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In experimental sciences, the analysis of real systems usually follows the steps diagrammed

in Figure 1. Within this framework, the analytical activities are governed by the con-

cepts and methods that are needed (i) to describe the characteristics of the system to

be studied (including characteristics of a system’s state or dynamics and input-output

relations), and (ii) to detect the causal mechanism that produces these characteristics.

¿ Illustration 1: In studies of plant mating systems, the proportion of self-
fertilization among the seeds of an ovule or pollen parent or of a population fre-
quently constitutes an important system characteristic. The causal mechanisms

may be governed by floral structure, pollen dispersal mechanisms, population den-
sity, incompatibility, etc. À

Item (i) employs a method of investigation (abbreviated MI) of the system characteristics

to be analyzed. A MI includes methods of identification, observation, sampling, and data

transformation. Item (ii) concerns the development of a model system for the purpose

of presenting a hypothesis about the causal mechanisms of the real (actual) system and

allowing a test of the discrepancy between the hypothesis and the observations made in

the actual system. MIs may involve models that specify the techniques of observation

or sampling, for example. When these models include hypotheses on causal mechanisms,

they must be considered as part of item (ii). The epistemological principle consists in

the falsification of hypotheses. Although failure to falsify a hypothesis leads to its

acceptance, the possibility is not ruled out that other hypotheses and their associated

models may exist which likewise would not be falsified by the observations.

With reference to Figure 1, these analytical objectives mainly range on the levels

“model validation” and “methods of investigation”. The remaining levels are assumed to

have been specified with due precision. Therefore, a method of system analysis basically

consists of

. a model system that reflects the hypotheses on the causation of real system

characteristics,

. a MI that allows appropriate observation of the system characteristics to be

studied, and

. a method of measuring the discrepancy between the (actual) observations

on the system characteristics and the modeled observations that represent

the hypothesis.

A method of system analysis becomes qualified with respect to the epistemological princi-

ple, if these three constituents guarantee falsifiability of the associated hypothesis. Thus,

the method of system analysis is unqualified if its MI rules out the existence of observa-

tions that would contradict the characteristics of the model.
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Diagram of the major successive steps involved in the analysis of real systems (mod-
ified after Berg and Kuhlmann 1993, p. 13)

General procedure for an analysis of causal mechanisms

In the following, unspecified values of variables which appear as independent vari-

ables in a model will be referred to as free parameter values. The system characteristics

observable by application of the MI, i.e. the actual observations, will be distinguished

from their reproductions by the model, which will be termed the modeled observations.

Actual and modeled observations must be comparable but need not be of the same type.

The system characteristics of interest are called target characteristics, and they may or

may not be actually observable. If they are not, other model characteristics must be ob-

servable, and the target characteristics must be functions of the observable characteristics

or of the free parameter values on which the observable characteristics depend. All model

characteristics are thus considered as functions of the free parameter values if the model
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contains such values. Having specified the model system, the general procedure of the

analysis of the hypothesis consists of the two basic steps specified in Table 1.

Table 1

• Analysis of hypotheses

. calibrate the model by adjusting its free parameters values so as to minimize the

discrepancy between the modeled and the actually observed system characteris-

tics; the thus obtained modeled observation will be referred to as the prediction;

constraints on the parameter values are part of the model and must be obeyed

in the calibration; if the model contains no free parameter values, the modeled

observation is unique and equals the prediction (for an illustration see Figure 2);

. reject the causal hypothesis (the model) in the case of excessive discrepancy

between prediction and actual observation.

Notes: Calibration of the model requires a measure of discrepancy that is consistently

defined for all relevant pairs of modeled and actually observed system characteristics.

¿ Illustration 2: In the mixed mating model (random cross-fertilization, constant
ovule selfing rate), the observations to be modeled are genotypic frequencies among
the offspring of a population; for a single gene locus let Pij be the frequency of
parental individuals carrying the i-th and j-th allele, and let P ′ij be this frequency
among their offspring; the allele frequencies in the parental population are denoted
by pi, and s is the proportion of offspring from selfing. The model system then
implies P ′ii = p2

i+s( 1

2
(pi+Pii)−p

2

i ) and P ′ij = 2pipj−s(2pipj−
1

2
Pij) for i 6= j. Given

that observations can be carried out only among the offspring, the P ′ij constitute the
modeled observations (observable system characteristics). The Pij and s constitute
the free parameters if they are not specified for given reasons. Apparently, this
mating system model does not provide a hypothesis on a causal mechanism of
selfing. Instead, the selfing rate appears as a free parameter value that can be used
in the calibration of the model. The calibration proceeds by adjusting the selfing
rate and parental genotypic frequencies such that the actual observations P̃ij , say,
are approached by the modeled observations P ′ij as closely as possible. À

