations in surface wetness. Thus, when using 
L-band radar the relative variations in backscatter 
over time can be used as indicators of changes in 
surface wetness (Wang et al. 1955). But interpreting 
the absolute wetness still demands calibration against 
ground data. By measuring not only the backscatter, 
but the polarisation of the backscatter, a multi-
band approach can be used to map wetlands from 
either a single radar scene, or from a time series of 
radar scenes.

1.1.3	 Topography
An alternative digital data source for mapping 
wetlands is to use a digital elevation model (DEM). 
From a DEM the drainage area (the upstream area 
feeding into a given position) for each cell or picture 
element (pixel) can be used to represent the amount 
of water that flows into the cell. This, combined 
with the local slope or curvature of the cell, 
enables a topographic index – a proxy for the local 
wetness – to be defined (Beven et al. 1979). Variants 
of the topographic index have been used to map 
wetlands in different environments. In their study 
of wetlands in the central Congo Basin, Bwangoy 
et al. (2010) concluded that the local drainage 
area, derived from topographic data, was the most 
important information for mapping the distribution 
of wetlands.

1.2	 Approach
Tropical wetlands change in size because of natural 
climatic fluctuations and as a consequence of human 
management. To map global tropical wetlands, the 
only feasible approach is to use EOS image data. 
As discussed above, traditional statistical image 
classification techniques cannot be used to map 
wetlands over extended regions because of large 
seasonal variations in time and space in flooding 
and vegetation phenology. Existing global land cover 
maps are based on advanced (iterative) statistical 
approaches, relying on large sets of verified ground 
control data. For wetlands, the lack of globally 
relevant and verified ground control data prevents the 
use of statistical approaches for generating a global 
wetland map. As wetlands are ‘lands transitional 
between terrestrial and aquatic systems’, they are 
almost, by definition, heterogeneous and global 
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scale land cover maps are more error prone in 
heterogeneous areas. Further, wetlands and peatlands 
are defined by soil, not vegetation, conditions. 
Taking this into consideration, this study developed 
an alternative approach for mapping global 
tropical wetlands.

The first stage was to develop a set of physically 
intelligible indices and maps that have a logical 
relationship to the distribution of wetlands. The 
indices include: A global topographic wetness 
index; A global surface wetness index derived from 
optical EOS images; A global geomorphological 
map; A third surface wetness index, derived from 
radar data, was also developed, but was not adopted 
because of geometrical position errors in the radar 
data set. The phenology (annual cycle) of surface 

wetness was extracted from the optical surface 
wetness index. By combining the information on 
surface wetness phenology, topographic wetness and 
geomorphology, areas that are more or less likely to 
harbour wetlands can be identified.

The second stage was traditional image classification 
using a chrono-sequence of images for extracting 
phenologically relevant reference signals for use 
in image classification in defined spatial and 
temporal domains. Because of the lack of verified 
reference sites, the second stage could only be 
tested for selected regions and a limited number of 
wetland classes. However, the lack of verified data, 
even for this limited number of regions, prevents 
accurate estimates.



2.	 Objectives

The present best estimates of global topical wetlands are derived from compilations of disparate source 
information from studies using a variety of different techniques. The primary objective of this study was to 
develop a credible map of global tropical wetlands.



3.	 Data sets

The core data compiled for this study consists of 
products from the MODIS sensor. A range of pre-
defined products derived from the MODIS sensors 
are available on the internet with free file transfer 
protocol access. All MODIS products used in this 
study are delivered in a pre-defined tiling system 
(Figure 4). Each tile represents approximately a 10° 
by 10° (at the equator) segment of the earth’s surface. 
For this project 83 tiles, representing the tropical land 
surface of the earth, were selected. The study area 
includes the region between 25° north and 25° south. 
This is equivalent to vertical tiles 07 through 11 of the 
MODIS data products.

The native sinusoidal grid of the MODIS products 
provides wall-to-wall coverage of the entire earth’s 
surface, and is an equal area projection. This is 
extremely advantageous when processing tiled images, 
and especially when modelling water balances. Hence, 
all processing was done using the MODIS sinusoidal 
grid. All non-MODIS data sets were cut and re-
projected onto the MODIS pre-defined tiling system.

3.1	 MODIS products
3.1.1	 MCD43A4 – NADIR BRDF-adjusted 
reflectance data 16-day L3 global 500 m
The MODIS product MCD43A4 consists of 
seven bands ranging from the visible to infrared 
wavelengths. The reflectance in each wavelength is 
corrected using a bidirectional reflectance distribution 
function (BRDF), and the values represent nadir 
reflectance. The complete annual time series for 2011, 
plus the last four dates of 2010 and the first four dates 
of 2012, were used in this study. The MODIS BRDF 
reflectance data is the most important data set in this 
study. It was used to identify spectral end-members, 

for defining and creating a novel set of indices 
related to wetlands, for pixel un-mixing of soil and 
vegetation, and for classification of wetlands. The 
version used was 005.

3.1.2	 MOD13Q1 – vegetation indices 16-day 
L3 global 250 m
The MODIS vegetation product MOD13Q1 data 
set consists of four bands (red, near-infrared, blue 
and short wave infrared), and two vegetation indices 
– the classical normalised difference vegetation index 
(NDVI) and the enhanced vegetation index (EVI) – 
as well as metadata layers for quality and acquisition 
details. The complete annual time series for 2011, 
plus the last four dates of 2010 and the first four 
dates of 2012 were used in this study. Apart from 
using MOD13Q1 to extract vegetation phenology, 
the quality layer was used to extract lakes, shorelines 
and areas of intermittent inundation. The version 
used was 005.

3.1.3	 MCD12Q1 – land cover type yearly L3 
global 500 m
The annual MODIS land cover product MCD12Q1 
is derived from an annual series of MODIS data. 
At the time of acquisition, the latest year for which 
land cover was available was 2009. The land cover 
product was used as a reference data set for vegetation 
types and as a background when visually inspecting 
processing steps and results. The version used 
was 051.

3.1.4	 MOD44B – vegetation continuous fields 
yearly L3 global 250 m
The MODIS vegetation field product MOD44B, 
standard tree cover (%), is an annual product based 
on combinations of vegetation and reflectance data. 

Figure 4.  Tropical regions included in this study (colour composite of MODIS reflectance data for the peak of the 
dry seasons)
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At the time of acquisition, the latest year for which 
land cover was available was 2010. The tree cover 
data was used for classifying wetlands types, and for 
validating results of intermediate processing steps in 
the definition of wetland related indices. The version 
used was 005.

3.2	 Phased array type L-band synthetic 
aperture radar (PALSAR) data sets

The Japanese Aerospace Exploration Agency 
(JAXA) has, through its Kyoto and carbon (K&C) 
initiative, released global PALSAR data (horizontal 
transmitting, horizontal receiving and horizontal 
transmitting, vertical receiving bands) in 500 m 
resolution. For tropical forested areas (outside South 
America) the K&C initiative has also published 
PALSAR data in 50 m resolution. Both data sets 
were retrieved and organised into the MODIS tiling 
system. Algorithms for the mapping of flooding 
and inundation from time series data have been 
implemented, as well as land cover classification 
routines using multi-band backscatter data. The 
geometric precision of the PALSAR 500 m product 
(that covers the whole tropics) was, however, 
found to suffer from substantial errors. Hence, the 
present study does not present any results from the 
PALSAR sensor.

3.3	 Ancillary data set
3.3.1	 Topography
For this study Version 4 of the Shuttle Radar 
Topography Mission (SRTM) DEM, prepared by 
the International Center for Tropical Agriculture 
(CIAT) and available for download in approximately 
250 m resolution, was used. This SRTM was 
cleaned for pits and all data points falling on land 
are filled. The absolute error of the SRTM data set 
is estimated to be 11.25 m, with a relative height 
error for adjacent pixels estimated to be 1.6 to 
3.3 m (Brown et al. 2005). The SRTM data was re-
sampled to the MODIS sinusoidal grid with a 250 m 
spatial resolution using a bilinear interpolation. 
The topographic data was used to extract a set of 
geomorphological indices, and combined with 
climate data to derive a topographic wetness index 
which was used to map the distribution of global 
topographic wetland.

3.3.2	 Precipitation and temperature
Precipitation and temperature were taken from the 
WorldClim database, version 1.4, release 3 (Hijmans 

et al. 2005). The WorldClim database contains 
monthly interpolated grids of about 1 km2 (30' of 
arc) spatial resolution representing precipitation, 
minimum and maximum temperatures. The spatial 
data represents the period 1960 to 1990, extended 
from 1950 to 2000 for regions with poor data 
coverage 1960 to 1990. The station data used is a 
compilation of globally available climate station 
data. Interpolation of the original WorldClim data 
set was done using thin plate smoothing splines. For 
this project the precipitation data was re-sampled 
to the MODIS sinusoidal grid with a 250 m spatial 
resolution using a bilinear interpolation. The annual 
time series of precipitation was used to extract local 
phenological patterns, including defining dates 
(Julian day of the year) for wet and dry seasons.

3.3.3	 Evapotranspiration
Evapotranspiration values were taken from the 
FAO-adopted monthly reference evapotranspiration 
values produced by the Climate Research Unit, 
University of East Anglia (New et al. 2002). The 
evapotranspiration data was re-sampled to the 
MODIS sinusoidal grid with a 250 m spatial 
resolution using a bilinear interpolation. The 
evapotranspiration data was combined with 
the precipitation data to derive a water balance 
model. The water balance model was then used in 
conjunction with the topographic data to define a 
global topographic wetness index (GTWI).

3.3.4	 Harmonized world soil database 
(HWSD)
The HWSD is a regularly updated product. The data 
set used in this study was version 1.2.1, updated on 
7 March 2012 (FAO et al., 2012). The dominating 
soil group and the top soil organic carbon content 
(%) were extracted from the HWSD database and 
re-sampled using the nearest neighbour to fit the 
MODIS tiles. The result was visually compared 
with the results obtained from various processing 
steps. The coarseness of the HWSD data meant 
it could not be used to statistically calibrate or 
validate algorithms at the spatial resolutions used in 
this study.

3.3.5	 GLOBCOVER
GLOBCOVER is the highest resolution (300 m) 
global land cover product presently available. The 
GLOBCOVER initiative is a joint effort led by the 
ESA, and mainly uses images acquired from the 
MERIS sensor on board the ENVISAT satellite 
mission. The version used was GLOBCOVER 2009 
(Bontemps et al. 2010).



4.	 Methods I – climate and topography

following ten indices were calculated for each pixel 
at a 250 m spatial resolution:
1.	 Monthly minimum rainfall (min)
2.	 Monthly maximum rainfall (max)
3.	 Monthly mean rainfall (mean)
4.	 Date of the maximum rainfall or peak of the wet 

season (pws)
5.	 Date of the minimum rainfall or peak of the dry 

season (pds)
6.	 Threshold between dry and wet season(s) (dwt)
7.	 Number of wet (dry) seasons (nrpeaks)
8.	 Date of the start of the wet season following the 

longest dry period (sws)
9.	 Date of the start of the dry season following the 

longest wet period (sds)
10.	Length of the wet season(s) (lws).

The threshold between wet and dry seasons (dwt) was 
set as:
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The setting of a relative threshold assures that all 
regions with a precipitation cycle (i.e. all areas 
except deserts) will be accounted for. The volume of 
precipitation defining the threshold between wet and 
dry seasons, will, however, vary greatly.

