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Confidence regions for hypotheses on system characteristics
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der Universität Göttingen, Büsgenweg 2, D-37077 Göttingen

Abstract – The principle of hypothesis falsification forms the epistemological basis
of systems analysis. It is realized by specification of a method of investigation suit-
able for testing a set of hypotheses on system characteristics. From this perspective,
the principle has a special position in statistics, in that its observance calls for con-
trolling the chances of erroneous falsification for each of the considered hypotheses.
Falsification by improbability thus replaces strict falsification. Regions of rejection of
hypotheses are then solely determined by the levels of significance set to the proba-
bility of not obtaining a result more probable than the observed under the respective
hypothesis. Being a function of hypothesis and observation, this probability is termed
the confidence ζ in a hypothesis supported by an observation, and it establishes the
relation to the theory of exact testing. Taking advantage of the analogy to hypothesis
testing, “exact” confidence regions can then be determined as the set of hypotheses
that is supported by the observation with confidence ζ above a given level α of sig-
nificance. The problem of hypothesis (including parameter) estimation is introduced
as a problem of selecting hypotheses from confidence regions, and the roles of max-
imizing likelihood and confidence for obtaining and testing estimates is discussed.
Maximization of confidence over subsets of hypotheses is also shown to yield uncon-
ditional tests of composite hypotheses. Application to the determination of “exact”
confidence regions for the frequency parameter of the binomial distribution yielded
results that are in many cases closely approximated by the direct method of Clopper
and Pearson but also show distinct and unfamiliar features.

Introduction

In experimental sciences, systems analysis is an indispensable tool for acquiring
dependable knowledge. Its epistemological principle revolves around the mod-
elling of experimentally testable hypotheses on real systems. Hypotheses may
concern type of model (e.g. all models of positive assortative mating), a partic-
ular model (of partial selfing with random cross-fertilization), or special values
of the parameters of a model (concerning the rate of selfing in the latter model;
note that it is common in statistics to restrict usage of the term “hypothesis”
to model parameters (see e.g. Edwards 1972, p.3)). Insufficient conformity of
the experimental results with the hypothesis is considered as falsification of
the hypothesis, where failure of falsification is no proof of correctness of the
hypothesis (see e.g. Popper 1968). In a strict sense this principle excludes the
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possibility of incorrect falsification and thus of erroneous rejection of a hypoth-
esis (known as type I error in mathematical statistics). The fact that reality is
accessible only in samples, however, enforces consideration of exactly this possi-
bility in the analysis of real systems. Adherence to the principle of falsification
thus requires us to control the chances of erroneous falsification.

This requirement largely determines the common (Neyman-Pearson) methods
of statistical decision making. Yet, the system analytical objective places an
emphasis that differs from many decision theoretical methods in statistics with
respect to the kind of risk valuation. In the planning of an investigation, cor-
rect falsification is given unequivocal priority over other considerations of risk
minimization or profit maximization that are significant in game theory or eco-
nomics, for example. Such considerations chiefly concern the risk of accepting
a false hypothesis (type II error), the valuation of which is based on a desig-
nated set of alternative hypotheses. In contrast with the “null hypotheses”,
the alternative hypotheses are themselves not a matter of falsification in this
valuation. Yet, in a system analytical context, each hypothesis is an object
of unconditional falsification, which leaves us with rejecting hypotheses if they
provide the observations with sufficiently low probability. Rejection therefore
amounts to falsification by improbability.

Thus, if there are no reasons compelling distinction between null and their alter-
native hypotheses as objects of falsification, the problem of hypothesis testing
extends to the whole space of hypotheses and therefore calls for the specifica-
tion of confidence regions (the relation between testing of hypotheses against
alternatives with the involved type II errors and the specification of confidence
regions has attracted some attention; see e.g. Wellek and Michaelis 1991). At
first sight, the concept of confidence regions, which suggests reliability on non-
falsified hypotheses, also appears problematic. However, via complete specifi-
cation of a confidence region, i.e. specification of an exact confidence region, the
principle of falsification could be accounted for. In this case, the complement of
a confidence region would consist of all hypotheses falsifiable by improbability
of an observation obtained under the applied method of investigation.

