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Geometry of Equivariant Compactifications of Gn
a

Brendan Hassett and Yuri Tschinkel

1 Introduction

In this paper, we begin a systematic study of equivariant compactifications of Gn
a . The

question of classifying nonequivariant compactifications was raised by F. Hirzebruch

(see [10]) and has attracted considerable attention since (see [6] , [15] , [12] , and the

references therein). While there are classification results for surfaces and nonsingular

threefolds with small Picard groups, the general perception is that a complete classifi-

cation is out of reach.

On the other hand, there is a rich theory of equivariant compactifications of

reductive groups.The classification of normal equivariant compactifications of reductive

groups is combinatorial. Essentially, the whole geometry of the compactification can be

understood in terms of (colored) fans. In particular, these varieties do not admit moduli.

For more details, see [14], [4] , [2] , and the references therein.

Our goal is to understand equivariant compactifications of Gn
a . The first step

in our approach is to classify possible Gn
a-structures on simple varieties, like projective

spaces or Hirzebruch surfaces.Thenwe realize general smoothGn
a-varieties as appropri-

ate (i.e., equivariant) blow-ups of simple varieties. This gives us a geometric description

of the moduli space of equivariant compactifications of Gn
a .

In Section 2,wediscuss general properties of equivariant compactifications ofGn
a

(Gn
a-varieties). In Section 3, we classify all possible Gn

a-structures on projective spaces

Pn. In Section 4,we study curves, paying particular attention to nonnormal examples. In

Section 5,we carry out our program completely for surfaces. In particular,we classify all

possible G2
a-structures on minimal rational surfaces. In Section 6, we turn to threefolds.
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We give a classification of G3
a-structures on smooth projective threefolds with Picard

group of rank 1. Each section ends with a list of examples and open questions.

2 Generalities

We work in the category of algebraic varieties over F = Q.

2.1 Definitions

Definition 2.1. Let G be a connected linear algebraic group. An algebraic variety X ad-

mits a (left) G-action if there exists a morphism ϕ : G × X → X, satisfying the standard

compatibility conditions. A G-variety X is a variety with a fixed (left) G-action such that

the stabilizer of a generic point is trivial and the orbit of a generic point is dense.

For example, a normal Gn
m-variety is a toric variety.

Definition 2.2. A morphism ofG-varieties is a morphism of algebraic varieties commut-

ingwith theG-action.AG-isomorphism is an isomorphism in the category ofG-varieties.

A G-equivalence is a diagram

G × X1
(α,j)

��

��

G × X2

��
X1

j �� X2 ,

where α ∈ Aut(G) and j is an isomorphism (in the category of algebraic varieties).

Clearly, every G-isomorphism is a G-equivalence.We shall omit G if the group is

understood.

One of our main observations in this paper is that classification of simple G-

varieties up to equivalence, even projective spaces, is a nontrivial problem. This is in

marked contrast to the situation for toric varieties. A toric variety admits a unique

structure as a Gn
m-variety (up to equivalence). Here is a sketch of the argument for a

projective toric variety X: Consider the connected component of the identity Aut(X)0 of

the automorphism group Aut(X). This is an algebraic group that acts trivially on the

Picard group of X. We pick a very ample line bundle and consider Aut(X)0 as a closed

subgroup of the corresponding group PGLN. In particular, Aut(X)0 is a linear algebraic

group. The key ingredient now is the statement that all maximal tori in Aut(X)0 are con-

jugate (cf. [1 , 11.4]). Evidently, the maximal torus acts faithfully on X, and the action has

a dense open orbit. This proves the claim.
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Every G-variety contains an open subset isomorphic to G. We denote by D the

complement of this open subset and callD the boundary. IfX is normal,Hartog’s theorem

implies thatDmust be a divisor (the complement toD is affine). Otherwise,we normalize

and observe that the normalization is an isomorphism over G.

2.2 Line bundles and linearizations

Proposition 2.3. Let X be a proper and normal algebraic variety. Then the action of

Gn
a on the Picard group Pic(X) is trivial and every line bundle on X admits a unique

linearization, up to scalar multiplication.

Proof. Uniqueness follows from [13, Prop. 1.4, p. 33]. (The only relevant hypothesis is

that X is geometrically reduced, which is part of our assumptions.) The proof of Propo-

sition 1.5 (p. 34) implies that every line bundle on X has a linearization. (Here we use

that X is proper and that the Picard group of the group G is trivial. To get the fact that

the action of G on the Pic(X) is trivial, we need the normality of X.) �

Corollary 2.4. Retain the assumptions of Proposition 2.3. Consider a basepoint free

linear seriesW ⊂ H0(X, L), stable under the action of Gn
a . Then the induced map f : X →

P(W∗) (here we use the geometric convention) is Gn
a-equivariant.

Theorem 2.5. Let X be a proper and normal Gn
a-variety. Then Pic(X) is freely generated

by the classes of the irreducible components Dj (j = 1, . . . , t) of the boundary divisor D.

The cone of effective Cartier divisors Λeff(X) ∈ Pic(X)R is given by

Λeff(X) = ⊕t
j=1R≥0 [Dj].

