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Fitting the psychometric function
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and
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A constrained generalized maximum likelihood routine for fitting psychometric functions is pro-
posed, which determines optimum values for the complete parameter set—that is, threshold and
slope—as well as for guessing and lapsing probability. The constraints are realized by Bayesian prior
distributions for each of these parameters. The fit itself results from maximizing the posterior distri-
bution of the parameter values by a multidimensional simplex method. We present results from ex-
tensive Monte Carlo simulations by which we can approximate bias and variability of the estimated pa-
rameters of simulated psychometric functions. Furthermore, we have tested the routine with data
gathered in real sessions of psychophysical experimenting.

The psychometric function—an analytic function that
relates the proportion of correct responses in a sensory
task to some physical stimulus value—plays a basic role in
psychophysics. Independent of the question of whether a
“true” sensory threshold exists and what its nature may
be, the psychometric function permits a concise descrip-
tion of empirical data and allows predictions about sen-
sory performance. For the probabilistic description of per-
formance in terms of a response continuum, Corso (1963)
used the term response threshold, which is operationally
defined as a specific point on the psychometric function.
In recent years, the question of how the psychometric
function can be determined has regained interest through
the development of improved, adaptive threshold measure-
ment techniques (for an overview, see Treutwein, 1995),
of which those using maximum likelihood (ML) or Baye-
sian principles seem particularly promising. These meth-
ods owe their efficiency to the fact that they make assump-
tions about the psychometric function’s shape, expressed
by its parameters, although these assumptions have rarely
been checked.

The psychometric function can be fully described by
four parameters: one defining the function’s position on
the abscissa (often referred to as the threshold), one defin-
ing its slope or spread (the inverse of slope), and one each
for defining the upper and the lower asymptote (extended
version of Abbott s formula; Finney, 1971, Chap. 7.1; Mac-
millan & Creelman, 1991, Chap. 5.4.2; see also Equation 3
and Figure 1). Of the two asymptotes, the lower asymptote
describes the performance at low stimulus levels. In a
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forced-choice design, this performance is obviously gov-
erned by guessing, and the parameter for the low asymp-
tote is, therefore, often called the guessing rate.! In a yes/
no design, the performance at low stimulus levels is at-
tributed to intrinsic noise. A potential difficulty with that
name is that it implies that guessing itself is independent
of the stimulus value;? although this independence has
been disproved by several authors (e.g., Green & Swets,
1966; Nachmias, 1981), we wish to adhere to this term,
since it serves as a convenient description of a subject’s
performance at low stimulus intensities. The upper as-
ymptote describes performance at high stimulus levels at
which the sensory mechanism is generally assumed to be
perfect; misses are attributed to failure of the equipment
or to attentional lapses of the subject. These deviations
from perfectness are, therefore, commonly called the
lapsing rate (see note 1).

In practical applications of psychometric function
fitting—for example, in most adaptive procedures (see
Treutwein, 1995)—only one or, rarely, two parameters
are estimated, usually those of threshold and slope (see,
e.g., Hall, 1968; Watson, 1979) or, sometimes, threshold
and lower asymptote (Green, 1993). The parameters that
are not estimated are set to some reasonable value: the
lapsing rate to zero or to a small constant; the guessing
rate to the expected chance performance—that is, to zero
in a yes/no task or to 1/a, with a being the number of al-
ternatives in a forced-choice task. For the slope param-
eter, there is often no justification for the particular value
used. How well these defaults are met is often not veri-
fied. In those cases in which only one parameter (usually
the threshold) is estimated, incorrect specification of the
other parameters is problematic, since it may introduce
an unknown amount of bias to the parameter of primary
interest (McKee, Klein, & Teller, 1985; O’Regan &
Humbert, 1989). When the function fit is used as the
basis for stimulus placement in an adaptive scheme (as,
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Figure 1. Psychometric function and the underlying binomial distribution at three fixed
stimulus values. Top left: histogram of the number of presentations as a function of stimulus
level. Bottom left: percentage of correct responses and a fitted logistic psychometric function.
Right: The three subplots depict the number of correct/incorrect responses at three specific
stimulus values, thereby illustrating the binomial distribution of responses at a fixed level.
Data are from the nine-alternative forced-choice task described in the Results section. Here,
data have been pooled over 200 different conditions (25 sessions X 8 locations).

for example, in Harvey, 1986, 1997; King-Smith, Grisby,
Vingrys, Benes, & Supowit, 1994; Lieberman & Pent-
land, 1982; Treutwein, 1997; Watson & Pelli, 1983),
there is the possibility of adverse effects on the place-
ment strategy (Green, 1990; Madigan & Williams, 1987;
Swanson & Birch, 1992).