Computationally the volume indices (mean, 
minimum and maximum) were calculated directly 
from monthly data. For the temporal indices (pws, 
pds, dwt, nrpeaks, sws, sds and lws) the WorldClim 
precipitation data was interpolated to represent 
23 dates instead of the original 12. Under the 
assumption that the WorldClim data set represents 
the precipitation of the mid-day of each month, 
the interpolation was done so that the 23 new dates 
represent the mid-days of the 16-day periods used 
in the two MODIS products (MOD13Q1 and 
MCD43A4). This was done to facilitate extraction 
of seasonal spectral signatures (and derived indices) 
representing the various stages in the annual 
precipitation cycle. Figures 5 through 13 show the 
global precipitation phenology derived from the 
WorldClim data set.

4.1	 Climate phenology
4.1.1	 Background
The formation and distribution of wetlands is very 
dependent on annual precipitation and inundation/
flood cycles. Most tropical regions are characterised 
by high temperatures and a pronounced annual 
rainfall cycle. Tropical rainfall is largely governed 
by the Inter-tropical Convergence Zone (ITCZ) – 
the low pressure zone girdling the earth at the solar 
zenith latitude and oscillating between the tropics. 
The low pressure zone attracts surface winds and, 
if the winds are moisture laden, precipitation 
is generated. Hence, in the tropics there is a 
single pronounced annual rainy season (in the 
hemispherical summer), whereas the equatorial 
region has two annual rainy seasons. The seasonality 
of the rainy season(s) is mirrored with six month lags 
at similar latitudes north and south of the equator. 
Thus the annual precipitation phenology is very 
different in the northern and southern hemispheres, 
and close to and away from the equator. The 
flooding and inundation cycles of individual tropical 
wetlands depends on both their location and on the 
location of their drainage basins.

When analysing wetlands from satellite images, 
the large variations in precipitation and surface 
inundation/flooding phenology must be accounted 
for. For example, wetlands north and south of 
the equator cannot be mapped based on the same 
date and reference spectra and the same is true for 
wetlands close to and further away from the equator. 
Additionally, the ITCZ is not positioned at a precise 
latitude, but is attracted towards large (warm) 
land masses; it wiggles in its position girdling the 
globe. Hence, reference data on wetlands from one 
continent cannot be easily used to map wetlands on 
other continents.

In essence, the large variations in annual 
precipitation and inundation phenology require a 
knowledge of local phenology prior to attempting a 
global classification of wetland distribution.

4.1.2	 Annual precipitation phenology
Annual precipitation phenology was calculated from 
the WorldClim data set (Hijmans et al. 2005). The 
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Figure 6.  Monthly minimum precipitation (mm)

Source: WorldClim

Figure 7.  Monthly maximum precipitation (mm) 

Source: WorldClim

Figure 8.  Precipitation threshold used for separating dry and wet seasons (mm)

Figure 9.  Length of wet season (months)

Figure 5.  Annual average precipitation (mm) re-scaled to the monthly average to correspond to the maps below

Source: WorldClim
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Figure 10.  Date of the peak of the wet season

Figure 11.  Date of the start of the dry season

Figure 12.  Date of the peak of the dry season

Figure 13.  Date of the start of the wet season

4.2	 Topographic wetness
4.2.1	 Background
Topography influences the gravitational flow of water 
over and through the landscape. Landforms control 
the hydraulic head, water flow and water distribution. 
Conceptually, soil water transmissivity determines 
the volume of water driven by the topographically 
induced hydraulic head. In temperate climates, soil 
transmissivity, in general, increases towards the soil 
surface. During rainfall, the groundwater level rises 
and the water saturated lower slope area expands. 
This leads to storm flow (Hewlett and Hibbert 
1967). This transmissivity feedback mechanism and 
the spatial variation in the saturation (or source) 

area generating runoff, has led to various approaches 
that use topography as a proxy for estimating the 
spatial distribution of hydraulic head and wetness. 
The most widely adopted algorithm for translating 
topographic information into landscape hydrological 
responses is the topographic index (Beven and Kirkby 
1979; Quinn et al. 1995). The topographic index 
was originally developed for a dynamic hydrological 
model, TOPMODEL (Quinn and Beven 1993). In 
its original form, the topographic index was based 
on at least the following assumptions: Rainfall is 
equal over the drainage area The slope equals the 
hydraulic gradient of the groundwater table. Water 
transmissivity increases exponentially towards the 
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soil surface and is equal over the drainage area. Soil 
wetness can be represented as a series of steady state 
conditions. There is no unsaturated lateral flow.

The topographic index is defined as:
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where A is the upstream catchment area, b the 
contour length, and 
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 is the local slope steepness 
in degrees.

By setting 
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, the TOPMODEL topographic 
index is usually given as:
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In principle the index will take on a higher value as 
the upstream catchment grows and the local slope 
angle flattens.

In tropical climates the transmissivity feedback 
hypothesis of higher water conductivity towards 
the soil surface is less well established. Tropical soils 
are often deeper, older and more weathered than 
temperate soils, and were not formed by glacial 
forces, but rather by in situ processes. And, as 
discussed above, precipitation patterns in the tropics 
varies substantially. Thus, adopting the topographic 
index for dynamic rainfall to runoff modelling 
in tropical landscapes is not straightforward. The 
gravitational influence on the water flow is, however, 
based on primary physical principles, and the 
landscape average or long term wetness condition is 
strongly influenced by topography also in tropical 
landscapes. For example, in a recent study in the 
central Congo Basin, Bwangoy et al. (2010) found 
that the upstream area was the most decisive factor 
for mapping the distribution of wetlands.

Many attempts have been made to both improve 
and generalise the topographic index. Merot et al. 
2003 introduced effective rainfall (total rainfall 
less evapotranspiration) as a factor, and derived the 
climato-topographic index:
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where Vr is the volume of water supplied by the 
upstream catchment to the local pixel. This is 
derived by multiplying the effective rainfall by 
the upstream area. Merot et al. (2003) applied the 
climato-topographic index across climate gradients in 

Europe and concluded that it could predict wetland 
distributions without local calibration.

A second development of the TOPMODEL 
topographic index has been to replace the local slope 
angle, 
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, with an angle or factor that relate to the 
down slope condition, or profile curvature – with 
convex slopes being drier and concave slopes wetter. 
Crave and Gascuel-Odoux (1997) showed that the 
downstream geomorphology had a larger influence 
on wetness than the local slope, and suggested that 
the local slope should be exchanged for the slope 
towards the nearest drainage point. Following Hjerdt 
(2004), the down slope influence in several studies 
has been defined as the horizontal distance along the 
slope gradient needed for the elevation to drop a user 
defined value (Rodhe and Seibert 1999). In the latter 
modified TOPMODEL topographic index, the slope 
factor can be expressed either as a distance Ld [m], or 
as a gradient:
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where Ld is the horizontal distance to the nearest 
point with an absolute elevation d m below the local 
cell under consideration.

Hjerdt (2004) showed that this modified topographic 
index could overcome some of the shortcomings 
reported by other studies when using the original 
TOPMODEL topographic index for mapping 
soil moisture and groundwater levels in complex 
topographic terrains. The 
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 factor is also 
reported to be less scale dependent than 

σ
t
= σ

s
+ σ

c
+ σ

m
+ σ

d

σ
s

σ
c

σ
m

σ
d

dwt = 0 .5∗(mean−min )+ min

I = ln (( A/b) / tan β)

β

α = A/b

I = ln (α / tan β)

I = log (Vr / tan β )

tan α
d
=

d

L
d

tan α
d

tan β

α

α = A
u
/b

Rrun
annual

=∑ P
m
−ET

m
, when P

m
>ET

m

ln (Vr / tan β )

GTWI = ln[( Rrun∗√ A
u

b
+

Retadj∗√ A
n

b
+Ret∗0 .5)

(tan Β∗Curvfac ) ]
NDVI = 

( NIR−VIS )
( NIR+VIS )

SAVI = 
( NIR−R )

( NIR+R+L )
(1+L )

, but 
demands a calibrated setting of d.

Rodhe and Seibert (1999) tested both the original 
and the modified TOPMODEL topographic 
indices to map distributions of mires in small 
Swedish catchments, and showed that wetlands 
not connected with the stream network could be 
identified, but with moderate success. In adopting 
the original TOPMODEL topographic index for 
mapping wetlands in the Seine Basin, France, Curie 
et al. (2007) concluded that it was applicable also in 
basins with large aquifers (groundwater reservoirs) 
dampening the rainfall to runoff process.

4.2.2	 Data pre-processing
Identifying a global tropical topographic wetness 
index requires pre-processing both topographic and 
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climatic input data. The following must be calculated 
from the DEM:
•• Stream and river network (as conduits of surface 

water flow)
•• Drainage network (water flow over hill slopes)
•• Slope angle at different resolutions
•• Profile curvature at different resolutions
•• Flow accumulation.

From the climatic data, the fraction of the runoff 
generated by annual rainfall must be calculated 
as the difference between the gross rainfall and 
evapotranspiration. The WorldClim precipitation and 
FAO-adopted evapotranspiration data sets only cover 
continental areas; some coastal strips fall outside the 
data coverage. These strips were filled by expanding 
the original data sets using the nearest pixel value to 
grow the climate grids to fill all land areas.

The term ‘effective rainfall’ is widely used in 
hydrological studies and defined as the fraction of 
rainfall that is not lost by evapotranspiration but 
which forms downstream flow and runoff. The 
term effective rainfall is a troublesome misnomer 
which has led to many ill-formulated concepts 
in hydrological science. It is, however, so well 
established that it is difficult to get rid of. From an 
ecological (or thermodynamic) perspective it is the 
runoff that is the loss and the evaporated fraction 
that is effective (Gumbricht 1996 ). One can even 
speculate that this misnomer has hindered novel 
developments in the hydrological sciences, such 
as the formulation of better topographic wetness 
indices. In this study, the fraction of gross rainfall 
that is not lost by evapotranspiration will be called 
runoff rainfall (Rrun). The fraction that is (in due 
time) lost by evapotranspiration will be called 
evaporative rainfall (Ret). For regional estimations 
of rainfall to runoff generation , Rrun is useful for 
calculating runoff volumes, but for local wetness 
and water cycle conditions it is hypothesised that 
the Ret fraction might be of equal or even greater 
importance.

4.2.3	 Extraction of streams, rivers and 
drainage networks
Streams, rivers and lakes are conduits of open water 
flow, and do not constitute wetlands. Stream and 
river networks were extracted by applying the single 
flow direction (SFD) algorithm to the SRTM DEM. 
The SFD finds the elevation difference between a 
central cell and each of its eight nearest neighbours 

and assigns the pathway towards the steepest descent. 
The calculation was done using the terraflow 
algorithm (Arge et al. 2003). The global tropics 
were divided into eight overlapping areas (Central 
America, South America, West Africa, North Africa, 
South Africa, Central Asia, South East Asia and 
Australia), each defined so that all tropical basins 
were completely analysed within one of the areas. 
Lakes were extracted by combining the quality layer 
from the MODIS vegetation product (MOD13Q1 
version 5), with the SRTM. Flat areas identified 
from the SRTM and indicated as inland water in the 
MOD13Q1 quality layer were categorised as lakes.