Proof. Choose an effective divisor A ⊂ X and consider the representation of Gn
a on the

projectivization H0(X,O(A)) (here we use that X is normal). This representation has a

fixed point corresponding to an effective divisor supported at the boundary. To show

that there are no relations between the classes [D1 ], . . . , [Dt], it suffices to observe that

there exist no functions without zeros and poles on Gn
a . �

Remark 2.6. Every effective cycle on a G-variety is rationally equivalent to a cycle sup-

ported on the boundary. (Here we are using the fact the G is affine.)

2.3 Vector fields and the anticanonical line bundle

Theorem 2.7. Let X be a smooth and proper G-variety. Then the anti-canonical class is
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a sum of classes of the irreducible components of the boundary D with coefficients that

are all ≥ 1. If G = Gn
a , then the coefficients are all ≥ 2.

Proof. We first introduce some general terminology and exact sequences. Let Y be a

smooth variety and let B be a smooth divisor. Let TY〈−B〉 denote the sheaf whose sec-
tions are vector fields with logarithmic zeros along B. If x1 , . . . , xn are local coordi-

nates for Y so that B is given by x1 = 0, then local sections of TY〈−B〉 take the form
x1(∂/∂x1 , ∂/∂x2 , . . . , ∂/∂xn). There are two natural exact sequences

0 −→ TY〈−B〉 −→ TY −→ NB/Y −→ 0,

0 −→ TY(−B) −→ TY〈−B〉 −→ TB −→ 0,

where NB/Y is the normal bundle to B.

Let v ∈ H0(Y,TY) be a vector field. By definition, v vanishes normally to order

one along B if its image in H0(B,NB/Y) is zero. If v arises from the action of a one-

parameter group stabilizing B, then it vanishes normally to order one along B. If v

vanishes normally to order one along B, we can consider the corresponding element

w ∈ H0(B,TB). If w = 0, then we say that v vanishes to order one. If v arises from a

one-parameter group fixing B, then it vanishes to order one. Generally, if v vanishes to

orderN−1 (resp., normally to orderN), then we can consider the corresponding element

w ∈ H0(B,NB/Y(−(N − 1)B)) (resp., H0(B,TB(−(N − 1)B))). If w = 0, then we say that v

vanishes normally (resp., vanishes) to order N along B; in particular, v may be regarded

as a section of H0(Y,TY〈−B〉(−(N− 1)B)) (resp.,H0(Y,TY(−NB))).

We now prove the theorem. First assume X is aG-variety andDi is an irreducible

component of its boundary. We take Y ⊂ X as the complement to the singular locus

of Di and B = Y ∩ Di. Let {v1 , . . . , vn} ∈ H0(X,TX) be invariant vector fields spanning

the Lie algebra of G, and let Mj (resp., Nj) be the order of vanishing (resp., normal

vanishing) of vj along B. By definition, Nj = Mj orMj + 1. Consider the exterior power

σ = v1 ∧ v2 ∧ · · · ∧ vn ∈ H0(X,ΛnTX); we bound (from below) the order of vanishing ai

of σ along Di. Evidently, ai ≥M1 + · · ·+Mn, but in fact slightly more is true. Using the

adjunction isomorphism

ΛnTY | B = Λn−1TB ⊗ NB/Y ,

we obtain

ai ≥ min
j=1,...,n

(M1 + · · ·+Mj−1 +Nj +Mj+1 + · · ·+Mn).
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For instance, since each Nj > 0, we obtain that ai > 0. It follows that the canonical

divisor is linearly equivalent to −
∑

i aiDi, where each ai > 0.

Now assume that X is a Gn
a-variety. Let v1 be a vector field arising from the

action of a one-parameter subgroup that fixes Di, so that v1 vanishes to order one and

M1 ≥ 1. We claim v1 necessarily vanishes normally to order two, i.e., N1 ≥ 2. Consider

the resulting element w ∈ H0(B,NB/Y(−B)) = End(NB/Y), which exponentiates to give

the induced G1
a-action on the normal bundle. Since G1

a has no characters, this action is

trivial and w = 0. The previous inequality guarantees that ai ≥ 2. Hence the canonical

divisor is linearly equivalent to −
∑

i aiDi, where each ai > 1. �

Remark 2.8. The proof only uses the fact that X is smooth at generic points of the

boundary divisor.

Corollary 2.9. Let X be a smooth projective Gn
a-variety with irreducible boundary D,

which is fixed under the action. Then X = Pn.

Proof. We see thatMj ≥ 1 for each j. It follows that KX = −rD, where r ≥ n + 1; i.e., X

is Fano of index r ≥ n+ 1. Hence X = Pn and r = n+ 1. �

Corollary 2.10. Let X be a smooth projective Gn
a-variety with irreducible boundary D.

Assume that the subgroup of Gn
a fixing D has dimension n − 1. Then X = Pn or X = Qn,

the quadric hypersurface of dimension n.

Proof. After reordering, we obtain thatMj ≥ 1 for j = 1, . . . , n − 1. It follows from the

proof of Theorem 2.7 that Nj ≥ 2 for j = 1, . . . , n− 1 and Nn ≥ 1. In particular, r ≥ n; i.e.,

X is Fano of index r ≥ n. Hence X = Pn or Qn. �

2.4 A dictionary

Let L(Gn
a) andU(G

n
a) denote the Lie algebra and the enveloping algebra ofGn

a . SinceGn
a is

commutative, U(Gn
a) is isomorphic to a polynomial ring in n variables. Let R = U(Gn

a)/I

and assume that Spec(R) is supported at the origin; we use &(R) and mR to denote the

length and the maximal ideal of R. Since I contains all the homogeneous polynomials of

sufficiently large degree d, the elements of L(Gn
a) act (via the regular representation) as

nilpotent matrices on R. We can exponentiate to obtain an algebraic representation

ρ : Gn
a −→ AutF(R)

of dimension &(R).
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For concreteness, we introduce some additional notation. We consider L(Gn
a) as

a vector space over F with a distinguished basis Sj = ∂/∂xj so that U(Gn
a) = F[S1 , . . . , Sn].