Although a fit will generally be better the more param-
eters are left to vary, convergence quickly deteriorates
with an increasing number of parameters, and the more
so the smaller the data set. Our goal was to develop a rou-
tine that provides a stable fit, including those difficult-
to-handle cases where all four parameters are determined
simultaneously. We were, further, particularly interested
in being able to fit data from adaptive procedures in which
the available data are scarce—that is, in which only a lim-
ited number of trials are performed and in which, as is
not the case in a constant stimulus design, each stimulus
value occurs only once or a small number of times. We de-
scribe the procedure and evaluate its capabilities through
Monte Carlo simulations. We also demonstrate its applic-
ability in the reanalysis of data from psychophysical ex-
periments. The method has been implemented as a set of
modules? that can be called from an application program
for postexperimental analysis. With slight modifications
and on a modern PC, it may be used online for stimulus
placement in experiments with sequential testing.

BACKGROUND

Subject responses in the involved psychophysical tasks
usually constitute binary data—the subject’s answers
can be correct or incorrect or can be yes or no—and the
mathematical/statistical problem is, therefore, quite gen-
eral. Applications and further development of methods
are found not only in psychophysics but also in such di-

verse areas as toxicology, genetics, and materials research,
to name a few. There is a wide and profound literature
concerning the question of how a cumulative probability
distribution can be fitted to binary response data (for
textbooks, see Collett, 1991; Cox & Snell, 1989; Finney,
1971; Morgan, 1992). These methods, however, gener-
ally do not provide solutions for nonzero guessing and
lapsing rates, and they require large data sets.

The history of fitting psychometric functions to binary
responses can be traced back at least to Fechner (1860/
1966), who proposed using linear regression on the re-
sponse data transformed by the inverse cumulative-normal
distribution. Miiller (1879) and Urban (1908), as cited by
Fechner (1882/1965) and Guilford (1954), modified this
approach by introducing weights that are inversely propor-
tional to the expected error of the data. Finney (1971) re-
fined this method by iteratively recalculating the weights to
be proportional to the predicted variance of the measured
data. He showed that the parameters resulting from this it-
eration process converge to the ML parameter estimates
when data samples are large. Such methods are now gener-
ally subsumed under the topic of generalized linear mod-
eling (GLIM; see Agresti, 1990). In GLIM, the dependent
variable is first transformed with the so-called link func-
tion. In this step, the response data are linearized, and their
variance is stabilized. Then, a linear regression on the
transformed data is performed. As link function, the meth-
ods mentioned so far use the inverse normal distribution
function, often called probit transform; the logit and the
complementary log—log transform are other common
choices. The latter are the inverse to the logistic and the
Gumbel (Weibull, on a logarithmic abscissa) distribution,
respectively. An empirical evaluation as to which of these
functions better fits the data is difficult (see Morgan, 1992,
p. 28), and the theoretical implications are debated vigor-



ously. The inclusion of terms for guessing and/or lapsing
probability renders the problem intrinsically nonlinear and,
therefore, prohibits the use of GLIM methods. Finney him-
self was aware of this problem and proposed, in the third
edition of Probit Analysis (1971), a numerical maximiza-
tion of the log-likelihood.*

In sequential estimation of the threshold only, ML
methods and Bayesian estimation (based on the mean of
the posterior density) are quite common (Emerson, 1986;
Harvey, 1986, 1997; King-Smith et al., 1994; Lieberman
& Pentland, 1982; Treutwein, 1997; Watson & Pelli,
1983). These methods generally calculate a sampled rep-
resentation of the likelihood and perform a grid search for
its maximum or approximate the integral by a summa-
tion of sampled values (Bayes).

To estimate threshold and slope, Watson (1979) sug-
gested a two-dimensional ML estimation by a grid search
on the two-dimensional sampled representation of the
likelihood. Green (1993) used a similar approach for se-
quential estimation of threshold and guessing rate (lower
asymptote).