The multiple flow direction (MFD) algorithm 
distributes the flow accumulation from the central 
cell to all of the eight closest neighbours which 
have a lower elevation; the outflows are assigned 
proportional to the slope angle to these lower lying 
neighbours. The MFD is better suited for realistic 
calculations of upstream areas along hill slopes and is 
superior for topographic wetland mapping (Quinn 
et al. 1991; Wolock and McCabe Jr. 1995). Hence 
the MFD was used for calculating the contributing 
area (Au) to each cell outside the stream, river and 
lake network. Also the MFD flow accumulation 
was calculated using the terraflow algorithm of Arge 
et al. (2003) and eight overlapping parts. To convert 
the contributing area (Au) derived from MFD to the 
topographic parameter 
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, the contour length (b) was 
set to the length of the side of a cell.
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In the calculations, the contributing area (Au) is 
measured in m2 and the contour length (b), in 
metres. Hence the unit of 
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, is metre [m].

4.2.4	 Slope and curvature
The slope and curvature of a particular position 
depends on the scale of the DEM from which 
it was calculated. In general, both slope and 
curvature flatten out as the spatial resolution of 
the cell increases. Analysing slope and curvature 
at hierarchical scales also allows the derivation of 
landforms from a DEM (see below). In this study 
the original DEM has a 250 m spatial resolution. To 
map landforms and slope positions, the DEM was re-
sampled to four coarser resolutions; 750 m, 1500 m, 
3000 m and 6000 m. For each hierarchical scale, the 
morphology was characterised by a profile curvature 
and slope, as defined by Wood (1996).



14      Thomas Gumbricht

4.2.5	 Runoff generating rainfall
Runoff rainfall (Rrun) was derived by summing 
the positive differences between total rainfall (P) 
and reference evapotranspiration (ET) for each 
month (m):
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Monthly precipitation was taken from the 
WorldClim global data set (Hijmans et al. 2005). 
This represented the average precipitation for 
approximately 1950 to 2000. Evapotranspiration 
was taken from the FAO-adopted monthly reference 
evapotranspiration, produced by New et al. (2002). 
Figure 14 shows the annual runoff rainfall.

4.2.6	 Adopting a topographic wetness index 
for tropical wetlands
Initial attempts to identify tropical wetlands from 
the original TOPMODEL topographic index 
failed. Multiplying the cell upstream drainage area 
(Au) by the runoff forming fraction of the rainfall 
(Rrunannual) improved mapping, but still failed to 
account for wetlands as diverse as the tropical peat 
dome forests on the one side, and flooded-out rivers 
forming alluvial fans with peat on the other. Runoff 
rainfall in the former can be several metres per 
year, whereas the latter can be situated where there 
is not a single month when precipitation exceeds 
evapotranspiration.

Using an empirical trial and error approach, first 
the direct local (cell) precipitation was considered 
as contributing towards sustaining the wetlands 
(or rather the near surface groundwater table). 
Mathematically, the rainfall was converted to metres 
as the water volume (precipitation x cell area) and 
dispersion area (cell area) cancel out. Obviously this 
climato-topographic index ( ln (Vr / tan β ) ) has the 
unit ln(m2), and the local precipitation, the unit 

ln(m), and thus they cannot be directly compared. 
The simplest solution is to take the square root of 
the contributing area (Au), thus converting also the 
climato-topograpic index to the unit ln(m). This 
conversion of the climato-topographic index gives a 
very much better prediction of wetland distribution 
throughout the global tropical region.

Minor local wetlands are less well captured by 
combining the local (cell) water contribution and 
the upstream water contribution. Hence a third 
water contributing component was added – the local 
water flow from adjacent cells. The contribution 
from adjacent cells was calculated using the local 
geomorphology. To keep the mass balance of 
water, the flow of water between adjacent cells was 
calculated from the evaporative fraction (Pet) of 
precipitation. The contribution from adjacent cells 
can be viewed conceptually as the unsaturated flow 
prior to evapotranspiration. Inclusion of this third 
water contribution factor generates a global wetness 
index which visually corresponds well with the global 
distribution of tropical wetlands, ranging from peat 
dome forests to alluvial flood plains. Over extremely 
flat terrain (i.e. large alluvial fans), the accuracy of 
the SRTM cannot resolve flow paths and, for such 
environments, the topographic index fails.

4.2.7	 Inductive theoretical considerations
Precipitation across the global tropics varies in the 
extreme, from virtually no precipitation (the Sahara) 
to precipitation in excess of 5000 mm per year. 
Under these circumstances, and considering the 
reported efficiency in wetlands mapping adopting the 
climato-topographic index, the inclusion of rainfall 
(flow volume) for mapping global tropical wetlands is 
deemed to be essential.

The climato-topographic index was developed for 
temperate climates, where rainfall is commonly 
much greater than evapotranspiration. In the 

Figure 14.  Annual runoff generating rainfall (precipitation – evapotranspiration) (mm) re-scaled to the monthly 
average to correspond to the maps above
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tropics, evapotranspiration often exceeds rainfall, 
but despite this, wetlands do form in areas with no 
or little efficient rainfall. In general these wetlands 
are fens, mainly supported by upstream water 
inflow from areas with higher rainfall, but the 
extent and sustenance of fens also depend on local 
rainfall (even if that water in due time is lost by 
evapotranspiration). Local rainfall in regions with no 
efficient rainfall supports wetlands; rain falls directly 
on the wetlands and water accumulates in depressions 
prior to evapotranspiration. Thus the contributions 
of the gross local and neighbouring rainfall cannot be 
neglected when mapping the global distribution of 
tropical wetlands from climatic and topographic data.

In traditional hydrological studies, the runoff rainfall 
(Rrun) is the only water component considered 
when mapping, for example, groundwater levels 
and wetlands. As noted above, the fraction lost by 
evapotranspiration is the fraction used by vegetation, 
for example, for driving photosynthesis, root nutrient 
uptake and surface cooling. If we, for instance, 
assume that gross precipitation and potential 
evapotranspiration are in perfect balance, the soil will 
be completely water saturated if permitted by the 
topographic setting – but the climato-topographic 
index will be 0. This suggests also that precipitation 
that is later lost by evapotranspiration contributes 
towards sustaining wetlands. Moreover, wetlands are 
not seldom situated in depressions that collect surface 
and unsaturated flows (or saturated overland flows) 
during storm events – even if the runoff rainfall 
(Rrun) is negligible on average. Rather, for local 
hydrological studies, the gross rainfall is distributed 
between three (and not two) fractions – the fraction 
directly lost by evapotranspiration at the local scale 
(the cell size chosen in the study), the runoff fraction 
and a third fraction that flows to adjacent cells 
prior to being lost by evapotranspiration. The latter 
fraction will be small on flat terrains (and have the 
character of an exchange rather than a uni-directional 
flow), but will increase as the terrain steepens. Also 
it will be scale dependent; smaller cells will tend to 
export a higher fraction compared to larger cells.

Replacing local slope steepness (
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) with 
slope curvature (e.g.
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) is a logical approach 
for regions where the soil transmissivity is more 
homogeneous with depth and the hydraulic head 
does not directly link to the local slope. The different 
approaches taken to modify 
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to represent 
slope curvature have focused on downstream 
conditions. Using the profile curvature along the 

steepest gradient itself is a more direct approach. 
It is also computationally faster when analysing 
massive DEMs.

If conditions are right, wetlands in the montane 
tropics can exist on slopes of up to 10° (Trettin 
2012). In such conditions the slope steepness 
does not limit wetland development primarily 
through wetness, but by flow-induced shear stress 
exerted on both the plant community and the 
accumulated organic matter. The local slope angle 
is hence important, but for reasons other than 
determining wetness.

4.2.8	 Defining a global topographic wetness 
index for the tropics
Considering the difference in soil properties and 
climate between temperate and tropical regions, a 
four pronged approach to estimating surface wetness 
in tropical regions was developed. The first part is 
the upstream water contribution, which is similar 
to the climato-topographic index proposed by 
Merot et al. (2003), but includes a distance decay 
function and redefines the flow volume to a flow 
vector – rainfall runoff x (square root of upstream 
area). The second part is the water contribution 
from neighbouring areas, where a part of the vertical 
water cycle (Ret) is assumed to reach adjacent cells 
prior to evapotranspiration, dependent on local 
geomorphology. Also this flow is considered a vector 
– hypothesised to represent the unsaturated flow. 
Both flow vectors are divided by the cell contour 
length (b) set to be equal to the side of the cell. The 
third part is the direct local rainfall falling on a cell – 
regarded as a field. The three water contributions all 
have units in metres. The fourth part is the influence 
of the local slope and slope curvature, assumed to 
consist of two components – one component relating 
to slope curvature (wetness) and one component 
relating to absolute slope (shear stress).

The global topographic Wetness index (GTWI) is 
hence defined as:

σ
t
= σ

s
+ σ

c
+ σ

m
+ σ

d

σ
s

σ
c

σ
m

σ
d

dwt = 0 .5∗(mean−min )+ min

I = ln (( A/b) / tan β)

β

α = A/b

I = ln (α / tan β)

I = log (Vr / tan β )

tan α
d
=

d

L
d

tan α
d

tan β

α

α = A
u
/b

Rrun
annual

=∑ P
m
−ET

m
, when P

m
>ET

m

ln (Vr / tan β )

GTWI = ln[( Rrun∗√ A
u

b
+

Retadj∗√ A
n

b
+Ret∗0 .5)

(tan Β∗Curvfac ) ]
NDVI = 

( NIR−VIS )
( NIR+VIS )

SAVI = 
( NIR−R )

( NIR+R+L )
(1+L )

where Au is the upstream contributing area, An is the 
neighbouring contributing area, b is the contour 
length, Retadj is the fraction of (total precipitation 



16      Thomas Gumbricht

– efficient precipitation) falling on adjacent 
(neighbouring) cells that reach the local cell, Ret 
is the fraction of the local rainfall that is later lost 
by evapotranspiration, and Curvfac is a curvature 
factor (Curvfac = 1 when the curvature in planar, 
Curvfac <1 when the curvature is concave and 
Curvfac >1 when the curvature is convex)

The curvature factor was calculated as the curvature 
along the steepest descent as defined by (Wood 
1996). The factor Retadj depends on the slope profile 
curvature at the local cell and its neighbourhood.

The GTWI is hydrologically balanced. The 
contributing upstream area (Au) is calculated from 
the runoff rainfall (Rrun), excluding the local cell 
itself. The contribution from neighbouring cells 
is calculated from the fraction of the rainfall that 
is later lost by evapotranspiration (Retadj), and 
maximised to approximately 7 to 10% of this 
volume (dependent on geomorphology). From a 
single, high peak (at least 3 km wide, such as Mount 
Kilimanjaro) surrounded by valleys, the outflow 
fraction of the evaporative rainfall is 10% from the 
peak (and less from the slopes). The distribution of 
this outflow depends on the local geomorphology. 
Fifty per cent of the evaporative fraction (Ret) is 
added as a direct contribution to the local cell 
wetness. The contributing local neighbourhood 
is allowed to expand up to a maximum radius of 
1.5 km (5 pixels). The amount of the local rainfall 
derived from neighbouring cells depends both on 
distance and curvature, with the closer and more 
concave curvature (of the receiving cell) contributing 
a higher fraction. The computational power needed 
to calculate the true local contributing area for 
each pixel is prohibitive. The approach used here 
is a simplification and involves using the slope 
curvature at four different scales: 250 m (original 
pixel resolution), 750 m, 1500 m and 3000 m. The 
wetness index does not generate any surplus water, 
but it allows some of the precipitation that is later 
lost by evapotranspiration to contribute towards 
local wetness.