Based on this elementary supposition, an attempt will be made in the present
paper to demonstrate the strong interplay among the concepts of hypothesis
testing, confidence region, and estimation, as dictated by consistent application
of the system analytic principle of falsification by improbability. In so doing,
the essence of any testing procedure, the specification of regions of rejection,
will be shown to follow cogently for each method of investigation from the idea
underlying the level of significance. This idea amounts to basing the decision to
reject a hypothesis on the probability of not obtaining a result more probable
than the current observation. The theory of “exact” testing (as described e.g.
in Weerahandi 1995, Preface, p.viii) then presents itself as a consequence of
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this approach. These results will be used to illustrate the close relation of the
concept of confidence regions to the problem of hypothesis estimation.

The question as to the most appropriate among available or newly developed
methods of investigation (tests) is of direct relevance to the improvement of
systems analysis. Yet, again the objective differs from that of established math-
ematical statistics, where the quality of a test is measured in terms of various
properties of type II errors and thus of the acceptance region under a certain set
of alternative hypotheses. The system analytical perspective instead focusses
on the efficiency of two methods of investigation applied to the same system
characteristics in falsifying hypotheses. Moreover, by applying additional meth-
ods of investigation, the non-falsified region of hypotheses shrinks until either
the whole space of considered hypotheses is falsified – which may require new
hypotheses – or until the remaining hypotheses allow for a mathematical proof
of their correctness (which is rarely possible in reality). Even though questions
of optimal choice of methods of investigation cannot be treated in this paper,
emphasis will be put on stating its results in a way that may help in making
these questions more precise.

The exact confidence region

The concept of hypothesis testing

Under a system analytical perspective the significance of the concept of hypoth-
esis testing lies in its capacity to provide a consistent and generally applicable
(canonical) specification of the region of rejection for each of the considered
hypotheses (models) on incompletely observable system characteristics. This
requires a method which allows investigation of the concerned system charac-
teristics under each hypothesis, where the possible outcomes from application
of the method form a space of which each region of rejection is a part. A
method of investigation thus includes details of experimental design, primary
observations and their method of sampling, transformation of primary observa-
tions (statistic), etc.. Its possible outcomes are viewed as a sample space, the
elements of which are realizations of a sampling variable. Which distributions
of the sampling variable (or a statistic, which may replace the sampling vari-
able in various applications) are taken into consideration is determined by the
hypotheses on the system characteristics and the method of sampling as part
of the method of investigation. This lays the basis for testing the conformity
of the hypothesis with the outcome of the investigation (experiment).

If the investigation yields a result (an observation, a sample) that has low prob-
ability under the hypothesis to be tested, this hypothesis will be rejected in
accordance with the principle of falsification by improbability. The measure
of conformity underlying the decision whether to reject a hypothesis is thus
specified by the measure chosen to quantify the probability of the observation.
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The set of all results with sufficiently low probability (falling below a “critical”
value) then defines the region of rejection of the hypothesis, where it has to
be kept in mind that this region depends on the method of investigation and
the hypothesis. In contrast with the conventional definition in mathematical
statistics, the region of rejection is completely specified by the hypothesis and
by the critical value above which the hypothesis is to be falsified. The ab-
sence of effects of alternative hypotheses on the determination of regions of
rejection reflects the system analytical principle of unconditional falsification
by improbability.

Table 1: Notation

S := sample variable with values taken from the sample space S;

A(S) := σ-algebra on the sample space S;

H := space of hypotheses;

Rα : H → A(S), regions of rejection of individual hypotheses at the
level α of significance;

P(H) := power set of H;

Cα : S → P(H), confidence regions of individual samples on the level
α of significance;

Ph := probability measure resulting for the method of investigation un-
der the hypothesis h ∈ H on the system characteristics; the nota-
tion Ph(S = s) for the distribution of S will be used interchange-
ably as the probability or the probability density of sample s,
depending on whether discrete of continuous sample variables
are considered.