The representation ρ is obtained by multiplying by exp(x1S1 + · · ·+ xnSn) ∈ R.

Proposition 2.11. Choose an F-basis {µ1 , µ2 , . . . , µ�(R) } for R. Then the coordinate func-

tions f1 , f2 , . . . , f�(R) arising from the expansion

exp
(
x1S1 + · · ·+ xnSn

)
=

�(R)∑
j=1

fj
(
x1 , . . . , xn

)
µj

form a basis for the solution space V of the system of partial differential equations

g
[
f
(
x1 , . . . , xn

)]
= 0 for each g ∈ I ⊂ F

[
∂

∂x1
, . . . ,

∂

∂xn

]
.

In particular, dimV = &(R).

Proof. It suffices to exhibit a basiswith the desired properties.This basis is constructed

with Gröbner basis techniques (see [3 , Chapter 15]). Consider a homogeneous lexico-

graphic order, which induces a total order on the set of all monomials in S1 , . . . , Sn. Let

Init(I) be the initial ideal for I and {gi} a Gröbner basis for I; i.e., the initial terms of the

gi generate Init(I). The monomials µ1 , µ2 , . . . , µ�(R) not contained in Init(I) form a basis

for R (cf. proof of [3 ,Theorem 15.17]). Each monomial µ admits a unique representation

in R,

�(R)∑
j=1

cj(µ)µj.

The division algorithm (with respect to our Gröbner basis) implies that cj(µ) = 0 when-

ever µ strictly precedes µj in the total order.

The formula

∂

∂xi
exp

(
x1S1 + · · ·+ xnSn

)
= Si exp

(
x1S1 + · · ·+ xnSn

)

implies that the fj are solutions to our system of partial differential equations.

We put a total order on the monomials in the xi : x
a(1)
1 · · · xa(n)n precedes xb(1)1

· · · xb(n)n whenever Sb(1)1 · · ·Sb(n)n precedes Sa(1)1 · · ·Sa(n)n .We claim each fj contains a term

proportional to xm(1)1 · · · xm(n)n , where µj = S
m(1)
1 · · ·Sm(n)n , and this is the initial term of

fj with respect to our order. Since the fj have distinct initial terms, they are linearly

independent.
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To prove the claim, note that exp(x1S1 + · · ·+ xnSn) expands as a sum of nonzero

terms

Ca(1),...,a(n) x
a(1)
1 · · · xa(n)n S

a(1)
1 · · ·Sa(n)n .

Each term yields an element in R of the form

Ca(1),...,a(n) x
a(1)
1 · · · xa(n)n

�(R)∑
j=1

cj
(
S
a(1)
1 · · ·Sa(n)n

)
µj,

where cj = 0 whenever Sa(1)1 · · ·Sa(n)n precedes µj. In particular, the surviving nonzero

terms

x
a(1)
1 · · · xa(n)n S

m(1)
1 · · ·Sm(n)n

all have the property that xa(1)1 · · · xa(n)n precedes xm(1)1 · · · xm(n)n in the order. Furthermore,

the unique term

Cm(1),...,m(n) x
m(1)
1 · · · xm(n)n S

m(1)
1 · · ·Sm(n)n

corresponds to the initial term of fj.

To complete the proof, we show that

V :=
{
f
(
x1 , . . . , xn

)
: g[f] = 0 for each g ∈ I}

has dimension &(R). Since I contains all the polynomials of degree d, each solution is

polynomial with total degree < d. There is a natural pairing between F[x1 , . . . , xn] and

F[∂/∂x1 , . . . , ∂/∂xn],

〈g, f〉 = g[f]|(0,...,0).

This induces a perfect pairing between homogeneous polynomials and operators of a

given degree. Note that V = {f : 〈g, f〉 = 0 for each g ∈ I},which implies that dimV = &(R).

�

We collect some basic properties of ρ in the following proposition.

Proposition 2.12. The Gn
a-representations ρ and V are dual, and ρ has a nondegenerate

orbit (i.e., a cyclic vector) in R. The representation ρ is faithful if and only if Spec(R) ⊂
Spec(F[S1 , . . . , Sn]) is nondegenerate.
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Proof. The vector space V has a natural Gn
a-action by translations. The first statement

is clear from the preceding discussion. Consider the orbit of 1 ∈ R,

ρ
(
x1 , . . . , xn

) · 1 =
�(R)∑
i=1

fjµj.

The linear independence of the fj implies that this orbit is nondegenerate in R. The final

statement is clear; indeed, Si acts trivially if and only if Spec(R) ⊂ {Si = 0}. �

Remark 2.13. Note that V = ρ∗ has a natural structure as an R-module of length &(R).

Indeed, it coincides with the dualizing module ωR. This can be seen using Macaulay’s

method of inverse systems (see [3 , Chapter 21.2]). It follows that ρ is self-dual if and

only if R is Gorenstein.