4.3	 Geomorphology
Wetlands only occur in specific geomorphological 
settings and some wetlands (notably peat domes) 
can change the local and regional geomorphology. 
Wetlands are both characterised by the 
geomorphology and characterise the geomorphology. 
The geomorphological setting can hence reveal 

additional information about the likelihood of 
wetlands occurring, the type of wetland and the 
depth and accumulation of organic matter taking 
place in a wetland.

Landforms are the result of the interaction between 
surface geomorphic processes (erosion, transport 
and deposition) and the underlying lithology. 
Over long periods, the geological cycle and plate 
tectonics determine large scale landforms. In 
between the processes of plate tectonics and micro-
scale geomorphic processes, a range of hierarchical 
processes shape geomorphology (Short and Blair 
1986). The largest tropical wetlands, for example, are 
all in tectonically active regions. Depressions formed 
as a result of the East Africa Rift Valley and the 
African Superswell are the foundations of the Sudd 
and the Okavango. The tectonic uplift of the Andes 
generated the geomorphology that subsequently 
delivered the material that forms the basement of 
the Pantanal.

The form of the land surface indicates the processes 
that formed it. Hence, a landform map can be used 
to interpret geomorphic processes, including soil and 
wetland formation. Landform maps can support the 
interpretation of other land surface characteristics, 
including hydrological properties and vegetation 
structure. The Soil Science Society of America 
(www.soils.org) defines a landform as “any physical, 
recognizable form or feature on the earth’s surface 
having a characteristic shape, and produced by 
natural causes.” This definition is broad enough for 
some authors to consider vegetation maps as a kind 
of landform map. Other definitions of landforms 
stress the more permanent nature of landforms, 
hence excluding vegetation cover as a landform class 
by itself. This latter definition will be adhered to in 
this study.

Most landform maps are either thematically bound to 
a particular biome, geographically restricted, or both. 
Thus many landform maps show a mixture of generic 
landform classes (e.g. lakes) and geographically 
bound (unique) landforms. Clements et al. (1957), 
for example, described 10 major landforms in the 
deserts of the world – alluvial fan, sand seas, playas, 
river plains, dry watercourses, mountains, recent 
volcanic depositions, low angle bedrock surfaces, 
desert flats and badlands. Ballantine et al. (2005) 
defined nine major landforms in the Sahara based 
on the map produced by Raisz (1952), and the 
definitions suggested by Clements et al. (1957) – 

http://www.soils.org/
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alluvial fan, dune fields, dry lakebeds, open water 
bodies, basaltic volcanoes and flows, sedimentary 
mountain ranges, regs, stripped bedrock surface and 
sand-sheets. Ballantine et al. (2005) used MODIS 
reflectance data and pixel un-mixing techniques to 
create a landform map of the Sahara using these 
major landforms.

Weiss (2001) developed a more generic landform 
classification scheme that can be extracted from 
DEMs. He based his classification on a multi-scale 
classification of the topographic position index (TPI):

TPI = Zgrid –focalmean(Zgrid, circle,r)

where Zgrid is the cell of the DEM, the focalmean 
is the mean DEM value within a circle of radius r 
centred on the cell.

By using TPIs derived from two (or more) 
hierarchical scales, a fairly simple set of rules can be 
used for classifying any landscape into 10 more basic 
classes (Weiss 2001):
1.	 Canyons, deeply incised streams
2.	 Mid-slope drainages, shallow valleys
3.	 Upland drainages, headwaters
4.	 U-shaped valleys
5.	 Plains
6.	 Open slopes
7.	 Upper slopes, mesas
8.	 Local ridges/hills in valleys
9.	 Mid-slope ridges, small hills in plains
10.	Mountain tops, high ridges

Wood (1996) developed a set of primitive (cell) 
morphometric parameters that can be extracted from 
any DEM:
1.	 Elevation
2.	 Slope
3.	 Aspect
4.	 Profile curvature
5.	 Planar curvature
6.	 Longitudinal curvature
7.	 Cross-sectional curvature
8.	 Minimum curvature
9.	 Maximum curvature

The geomorphology of most landscapes is a mix of 
the primitive elements suggested by Wood (1996) 
and the basic classes suggested by Weiss (1991). The 
appropriate scale for analysing a particular landscape 
will, however, vary. To convert landscape mixes into 
well defined landform classes as done by, for example. 
Ballantine et al. (2005), requires a pre-defined set of 
classes. This last step can only be achieved with local 
knowledge and by including specific lithological 
classes. In general, landform maps are very scale 
dependent. Global geomorphological maps are small 
scale and show only large features, such as plains, 
mountains, sedimentary basins, peninsulas, etc. 
Hence, most global geomorphological maps are not 
useful for mapping features like wetlands.

As part of this study, an attempt was made to develop 
a global geomorphological map for assisting in 
mapping wetlands and wetland types. The map was 
developed using the SRTM DEM with a 250 m 

Table 1.  Simplified scheme of the principal rules applied for mapping global landform elements

Rule for Input layer General rule structure
Lakes and shores MOD13Q1 Quality If Quality = q
Rivers TPIx GTWI CPROFx If TPIx < tpi & GTWI > w & CPROFx < c
Valleys TPIx CPROFx slopex If TPIx < 0 & CPROFx < 0 & CPROFx+1 < CPROFx & slopex < 1

TPIx CPROFx slopex If TPIx < tpi & TPIx+1 < tpi & PROFx+1 <= 0 & slopex < 1
Domes and alluvial 
fans

TPIx CPROFx slopex If CPROFx >= 0 & CPROFx+1 > CPROFx & tpia < TPIx < tpib & slopex+1 < 0.3

Mountains and 
ridges

TPIx CPROFx if CPROFx > c & CPROFx+1 > c & TPIx > tpi 

Steep slopes TPIx CPROFx slopex if CPROFx > c & CPROFx+1 > c & TPIx+1 > tpi & (slopex > 15 or slopex+1 > 15)
Plains TPIx CPROFx slopex if -c <= CPROFx <= c & -c <= CPROFx+1 <= c & TPIx <= 0 & slopex < 1

TPIx slopex if -tpi <= TPIx <= tpi & -tpi <= TPIx-1 <= tpi & slopex < 10
TPI – topographic position index; CPROF – curvature profile; GTWI – global topographic wetness index.

Rules (except for lakes and shores) were applied to the hierarchy of scales (x) of the respective indices generated from five different 
scales of the original DEM used in the analysis (see text).
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spatial resolution. The SRTM DEM was re-sampled 
(bilinear interpolation) to four coarser resolutions – 
750 m, 1500 m, 3000 m and 6000 m. The 
geomorphological classification was then undertaken 
using the original scale (250 m) in conjunction 
with these hierarchical scales. For each scale a set of 
geomorphological indices were generated as defined 
by Wood (1996) and Weiss (2001):
1.	 Slope steepness
2.	 Profile curvature
3.	 TPI

For the original 250 m resolution, the following 
additional indices were used:
1.	 GTWI (as defined above)
2.	 Flow accumulation
3.	 Channel index

The channel index was specially developed to identify 
active rivers and streams. It uses the same approach 

as described for the GTWI, but disregards the local 
slope steepness, tan(B), and considers instead the TPI 
and curvature profile.

The geomorphological classification is based on a 
hierarchical set of IF … THEN … ELSE … rules, 
sequentially capturing landform elements that 
compose most landscapes. In general the rules were 
written to capture landscape elements ranging in size 
from 250 m up to 6 km. For each landform element 
the rules were applied at three or four scales. Table 
1 summarises the principles used for identifying the 
global landforms.

For all landform elements, GTWI was used as a 
dichotomous post-classifier to divide the elements 
into either wet or dry. The global geomorphological 
map was generated at a spatial resolution of 
250 m. Figures 26, 31 and 38 illustrate the 
geomorphological map.



Images from optical EOS have been widely used to 
map wetlands. As stated above, however, traditional 
statistical approaches relying on a large number of 
reference sites cannot be used for mapping global 
tropical wetlands. Instead a set of biophysically 
anchored indices relating to the distribution of 
wetlands were developed. Some of these indices have 
been developed by others and are accepted tools for 
land surface mapping. Other indices were developed 
as part of this study to allow the mapping of global 
tropical wetlands from satellite images.

5.1	 Identifying spectral end-members
Pixels in satellite images of the earth’s surface can 
either represent a homogenous surface, or represent 
a mixture of different surface elements. The higher 
the spatial resolution, the more likely it is that a 
pixel represents a single feature. In coarser images, 
pixels represent a mixture of different features. 
Identification of the spectral signal of a single feature 
in a satellite image enhances the interpretation 
of the satellite image. It is also a pre-requisite for 
attempting to un-mix the spectral signal into its 
components, or to remove the spectral signal from a 
particular feature.

In this study spectral end-members were identified 
for the MODIS MCD43A4 reflectance product 
(500 m spatial resolution, 7 bands) and for the 
MOD13Q1 vegetation product (250 m spatial 
resolution, 4 bands) separately. Routines were 
developed for automatic regional (tile-specific) 
identification of four spectral end-members – dark 
soil, light soil, dense vegetation and open water.

5.1.1	 Background
In multi-spectral satellite images, such as images 
derived from the MODIS sensor, complete spectral 
un-mixing is inherently impossible unless ground 
reference data on spectral end-members is available. 
And, even then, attempting to partition the relative 
occurrence of different features within a cell is a 
non-tractable problem. If, however, the objective of 
spectral un-mixing is to reveal the spectral signal of a 
cell disregarding one (or more) well defined spectral 
end-members the problem is more tractable. The 

definitions of wetlands and peatlands are based on 
soil conditions. Sub-classification relate to botanical 
features. Wetlands do have strong geo-botanical 
relationships, and geo-botanical relationships can 
assist in mapping wetlands from satellite images. 
But such an approach demands (local) knowledge 
or reference sites for identifying the spectral signal 
of geo-botanical classes in the area to be classified. 
Mapping global wetlands from geo-botanical 
information is hence prohibitive as assembling global 
knowledge of geo-botanical classes, their spectral 
signals and their global spatial distribution is a 
daunting task. A more generic approach is necessary.

One generic approach is to extract the spectral 
signal after removing that part of the signal which 
is derived from the vegetation ‘foreground’ and to 
only retain the soil ‘background’ part. Vegetation 
un-mixing can be achieved using a vegetation index 
only. Crippen and Blom (2001) developed a pixel 
un-mixing algorithm for unveiling lithology based 
solely on a vegetation index. Their algorithm is based 
on the assumption that the ‘background’ is invariant 
vis-à-vis the foreground (i.e. that there are no geo-
botanical effects). The algorithm for their ‘forced 
invariance’ pixel un-mixing is straightforward, but 
overlooks important background features. Because 
their algorithm is based solely on image data, it is a 
forward (or data) driven approach. In a goal driven 
approach (as in traditional pixel un-mixing) the end-
members are a priori known. For a global approach, 
this is not possible, because of a lack of reference 
data and a priori knowledge of the distribution of 
wetlands and their spectral signals.