By definition, any region of rejection of a hypothesis h ∈ H (compare the
notation and conventions in Table 1) must be of the form

R(h, λ) := {s ∈ S |Ph(S = s) ≤ λ},

where the non-negative number λ represents a potential critical value. Yet,
since probabilities of individual samples tend to be exceedingly small or, as is
the case with continuous traits, are given as probability densities, λ itself is a
poor indicator of improbability. In fact, improbable samples are expected to
occur with low probability, which implies that Ph(S ∈ R(h, λ)) be controlled
in the first place. The level of this control is called the level of significance and
is usually denoted by α.
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Since with increasing λ, the sets R(h, λ) form an ascending sequence, the prob-
ability Ph(S ∈ R(h, λ)) also increases with λ, so that there exists a unique
value λh,α as the smallest λ for which

Ph(S ∈ R(h, λ)) ≤ α and for all λ′ > λ either

Ph(S ∈ R(h, λ′)) = Ph(S ∈ R(h, λ)) or Ph(S ∈ R(h, λ′)) > α.

The slight complication of the condition arises from the fact that Ph(S ∈
R(h, λ)) need neither be a strictly increasing nor a continuous function of λ.
By this, the critical value λh,α of the test is unambiguously specified, and the
region of rejection Rα(h) of the hypothesis h at a level α of significance has the
canonical representation

Rα(h) = {s ∈ S |Ph(S = s) ≤ λh,α}. (1a)

For given level α of significance, Rα constitutes a mapping assigning hypothe-
ses to subsets from the sample space as stated in Table 1. The complement
S \ Rα(h) of Rα(h) is frequently referred to as the region of acceptance of the
hypothesis h. As pointed out above, adherence to the system analytical princi-
ple of falsification forces us to regard this region as the set of sample outcomes
that do not lead to rejection of the hypothesis.

At this point, the difference of the conventional approach from the specification
of regions of rejection becomes apparent. In this approach any subset R from
the sample space fulfilling the condition Ph(S ∈ R) ≤ α and a variable number
of conditions concerning type II errors connected with a designated set of alter-
native hypotheses could function as region of rejection. In contrast, following
the above principle leads to a specification that is unique for the hypothesis to
be tested.

The thus defined regionsRα(h) of rejection can now be shown to form the basis
for the theory of exact tests. The relationship to this theory is drawn by the
sets

R(h,Ph(S = s)) = {s′ ∈ S |Ph(S = s′) ≤ Ph(S = s)}

of samples with probability equal to or lower than that of the obtained sample
s. On the basis of the observation S = s, the exact test rejects the hypothesis
h on a level α of significance if

ζ(h, s) := Ph(S ∈ R(h,Ph(S = s))) ≤ α,

i.e. if the probability of not obtaining a sample more probable than s does not
exceed α. This verbal characterization of ζ(h, s) emphasizes its significance
as an indicator of trustworthiness of the hypothesis. To reflect this charac-
teristic of the probability ζ(h, s) as the central decision variable in the theory
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of exact testing, be referred to it will in the sequel as the confidence in the
hypothesis h supported by the observation S = s. In the technical literature,
ζ or analogously defined quantities are occasionally referred to as “p-value”
or “significance probability” (see e.g. Barnett 1982, p.130, where Ph(S = s)
plays the role of the author’s test statistic, however, for one hypothesis h only;
this emphasizes the intrinsic difference between “confidence” and “significance
probability”). However, because of the variable usage and poor expressivity of
these terms, “confidence” will be preferred for the designation of ζ.

As is easily realized, the region Rα(h) of rejection can be equivalently stated
as

Rα(h) = {s ∈ S | ζ(h, s) ≤ α}, (1b)

which, in accordance with the theory of exact tests, reveals the region of rejec-
tion as the set of all sample outcomes, the confidence of which does not exceed
the level α of significance. Since the supremum of the confidence taken over
the total sample space always equals 1, the region of rejection can never extend
to the whole sample space for α < 1.