Testing models

The principle of testing models addressed above is based on the stimulus-response

concept of systems. On the level of model systems, stimuli (independent variables, in-

puts) appear as free parameter values, and responses (dependent variables, outputs) are

functions of these values. In causal analyses, observable system characteristics may refer

to responses and free parameter values, or to responses alone, but never to free parameter

values alone (in Illustration 2 only the responses P ′ij were considered as observable system

characteristics; the free parameters Pij can, however, also be observable when genotypic

frequencies can be studied among parents). Free model parameter values are adjusted so

as to minimize the discrepancy between modeled and actually observed system charac-

teristics (model calibration). The adjustment may thus concern free parameter values as

determinants of observable system responses and these values themselves when they are

observable.
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Figure 2
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Testing hypotheses on causal mechanisms and estimating system characteristics
through adjustment of free model parameter values (model calibration) in order to
minimize the discrepancy between the modeled and the actual observations.

By this it is guaranteed that the stimulus-response (input-output) relationships of

the model system, which specify its structural (relational) characteristics, mirror those

of the real system as closely as possible under the limitations of the observable system

characteristics. The hypothesis that the modeled system correctly maps the actual sys-

tem is rejected if the minimized discrepancy between them is excessively high. Thus

rejection concerns the model as such and therefore applies to its structural (relational)

characteristics as well as to those parameter values not involved in the model calibration

(thus excluding the free model parameter values). In other words, falsification refers to

the causal mechanisms that are employed in the model system to produce its response

(output) from its stimulus (input).

¿ Illustration 3: If in themixed mating model in Illustration 2 only the genotypic fre-
quencies among the offspring are observable and all other parameters are free, then
rejection of this model is equivalent to rejection of at least one of its assumptions:
random cross-fertilization, equal ovule selfing rates, or random fusion of gametes in
selfing.

On the other hand, if the hypothesis of a mixed mating model at equlibrium is
to be tested, then the relevant model results from equating in Illustration 2 the P ′ij
with the Pij , which yields Pii = ((1 − s)p2

i + 1

2
spi)/(1 −

1

2
s) for the homozygotes

and Pij = 2pipj(1 − s)/(1 − 1

2
s) for the heterozygotes. The observable model

characteristics are now the Pij , and the free parameters are the allelic frequencies
pi and the selfing rate s. Hence, rejection of this equilibrium model includes as an
additional cause the assumption that the population is at equilibrium.À

Critical regions of observations

An alternative and occasionally preferred way of formulating the principle of testing

is based on sets of potential observations of the actual system that, if realized, would

falsify a given hypothesis. Such sets are called “critical regions” or “regions of rejection”,

and they can be determined before making observations. More precisely,

• for a given model, the critical region (region of rejection) consists of all po-
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tential observations on the actual system which show excessive discrepancy

from their model predictions on a given level; the complement of the critical

region is termed non-critical region (region of acceptance).

Here, the model prediction again equals the modeled observation which results from cali-

bration of the model, and which thus yields minimum discrepancy between modeled and

potentially actual observation. Non-critical regions show direct duality with confidence

regions via the measure of discrepancy between modeled and actual observations and via

the given level of discrepancy.

Estimation of target characteristics and determination of confidence regions

In many (probably most) cases MIs are not available which allow for direct and com-

plete observation of the target characteristics. Observations based on random samples

are incomplete observations, for example. Indirect observations employ models to infer

target characteristics from other directly observable characteristics. The lowest degree of

precision is realized for indirect and incomplete observations. If any of these situations

(incomplete or/and indirect observability) holds true, target characteristics can by defini-

tion only be estimated but not determined. The pertaining procedure is called estimation

and is carried out as presented in Table 2.

Table 2

• Estimation of not directly or incompletely observable target characteristics

. design a model of the actual system, (1) in which the target characteristics

appear as a function of the free parameter values (including the case of identity

with some of these parameters), (2) for which further system characteristics exist

that can be directly and completely observed under the MI, and (3) that depend

on the same free parameter values as the target characteristics;

. on the basis of these observations, continue with the general procedure of the

analysis of hypotheses as in Table 1;

. in the case of not having to reject the model, the target characteristics associated

with the adjusted (calibrated) free parameter values of the model system con-

stitute estimates of these characteristics of the actual system (for an illustration

see Figure 2).

Notes: Direct are distinguished from indirect estimates according to whether the

estimate is based on direct or indirect observations. Model testing and estimation

refer to the same calibrated parameter values.