In this study, an alternative, forward driven pixel un-
mixing algorithm based on eigenvectors representing 
different ground features was developed. One of the 
eigenvectors was set to represent vegetation, and 
removal of the vegetation from the spectral signal was 
done by reversing the eigenvector and reassembling 
the spectral signal while excluding vegetation. For 
this eigenvector spectral un-mixing approach to 
work, a set of spectral end-members must be defined 
in order to correctly identify the eigenvector for 
vegetation. A pre-requisite for spectrally removing 
the vegetation ‘foreground’ is identifying the spectral 

5.	 Methods II – optical satellite image 
processing



20      Thomas Gumbricht

signal of the vegetation end-member. Vegetation 
mapping from satellite images is very common, but 
not a trivial task. A variety of different approaches 
and algorithms have been suggested. A major obstacle 
in vegetation mapping is to correctly define and 
consider the background material – the soil line.

5.1.2	 Defining vegetation density and the 
soil line
The classical index for extracting vegetation 
from satellite images is the normalised difference 
vegetation index (NDVI), defined as:
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and VIS the reflection in the visible (usually red) 
wavelength. NDVI has been widely adopted for 
vegetation studies in remote sensing, and several 
improvements have been suggested, including the soil 
adjusted vegetation index (SAVI) (Huete 1988):
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where R is the reflection in the red wavelength, and L 
is a calibration (or noise) factor, usually set to 0.5.

Both NDVI and SAVI (and other vegetation 
indices derived from NDVI) assume that there is no 
vegetation when the visible/red reflection equals the 
near-infrared reflection. The soil background colour, 
however, influences the visible and near-infrared 
reflection differently. When the soil is not completely 
covered by vegetation it will affect primarily NDVI, 
but it also has an effect on SAVI (Baret and Guyot 
1991). Lighter soils will influence the vegetation 
indices more than dark ones, and cause an over 
estimation of the vegetation cover. The problem with 
the classical vegetation indices is that the soil line 
is assumed to be the line where NIR = VIS. This is 
not the case. The soil line will vary dependent on 
soil conditions but, in general, it will not have an 
intercept at 0 and a unit slope. The concept of a 
generic soil line in remote sensing was proposed by 
(Richardson and Wiegand 1977):
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where NIR is the near-infrared reflection, R is 
red reflection, 
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 is the soil line slope and 
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the intercept.

Richardson and Wiegand (1977) also proposed the 
perpendicular vegetation index (PVI), calculated as 
the perpendicular distance of the cell’s reflection in 
the NIR and R from the soil line. Clevers (1988) 
formulated a similar index for leaf area estimation – 
the weighted difference vegetation index (WDVI). 
Disregarding the soil line intercept, PVI/WDVI is 
defined as:
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And including the soil line intercept, the PVI is 
defined as:
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Hence the PVI is determined by first orienting 
the soil line in the R versus NIR space, and then 
measuring the Euclidean distance from the soil 
line to the reflection of NIR and R in this two-
dimensional space. Mathematically PVI can also be 
expressed as a trigonometric function:
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By using the trigonometric approach, the Euclidean 
distance parallel to 
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 can easily be calculated as a 
perpendicular background index (PBI):
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The PBI is a useful index in itself, and also for 
analysing residual errors and non-linearities in 
the PVI.

Rondeaux et al. (1996) identified global values 
for the soil line, suggesting 
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 and 
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, but the existence of such global 
values has been questioned. Baret et al. (1993) and 
Rondeaux et al. (1996) speculate that the lack of an 
accepted global soil line and difficulties in identifying 
the soil line in a satellite image with varying densities 
of vegetation have preserved the use of classical 
vegetation indices, despite their shortcomings.
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5.1.3	 Identifying regional spectral end-
members
In this study, the global soil line, as defined by 
Rondeaux et al. (1996), was adopted as a starting 
point, and used for deriving PVI and PBI. 
Additionally, a global wetness index was defined 
from a linear band rotation, modelled on the widely 
accepted tasseled cap (TC) wetness component 
(Kauth and Thomas 1976):

For MCD43A4:

Wetness = B 0.6885 + G 0.1368 + R 0.3741 + 
NIR 0.1225 − MIRa 0.027 − MIRb 
0.1768 − MIRc 0.5658

For MOD13Q1:

Wetness = B 0.6885 + R 0.3741 + NIR 0.1225 − 
MIRa 0.027 − MIRb 0.1768 −  
MIRc 0.5658

where B is the blue reflection, G the green reflection, 
R the red reflection, NIR the near-infrared reflection, 
and the mid-infrared reflection (MIR) in the three 
MIR bands – MIRa, MIRb and MIRc – of MODIS.

From the initial PVI, PBI and wetness indices, 
regional spectral end-members were identified. The 
routine suggested by Fox et al. (2004) was adopted 
for finding the soil line for each MODIS tile. The 
spectral search region was confined to PBI values 
falling on or near the global soil line and upper and 
lower limits were set for the PBI. The latter was done 
in order to exclude water saturated soils (at the PBI 
low end) and salt pans and bright beaches (at the PBI 
high end) from contributing to the regional soil line 
identification. To further minimise the influences of 
vegetation, the local (neighbourhood) variation in 
the PVI was used as a further constraint. Only if the 
standard deviation in the PVI of the surrounding 
pixels was lower than a given threshold did the pixel 
qualify as a spectral candidate for the soil line. This 
assures that the soil line is not contaminated by either 
water or vegetation, or by urban materials or other 
bright pixels. The soil line was identified from scenes 
representing a full annual cycle (i.e. 23 images). The 
reflection in all bands for the pixels recorded on or 
near the soil line was retained (not only NIR and R), 
as were the values for the PVI, PBI and wetness. The 
spectral end-members of dark and bright soils were 
identified from the high and low ends of the soil 

line. After the end points of the soil line had been 
identified, an expanding search box was applied 
until the 30 (or more) pixels falling closest to the 
end points had been identified. From these pixels the 
means and standard deviations of the reflections for 
dark and light soils were calculated for each band for 
each tile.

In order to identify the regional spectral end-
members of dense vegetation and water, a simple 
search routine was applied to the PVI (vegetation) 
and wetness indices. For vegetation the search was 
constrained to a threshold in the PVI and local kernel 
variation (as described above). Dense vegetation 
was then defined from a minimum of 30 pixels 
representing the full annual cycle. The local spectral 
properties of water were identified in a similar 
manner, but using the wetness index as the search 
criteria (Figure 15).

The spectral end-members were used to define 
the spectral signals for dark soil, light soil, dense 
vegetation and surface water for each tile. Several 
studies emphasise the superiority of using local or 
regional soil lines for mapping biophysical properties 
from satellite images. The initial attempts to map 
global tropical wetlands were, therefore, undertaken 
using regional soil lines defined per tile. The 
variations in soil lines were, however, significant and, 
given the lack of local calibration data, a global soil 
line had to be defined and used.

5.1.4	 Identifying global spectral end-
members
For the 83 tiles composing the core global tropical 
region (vertical tiles in rows 7 to 10 in the MODIS 
tiling system), the spectral end-members for dark 
soil, light soil, dense vegetation and open water were 
used to identify global tropical spectral end-members. 
The definition of a global spectral end-member was 
achieved using a statistical Monte Carlo approach, 
constrained by both logical and empirical conditions. 
The constraints included:
1.	 Reflectance in all bands and all features >0
2.	 Dark soil reflecting less than bright soil in 

all bands
3.	 Vegetation highly reflective in NIR followed 

by MIRa (short-wavelength infrared region 
– SWIR), and with low reflectance in all 
visible bands

4.	 Water showing a general decline in reflectance 
towards longer wavelengths

5.	 Eigenvector values for light soil all positive
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6.	 Eigenvector values for vegetation highest in NIR 
followed by MIRa (SWIR)

7.	 Eigenvector values for water declining with band 
wavelength.

Constraints 1, 2 and 5 are logical. The high 
reflectance of vegetation in NIR (constraints 3 and 6) 
is the basis for most classical vegetation indices, even 

though some use SWIR instead of NIR, as the SWIR 
reflection saturates at higher vegetation densities. The 
reflection of water is well established, with a general 
decline in reflectance from visible wavelengths, via 
NIR to MIR (constraints 4 and 7).

The spectral signal from each tile and for each feature 
was extracted to generate tropical ensemble means 

Figure 15.  Spectral end-members extracted for tile h28v09 (parts of Sumatra and Java) The reflectance is 
multiplied by a factor of 10 000
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Table 2.  Mean and standard deviation (in parenthesis) for the ensemble of regional spectral end-members 
identified for tropical MODIS (MCD43A4) tiles (band order given as they appear in the MCD43A4 product

Material R NIR B G MIRa MIRb MIRc

Dark soil
0.0610

(0.0208)
0.0985

(0.0397)
0.0518

(0.0220)
0.0631

(0.0169)
0.1310

(0.0676)
0.1249

(0.0739)
0.0869

(0.0556)

Light soil
0.1279

(0.0292)
0.1674

(0.0430)
0.0809

(0.0226)
0.1099

(0.0220)
0.2102

(0.0746)
0.2213

(0.0909)
0.1816

(0.0797)

Vegetation
0.0493

(0.0130)
0.4431

(0.0425)
0.0296

(0.0078)
0.0790

(0.0124)
0.4040

(0.0298)
0.2421

(0.0209)
0.1013

(0.0226)

Water
0.0290

(0.0326)
0.0202

(0.0158)
0.0386

(0.0141)
0.0402

(0.0283)
0.0198

(0.0124)
0.0200

(0.0105)
0.0135

(0.0082)
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and standard deviations (Table 2). The spectral signal 
for each feature and each band was randomised 
around the ensemble mean, allowing variations up 
to one standard deviation for each spectra (Table 1). 
The simulation was run until 30 successful spectral 
signals fulfilling the constraints had been generated 
(approximately 10 000 trials). The global spectral 
signal adopted was derived by taking the average 
spectral signal for each feature from the 30 successful 
simulations (Table 3). Applying an eigenvector 
transformation, using dark soil as the offset 
factor, the factors for each band for light soil (1st 
eigenvector), dense vegetation (2nd eigenvector) and 
open water (3rd eigenvector) are given in Table 4.

The derived eigenvectors were applied to produce 
both biophysical indices and for pixel un-mixing 
the reflectance, retaining only the reflectance of the 
background material.

5.2	 MODIS linear data transformation 
to biophysical features

5.2.1	 Background
PCA is a statistical technique for transforming 
n-dimensional vectors (i.e. image bands). The 
transformation is such that the information content 
is maximised in each sequential PCA component 
and each additional dimension is forced to lay 
perpendicular to the previous. PCA is applied 
in satellite image analysis to achieve a scene 
specific linear transformation. Applying the PCA 
transformation is comparatively easy; interpreting the 
results is much more difficult and includes studying 
the eigenvector values and visual inspection.

The TC transformation, first suggested by Kauth and 
Thomas (1976) for Landsat Multispectral Scanner 
data, is similar to a PCA, but with a fixed set of 
linear transformation values. The TC components 
were developed to represent intelligible biophysical 
properties – brightness, greenness, yellowness and 
‘other stuff’. Crist and Cicone (1984) developed TC 
components for Landsat thematic mapper (TM) 
data, expanding the original four components to six 
(brightness, greenness, wetness, yellowness and two 
biophysically undefined indices). Others have later 
developed TC transformations for satellite images 
acquired by a variety of sensors, including for MODIS 
(Lobser and Cohen 2007), Quickbird (Yarbrough 
et al. 2005) and CBERS-02B (Sheng et al. 2011).

When applied to reflectance corrected images, the 
TC transformation generates a consistent set of new, 
linearly transformed images. This is advantageous 
as the interpretation of the derived components is 
straightforward. At the same time, the information 
content is higher and more intuitive (Cohen et al. 
2004). The TC components have been widely adopted 
for detecting change (Healey et al. 2005), and are 
reported to out-perform other methods for change 
detection.