A nonlinear least-squares regression routine, such as
the Levenberg—Marquardt method (Brown & Dennis,
1972; Reich, 1992) may be suitable for fitting all the pa-
rameters of a psychometric function, but, for that purpose,
the method has to be modified to use iteratively reweighted
nonlinear least-squares fitting, to account for the fact that
the responses are binomially distributed.

To achieve our goal of fitting the nonlinear four-
parameter model (threshold and spread, guessing and
lapsing rate) with only a small number of trials, we chose
a Bayesian approach, since it allows the use of constraints
through deliberate specification of a prior distribution
for each of the estimated parameters. Bayesian estima-
tion methods are based on the application of Bayes’ the-
orem, which relates the conditional probabilities P(-|-)
and marginal probabilities P( - ) associated with two events,
say A and B, as follows:

P(A| B)P(B)
P(4)
Identifying event 4 with the data X collected in an ex-

periment and B with the parameter set O to be estimated,
Equation 1 can be written as

P(X|©)P(O)
- @)
P(X)
Now, P(X|0©) = L (0] X) is the likelihood function (see
below), P(©) is the prior distribution specifying our be-
forehand knowledge about the parameter values—that is,

the constraints—and P(X) is a normalization constant
for a given experiment.

P(B|4) = (D

P(O]X)

METHOD

Psychometric Function
A psychometric function ¢(x;©) describes the probability of a
correct answer as a function of stimulus intensity x (see Figure 1). Its
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shape is given through a parameter set © = {6, g, y;, A}, where 8de-
notes the threshold location on the abscissa, Ois a shape parameter
describing the spread or inverse steepness of the function, and yand
A denote the guessing and lapsing probabilities, respectively. Given
a sigmoid function F(x; 6, 0) with asymptotes zero and one—that
is, a cumulative distribution—the general psychometric function
can be written explicitly as

P(x; 6) =y+(1 —y— A Fx 6, 0). 3)

Commonly used cumulative distribution functions are the nor-
mal,5 the logistic, the Gumbel,® and the Weibull distributions. In
our simulations and reanalysis of psychophysical data, we used the
logistic distribution for convenience and without any theoretical
implications.

Likelihood of the Data

The likelihood function is defined as the unnormalized condi-
tional joint probability density of the data, interpreted as a function
of the parameter set © (Collett, 1991, p. 49; Fisher, 1912; Morgan,
1992). Given an experimental session, with n stimulus presenta-
tions at intensities (x;, ... x,) = X, the likelihood function is thus
defined as

L=0|X)=L(O]x,,...x,) = ﬁL(@\x,.). (4)
i=1

Each L(O|x;) in the product is the probability that the subject has
given a particular answer—correct or incorrect—when a stimulus
with intensity x; was presented at trial i. This probability is consid-
ered for different values of the parameters in the set ©. The proba-
bility of a subject giving a certain answer is obtained from the psy-
chometric function. For a correct answer, this probability is, by
definition, given by (x;, ©); for an incorrect answer, it is given by
the complement [1 — ¢(x;, ©)]. The likelihood functions L(O|x;)
in the product of Equation 4, each for a single trial i, are therefore
given by

_W(x;,0) if the response is correct

LO|x;)= . 5
©1x) %-w(x,.,@) if the response is incorrect ®)

For a given data set, there are usually more trials » than different
stimulus levels £; let there be /; trials at level x,—that is,

"=Zf:11r

Let c; denote the number of correct answers at the stimulus level x;.
The outcome of the complete session will be a specific combination
of correct and incorrect answers. The likelihood for the complete
data set of a session is the product of the probabilities over all events
and is, according to Equations 4 and 5, given by

k EVID c li—c
L=0[X)=T] H. E.U(xf,@) M-y, 017 (6)
i=1 i

The binomial coefficients

take into account that, at each of the different stimulus levels, there
are several presentations; the probability at each level is assumed to
be independent of the sequence in which the stimuli were presented.

In general, the likelihood will be an extremely small value, since
it results from raising a probability (i.e., a value between zero and
one) to a high power—namely, the number of trials ». In a purely
Bayesian approach, the likelihood is normalized in such a way that
the total integral over the likelihood equals one, thereby transform-
ing the likelihood into a multivariate probability density for the pa-
rameter values. This normalization factor is given by
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Ky = [,L(©)| X)d©.