A translation invariant subspace V ⊂ F[x1 , . . . , xn] of dimension & corresponds to

a representation ρ : Gn
a → GL� with a fixed cyclic vector v. Indeed, we may regard the

elements of V as coordinate functions on the nondegenerate orbit ρ(Gn
a) · v. Consider the

ideal I of constant coefficient differential operators annihilating V, and write

R = F

[
∂

∂x1
, . . . ,

∂

∂xn

]/
I.

Since I contains all monomials of sufficiently large degree, Spec(R) is supported at the

origin. The pairing introduced in the proof of Proposition 2.11 may be used to show that

Spec(R) has length &.

We summarize our results in the following dictionary.

Theorem 2.14. There is a one-to-one correspondence among the following:

(1) subschemes Spec(R) ⊂ Spec(F[∂/∂x1 , . . . , ∂/∂xn]) supported at the origin of

length & = &(R);

(2) translation invariant subspaces V ⊂ F[x1 , . . . , xn] of dimension &;

(3) isomorphism classes of pairs (ρ, v) such that ρ : Gn
a → GL� is a representation

and v is a cyclic vector (i.e., ρ(Gn
a) · v is nondegenerate).

We now turn to a case of particular interest. Assume that S1 , . . . , Sn form a basis

for the maximal ideal mR, so that &(R) = n + 1. Then the corresponding representation

ρR is faithful and the induced action on P(R) has a dense orbit. Hence, for any Artinian

local F-algebra, exponentiating the action ofmR on R yields aG
�(R)−1
a -structure on P(R) =

P�(R)−1 . Conversely, assume we are given a G�−1
a -structure on P�−1 . By Proposition 2.3,

this action admits a unique linearization on the line bundle O(+1), and we obtain a
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faithful representation ρ : G�−1
a → GL�. The corresponding ring of differential operators

R is Artinian local of length &. Since ρ is faithful, S1 , . . . , S�−1 form a basis for mR.

We summarize this discussion in the following proposition.

Proposition 2.15. The following are equivalent:

(1) Artinian local F-algebras R of length & = &(R), up to isomorphism;

(2) equivalence classes of G�−1
a -structures on P�−1 .

2.5 Examples and questions

(1) Not every point in the boundaryD is contained in the closure of a 1-parameter

subgroup. Construction: Blow up P2 in a point at the boundary. Blow up again a point

in the exceptional divisor. Every 1-parameter subgroup in P2 is a line.

(2) Theorem 2.7 fails for nonequivariant compactifications of Gn
a . For example,

let X ⊂ P2 × P2 be a hypersurface of bidegree (1, d) with d ≥ 4. Then the anticanonical

class O(2, 3− d) is not contained in the interior of the effective cone.

(3) Suppose X is a smooth projective Gn
a-variety with finitely many Gn

a-orbits. Is

X rigid as an algebraic variety?

3 Projective spaces

In this section, we study Gn
a-structures on projective spaces. Notice that every Pn has

a distinguished structure as a Gn
a-variety. The translation action on the affine space An

extends to an action on Pn, fixing the hyperplane at infinity.We denote this action by τn.

It corresponds to the Artinian ring F[S1 , . . . , Sn]/[SjSj, i, j = 1, . . . , n]. It is easy to see that

every Gn
a-structure on Pn admits a specialization to τn.

In the following propositions, we classify Gn
a-structures on projective spaces of

small dimension, up to equivalence (cf. Definition 2.2). The first natural invariant is

the Hilbert-Samuel function of the corresponding Artinian ring R, defined by χR(k) =

&(mk
R/m

k+1
R ).

Proposition 3.1. There is a unique Ga
1 -structure on P1 .

Proof. The proof is a consequence of Proposition 2.15. �

Proposition 3.2. There are two distinct G2
a-structures on P2 . They are given by the fol-

lowing representations of G2
a:

τ2(a1 , a2) =



1 0 a2

0 1 a1

0 0 1


 and ρ(a1 , a2) =



1 a1 a2 +

1

2
a21

0 1 a1

0 0 1


 .
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They correspond to the quotients of F[S1 , S2 ] by the ideals I1 = [S1S2 , S22 , S
2
1 ] and I2 =

[S1S2 , S2 − S
2
1 ].

Proof. It suffices to classify Artinian local F-algebras R of length three up to isomor-

phism. If the tangent space has dimension two, then R = F[S1 , S2 ]/I1 . If the tangent space

to R has dimension one, then R = F[S1 , S2 ]/I2 (it is clear that this is the only one). These

correspond to the representations τ2 and ρ, respectively. �

Proposition 3.3. There are four distinct G3
a-structures on P3 . They correspond to the

quotients of F[S1 , S2 , S3 ] by the following ideals:

I1 =
[
S21 − S2 , S1S2 − S3 , S1S3

]
,

I2 =
[
S21 − S2 , S1S2 , S1S3

]
,

I3 =
[
S21 , S1S2 − S3 , S

2
2

]
,

I4 =
[
S21 , S1S2 , S

2
2 , S2S3 , S

2
3 , S1S3

]
.

Proof. If the tangent space to R has dimension one or three, then R is necessarily the

quotient of the polynomial ring by I1 or I3 . If the tangent space has dimension two, then

&(m2
R/m

3
R) = 1. Consider the nonzero symmetric quadratic form

q : mR/m
2
R ×mR/m

2
R −→ m2

R/m
3
R.