5.2.2	 Defining eigenvectors for biophysical 
transformations of MODIS images
A drawback of the original TC transformation is 
that it is based on ‘top of the atmosphere’ reflection. 
Thus, the derived components vary depending on 
atmospheric conditions. Adopting images corrected 
for atmospheric differences and variations in viewing 
angle, like the MCD43A4 product with reflectance 
corrected using a BRDF, overcomes this problem.

Table 3.  Global tropical spectral end-members (band order given as they appear in the MCD43A4 product)

Material R NIR B G MIRa MIRb MIRc

Dark soil 0.0656 0.0979 0.0423 0.0591 0.1221 0.1288 0.1177
Light soil 0.1262 0.1623 0.0858 0.1114 0.2163 0.2318 0.1337
Vegetation 0.0488 0.4847 0.0304 0.0807 0.4021 0.2428 0.0985
Water 0.0255 0.0188 0.0427 0.0359 0.0204 0.0206 0.0124

Table 4.  Eigenvector values derived from global tropical spectral end-members, using dark soil as the offset factor 
(band order given as they appear in the MCD43A4 product)

Material R NIR B G MIRa MIRb MIRc

Light soil 0.337785 0.358966 0.242469 0.291520 0.525071 0.574122 0.089184
Vegetation -0.384599 0.751599 -0.275617 -0.228412 0.279920 -0.244927 -0.143880
Water 0.083270 0.023793 0.341038 0.207347 -0.032848 -0.143196 -0.900897
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As mentioned above, this study initially attempted 
to use regionally (per tile) generated spectral end-
members to define the eigenvectors to be used as 
components in a modified TC approach. This led 
to larger than expected variations in the definition 
of regional biophysical indices. Instead, the globally 
derived eigenvector values (Table 3) were adopted as 
component values in a modified TC transformation. 
In order to retain all the information in the original 
data, an additional set of default components were 
defined based on global spectral libraries (Table 5).

5.2.3	 Transformations of MODIS images to 
biophysical indices
The eigenvectors derived from the identification of 
spectral end-members (Table 4) and the spectral end-
members identified from spectral libraries (Table 5) 
were combined to create a TC-like transformation 
of MODIS reflectance data to biophysical indices. 
The reflectance of dark soil (Table 1) was used as 
an initial offset factor, and the remaining seven 
biophysical materials were then calculated using 
linear transformations:
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where BP is the biophysical material x, and E the 
eigenvector for the respective band and material x.

Apart from calculating the biophysical indices, 
the variation remaining after each successive 
transformation is also determined. The remaining 
variation after the last transformation is 0.

This modified TC transformation was applied to all 
tropical tiles.

5.3	 Spectral un-mixing to reveal soil 
reflectance

5.3.1	 Background
Pixel un-mixing is a widely used technique in 
many fields for retrieving the spectral response of 
a particular feature in a pixel that is a mixture of 
two or more features. The simplest case is a pixel 
which is a mixture of two materials (e.g. vegetation 
and water). With the spectral end-members of the 
mixture identified, it is straightforward to un-mix 
the reflection for the two materials. In many cases, 
however, more than two materials contribute to 

the absorbance (and hence the reflection) and the 
mixture might not be linear (one material might 
affect the absorbance of another). In a spectral un-
mixing procedure, spectral end-members can either 
be inferred from laboratory derived reflection data 
(spectral libraries) or from end-members identified 
from the image itself.

Pixel un-mixing can more widely be divided into 
processes that are driven by the image data (forward 
or data driven) or by the a priori known spectral 
end-members (backward or goal driven). The most 
common approach is to use a backward driven 
approach and a linear un-mixing model. For the 
pixel un-mixing of soil versus vegetation this is not 
a trivial task. It is not trivial primarily because the 
soil reflection (along the soil line) means that there 
are at least three signature mixtures in each pixel, 
and the surface (and vegetation) moisture status 
adds further complication. The spectral properties of 
these materials do in fact interact and the un-mixing 
problem becomes non-linear.

5.3.2	 Spectral un-mixing using eigenvectors
A major advantage with eigenvectors is that it is 
easy to reconstruct the original data by reversing the 
transformation. By excluding one or more of the 
transformed vectors, the reconstruction can eliminate 
specific information. In PCA this is normally done 
to compress the data and only retain the components 
carrying the most information, but it can also be used 
to exclude a component. For the MODIS image data 
this approach was used to reconstruct the reflectance 
of each pixel, leaving out the vegetation part of the 
spectral signal. Figure 16 shows the tropical regions 
at the peak of the dry season with the vegetation 
component of the spectral signal removed.

The map is created from the same data as contained 
in Figure 4, but with the vegetation part of the 
spectral signal removed using eigenvector based pixel 
un-mixing.

5.4	 Wetness index derived from optical 
reflectance data

5.4.1	 Background
Both wetlands and peatlands are characterised by wet 
conditions. The surface wetness is relatively higher as 
compared to other terrestrial soils; the groundwater 
table is near the soil surface, and annual flooding is 
common. The TC derived wetness component can 
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Table 5.  Eigenvector values for additional biophysical materials – derived from global spectral libraries (band order 
given as they appear in the MCD43A4 product)

Material R NIR B G MIRa MIRb MIRc

Senescent 
vegetation

0.340846 -0.211939 0.004674 0.092003 0.592179 -0.679305 0.135234

Concrete 0.026100 0.404685 0.270465 0.596556 -0.430734 -0.341731 0.322810
Woody 
biomass

0.765950 0.307586 -0.117497 -0.438222 -0.326585 -0.065288 -0.044133

Quartz -0.165876 0.048768 0.813608 -0.513293 0.044736 -0.085972 0.187847

be used as a proxy for surface wetness (Nugroho 
et al. 2007). But most studies attempting to delineate 
wet areas use specifically designed wetness indices. 
McFeeters (1996) suggested a normalised difference 
wetness index (NDWI), analogous to the NDVI, 
for detecting water surfaces in Landsat (Enhanced) 
TM data:
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Rogers and Kearney (2004) suggested that the 
red band be used instead of the green and defined 
another NDWI as:

NIR = β
1
R+β

0

β
1

β
0

PVI = R∗sin(−atan ( β1))+( NIR−β0 )∗cos (−atan ( β1))

PBI = R∗cos (−atan ( β1))+(NIR−β0)∗sin(−atan ( β1))

β
0
=0 .0254

β
1
=1. 086

Wetness = B0 .6885+G 0 .1368+R0 .3741+NIR 0 .1225−MIR
a
0 .027−MIR

b
0. 1768−MIR

c
0 .5658

Wetness = B0 .6885+R0 .3741+NIR 0 .1225−MIR
c
0 . 565863

BP
X

=E
Rx

R+E
NIRx

NIR+E
Bx

B+E
Gx

G+E
MIRax

MIRa+E
MIRbx

MIR
b
+E

MIRcx
MIR

c

NDWI = 
(G−NIR )
(G+NIR)

NDWI = 
(R−NIR )
( R+NIR)

MNDWI = 
(G−SWIR )
(G+SWIR )

NDPI = 
( SIR−G )

(SWIR+G )

NDWI = 
( NIR−SWIR)
( NIR+SWIR )

PWI = TC1∗sin(−atan ( β1))+(TC3−β0 )∗cos(−atan ( β1))

PBWI = TC1∗cos (−atan ( β1))+(TC3−β0)∗sin(−atan ( β1))

α = cos−1
ΣXY

√ΣX 2 ΣY 2

Xu (2006) found inconsistencies in the NDWI using 
NIR as the reflective band as proposed by McFeeters 
(1996). Xu (2006) suggested exchanging NIR for 
a SWIR (SWIR equals MIRa in the MODIS bands 
as used in this study) wavelength band, and thus 
defined the modified normalised difference wetness 
index (MNDWI):
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Lacaux et al. (2007) suggested yet another wetness 
index, the normalised difference pond index (NDPI), 
for identifying small water bodies in West Africa:
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Skakun et al. (2003) proposed the enhanced wetness 
difference image (EWDI), as the relative change in 
NDWI over two image dates. The EWDI approach 
has been adopted by others, mainly for studying 
vegetation phenology related to pest attacks (Coops 
et al. 2006).

Ji et al. (2009) compared the performance of the 
various versions of the NDWI listed above, and 
concluded that the combination of green and SWIR 
gave the most consistent results. Green was found 
to perform better than red. This is attributed to the 
difference in red reflection from the vegetation and 
the soil which is larger than the difference in the 
green reflection (see Table 2). The SWIR reflection 
is not saturated as quickly as NIR when vegetation 
cover increases and this is a probable reason why 
SWIR is better for use in wetness mapping than NIR.

Figure 16.  Colour composite of spectrally un-mixed MODIS tiles (peak dry season)
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Gao (1996) proposed another kind of NDWI, this 
one directed towards estimating leaf water content:
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The NDWI suggested by Gao (1996) has been 
widely adopted for studying vegetation phenology 
and vegetation change (Xiao et al. 2002; Maki et al. 
2004; Wu et al. 2010). In some of the more recent 
studies it is called the land surface water index 
(LSWI). Its advantage over the classical normalised 
difference vegetation indices is that it saturates at a 
higher vegetation density.

The study on West African wetland by Landmann 
et al. (2010) used the LSWI (leaf wetness) phenology 
as a key information source for mapping wetlands.

5.4.2	 A global wetness index derived from 
optical reflectance data
Most of the proposed wetness indices, except for the 
TC derived wetness, only use information from two 
spectral bands. The way the TC wetness is defined as 
an eigenvector retains some of the wetness in the two 
lower components (dark soil and vegetation), and the 
TC wetness index has thus not been extensively used. 

In this study an alternative wetness index was 
developed. This novel index builds on the TC 
transformed components carrying information about 
soil brightness and wetness. Soil reflectance is largely 
dependent on mineral composition, carbon content 
and texture, but the water content is reported to be 
the major determinant of soil reflectance. As water 
strongly absorbs wavelengths in the visible, near and 
mid-infrared regions (cf. Tables 1 and 2), high water 
content equates to darker soil. Keeping this in mind, 
it is obvious why the TC wetness component is not 
optimal for mapping surface wetness. If it is assumed 
that dark soils (low values in the first TC component) 
have more water than light soils at the same wetness 
value, a more generic wetness index can be defined. 
This perpendicular wetness index (PWI) identifies 
a wetness line (analogous to the soil line) in the TC 
brightness versus TC wetness two-dimensional space 
(Figure 17).

Using a trial and error approach, different slopes and 
intercepts of the wetness line were tested and the 
results compared with the occurrence of wetlands in 

various tropical environments (mainly in Africa and 
South East Asia). The adopted PWI was re-defined as 
a trigonometric function:
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By using the trigonometric approach, the Euclidean 
distance parallel to 
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 can be calculated as a second 
perpendicular background wetness index (PBWI):
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, was set to -2000 and the slope, 
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, to 0.6. The PBWI carries information that 
could potentially be used to identify non-linearities 
in the wetness line, but the lack of accurate and 
detailed ground data prevented testing for such 
non‑linearities.

The PWI and PBWI were calculated for all the 
tropical tiles.