The dependability of an estimate is determined by (a) the discrepancy between its

associated model predictions and the actual observations (which is the minimum dis-

crepancy between the modeled and the actually observed system characteristics) and by

(b) the set of alternative target characteristics, the associated observable characteristics

of which show a discrepancy from the actual observations that is sufficiently small not

to justify rejection of the model. The latter set is commonly referred to as confidence

region. More precisely
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• the confidence region of an estimate is defined as the set of all target char-

acteristics with discrepancy between the associated observable model char-

acteristics and the actual observation that does not exceed a level effecting

rejection of the model.

Empty confidence regions are equivalent to rejection of the model, non-empty confidence

regions contain the estimate, and the larger the confidence region, the less precise is the

estimate.

¿ Illustration 4: With the exception of some very rare situations, MIs allowing
direct observation of selfing rates are not available, but these rates are frequently
the target characteristics. In the mixed mating model of Illustration 2 the ovule
selfing rate is a free parameter which could be used for indirect observation and
thus for estimation of this rate as target characteristic of an actual mating system.
This can be achieved, if a MI exists that allows observation of genotypic frequencies
among the offspring. These observations are completely determined in the model by
the genotypic frequencies among the parents and the selfing rate as free parameters.
Hence, the observable characteristics depend on the same free parameter values as
the target characteristic (which is indeed identical to one of the free parameters).
Model calibration then yields an indirect estimate of the selfing rate. It has to
be considered, however, that other models that also include ovule selfing rates as
free parameters or as functions of these (see e.g. Gregorius et al. 1987) may yield
different estimates. À

Statistical aspects of system analysis – incomplete observations

From a system analytic perspective, two aspects are of basic importance in studies

involving MIs that can only yield incomplete observations (the realm of statistics): the

measurement of discrepancy between actually observed and modeled system characteris-

tics, and the limited dependability of this measurement as a consequence of randomness

in the MI. Clearly, any reasonable planning of an experiment attempts to design the

MI to ensure the sufficient dependability of the observations under the condition that

the hypothesis being analyzed is true. Based on this condition, a measured degree of

discrepancy between actual and modeled observations that exceeds some threshold dis-

crepancy would be conceived of as a safe indication of inadequacy of the hypothesized

model. Hence, if the model correctly maps the actual system, then the MI is required to

produce with “sufficiently” low probability observations that show “unacceptably” large

discrepancy from the model characteristics. More precisely, this involves

. determination of a threshold discrepancy δ between the actually observed

characteristics and the model characteristics under consideration, below

which observations are considered to be representative of the model char-

acteristics and thus give no reason to reject the model. Conforming with

common statistical terminology, δ will be called the critical discrepancy for

representativity;

. utilization only of MIs for which the probability of obtaining observations

with discrepancy from the model characteristics that is greater than or equal

to the critical discrepancy δ, does not exceed a given level of significance ε.

This exceedence probability is called the critical probability of a MI, again
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conforming with statistical terminology. MIs which fulfill this prerequisite

will be called qualified on the levels δ and ε for the analysis of the model char-

acteristics. (This terminology reflects that introduced earlier for methods of

system analysis.)

Hence, the smaller the critical probability becomes for a given critical discrepancy δ and

different MIs, the smaller ε can be chosen and, consequently, the larger is the system

analytic dependability on the MI of the model characteristics to be analyzed. Increasing

the sample sizes may be a means of raising this dependability (decreasing ε) in some

cases. Determination of the qualification of a MI is of considerable concern in classical

statistical applications (see e.g. Sokal and Rohlf 1981, p.262).

¿ Illustration 5: Consider the situation of testing a hypothesis about the relative

frequency p of a phenomenon in a population. The MI consists of randomly sampling
n times with replacement and recording the relative frequency of the phenomenon
in the sample. Then the (incompletely) observable system characteristic is p, the
actual observation equals the relative frequency of the phenomenon in the sample,
and the requirement of randomness of sampling in the MI is modeled in terms
of a binomial distribution with parameters p and n (which constitute the model
parameters). Furthermore, let the measure of discrepancy be given by the absolute
difference between the relative frequency in the sample and in the population, and
assume that the levels of qualification of the MI are δ = 0.08 and ε = 0.05 for
the model characteristic p. Then, for p = 0.1 and n = 70, the critical probability
equals 0.03. This probability is below the level ε = 0.05 of significance, which
renders the MI with n = 70 qualified. For a smaller sample size, n = 30 say, the
critical probability equals 0.12, which is distinctly above the level of significance
ε = 0.05 and thus reveals that a MI based on this sample size is unqualified for
testing the hypothesis p = 0.1. À