Let S3 generatem2
R.Then there exist S1 , S2 ∈ mR spanningmR/m

2
R such that the quadratic

form equals S1S2 or S21 . �

Proposition 3.4. There are ten distinct G4
a-structures on P4 . They correspond to the

quotients of F[S1 , S2 , S3 , S4 ] by the following ideals:

I1 =
[
S21 − S2 , S1S2 − S3 , S1S3 − S4 , S2S3 , S1S4

]
,

I2 =
[
S21 − S3 , S1S2 , S

2
2 , S1S3 − S4 , S1S4

]
,

I3 =
[
S21 − S3 , S1S2 , S

2
2 − S3 , S1S3 − S4 , S1S4

]
,

I4 =
[
S21 − S3 , S1S2 − S3 , S

2
2 , S1S3 − S4 , S1S4

]
,

I5 =
[
S21 − S3 , S1S2 − S4 , S

2
2 , S1S3 , S1S4 , S2S3

]
,

I6 =
[
S21 − S3 , S

2
2 − S4 , S1S2 , S1S3 , S2S4

]
,

I7 =
[
S21 − S4 , S2S3 − S4 , S1S2 , S1S3 , S

2
2 , S

2
3 , S1S4

]
,

I8 =
[
S21 , S

2
2 , S

2
3 , S1S2 − S4 , S1S3 , S2S3

]
,
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I9 =
[
S21 − S4 , S

2
2 , S

2
3 , S1S2 , S1S3 , S1S4 , S2S3

]
,

I10 =
[
SiSj, i, j = 1, . . . , 4

]
.

Proof. We consider the possible shapes of the Hilbert-Samuel function χR. In the cases

where χR(1) = 1 or 4, it is clear that the only possibilities are I1 and I10 , respectively.

Assume that χR(1) = 2, χR(2) = 1, and χR(3) = 1. Choose S4 ∈ m3
R, S3 ∈ m2

R,

and S1 , S2 ∈ mR, which span the maximal ideal of the graded ring associated to R. For a

suitable choice of S2 and S4 , we may assume that S2S3 = 0 and S1S3 = S4 . Consider the

map s2 : mR/m
2
R → m2

R/m
3
R induced by multiplying by S2 . If s2 = 0, then we may choose

S3 so that S21 = S3 ; we obtain I2 . If s2 �= 0 and S2 �∈ ker(s2), then we may choose S1 so

that S1S2 = 0. However, S4 �= 0 implies S21 �= 0, so after rescaling S1 , S2 , and S4 ,we obtain
I3 . If s2 �= 0 and S2 ∈ ker(s2), then (after rescaling S3) we obtain S1S2 = S3 . Again, after

rescaling S1 and S2 , S21 �= 0, and we obtain I4 .
Assume that χR(1) = 2 and χR(2) = 2.Thenwe choose S1 , ..., S4 such that S3 and S4

are in m2
R and S1 , S2 are independent modulo m

2
R. The ring structure on R is determined

by the vector-valued quadratic form

q : mR/m
2
R ×mR/m

2
R −→ m2

R/m
3
R.

This corresponds to choosing a codimension 1 subspace of Sym2(mR/m
2
R). Up to changes

of coordinates in S1 and S2 , each such subspace is spanned by vectors {S21 , S
2
2 } and

{S1S2 , S
2
1 }. This gives the cases I5 and I6 .

Assume that χR(1) = 3 and χR(2) = 1. This corresponds to I7 , I8 , and I9 . The ring

structure is determined by the quadratic form q (with values in F), which has rank 3, 2,

or 1. �

Proposition 3.5. There are finitely many distinct G5
a-structures on P5 .

Proof. These proofs are written out explicitly in Suprunenko [16 , pp. 136–150]. �

The above discussionmirrors the classification of algebras of commutative nilpo-

tent matrices in the book [16]. (Notice a misprint in the classification of algebras cor-

responding to G3
a-structures on P3 on page 134.) The arguments in this book yield a

classification of Artinian algebras of length n + 1 with the following Hilbert-Samuel

functions (though the author does not make this explicit): (see table, p. 1222).

In particular, there are finitely many algebras with each of these Hilbert-Samuel

functions χR. This suffices to obtain a complete classification of Gn
a structures on Pn for

n ≤ 5.
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χR(0) χR(1) χR(2) χR(3) · · · χR(n)

1 n 0 0 · · · 0

1 1 1 1 · · · 1

1 2 1 1 · · · 0

1 3 1 1 · · · 0

1 2 2 1 · · · 0 .

Beginning with dimension 6, we obtain moduli. As an example, let us consider

Artinian ringswith Hilbert-Samuel function of the shape (1, n−k, k, 0, . . . , 0) (for suitable

k). These correspond to k-dimensional spaces of quadratic forms in n− k variables (up

to coordinate transformations of the n− k variables). The quadratic forms are obtained

by dualizing the natural map

Sym2
(
mR/m

2
R

) −→ m2
R/m

3
R.

For example, if n = 6 and k = 2, the moduli space is birational to the moduli space of

elliptic curves.

Example 3.6. There exists at least one one-parameter family of inequivalent G6
a-struc-

tures on P6 .