The concept of confidence regions

Fiducial or confidence regions consist of hypotheses that in some sense comply
with an observation. In system analytical terms, a confidence region summa-
rizes all hypotheses from the space under consideration which are not falsified
by the information obtained from a sample. This characterizes confidence re-
gions in a manner analogous to the acceptance regions in hypothesis testing.
Thus having specified regions of rejection as a mapping Rα for all hypotheses,
a family of confidence regions Cα(s) for samples S = s can be derived as sets
of hypotheses h ∈ H which an observation S = s does not allow to reject at the
level α of significance, i.e. for which s 6∈ Rα(h) (see e.g. Ferguson 1967, p.258).
The confidence region for S = s at the level α of significance thus obtains the
representation

Cα(s) := {h ∈ H | s 6∈ Rα(h)}, (2)

where Cα again appears as a mapping assigning to each element of the sample
space a set of hypotheses (see Table 1). The two representations of the region
of rejection given in equations (1a) and (1b) can now be used to express the
definition of the confidence region Cα(s) in terms of the “critical value” and
the “confidence”:

Cα(s) = {h ∈ H |Ph(S = s) > λh,α}, (2a)

Cα(s) = {h ∈ H | ζ(h, s) > α}. (2b)

The latter representation, which is directly derived from the theory of exact
testing, justifies reference to Cα(s) as an exact confidence region. It further-
more makes apparent that the confidence region is empty (does not exist) if
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the supremum of the confidences in the sample does not exceed the level of
significance. This is a relevant case, since special conditions on the space of
hypotheses may imply that the supremum taken over this space does not reach
a given value smaller than 1. It points at the possibility of inappropriate choice
of the space of hypotheses for explaining the observation S = s. As will be
returned to later, it may, however, also serve as a means for exact testing of
composite hypotheses. In any case, the analogy between testing hypotheses
and specifying confidence regions is now clearly seen to be established by the
confidence ζ(h, s), which, for a specified level of significance, yields regions of
rejection when varying observations for a fixed hypothesis h and yields regions
of confidence when varying hypotheses for a fixed observation s.

The concept of hypothesis estimation

So far hypothesis testing and the dual specification of confidence regions have
been treated without explicit reference to problems of estimating hypotheses.
This reflects the system analytical perspective by drawing attention to details
of the method of investigation (including testing procedures) as primary objects
of epistemological improvement. Yet, it is inherent in this approach that any
attempt to distinguish among the considered hypotheses (one of which is to
be considered as an estimate) must be confined to those hypotheses which
are not falsified by the observation. In other words, a meaningful estimation
procedure must thus be minimally required to yield a result in which one can
have confidence, i.e. that belongs to the confidence region.

Again several procedures are conceivable. The decision in favour of those hy-
potheses that assign to the observation highest probability has high plausibility
and refers to one of the most popular methods of estimation, the maximum like-
lihood method. In this method, the probability L(h, s) := Ph(S = s) forms the
basis for selecting a hypothesis. To be an acceptable method in the above sense,
it has to be made sure, however, that the hypotheses yielding maximum L for
given s over the whole space of hypotheses H actually belong to the confidence
region Cα(s). It is not self-evident that this condition is met in all cases, par-
ticularly if different spaces of hypotheses can be relevant in an analysis of the
same system. Thus, until proven otherwise, one has to consider the possibility
that the maximum likelihood method of estimation of hypotheses (parameters)
may not be compatible with the specification of exact confidence regions for
given levels of significance.

This possible restriction does not apply a priori when replacing the likelihood
L by the confidence ζ. In the estimation procedure, maximization of confidence
would then replace maximization of likelihood. Provided the confidence region
for an observation is not empty, the supremum of ζ taken over the total space
of hypotheses exceeds the level of significance by definition. Any estimate ar-
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rived at by this procedure thus belongs to the confidence region and, instead
of assigning maximum probability of occurrence to the observation, it mini-
mizes the probability of obtaining a result more probable than the observed.
This underlines the direct orientation of ζ at the system analytical principle of
falsification and distinguishes its position from that of L in procedures for the
estimation of hypotheses.