Testing models without free parameter values

Consider a model that contains no free parameter values, and for which a MI exists

that is qualified on the levels δ (critical discrepancy) and ε (significance level) for an

analysis of given model characteristics. If an actual observation had discrepancy from

the model characteristics of at least δ, the model would be rejected. The justification

of the rejection would result from the fact that if the model were valid, this observation

were not representative of the model characteristics (discrepancy ≥ δ) and were rendered

very unlikely (critical probability ≤ ε) by the qualification of the MI for the analysis of

the hypothesized model (the first statement in Table 3 includes this situation of model

testing as a special case). Hence, to allow model rejection both the critical discrepancy

and the level of significance need to be controlled.

This method of testing hypotheses differs from that common in classical statistics,

where only the level of significance is controlled, and where the critical discrepancy is

completely determined by the level of significance. For each level of significance ε, a

critical discrepancy δ is determined as the minimum discrepancy for which the critical

probability does not exceed ε. In this assignment, δ increases with decreasing ε, which re-

flects the obvious fact that an increase in the demands on the dependability of the MI can

only be compensated by a change of the MI, if the level of representativity of the observa-
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tions is to be maintained. In accordance with the above principle of testing, hypotheses

are rejected for actual observations with discrepancy from the model characteristics of at

least the ε-dependent (!) critical discrepancy.

The consequences of controlling one vs. two levels can be demonstrated more clearly

with the help of the significance probability of an actual observation which is defined as

the probability of obtaining an observation from the MI that shows discrepancy from

the model characteristics that is not smaller than that of the actual observation (the

terminology follows common usage in statistics, see e.g. Barnett 1982, p.130). Controlling

only the level of significance leads to rejection of a hypothesis if the significance probability

of the actual observation does not exceed ε. In this case, no criteria are specified, which

allow to judge the quality of the MI underlying the test.

On the other hand, controlling both the significance level and the critical discrepancy

allows judgement of the quality of the MI before it is accepted as a decisive basis for

testing. Under the premise of a qualified MI, rejection on the basis of excessive discrepancy

(≥ δ) of an actual observation implies for this observation a significance probability ≤ ε.

However, a non-critical discrepancy (< δ) of an actual observation does not rule out

the possibility that the pertaining significance probability is ≤ ε. This would indicate a

quality of the MI that is higher than demanded for the detection of non-representative

observations. Yet, given an observation with significance probability ≤ ε and discrepancy

< δ, the MI is seen to be qualified, and the hypothesis is not rejected under the control of

both δ and ε; it is, however, rejected if only ε is controlled. Otherwise, if the significance

probability exceeds ε and the discrepancy of the observation is ≥ δ, then the hypothesis

is not rejected when controlling ε only, but the MI turns out to be unqualified when both

δ and ε are controlled.

¿ Illustration 6: The example in Illustration 5 can again be chosen to demonstrate
the problem of controlling only the level of significance ε when testing hypotheses,
instead of controlling both ε and the critical discrepancy δ. In this example, a MI
with sample size n = 30 was shown to be unqualified for testing the hypothesis
p = 0.1 on the levels of qualification ε = 0.05 and δ = 0.08. Irrespective of the
actual observation, no decision on rejection of the hypothesis can be made on the
basis of this MI. On the other hand, if only the level of significance were controlled,
and given that the phenomenon of interest is actually observed k = 7 times in the
sample, the significance probability of this observation would equal 0.026. Since
0.026 is less than ε, this would have implied rejection of the hypothesis on the basis
of this observation. Moreover, the discrepancy of the observation from the model
characteristics equals |p− (k/n)| = 0.133. In order to justify rejection on the basis
of a qualified MI, the condition δ for qualification would have to be relaxed such
that for some δ ≤ 0.133 the critical probability is ≤ ε (=0.05). À

Testing models with free parameter values

A different situation arises when a model contains free parameter values. In this case

a given MI may be qualified on the levels δ and ε for the model characteristics associated

with some parameter values but not with others (recall that model characteristics are

a function of the free parameter values or are identical to some or all of these). This

follows from the fact that the probability distribution specified by the MI depends on
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the respective model characteristics and thus on the free parameter value. Consequently,

it may happen that only a restricted set of free parameter values is amenable to system

analytic treatment due to the non-comprehensive qualification of the MI. Only these

amenable parameter values can be tested with this MI. For the non-amenable parameter

values, the model can neither be rejected nor accepted.