If n = 8 and k = 3, we get the moduli space of genus 5 curves. If n = 9 and

k = 3,we obtain the moduli space of K3 surfaces of degree 8. The appearance of these K3

surfaces and the genus 5 curves is quite interesting. Can it be explained geometrically,

in terms of birational maps between different Gn
a-structures?

For a good general introduction to Artinian rings (and many further references),

see [11].

Proposition 3.7. The projective space Pn admits a unique Gn
a-structure with finitely

many orbits. It corresponds to the Artinian ring F[S1 , . . . , Sn]/I, where

I =
[
S21 − S2 , S1S2 − S3 , . . . , S1Sn−1 − Sn, SiSj, i+ j > n

]
� [

Si1 − Si, SiSj, i+ j > n
]
.

Proof. There is a unique fixed point under theGn
a-action. Projecting from it gives a Pn−1

with finitely many Gn−1
a -orbits. By the inductive hypothesis, this Pn−1 has the indicated

structure. The Artinian ring R(Pn−1) for Pn−1 is a quotient of the Artinian ring R(Pn). Let

Sn ∈ R(Pn) be a nonzero elementmapped to 0 ∈ R(Pn−1). Since R(Pn−1) � F[T1 ]/[T
n
1 ], there

exists an element S1 ∈ R(Pn−1) such that Sn−11 �= 0. Then Sn1 = cSn for some constant
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c ∈ F. If c = 0, the action has infinitely many orbits. Otherwise (after rescaling), we

obtain the desired ideal. �

3.1 Examples and questions

(1) Untwisting different actions on P2 : Take P2 with the ρ-action and choose a

generic one-parameter subgroup. Let C be the conic obtained as the closure of a generic

orbit of the one-parameter subgroup. The curve C is tangent to the line at infinity at the

fixed point p. Blow up the fixed point on C 3 times. Contract the strict transforms of the

line at infinity and the first two exceptional curves.

(2) In general, there does not exist an irreducible variety parametrizing all Gn
a-

structures on Pn (fails for n = 7). This is related to the fact that a general length 8

subscheme ofA4 is not a limit of 8 distinct points (thiswas pointed out to us by Iarrobino;

see [11]). For example, consider the subschemes cut out by seven general quadrics in four

homogeneous variables.These subschemes deform only to subschemes of the same type.

Clearly, not every Artinian local F-algebra of length 8 has tangent space of dimension

≥ 4 (the curvilinear ones have 1-dimensional tangent space).

(3) Give an explicit factorization for Gn
a-equivariant birational automorphisms

of the projective space Pn.

(4) Give a dictionary between Gn
a-structures on smooth quadricsQn and certain

Artinian rings (with additional structure).

4 Curves

Proposition 4.1. Every smooth properG1
a-variety is isomorphic to P1 with the standard

translation action τ1 .

Proof. The proof is an exercise. �

Lemma 4.2. Let V be the standard representation of G1
a. Then Sym

n(V) has a filtration

0 ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fn = Symn(V),

which is compatible with the G1
a-action and such that Fi � Symi(V) and Fi+1/Fi is the

one-dimensional trivial representation. Furthermore, every stable subspace of Symn(V)

arises in this way.

Proof. The proof is an exercise. �
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Remark 4.3. The Jordan canonical form gives us a complete description of representa-

tions of G1
a. They are isomorphic to direct sums of the representations Sym

n(V).

Proposition 4.4. Every properG1
a-varietyCwith an equivariant projective embedding is

isomorphic to P1 embedded by a complete linear series with the translation action.

Proof. Clearly, the normalization of the curve C is isomorphic to P1 . Furthermore, the

normalization map ν : P1 → C is equivariant and an isomorphism away from the fixed

point P∞ ∈ P1 . The morphism ν is given by some basepoint free linear series W on P1 ,

which is stable under the G1
a-action. In particular,W ⊂ H0(OP1 (n)) � Symn(V) (where V

is the standard representation). By the previous lemma, each stable proper subspace of

Symn(V) corresponds to a linear series on P1 with basepoints. This concludes the proof.

Our next goal is to classify proper one-dimensional G1
a-varieties C. Clearly, the

normalization C̃ has to be isomorphic to P1 with the standard action ϕ and with the

conductor-ideal vanishing at the fixed point t = 0. Hence it suffices to classify conductor-

ideals I ⊂ F[t]|t=0 , stable under the group action. �

Theorem 4.5. The only conductor-ideals I that are stable under the group action ϕ are

preimages of some semigroup Σ ⊂ Z<0 under the valuation homomorphism.

Proof. Consider the complete local ring F[[t]] with maximal idealm. We make the iden-

tification

m

mn+2
� Symn(V)

(it follows from the definition of the action ϕ : t �→ t · (1−at+a2t2 − · · · ) extended to the
completion). By Lemma 4.2, all subspaces stable under the action of Ga coincide with

preimages of subsets of the valuation group. �

4.1 Examples and questions

(1) Let C ∈ P2 be a cuspidal cubic plane curve. Then it is a proper G1
a-variety

that does not admit G1
a-equivariant projective embeddings. Indeed, the action on the

normalization P1 = C̃ of C is given by

ϕ : t �−→ t

1+ at
.