The computation of such a four-dimensional integral is tedious,
and, since we are only interested in finding the maximum of the
likelihood function, a precise normalization is not required. We have
implemented an approximate normalization, to prevent numerical
problems of underflow, that uses a scaling constant of K = 27 ina
yes—no design and K = (2a/1+a)~" in a forced-choice design with
a alternatives.

With these ingredients, we can now specify the full relationship
for obtaining the posterior probability distribution of the parameter
set ©. Note the identity between the likelihood £ (X | ©) and the con-
ditional probability of the data given the parameters P(X | ©). Insert-
ing Equation 4 into Equation 2 yields

Bou@1%)= LB @] L@ 5, ™)
i=1

where K stands for the normalization factor defined above and
Pyrior(©) specifies the prior knowledge about the parameter values.
The product of likelihoods depends on the psychometric function,
as given in Equation 5.

Prior Distribution

One of the key elements in Bayesian statistics is the use of prior
distributions that provide an elegant and explicit way of incorpo-
rating beforehand knowledge about a parameter value. Often, it is
critically objected that Bayesian statistics thereby introduce an ele-
ment of subjectivity into a seemingly objective procedure. Although
this looks like a valid critique, a closer inspection of the alternative
methods shows that they, too, have similar assumptions; they are
just less explicit: If we prespecify, for example, a model of a psycho-
metric function where all parameters are fixed except that of thresh-
old, we assume complete knowledge about the three fixed param-
eters, although that knowledge is not available. Translated into
Bayesian terminology, fixing of a parameter corresponds to using
aneedle-sharp delta function as the prior distribution, thus predeter-
mining the outcome of the estimate. Conversely, those parameters
that are left to vary in ML fitting get equal chance for every possi-
ble value, which corresponds, in Bayesian terms, to using a rectan-
gular prior. The inadequacy of the latter approach lies in consider-
ing all statistical fits as equivalent, including those with nonsensical
parameter values, such as a guessing or a lapsing rate above one or
below zero. With large data sets, that might not pose a problem, but
data points in psychophysical research are commonly scarce—that
is, the number of presentations is limited and is far from being suf-
ficient for fitting more than one parameter in that way. Most re-

searchers, therefore, assume complete knowledge about all param-
eters except that of threshold. The use of a Bayesian prior relaxes the
strong assumption of complete knowledge and allows specification
of the prior knowledge more appropriately as a smooth function.

What are adequate priors for the psychometric function’s param-
eters? Ultimately, the question of how these psychological variables—
threshold, slope, guessing rate, and lapsing rate—are distributed is
an empirical one; ideally, the empirical distributions should be de-
termined and used. As a first step, and before full prior data is avail-
able, some ad hoc assumptions are in place, though: First, the
guessing and lapsing rates need to be kept strictly within the valid
range of probabilities—that is, in the open interval (0,1). For the
lapsing probability A, it seems advisable to emphasize small val-
ues—say, in the range of 0%—5%. The prior for the guessing prob-
ability ywill depend on the experimental design: In a yes—no de-
sign, the distribution of y will be similar to that of the lapsing
probability, since, for an ideal observer, yis zero at small stimulus
intensities and may be slightly above zero for some real observer.
In a forced-choice experiment with a alternatives, the value 1/a is
assigned the highest probability. Estimation of guessing rate (rather
than fixing it at 1/a) is meaningful when subjects can have differ-
ent preferences for the alternatives and averaging over the alterna-
tives is not appropriate for some reason (as, for example, in the ex-
periments shown later).

For the implementation of the priors, an analytical description will
be the most compact way; we found the beta distribution B (x; p,q)
well suited. The beta distribution is a probability density function,
defined over the interval (0,1). With different values of the parameters
p and g, B(x; p,q) takes a wide variety of shapes, from rectangular
over symmetrically or asymmetrically bell-shaped, inverse U-shaped
or U-shaped, to L-shaped. Figure 2 shows some examples. Accord-
ing to Martz and Waller (1982), the beta distribution is given by

B(x; p.q) = B(p,g)~'xr7 (1 = x)a71, ®)

where B( p,q) is the beta function (see Press, Teukolsky, Vetterling,
& Flannery, 1992) defined by

1 p-l A, T @
B(p.q) = [, 1" (A-0)""dt = =B(g, p). 9
b F(p+q)
The gamma function I (x), in turn, is defined by the integral
— (®x-l -t
I'()c)—J'0 e dt. (10)

The beta function can be calculated from an approximation of the
gamma function given, e.g., in the Numerical Recipes (Press et al.,
1992, Chap. 6.1).