Despite the elementary difference between ζ and L there exists an important re-
lation between their maxima. This relation results from the fact that ζ(h, s) = 1
if and only if Ph(S = s) = max{Ph(S = s′) | s′ ∈ S}, i.e. if under the hypothesis
h no observation has higher probability than the observation S = s. Conse-
quently, if the likelihood of a hypothesis h is maximal for an observation s, and
if under this hypothesis s has highest probability, then ζ(h, s) = 1, and the
maximum likelihood estimate h is also a maximum confidence estimate. This
condition may help to identify classes of probability distributions for which
both methods of estimation yield the same results. In general, however, the
choice of the space of hypotheses may imply that the maximum confidence
supported by an observation does not reach a value of 1, so that the above
condition has no basis.

Application to the space of binomial distributions

The concept developed above and the implied method for the specification of
exact confidence regions will now be applied to the classical situation of ana-
lyzing hypotheses on the frequency of a defined phenomenon in a population.
The associated method of investigation consists of taking random samples of
fixed size with replacement from the population and observing the frequency
of the phenomenon (sample frequency) in the sample. Sampling thus follows a
binomial distribution, and the space of hypotheses is given by the parameters
of these distributions (for further notational details see Table 2).

To simplify computation of confidences in hypotheses p supported by the ob-
servation Sn = k, it should be recalled that Pp(Sn = i) increases with i as long
as i ≤ np, and it decreases as soon as i ≥ np. One therefore obtains for k ≥ np

the confidence

ζ(p, k) = Pp(Sn ∈ R(p, Pp(Sn = k))) = Pp(Sn ≥ k) + Pp(Sn ≤ k′),

where k′ is the greatest i < np for which Pp(Sn = i) ≤ Pp(Sn = k). The
summand Pp(Sn ≤ k′) is dropped if Pp(Sn = 0) > Pp(Sn = k), since then an
appropriate k′ does not exist. In the reverse case where k ≤ np, the confidence
equals

ζ(p, k) = Pp(Sn ≤ k) + Pp(Sn ≥ k′),
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Table 2: Notation

S = Sn := sampling variable specifying the frequency of a defined phe-
nomenon (sample frequency) in a sample of size n.

S = set of non-negative integers ≤ n representing the sample frequencies
in a sample of size n.

H = set of all binomial distributions for given sample size n and dis-
tinguished by the relative frequency (probability) p of the defined
phenomenon. H will be identified with the closed interval [0, 1]. The
probability distribution of the sample variable Sn for p ∈ [0, 1] is
described by

Pp(Sn = i) =

(

n

i

)

· pi · (1− p)n−i

and k′ is the smallest i > np with Pp(Sn = i) ≤ Pp(Sn = k). Again the
summand Pp(Sn ≥ k′) is dropped for Pp(Sn = n) > Pp(Sn = k).

These representations show that as p moves from 0 to k
n
, the confidence in-

creases from 0 to 1 and then decreases again to 0 as p moves on to 1. During
this change of p, k′ may also change, which leads to discontinuity of ζ as a
function of p. As can be taken from the examples presented in Figure 1, the
initial increase and subsequent decrease of the confidence takes place in an
essentially monotonic manner. This monotonicity is also expected from the
corresponding behaviour of Pp(Sn = k) as the maximum probability of the
sum of probabilities in ζ. Therefore, there exist unique values p′ und p′′ of p
such that p′ ≤ k

n
≤ p′′ and

ζ(p′, k) = ζ(p′′, k) = α.

Since in the interior of the interval [p′, p′′] the strict inequality ζ(p, k) > α must
hold, the confidence region for the observation Sn = k attains the form of the
open interval

Cα(k) =]p′, p′′[.