Note that the underlying topological space ofC is just P1 and that all local rings coincide,

except at the cusp 0. The local ring OC,0 is equal to the ideal generated by t2 , t3 in the
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ring F[t]|t=0 . This ideal is fixed under the action of ϕ. Therefore, the action descends to

C. By (4.4), C does not admit a G1
a-equivariant projective embedding.

(2) Describe versal deformation spaces of nonnormal proper G1
a-varieties to-

gether with the G1
a-action on these spaces.

5 Surfaces

Throughout this section, X is a smooth proper G2
a-variety.

Proposition 5.1. LetE ⊂ Xbe a (−1)-curve.Then there exists amorphismofG2
a-varieties

X → X ′ that blows down E.

Proof. The proof follows from Proposition 2.3 and Corollary 2.4. �

Proposition 5.2. Every G2
a-surface X admits a G2

a-equivariant morphism onto P2 or a

Hirzebruch surface Fn.

Proof. The proof follows from the existence of minimal models for rational surfaces.

�

5.1 Hirzebruch surfaces

Let X be a G2
a-variety. Assume that X is isomorphic to Fn as an algebraic variety with

n > 0. Its zero-section e is stabilized under the group action, as is the distinguished

fiber f. Let ξn be the line bundle on X corresponding to the section at infinity. There is

an induced equivariant morphism

µ : X −→ P
(
H0(X, ξn)

∗) = Pn+1 .

The image µ(X) is the cone over a smooth rational normal curve of degree n; µ contracts

e to the vertex of this cone.

We compute the representation of G2
a on H

0(X, ξn)
∗. It has a distinguished one-

dimensional fixed subspace W1 corresponding to the vertex. The resulting representa-

tion on H0(X, ξn)
∗/W1 can be easily understood geometrically. It has a one-dimensional

kernel, and the corresponding faithful representation

G1
a −→ GL

(
H0(X, ξn)

∗/W1

)

is the n-fold symmetric power of the standard two-dimensional representation. Here we

are using the fact that µ(X) is the cone over a rational normal curve of degree n.
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Choose a basis S1 , S2 ∈ L(G2
a) such that S1 acts nontrivially and S2 acts trivially

as matrices on H0(X, ξn)
∗/W1 . As a matrix on H0(X, ξn)

∗, S2 has image contained inW1 ,

and S1S2 = 0. We have already seen that Sn1 �= 0 as a matrix on H0(X, ξn)
∗/W1 .

We consider two possible cases: either Sn+11 �= 0 or Sn+11 = 0. In the first case, we

apply the following fact about nilpotent matrices.

Lemma 5.3. Let S1 be an (n + 2) × (n + 2)-nilpotent matrix such that Sn+11 �= 0. Then

the centralizer of S1 consists of the algebra of matrices generated by S1 and the identity.

Proof. The proof follows from a straightforward induction once we put S1 in Jordan

canonical form.

The lemma implies that S2 may be written as some polynomial of S1 . The fact

that the images of S2 and Sn+11 both lie inW1 implies that T = cSn+1 for some c �= 0. In
this case, we have

H0(X, ξn)
∗ = ρR where R = F

[
S1 , S2

]
/
[
S1S2 , S2 − S

n+1
1

]
.

Furthermore, S2 acts nontrivially on the distinguished fiber f.

We now assume that Sn+11 = 0. In this case, we have

H0(X, ξn)
∗ = ρR where R = F

[
S1 , S2

]
/
[
S1S2 , S

n+1
1

]
,

and the action is trivial along the distinguished fiber. �

In conclusion, we have the following proposition.

Proposition 5.4. Let X be a G2
a-variety as above and let ξn denote the line bundle corre-

sponding to the section at infinity. If the action on the distinguished fiber is nontrivial,

then the representation

G2
a −→ GL

(
H0(X, ξn)

∗) = GLn+2

is equivalent to exp(a1S1 + an+1S2), where S2 = Sn+11 �= 0 and S1S2 = 0. If the distin-

guished fiber is fixed under the action, then the representation is equivalent to exp(a1S1+

an+1S2), where Sn+11 = 0 and S1S2 = 0.

A geometrical interpretation is obtained as follows. LetW be the (n+ 2)-dimen-

sional representation of G2
a described above. Then each X admits an equivariant bira-

tional morphism into P(W) and corresponds to the closure of some nondegenerate orbit.
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To classify the surfaces X, it suffices to classify the nondegenerate G2
a orbits of P(W)

modulo automorphisms, i.e., the G2
a-automorphisms of P(W).

In the first case, these are exactly the automorphisms commuting with the action

of S1 , i.e., the homotheties and the matrices

exp
(
a1S1 + a2S

2
1 + · · ·+ an+1Sn+11

)
.

Note that this gives P(W) the structure of a Gn+1
a -variety, which has a dense open orbit

equal to the complement of the distinguished hyperplane. In particular, any two non-

degenerate orbit closures in P(W) are related by an automorphism of P(W). It follows

that X is unique up to equivalence.

In the second case, these automorphisms include the homotheties and the ma-

trices

exp
(
a1S1 + a2S

2
1 + · · ·+ anSn1 + an+1S2

)
.

Again, P(W) has the structure of a Gn+1
a -variety, and any two nondegenerate orbit clo-

sures are related by an automorphism. It follows that X is unique up to equivalence.

These arguments yield the following proposition.