5.5	 Wetness phenology
The occurrence and distribution of wetlands is, 
theoretically, directly related to the annual wetness 
phenology. The length of the periods of inundation 
and flooding are important, but the minimum, 
maximum and mean surface wetness also influence 
wetland formation and the accumulation of organic 
matter. Assuming that the definition of PWI 
is correct, open water will have a PWI value of 
2200. Lack of reference data prevents an optimal 
definition of PWI for a completely inundated (but 
not flooded) soil. Other wetness conditions, like the 
PWI equivalent field capacity (soil wetness level at 
free drainage) or the wilting point, cannot be well 
defined. Instead, an arbitrary PWI level must be 
chosen to represent the wetness conditions needed 
for organic matter to accumulate. A preliminary PWI 
value of 500 was chosen to represent the wetness 
conditions necessary for peat formation.

The phenology of surface wetness, using a selected 
PWI value as an absolute threshold, should be 
a strong candidate for mapping global tropical 
wetlands. Prior to extracting the surface wetness 
phenology, the time series data of the PWI were used 
to fill no-data (i.e. cloud contaminated) dates with 
temporal interpolations using adjacent dates with 
valid PWI values. The interpolation was done as a 
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Figure 17.  Theoretical construction of a generic wetness line in the two-dimensional space defined by the TC 
components for soil brightness (abscissa) and surface wetness (ordinate). Reference features are extracted to 
represent three phenological situations, end of wet season (most faded), peak dry season (intermediate) and end of dry 
season (un-faded)

weighted average, with the weights set according 
to the distances to adjacent dates with valid values. 
To account for no-data values at the start and end 
of the year, four dates prior to and post the annual 
cycle analysed were added. In this study 2011 was 
the year analysed and, hence, the last four dates in 
2010 and the first four dates in 2012 were used when 
interpolating no-data values for 2011.

After filling the no-data points, a local regression 
algorithm was used to smooth the annual phenology 
cycle, with double weight put on data points derived 
directly from the PWI, as compared to data points 
derived by interpolation. The local regression was 
set to include seven dates in each regression. Figure 
18 illustrates some of the phenological cycles 
representing various wetland types.

The surface wetness phenology was extracted from 
the filled and smoothed annual time series of the 
PWI using an arbitrary value of PWI = 500.

The following ten indices were calculated for each 
pixel at 500 m spatial resolution:
1.	 Minimum surface wetness (min)
2.	 Maximum surface wetness (max)
3.	 Mean surface wetness in wet period(s) (mean)
4.	 Date of maximum surface wetness or peak of wet 

season (pws)
5.	 Date of minimum surface wetness or peak of dry 

season (pds)
6.	 Number of wet (dry) seasons (nrpeaks)
7.	 Date of start of the wet season following the 

longest dry period (sws)
8.	 Date of the start of the dry season following the 

longest wet period (sds)
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Figure 18.  Phenological signals extracted from tropical wetland reference sites. Dotted lines represent the original 
index value and solid lines represent the index value after local regression smoothing

9.	 Length of the wet season(s) (lws)
10.	Length of the flooding season(s) (lfs)

The indices extracted to describe the annual surface 
wetness phenology are similar to the phenological 
indices extracted for precipitation. The threshold 
for determining wet seasons and dry seasons was, 
however, set at a fixed PWI value and, additionally, 
a secondary threshold was set to determine flooding. 
Some of the phenological wetness indices are 
illustrated in Figures 19 to 23.

5.6	 Spectral angle mapper (SAM) 
classification of global wetlands

The final wetland classification uses a chrono-
sequence of images to extract phenologically relevant 
reference signals for use in image classification of 
defined spatial and temporal domains. The default 
spatial domain is defined in two ways. First by 

restriction to the MODIS tile in which the reference 
signal falls (neighbouring vertical and/or horizontal 
tiles can be included), and second, by restrictions 
imposed by the wetland likelihood map derived 
from wetness indices and the geomorphology. The 
temporal domain for a spectral signal is restricted 
by the local climate (precipitation) phenology. A 
reference signal can only be adopted for classification 
of a particular pixel if that pixel is in the same 
phase of the climate phenology as the reference site. 
Adopting a phenological similarity approach reduces 
the number of images to be analysed for an annual 
time series. The first results, reported here, are based 
on three phenological phases – the start of the dry 
season, the peak of the dry season and the start of the 
wet season.

The classification can be done using any classification 
technique but, for this study, the SAM technique 
(Yuhas et al. 1992) was adopted. The classification 
can be done using any of the available data sets, 
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Figure 20.  Maximum wetness index for 2011. Areas of maximum wetness below some (unknown) limit most likely do 
not harbour any wetlands

Figure 19.  Minimum wetness index for 2011. Regions of minimum wetness most likely do not harbour any wetlands

Figure 22.  Length of inundation period(s) derived from the wetness index (see text)

Figure 23.  Areas of surface flooding in 2011 (turquoise) derived from the wetness index (see text)

Figure  21.  Mean wetness index for wet season(s) 2011 (see text)
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including BRDF reflection, linearly transformed 
data, pixel un-mixed reflection, or phenology derived 
wetness of vegetation.

SAM compares the angles formed between reference 
spectra and the image spectra, treating them as 
vectors in n-dimensional space.
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SAM has some advantages over traditional statistical 
classifiers, like maximum likelihood. It is less sensitive 
to shadow effects and scan line edge effects. For most 
optical sensors the latter are minor problems (even 
less so for the BRDF corrected MODIS reflectance 

products). For radar data with a higher incidence 
angle, the weaker scatter returned from objects 
further away can still be classified with SAM, but 
not with a traditional classifier. SAM also has some 
drawbacks, mainly that positive and negative changes 
in spectral signals are not separated.

In the classification stage, reference data is used to 
identify similar areas in the spatial and temporal 
domain defining its validity. Lack of reference 
locations for large parts of the global tropics has, 
hitherto, prevented development of a full global 
tropical wetland map. As the mapping procedure is 
fully automated, the global tropical wetland map will 
be completed as soon as reference sites covering the 
tropics have been assembled and verified.

Figure 24.  SAM classification of peat swamps in Kalimantan (Indonesia). Green areas have the most peatland, 
followed by yellow and purple. The reference data is captured from very small scale maps and is not verified. The 
classification represents a single date
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Figure 25.  SAM classification of flood plains for tile h20v10 (Angola, Botswana, Namibia, Zambia and Zimbabwe).
The Okavango Delta (Botswana) is outlined in red (lower left corner). Green areas have the most area in the flood plain 
class, followed by yellow and purple. The reference data is not verified. The classification represents a single date



6.	 Topography and peat depth

6.2	 Ombrogenic peat domes
The ombrogenic peat domes of South East Asia 
evolved under very wet conditions. The formation 
of these peat domes usually depends on the presence 
of a lower layer of less permeable and water 
saturated peat soil (catotelm) and a thin and more 
permeable upper layer (acrotelm) (Hoyt et al. 2012). 
Low transmissivity of the catotelm retards water 
flow out of the dome and the peat rises above the 
surroundings. A few detailed and verified topographic 
surveys of peat domes have been published. Anderson 
(1964) presents nine profiles from coastal peat domes 
in Brunei and Sarawak. In trying to model these 
domes based on hydrology, vegetation and peat 
accumulation, Hoyt et al. (2012) concluded that the 
model formulations or the (hydraulic) parameters 
of peat domes had to be revised. It is difficult, at 
present, to estimate the depth of tropical peat domes 
from climatological and hydrological data alone.

The peat domes presented by Anderson (1964) rise 
between 3 m and 9 m above their surroundings, 
and have total depths varying from 3 m to 15 m. 
All typically have a central plateau, with steeper 
slopes towards the margins. The radii of the domes 
vary from about 2 km to 7 km. The accuracy of the 
topographic data (SRTM) available for this study 

6.1	 Topographic landforms and 
wetland depth

The largest tropical wetlands by volume are 
ombrogenic peat domes (the dominating wetland 
type of South East Asia). These wetlands contain 
approximately half the total peat volume of the 
tropical wetlands. The spatially largest tropical 
wetlands are, as described above, bound to floodout 
rivers and alluvial fans in tectonically subsiding 
regions (mainly in Africa and South America). 
For these two types of wetlands – peat domes and 
floodout rivers – the depth (and volume) needs to 
be modelled from empirical relationships between 
flooding, wetness phenology and geomorphology 
as described below. Also, other wetlands (e.g. 
riparian wetlands, smaller flood plains and montane 
wetlands), need to be modelled using the same 
approach, but more empirical data need to be 
assembled before such an attempt can be made. For 
all models of wetland depth, a pre-requisite is that 
the wetland’s spatial extent is known. Until reliable 
reference data for wetlands throughout the tropics 
has been assembled, and a final classification of 
tropical wetlands and their distribution has been 
achieved, the depth of tropical wetlands cannot, in 
general, be determined.

Figure 26.  Details of five peat domes of varying size in Sumatra; a) GTWI and b) overlaying the global 
geomorphological map. The peat domes are associated with higher GTWI values (blue colours), but some blue areas 
are not associated with peat domes. The geomorphological map identifies the peat domes as wet plains, confined by 
channels, valleys or ridges. The accuracy of the peat map is not known

(a) (b)
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allows geomorphological characterisation of South 
Asian peat domes (Figure 24). The topographic data, 
however, does not have the accuracy required to 
delineate peat domes from other dome shaped (or 
near planar) surfaces. The well known subsidence 
of South East Asian peatlands following conversion 
to (oil palm) plantations, has led to changes in the 
geomorphology. This makes it more difficult to 
distinguish peatlands from other landscape features. 
The difficulty relates both to a loss in the originally 
typical landform (now more random) and in the 
drying out of the surface. Simultaneously, there 
has been a wide spread adoption of air and ground 
based remote sensing of the peat surface and peat 
depth. The data coverage for most of these studies is, 
however, marginal, often restricted to research sites or 
not available for public use.

6.3	 Wetlands bound to floodout rivers 
and alluvial fans

The largest tropical wetlands are all bound to 
floodout rivers situated on alluvial fans between 
wet uplands and dry lowlands. The rivers feeding 
these wetlands also create the alluvial fans; the rivers 

meander back and forth and change direction 
by avulsion. As the distribution of water over 
the alluvial fans changes over time, the wetlands 
usually never accumulate more than a couple of 
metres of peat. Exceptions occur when tectonic 
subsidence is too great for avulsion to occur, 
as reported for the Pastaza-Maranon basin in 
Peru (Lähteenoja et al. 2012). In the Okavango 
Delta, Botswana, the rate of tectonic subsidence 
is slower. When the river changes its course, the 
peat which has accumulated will dry out and 
oxidate (Gumbricht et al. 2002). Hence, the peat 
in these extensive wetlands is not as deep as, for 
instance, in the peat domes of South East Asia. 
Gumbricht et al. (2005) developed a simple, 
but successful method for estimating the micro-
topography of Okavango wetlands on an alluvial 
fan in Botswana. From empirical relationships 
between the wetland vegetation communities and 
the depth of flooding, they were able to accurately 
estimate the surface topography of the Okavango 
peatlands indirectly based on the levels of the 
underlying minerogenic sediments. Thus the 
approach used by Gumbricht et al. (2005) could 
be used to estimate the volumes of peat of the 
Okavango and similar wetlands.



7.	 Detailed analysis of peat domes and 
alluvial fans

For a few selected sites more detailed maps of 
wetlands have been assembled – including a peat map 
for Indonesia, and a wetland map of the Okavango 
Delta in Botswana (both with approximate scales 
of 1:250 000). In this section these two regions are 
used to illustrate the results of global mapping at a 
regional scale.