As was emphasized above, specification of the ranges of free parameter values is an

integral part of the model, so that testing procedures should ideally apply to the entire

set of free parameter values. Hence, for fixed levels of qualification δ and ε, a MI would

be ideal if it were qualified for all of the model characteristics associated with the entire

range of free parameter values. To simplify the wording, usage of the term “qualification”

of a MI will be extended in the following to the free parameter values associated with

the model characteristics. The testing procedure appropriate for this case is stated in

Table 3. In accordance with the specification in Table 1, model calibration again forms

the basis of the testing procedure in combination with a defined measure of discrepancy.

Incompleteness of observations is accounted for here by an appropriate choice of the MI.

Table 3

• Analysis of hypotheses for incomplete observations

Given the levels δ and ε on which the MI is to be qualified, then

. reject the hypothesized model if its calibration yields predictions (see Table 1)

for which the discrepancy from the actual observation exceeds or equals the

critical discrepancy δ, and for which the MI is qualified;

. do not reject the hypothesized model if there exist model characteristics (pro-

duced by their underlying free parameter values) which show discrepancy from

the actual observation that lies below δ and for which the MI is qualified; the

hypothesis is called qualifiedly non-rejectable in this case.

Notes: No decision as to rejection or acceptance of the hypothesis can be made in

two cases: (1) the MI is not qualified for the model predictions and their discrepancy

from the actual observations exceeds or equals δ, and (2) no free parameter values

exist for which the associated model characteristics have discrepancy less than δ and

for which the MI is qualified. The method of system analysis is unqualified in both

cases.

Cases of indetermination arise only if the MI is qualified for some but not all free

parameter values. This does not yet imply that the chosen method of system analysis is

totally unqualified, as follows from the statements in Table 3. Both rejection and accep-

tance are possible despite the fact that the MI is not qualified for all free parameter values.

On the other hand, even if the discrepancy exceeds or equals the critical discrepancy for

all free parameter values for which the MI is qualified, the model is not rejectable on a

qualified basis if the qualification of the MI does not extend to the model predictions. The

method of system analysis is merely unqualified for such observations. To overcome this

situation, either the levels of qualification δ and ε must be relaxed, or a new experiment

must be performed on the basis of a different MI.



10 The system analytical approach to the study of hypotheses

Confidence regions and estimation

As was demonstrated above, estimation of target characteristics becomes relevant

only for non-rejectable models with free parameter values. Estimates can therefore be

selected only among those target characteristics which are associated with the free pa-

rameter values that make the model qualifiedly non-rejectable. This corresponds to the

above general definition of the confidence region, and we can therefore now

• define the confidence region of estimates as the set of all target characteristics

that are associated with observable model charateristics for which the MI is

qualified, and which show discrepancy from the actual observation that lies

below the critical value.

Recall that target characteristics are associated with the observable characteristics via the

free parameter values on which the target characteristics completely depend and which

determine the observable characteristics.

Reasonable (direct or indirect) estimates must consequently belong to the thus qual-

ified confidence region. Applying the model calibration principle, the estimate would

consistently result from minimizing the discrepancy between the actual observation and

all observable model characteristics with associated target characteristics belonging to the

confidence region. Belonging to the confidence region makes sure that the MI is qualified

for all of the concerned free parameter values. Yet, since the MI may not be qualified for

the model predictions, the corresponding target characteristics may be excluded as esti-

mates. Moreover, minimization of the discrepancy need not go along with maximization

of the qualification of the MI in the sense that the critical probability is minimized, since

this probability does not depend on the actual observation. Minimization of discrepancy

also need not simultaneouslymaximize the probability (likelihood) of the observation even

when normalized for the respective maximum probability. It may therefore be desirable

to specify the MI and the measure of discrepancy such that they yield similar results in

the calibration procedure.

¿ Illustration 7: Consider the equilibrium mixed mating model presented in Illus-
tration 3 for two alleles. The observable model characteristics Pij (i, j = 1, 2)
result from variation of the allele frequency p1 and the selfing proportion s as free
parameters and, by this, form a subset of the two-dimensional frequency simplex
which is defined by P12 ≤ 2p1p2 (set of frequency vectors on or below the Hardy-
Weinberg parabola). Furthermore, define the measure of discrepancy by the metric
d(P,P ′) := 1

2

∑
i≤j |Pij − P ′ij | on the frequency simplex. Model calibration for the

free parameters p1 and s then leads to a predicted vector of genotypic frequencies
which equals the actually observed vector P̃ , say, if P̃12 ≤ 2p̃1p̃2. Otherwise, if
P̃12 > 2p̃1p̃2, minimization of the d-distance of the actual observation from the set
of observable model characteristics yields s = 0 so that the model predicition equals
Hardy-Weinberg-proportions.