However, as is indicated in the upper left example of Figure 1 (n = 5, k = 0),
there is a chance of non-monotonicity at least for larger confidences. Hence,
it cannot be ruled out that for large levels of significance confidence regions
emerge with interspersed gaps.

The maximum confidence of 1 is reached for p = k
n
. Hence, given a level of

significance α < 1, the method of parameter (hypothesis) estimation specified
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by maximization of the confidence yields the relative sample frequency k
n
as an

estimate. Since maximization of the likelihood arrives at the same estimate, it
is in this case compatible with the specification of exact confidence regions. Yet,
as can be seen from the plateaus at ζ = 1 extending around p = k

n
in Figure 1,

maximum confidence estimates for p could cover a more or less small interval.
Additional criteria, such as supplied by the maximum likelihood method, could
thus be used to arrive at a single estimate which, besides belonging to the
exact confidence region, fulfills the basically reasonable condition of maximizing
confidence in the estimate.

The common direct method for the specification of confidence intervals (not
mentioning the approximation by the normal distribution) we owe to Clopper
and Pearson (1934), and the interval limits p′ and p′′ obtained by this method
satisfy the equation

Pp′(Sn ≥ k) = Pp′′(Sn ≤ k) = 1

2
α.

Hence, the decision variable corresponding to ζ can be stated as 2·Pp(Sn ≥ k)
for p ≤ k

n
and 2·Pp(Sn ≤ k) for p ≥ k

n
. Apparently, the decision variable after

Clopper und Pearson is not identical to ζ, which implies the possibility that
they yield different specifications of the confidence region. As is illustrated in
Figure 1, this could indeed happen for very small sample sizes, however, for
larger sample sizes both variables differ only negligibly due to the dwindling
effect of discontinuities in ζ. Thus, with the exception of very small sample
sizes, the Clopper-Pearson method of specifying confidence intervals can be
considered as a satisfactory approximation to the exact confidence region.

Concluding remarks

Even though the demonstration on binomial distributions pointed at the possi-
bility that the system analytical perspective may lead to results that differ only
negligibly from those of the common methods of statistical decision making,
the difference in approach may cause basic problems to be viewed from dif-
ferent angles and, as a consequence, unfamiliar solutions may be reached. An
example of this was provided by the subordination of the estimation problem
to the problem of specifying confidence regions.

In particular, the decision to allow only for estimates of maximum confidence
avoids problems of circularity arising from the fact that both estimation of a
hypothesis and its testing refer to information derived from the same sample
(see e.g. chapter 9.4 in Bishop et al. 1975). Confidence is the joint measure
of conformity between observation and hypothesis (decision variable) for ex-
act testing, specification of confidence regions and estimation of hypotheses.
Therefore, if the maximum confidence supported by a given observation over a
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specified space of hypotheses exceeds the level of significance, all estimates of
maximum confidence yield hypotheses that are not rejected by exact testing.
Following from the conceptual relationship between critical value and level of
significance, these findings apply to any type of probability distribution, in-
cluding non-symmetrical and multi-modal.

Another important application of the method of maximizing confidence over
special spaces of hypotheses is found in the field of exact testing of compos-
ite hypotheses, which can be any subset of a given space of hypotheses. For
example, in the space of joint distributions of two random variables, stochas-
tic independence between the variables defines a subset of hypotheses which
is of particular interest in binary tests of association. If the method of inves-
tigation is again based on random sampling without replacement, ζ sums up
probabilities of a multinomial distribution, which is represented as a vector of
population frequencies in the space of hypotheses. The thus specified space H
of hypotheses contains independent association as a subset HI of vectors, the
components of which result from products of frequencies from the two marginal
distributions.