Figure 27.  MODIS land cover (MCD12Q1) for southeast Kalimantan (Indonesia)

7.1	 Indonesian peatlands
Indonesian peatlands cover approximately 
200 000 km2, or 10% of the Indonesian land surface. 
Figures 27 to 32 illustrate some of the global data sets 
presented and generated for southeast Kalimantan.
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Figure 28.  GLOBCOVER land cover (ESA) 
for southeast Kalimantan (Indonesia)

Figure 29.  Average annual precipitation 
for southeast Kalimantan (Indonesia)
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Figure 30.  GTWI for southeast 
Kalimantan (Indonesia)

Figure 31.  Geomorphological 
classification for southeast Kalimantan 
(Indonesia)
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Figure 32.  Wet season wetness (2011) 
for southeast Kalimantan (Indonesia)

7.2	 Okavango Delta, Botswana
The Okavango inland delta in Botswana covers 
approximately 15 000 km2, with peat accumulation 

covering approximately 9000 km2. Figures 33 to 40 
illustrate some of the global data sets presented and 
generated for the Okavango Delta in Botswana.

Figure 33.  MODIS land cover (MCD12Q1) 
for tile h20v10 (Angola, Botswana, 
Namibia, Zambia and Zimbabwe)
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Figure 34.  GLOBECOVER land cover 
(ESA) for tile h20v10 (Angola, Botswana, 
Namibia, Zambia and Zimbabwe). The 
Okavango Delta (Botswana) is outlined in 
red (lower left corner)

Figure 35. Average annual precipitation 
for tile h20v10, expressed as average 
monthly precipitation (Angola, Botswana, 
Namibia, Zambia and Zimbabwe). The 
Okavango Delta (Botswana) is outlined in 
red (lower left corner). The area represents 
the far (southern) end of the ITCZ, and 
precipitation ranges from about 400 mm/
year (about 35 mm/month on average) in 
the southern parts to 1400 mm/year in the 
northern parts
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Figure 36.  Average annual runoff rainfall 
[precipitation - evapotranspiration] 
for tile h20v10, expressed as average 
monthly precipitation (Angola, Botswana, 
Namibia, Zambia and Zimbabwe). The 
Okavango Delta (Botswana) is outlined in 
red (lower left corner). The rainfall runoff 
over the area is very low, and over the 
Okavango Delta there is no actual rainfall 
runoff formation

Figure 37.  GTWI for tile h20v10 
(Angola, Botswana, Namibia, Zambia 
and Zimbabwe). The Okavango Delta 
(Botswana) is outlined in red (lower 
left corner)
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Figure 38.  Geomorphological classification for tile h20v10 (Angola, Botswana, Namibia, Zambia and Zimbabwe). 
The Okavango Delta (Botswana) is outlined in red (lower left corner). The Okavango Delta is classified as a dry area – 
the DEM cannot resolve the flow accumulation over the Okavango as the data source (SRTM) is not accurate enough to 
portray the floodout of the Okavango River over the alluvial fan forming the foundation of the Okavango

Figure 39. Wetness for the 2011 wet 
season, tile h20v10 (Angola, Botswana, 
Namibia, Zambia and Zimbabwe). The 
Okavango Delta (Botswana) is outlined 
in red (lower left corner). The Okavango 
Delta is captured as a wet environment in 
the dry Kalahari Desert
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Figure 40.  Length of wet season 
(wetness) for 2011, tile h20v10 
(Angola, Botswana, Namibia, Zambia 
and Zimbabwe). The Okavango Delta 
(Botswana) is outlined in red (lower 
left corner). The Okavango Delta is 
captured as a wet environment in the dry 
Kalahari Desert



8.	 Conclusions

The extent, volume and carbon content of global 
tropical wetlands are not well known. The best 
estimates are based on disparate sources. Hitherto 
unknown wetlands are constantly being reported 
in the scientific literature. Traditional methods of 
classification, as well as more advanced methods 
adopted for global land cover (vegetation) mapping, 
are extremely difficult to adapt to mapping wetlands. 
The large variations in the appearance of wetlands, 
the typical fragmentary patterns of wetland soil and 
vegetation, and the variability of wetland flooding, 
inundation and vegetation phenology all contribute 
to the difficulty of mapping global tropical wetlands 
from EOS imagery. There is also a lack of adequate 
and verified ground reference sites for wetlands as 
compared with other classes of land cover. These 
problems prompted a novel approach to mapping 
global tropical wetlands, an approach which relies 
primarily on relevant biophysical indices that 
indirectly influence the distribution of wetlands. 
Existing indices on topographic wetness developed 
for temperate regions were reviewed and a novel 
GTWI was formulated. Optical multi-spectral image 
data was transformed into biophysical eigenvectors, 
in line with well established TC components. The 
eigenvectors were defined from global spectral end-
members representing the global tropics. From the 
biophysical eigenvectors representing soil brightness 
and wetness, a novel surface wetness index was 
developed. Taking a full annual time series of this 
surface wetness index, the annual flooding and 
inundation phenology of the global tropics were 
estimated. The biophysical eigenvectors were also 
used for spectral un-mixing of vegetation and 
soil. This was done for a full annual time series of 
MODIS reflectance images (23 tiles/year) for the 
entire tropics. The soil spectral signal was used to test 
a chrono-sequence of automated SAM classifications 
of wetlands in regions with adequate reference data. 
The classification is stratified spatially and temporally, 
and the reference sites are used only for classifying 
wetlands in the same region and in corresponding 
climatic phenological phases. However, the reference 
data for these restricted regions (in Indonesia and 
Botswana) were not verified at a pixel scale.

Verified ground reference data is needed to test the 
potential of the classification scheme developed in 
this study. Existing data have only allowed visual 

comparison. A third wetness index was developed 
for radar (L-band) data, but the available global data 
set was plagued by positional errors that precluded 
its use.

8.1	 Improving the global map of 
tropical wetlands

Several of the techniques and methods developed 
in this study have the potential to be improved 
and, hence, could lead to better predictions 
of the distribution of global tropical wetlands. 
Further development is hampered by the lack of 
verified (space and time relevant) ground reference 
data. Without such data none of the suggested 
improvements can be undertaken. Suggested 
improvements are listed in what is felt to be the order 
of importance and feasibility, beginning with the 
most important.

8.1.1	 Definition of the PWI
The PWI was defined based on empirical 
assumptions and assuming a linear relationship 
between wetness and reflectance properties. The 
derived index was calibrated by visual inspection of 
its performance vis-à-vis comparatively well-mapped 
wetlands in Africa and South East Asia, and by 
analysing the PWI performance for theoretically 
pure and mixed spectral signals derived from spectral 
libraries. The parameterisation of the PWI is most 
probably not optimal, the biggest flaw being the 
non-linear relationship between surface wetness and 
vegetation leaf water content. Potentially, including 
a leaf water index and/or a non-linear definition 
accounting for non-linear mixing problems could 
improve the PWI significantly. A better definition 
of PWI will depend on the availability of time series 
data of surface (and leaf water) wetness. A number of 
such data sets are reported in the scientific literature, 
but none that are available in the public domain 
could be identified for this study (older data sets 
prior to the launch of the MODIS sensor do exist).

8.1.2	 Inclusion of a (static) hydrological 
model
The GTWI developed as part of this study could 
be improved. Its major drawback is that local 
precipitation is used as a proxy for precipitation in 
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the drainage area. This is a gross oversimplification, 
especially in semi-arid and arid zones bordering the 
tropics where drainage areas reach into the tropics. 
To overcome this, a static hydrological model 
should be developed, accumulating not the drainage 
area but the rainfall runoff. The data needed for 
developing such a static model is included in this 
study and described above (apart from a DEM, only 
precipitation and evapotranspiration data are needed 
as inputs).

8.1.3	 Access to better climate data sets
The WorldClim and FAO reference 
evapotranspiration data sets used in this study are 
statistical data sets. Hence, they do not reflect the 
ground situation for any particular year. The tropical 
rainfall measuring mission precipitation data set 
could be a better alternative for estimating rainfall. 
Better still would be access to national climate station 
data. Algorithms for estimating rainfall intensity and 
storm runoff could, potentially, also improve the 
mapping of global tropical wetlands.

8.1.4	 Additional EOS data sources
It is well known that wetlands have elevated sensible 
heat fluxes (i.e. higher evapotranspiration) than 
adjacent land areas. Including a MODIS emissivity 
product could lead to better classification (mapping) 
of wetlands . Ideally emissivity data should be used to 
directly estimate evapotranspiration, using algorithms 
combining various MODIS and other climatic 
data sets.

8.1.5	 Surface wetness mapping from 
advanced land observing satellite (ALOS) 
PALSAR data
Radar data from ALOS PALSAR has been made 
publicly available through the JAXA K&C 

initiative. This data was downloaded and organised 
as part of this study. Large errors in geometrical 
positions, however, precluded use of this data set. 
Attempts were made to write a pattern recognition 
algorithm to correct the geometrical errors, but the 
computational power needed to make satisfactory 
corrections was overwhelming. Improving the 
geometry of the PALSAR data sets would allow 
development of yet another, independent surface 
wetness index. The great advantage in developing 
such an index from radar data is that cloud has a 
negligible influence. Areas of the tropics with almost 
continuous cloud cover (parts of the Amazon and 
Congo Basins and parts of South East Asia) could be 
mapped with greater accuracy. The PALSAR data can 
also be used for independent image classification (e.g. 
the chrono-sequence SAM classification scheme) of 
wetlands using reference sites.

8.1.6	 Stratification of mapping units
As described above, attempts were made to map 
regional soil and vegetation using the pre-defined 
MODIS tiles for stratifying the data. Spectral end-
members were extracted for each tile and the spectral 
un-mixing was done using tile-specific data. This 
approach produced large variations and prevented 
definition of a tile-specific index (e.g. of the surface 
wetness index). Using the HWSD data (see Figure 1) 
to stratify the data based on soil classes (rather than 
tiles), should, in theory, improve both the definition 
of spectral end-members as well as improve the 
classification results from the SAM. However, 
the computational needs, as well as the needs for 
a substantially larger number of reference sites, 
are prohibitive.
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The extent, volume and carbon content of the world’s tropical wetlands are not accurately known. 
Present estimates are based on disparate sources, of varying quality from different regions. As wetlands 
are key regulators not only of the global carbon cycle, but also other biogeochemical cycles, better maps 
of wetlands are urgently needed. This report presents a set of novel approaches for mapping global 
tropical wetlands from a variety of image data obtained from satellite images of earth. 

•	 Wetlands only occur under certain topographic positions, and where the climate system provides 
sufficient water. Combining a global digital elevation model with global climate data, a tropical global 
map of topographic wetness was created. 

•	 Using global optical satellite images from a moderate resolution imaging spectroradiometer (MODIS) 
a second wetness index was developed. In contrast to previous satellite-based wetness indexes, the 
index attempts to remove the vegetation influence and focus on the soil surface wetness. From an 
annual time-series of MODIS images, the inundation cycle of the global tropics was captured. 

•	 As wetlands are characterised by annual variations in inundation, an approach for classifying wetlands 
from a chrono-sequence of annual MODIS images was developed. In the chrono-sequence, only 
locations with similar climatic seasonality, and within spatial proximity are classified based on any 
reference site.

The wetness indexes and the chrono-sequence classification scheme are strong candidates for mapping 
the distribution of global tropical wetlands. 
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