Given a MI that employs random sampling of n = 30 offspring with replace-
ment and records relative frequencies of the three genotypes in the sample as ob-
servation. Let δ = 0.08 and ε = 0.05 be the desired levels of qualification of the
MI. The set Q, say, of modeled genotypic frequency vectors for which the MI is
qualified results from collecting those vectors for which the critical probability is
less than or equal to 0.05. If P̃ again designates the actual observation (relative fre-
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quencies of genotypes in the sample), the pertaining confidence region results from
the intersection of the set Q with the ball of radius δ and center P̃ . If, in addition,
P̃ belonged to Q, so that P̃12 ≤ 2p̃1p̃2, the estimate of the allele frequency and the
selfing proportion equalled p̃1 and (2p̃1p̃2 − P̃12)/(2p̃1p̃2 −

1

2
P̃12), respectively.

However, computer calculations for the above values of n, δ and ε reveal a very
weird structure of Q comprising coherent as well as strongly disconnected areas and
even isolated points in the frequency simplex. The coherent areas are very small
and restricted to the extreme allele frequencies. Hence, even if P̃12 ≤ 2p̃1p̃2, the
δ-ball surrounding the observation P̃ may in many cases show no and in other cases
very complex intersections with Q. Thus, the method of system analysis is either
unqualified or the resulting confidence regions and estimates are highly sensitive
towards changes in the observations. This emphasizes the importance of MIs which
are qualified for the whole range of free parameter values. For the present levels of
qualification, this can be realized for a sample size of n = 200. À

Measures of discrepancy

In statistics, the measures of discrepancy between actual and modeled observations

involved in the model calibration are commonly termed “test statistics” or “test variables”

(for a more generalizing definition see e.g. Weerahandi 1995, p.29). It is well known that

the outcome of both testing and estimation procedures depends on the applied measure

of discrepancy (see e.g. Bishop et al. 1975, chapter 14.7). This becomes especially evi-

dent when considering a particular value for the critical discrepancy. This value may be

meaningfully specified for a bounded but not for an unbounded measure of discrepancy.

Moreover, as was emphasized in the last chapter, it may be desirable to harmonize the MI

with the discrepancy measure in a way that associates probabilities of observations with

the discrepany of the observations from the model characteristics. This would require that

with increasing discrepancy of an observation from the model characteristic the proba-

bility (density) of the observation deceases strictly, and that this holds for all probability

distributions associated with the model characteristics and their underlying parameter

values. As an example of how this harmonization can be completely realized, the exact

p-value, which is the basis of many so-called “exact” statistical testing procedures, will

be briefly addressed.

The exact p-value is commonly specified by the probability of not obtaining an obser-

vation from the model that is more probable than the actual observation (which can, in

turn be considered as a special case of the definition used in Weerahandi, 1995, p.30). The

exact p-value can thus be considered as a function of the potential actual observations,

and it equals 1 only for actual observations that have maximum probability (density) un-

der the respective free parameter value that determines the model characteristics. Thus 1

minus the exact p-value constitutes a measure of discrepancy between actual and modeled

observations that becomes zero for observations of maximum probability and reaches its

maximum value of 1 only for observations of probability zero. The probably undesirable

fact that the model characteristics include aspects of the MI (via the probabilities) will

not be argued further here.

It is easily realized that the exact p-value then presents itself as a significance prob-

ability based on this measure of discrepancy. In fact, this discrepancy measure equals 1
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minus the significance probability. Critical discrepancies, which specify the required rep-

resentativity of observations relative to the most probable observation under the model

and MI, can be freely chosen between 0 and 1, and this choice essentially determines the

corresponding critical probabilities. Hence, once the critical discrepancy is determined,

a lower bound for the level of significance is fixed irrespective of the applied MI. This

is a particular feature of the exact p-value method (Gregorius, 1996, provides a detailed

analysis of the exact p-value, there called “confidence”, under the system analytic per-

spective).

Model dependence of analysis

It follows from the above that “model independent” analyses are confined to situ-

ations where in the actual system the target characteristics are observable or estimable

without having to resort to hypotheses on their causal development. These analyses

are thus restricted to the description of system characteristics. Occasionally, the involved

methods are referred to as “descriptive models” (see e.g. Bossel 1992 or Wissel 1992), par-

ticularly if the methods serve the condensation of data in the form of parameters obtained

from fitting a function to the observations, for example. Yet, since causal hypotheses are

not an explicit matter of consideration here, the term “model” may be a misnomer. This

does not rule out the possibility that methods of description can appear as models in

other contexts, as was demonstrated for the species-area curve by Wissel (1992).