Depending on the observed vector s of sample frequencies, maximization of
ζ over the subset HI of independent association may then yield confidence
values which fall below a specified level α of significance, and which thus lead
to rejection of the hypothesis of independent association. On the other hand,
if the maximum of ζ taken over HI exceeds α, then exact confidence regions
for the marginal distributions defining HI can be obtained by consideration
of {h ∈ HI | ζ(h, s) > α} = Cα(s) ∩ HI . This method avoids the problems
associated with “conditional” tests such as Fisher’s (1935) exact test, in which
the conditioning hypotheses on the marginal distributions are extracted from
the sample frequencies. Many other problems, such as those concerning one-
sided or certain equivalence and sequential tests, can be stated in terms of
testing composite hypotheses and can thus be treated via maximization of
confidence in the same manner. For a one-sided test of a frequency parameter
p, the subset of hypotheses forming the composite hypothesis could consist of
all p > p0, for example, and, given the observation s, ζ(·, s) would have to be
maximized over all p > p0.

From this point of view, one-sided tests appear as a special case of equivalence
testing, the essence of which consists in falsifying the null hypothesis that
the truth lies outside of a range He, say, of hypotheses that are considered
to be “equivalent”. Obviously, the composite null hypothesis is falsified if all
single hypotheses outside He have confidence less than or equal to α, so that
Cα(s) ⊆ He. In fact, this is the test for rejection of the null hypothesis of
nonequivalence, the idea of which seems to be due to Westlake (1972). Here
the close general relationship between hypothesis testing and confidence regions
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becomes especially clear, in that falsification of a (composite) hypothesis turns
out to be tantamount to the confidence region being included in the complement
of that hypothesis.

In essence, these examples are based on a model, in which the values of certain
parameters are not specified and are thus “free” for adjustment of the model to
the observation. The composite hypothesis then consists of the model together
with the restrictions posed on the ranges in which the free parameters are al-
lowed to vary. Rejection of this composite hypothesis therefore concerns the
model together with the hypothesized parameter range; whether the structural
characteristics of the model or the parameter range give rise to the rejection
remains undecided. On the other hand, if the observations do not falsify the
composite hypothesis, the underlying maximization of confidences justifies ac-
ceptance of the model with a restricted parameter range, the latter of which
represents a confidence region.

As a final remark, the implication of the present approach for the evaluation
of different methods of investigation of the same system characteristics with
respect to their capacity for falsification will be briefly addressed. Fixing the
system characteristics implies that the object of analysis, the space of hypothe-
ses H, also remains the same under the application of different methods of
investigation, whereas these methods can differ in the sample variable and the
sample space. A comparison of methods of investigation must thus rely on
the space of hypotheses only. In essence, the capacity of a method to falsify
hypotheses increases as the size of the confidence region narrows down to the
hypothesis to be considered “true” on the basis of the respective observation.
This relates to the idea of consistency of an estimator, where increasing preci-
sion can be achieved by the expectation that with increasing sample size the
estimate ought to converge to the true value.

Hence, higher precision implies smaller confidence regions for the different ob-
servations. To avoid having to introduce a set measure onH in order to measure
the size of the regions, it may be more practicable and meaningful to use set
inclusion as a means for defining the relative precision of a method of inves-
tigation. Thus method A can be considered to be more efficient in falsifying
hypotheses than method B at a given level of significance α, if for each obser-
vation a under method A there exists an observation b under method B, such
that the confidence region CA

α (a) for observation a is included in the confidence
region CB

α (b), i.e. CA
α (a) ⊆ CB

α (b) (a and b are elements of the sample spaces
defined by method A and B, respectively).

Extending this characterization to all levels of significance, and thus distin-
guishing A as uniformly more efficient than method B, requires that to each
observation a under method A there exists an observation b under method B

for which ζA(h, a) ≤ ζB(h, b) for all h ∈ H, i.e. for which no hypothesis has con-



14 H-R Gregorius

fidence of higher support by a than by b. Apparently, and as demonstrated in
Figure 1, this situation applies to changes in method obtained from increasing
the sample size. Other changes such as between sampling strategies, however,
may increase the efficiency of falsification at some levels of significance but not
uniformly. Despite certain resemblance in terminology it should be recalled
that the object of optimization is here the confidence region rather than the
region of rejection usually put in the foreground of statistical test theory.
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