Proposition 5.5. The Hirzebruch surfaces Fn with n > 0 each have two distinct G2
a-

structures, including a unique structure with a nontrivial action on the distinguished

fiber. The second structure is obtained by taking an elementary transformation of the

structure on Fn−1 . The product F0 = P1 × P1 has a unique G2
a-structure, induced from

the G1
a-actions on each factor.

The elementary transformation involves blowing up the intersection of the zero

section and the distinguished fiber of Fn−1 , and then blowing down the proper transform

of this fiber. To prove the last statement, we project from a fixed point of F0 . The image

is P2 with G2
a acting by translation.

5.2 Examples and questions

(1) Interesting singular surfaces admitting G2
a-structures: Del Pezzo surface of

degree 5 with an isolated A4-singularity.

(2) Can the G2
a-structures on a given (smooth) surface have moduli?

(3) Classify G2
a-structures on projective surfaces with log-terminal singularities

and Picard number 1.
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6 Threefolds

Theorem 6.1. Let X be a smooth projective G3
a-variety such that the boundary D is

irreducible. Then X is one of the following:

(1) X = P3 , D a hyperplane (the possible G3
a-structures were listed in 3.3);

(2) Q3 ⊂ P4 is a smooth quadric,D a tangent hyperplane section. It has a unique

G3
a-structure (described in the proof).

Proof. We know that −KX = r · D, where r ≥ 2 (2.7). Therefore, X is a Fano variety of

index r ≥ 2 and it is rational. Furthermore, if it has index = 2, then the subgroup fixing

D has dimension one (by Corollary 2.10).We first consider the case where the index > 2.

We show there is a unique G3
a-structure on Q3 , and that the boundary D is nec-

essarily equal to a tangent hyperplane section. First let us convince ourselves that a

quadric with a tangent hyperplane is equivariant. Consider P3 with the translation ac-

tion τ3 ,which fixes the hyperplane at infinity P. Blow up a smooth conic curveC ⊂ P ⊂ P3

and blow down the proper transform of P. Now we prove that there are no other G3
a-

structures on Q3 . Any G3
a-action on Q3 has a fixed point p. Projecting from p gives an

equivariant birational map f : Q3 ��� P3 . The induced map from the blow-up of Q3 at p

to P3 is the blow-up of a conic contained in the proper transform of D (where D is the

boundary of G3
a in Q3). The proper transform of D is a plane P. The classification of G3

a-

structures on P3 implies that P is fixed under the action ofG3
a on P3 (cf. Proposition 3.3).

We return to the case where index equals two. By Furushima’s classification of

nonequivariant compactifications of G3
a (cf. [6] , [5]), X is a codimension 3 linear section

of the Grassmannian Gr(2, 5). Consider the action induced on F, the variety of lines on

X. Any line on X has normal bundle equal to O⊕O or O(−1)⊕O(+1), and there is always

a line of the second type (cf. [8]). Choose such a line L stable under the G3
a action (we

are choosing a fixed point on the locus of lines of the second type in F). Projecting from

L gives an equivariant birational map

πL : X ��� Q3

(cf. p. 112 of [8]).

By [5] , there are two cases to consider. In the first case, the boundary D ⊂ X

is nonnormal, with singular locus L. The total transform of D consists of a hyperplane

section H ⊂ Q3 . The image of the boundary D is a smooth rational curve of degree 3,

contained inH.We have already shown that there is a unique G3
a-structure onQ3 ,which

does not admit any smooth rational curves of degree 3 contained in the boundary and

stable under the action (the only stable curve in H is the distinguished ruling).
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In the second case, the boundary D ⊂ X is a normal singular Del Pezzo surface

of degree 5 with an isolated A4-singularity. The curve L ⊂ D is the unique (−1)-curve

in the minimal resolution of D. Under πL, D is mapped birationally (and equivariantly!)

to a tangent hyperplane section H ⊂ Q3 . The subgroup fixing H has dimension 2, so the

same holds for D. This contradicts Corollary 2.10. �

6.1 Examples and questions

(1) A singular projective G3
a-variety with one irreducible boundary divisor on

which the G3
a-action is trivial. Construction: Blow up a pair of intersecting lines in P3 .

Then blowdown the proper transform of the plane containing them.The resulting variety

is a singular quadric hypersurface in P4 .

(2) G3
a-equivariant flop: Consider a quadric hypersurface Q

∗ ⊂ P4 with an iso-

lated singularity p. Let Y be the blow-up of Q∗ at p. Let E ≡ P1 × P1 be the exceptional

divisor. Blowing down E in different directions yields smooth threefolds X1 and X2 . It

suffices to exhibit a G3
a-structure on Q

∗ (all the constructions are natural and equivari-

ant). This structure is obtained by using the fact that Q∗ is a cone over F0 .

(3) G3
a-equivariant flip: Consider the cone V over the Veronese surface P2 ⊂ P5 .

There exists a G3
a-structure on V with a nonsingular fixed point p. Indeed, given P2 with

the translation action, the cone V has a uniqueG3
a-structure with fixed boundary divisor.

Let Y be the blow-up of V with center in p, and let Z be the variety obtained from Y by

contracting the proper transform of the ruling through p. In particular, Z is obtained

from Y as a small contraction and KZ is not Q-Cartier. The variety Z is isomorphic to the

cone over a cubic scroll F1 ⊂ P4 . The flipped threefold X is a small resolution of Z.

(4) If X is a smooth projective G3
a-variety and the action on the boundary is

trivial, is X = P3?
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