The same applies to parameter-free methods of data transformation (indices, mea-

sures) which are derived as characteristics of special models. Even such conceptual meth-

ods of data condensation or transformation, which serve the representation of specific

characteristics of broad classes of observations, may be intrinsically model-based, since

the underlying concept utilizes cause-effect relations of a very general kind. As was em-

phasized above, the design of a MI may also have to rely on models if only incomplete

observations are possible. In fact, all sample distributions could be viewed as models of

the actual sampling procedure.

Models are the essence of any causal analysis, which is thus intrinsically “model

dependent”. The probably most extreme case of model dependence arises in the common

situation in which target system characteristics are not accessible to direct observation,

so that their study must completely rely on model dependent methods of analysis. The

resulting “indirect estimates” of the target characteristics introduced in Table 2 may

change considerably when the same observations are analyzed with a different model. It

has to be taken into consideration, however, that such an alternative model constitutes

a different causal hypothesis and must therefore first be subjected to a test. This is

mandatory, since estimates are irrelevant if the test recommends rejection of the model.

If more than one non-falsifiable model exists, the dependability of the respective estimates

becomes a particularly important criterion of decision. Apparently, the model with the

lower discrepancy between actually observed and predicted system characteristics and

with the smaller size of the confidence region has the higher dependability. If two models

turn out to be equivalent in these two aspects, deduction of additional observable model

characteristics and development of appropriate MIs (cf. Figure 1) is required.
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This makes it clear that an estimate always directly reflects model characteristics;

characteristics of the actual system appear only indirectly through the adjustment of

the model characteristics. Model aspects of the MI are included in this statement, as

becomes apparent from the simple fact that the sample mean, for example, could not be

an estimate of an expectation unless it occurred as an expectation in a model fitted to

the sample.

Design of model

As can be taken from Figure 1, models ought to be inducible from a precisely formu-

lated problem in order to avoid the danger of testable nonsense constructs (corresponding

to the well-known nonsense correlations from statistics). For the same reason, the tar-

get characteristics must be deducible from the model in order to establish an explicit

cause-effect mechanism, and a qualified MI must exist for validation of the model. The

demands on the qualification of a method of system analysis increase with the model’s

number of free parameter values, since the model can be calibrated more precisely. In

order to produce observations which can give rise to rejection of such models, the MIs

must be increasingly elaborate and levels of qualification high, which, since difficult to

realize, lowers the chances to detect inadequacy of the model. This corresponds to the

obvious fact that a non-falsified model becomes the more dependable the fewer free pa-

rameter values it has, where this is achieved by specifying more and more of the formerly

free parameter values by supplementary actual observations. Moreover, this explains the

precedence of simple over complex models in cases of indecision (c.f. e.g. Wissel 1992,

p. 3-5, for a critique of further features of complex models based on problems of their

validation).

A special situation arises for conceptual models. These models are usually aimed

at the analysis of hypotheses on general characteristics of a system, which must thus

directly relate to fundamental conceptual properties of that system and are therefore

expected to yield results of more general validity (see also Wissel 1992, p. 4). Irrespective

of the number of free parameter values involved in the design of a conceptual model,

the requirement of general validity may be expected to imply the possibility of precise

calibration. Yet, in conceptual models, the formulation of hypotheses typically deals with

constraints on the validity of system characteristics, which, according to the principle

of testing, restricts calibration of the model to the free parameter values corresponding

to these characteristics (see Table 1). The thus reduced opportunities for adjustment

increase the chance of rejection of the hypothesis (compare the following Illustration 8

for mating preferences).

¿ Illustration 8: Mating preferences are the conceptual system characteristics of
mating systems. Their determination requires specification of a trait, definition
of mating events, and actual observations on frequencies of matings among the
respective trait types as well as on frequencies of potential mating partners (mating
reference, for an example see Figure 3). The causes of the conceptual characteristics
can be hypothesized by modeling of suitable mechanisms. Conversely, each mating
system model yields its particular mating preferences and can thus be characterized
by special features and patterns of these preferences (for an overview see Gregorius
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1989).
Model parameters that have no effect on mating preferences are irrelevant to

the mechanisms hypothesized in the model mating system. Hence, the analysis of
mating systems centers upon the description or estimation of special system char-
acteristics (such as proportion of selfing), all of which must be shown to affect the
mating preferences. Even in cases where no prior information suggests a hypothe-
sis on an actual mating system, the description of mating preferences will help to
recognize classes of mating systems which may give rise to the formulation of more
precise hypotheses on the underlying mechanisms.

In the mixed mating model of Illustration 2 (which assumes natural mating
references), the mating preference pattern is characterized by identical heterotypic
preferences that equal the proportion of cross-fertilization and are smaller than the
homotypic preferences. All classical models of assortative mating, in which het-
erotypic mating is assumed to occur at random, share this kind of pattern (compare
the example on the right in Figure 3). The effect of these preferences on genotypic
frequencies of the offspring is observable for certain gene markers. À

Figure 3

A

A B C

A B C

0

1

A B C

mating reference
(potential mates)

of type A

mating frequencies
of type A

A

A B C

A B C

mating preferences

0

1

Mating preferences

A B C

Mating preferences of a type (A) for three types including its own; left: homotypic
preference, random mating with type B, and negative preference for type C; right:
preference pattern resulting from selfing and random cross-fertilization.

If a model is rejected, either the desired result is obtained or further analysis of po-

tential causes for the rejection is required. In the latter situation one again has to start

with the induction of these causes from the results of the preceding analysis (see Figure 1).

Since causes are to be found within the model, its submodel structure has to be explicated

in order to allow identification of the model features which can be held responsible for

the rejection. The subsequent procedure is identical to the one depicted in Figure 1 and

employs the methods and techniques of analysis presented above. Concerning the choice

of the MI for an analysis of the hypothesized submodel, two basic opportunities exist.

The more convenient opportunity arises from the possibility to deduce submodel charac-

teristics which are – possibly after some reorganisation and transformation – observable

by application of the original MI. This would allow utilization of the original observations

for the analysis of the submodel. Otherwise, if it is not possible to deduce such submodel
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characteristics, additional or new observations, possibly combined with newly developed

MIs, are required for an analysis.
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Glossary

calibration of a model – adjustment of a model’s free parameter values so as to minimize

the discrepancy between the modeled and the actually observed system characteristics.

confidence region of model characteristics for an actual observation – the set of all target

characteristics that are associated with observable characteristics (via free parameter

values) which have discrepancies from the actual observation that are sufficiently small

to prevent rejection of the model. Thus, confidence regions specify sets of target

characteristics which the model could realize without being falsified by a given actual

observation.

critical discrepancy – threshold discrepancy (δ) between the actually observed and the

model characteristics, below which the actual observations are considered representa-

tive of the model characteristics and thus do not effect rejection of the model.

critical probability of a MI – the probability of obtaining an observation with discrepancy

at least as large as the critical discrepancy.

critical region of a model – set of potential observations of the actual system that, if

realized, would falsify a given hypothesis.

estimate of target characteristics – the target characteristics associated with those free

parameter values of the model that result from calibration of the model on the basis
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of indirect or incomplete actual observations in a qualifiedly non-rejectable model.

exact p-value – the probability of obtaining an observation from the model that is not

more probable than the actual observation.

free parameter values – the values of model parameters which are not specified in a model

and vary independently.

levels of qualification of a MI – the chosen critical discrepancy (δ) and level of signifi-

cance (ε)

level of significance – level (ε) which must not be exceeded by the critical probability in

order to qualify the pertaining MI.

method of investigation (MI) – includes identification, observation, sampling (and its

modelling), and transformation of the system characteristics to be analyzed.

method of system analysis – consists of three components: a model system reflecting a

hypothesis on the causation of real system characteristics, a MI that allows appropriate

observation of the system characteristics to be studied, and a method of measuring

discrepancy between the actual observations (on the system characteristics) and the

modeled observations (representing the hypothesis).

prediction of modeled observation – the modeled observation that results from calibration

of the model.

qualified MI – a MI for which the critical probability does not exceed a given level of

significance for the model characteristics to be studied.

qualified method of system analysis – a method of system analysis that guarantees that

observations exist that could falsify the associated hypothesis.

qualifiedly non-rejectable model – for a given MI, a model for which free parameter

values exist, such that the MI is qualified for these parameters and the associated

model characteristics show discrepancy from the actual observations that lies below

the critical discrepancy.

representative observations – see “critical discrepancy”.

significance probability of an actual observation – the probability of obtaining an obser-

vation from the MI that shows discrepancy from the model characteristics at least as

large as that of the actual observation.

target characteristics of a model – system characteristics of interest which may or may not

be observable. If they are not observable, they must be functions of observable model

characteristics or of the free parameter values on which the observable characteristics

depend; such target characteristics are termed indirectly observable in contrast with

directly observable characteristics.