8.0 8.0
> E —— Beta{x;20.,20.) 4 F —— Beta(x;6.7,13.0) -
4+~ 7.0 —— Beta(x:10.,10.) § 4 | —— Beta(x:5.0,14.0) -7.0
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Figure 2. Examples of beta distributions B ( p,q), with symmetrical (left) and asymmetrical (right) shapes.



There is a theoretical justification that lets the beta distribution ap-
pear as the prior of choice. According to Martz and Waller (1982), the
best suited prior for the estimation of a parameter is the conjugate to
the distribution of that parameter. Guessing and lapsing rate can be
seen as representing the typical response behavior at minimal and
maximal stimulus intensity, respectively. Since responses, at a fixed
intensity, are binomially distributed, the conjugate to the binomial is
an appropriate prior. The beta distribution is that conjugate (see
Martz & Waller, 1982, Chap. 6.2) and, on this ground, seems an ap-
propriate choice as a prior for the guessing and lapsing parameters.

Prior distributions for threshold and slope need to exclude im-
possible values (e.g., negative Michelson contrasts or negative du-
rations), and provide a way to restrict the estimates to those that lie
within a reasonable range. How this can be accomplished with beta
distributions will be detailed at the end of the section about nor-
malizing the stimulus range.

Maximizing the Likelihood

Finding a function’s maximum is equivalent to finding the mini-
mum of the negative of that function; therefore, minimization rou-
tines (which are routinely available)” can be used for finding the
maximum of the posterior distribution. The task is to find the min-
imum of the negative likelihood® £':

L'(0;X) = —L(O; X). (11)

A straightforward minimization method is the multidimensional
downhill simplex method (Nelder & Mead, 1965; for an evaluation,
see Olsson & Nelson, 1975), an implementation of which is read-
ily available in Numerical Recipes (Press et al., 1992).The method
of Nelder and Mead is one of the rare optimization routines that are
claimed to be capable of minimizing nonsmooth functions (see
Chandler, 1969a, 1969b). During the development of our method,
we started off with nonsmooth constraints, and we kept this routine
later for convenience.
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Normalizing the Stimulus and Spread Range

Generally, multidimensional routines work best if the data are of
comparable magnitude on the different dimensions. Guessing and
lapsing probabilities are in the same range (0,1), but threshold and
slope, which are derived from physical stimulus properties, depend
on the experimental conditions and need to be rescaled to an appro-
priate range. For the minimization, threshold and slope are, there-
fore, mapped onto the common interval (0,1). This way of mapping
simplifies the specification of priors for threshold and spread (see
below). A stimulus range (x,;,, - - - X;nq,) that spans the sensory range
has to be specified by the user; the mapping from these (physical)
values x to internal (optimization) values & is straightforwardly given
by the linear transform:

— 4
E=A+Bx and x:E—, (12)
B
with 4 and B obtained by
Emin
4= Emin - mein and B = Emax - (lza)

Xmax ~ Fmin

The mapped variable & might be thought of as an internal excitation
level that corresponds to the external physical magnitude x. From
Equations 3 and 12, we obtain psychometric functions defined over
a thereby normalized range, with £ 0 (0,1) as independent variable.
Example plots for the logistic function L,

1
6.z’
l+exp§,—j

L(&,6;,0¢) = (13)

are shown in Figure 3, with both an arbitrary unnormalized and a
normalized abscissa. This cumulative distribution is used—in com-
bination with Equation 3—throughout the simulations and also for
the fits of the experimental results.

Logistic function: p(x)=1/(1+exp((8—x)/0a))

probability p
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Figure 3. Logistic functions over both an (arbitrary scaled) unnormalized abscissa (x) and a normalized one (§), for a num-
ber of threshold 6 and spread o (inverse slope) values (the respective other parameter held constant). @ and o are specified in
x-coordinates; see the table on the right, which also gives the corresponding & values.
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From the lower part of Figure 3, it is apparent that a reasonable
range for restricting the spread parameter, in & units, is the interval
(0.005, 0.5): Ata value of 0z = 0.5, the sigmoid has degenerated to
an almost linear function over the considered range, so this upper
bound is high enough to include all sigmoids. The set lower bound
of gz = 0.005 corresponds to an almost step-like function at the
chosen resolution after normalization. The even grading of spreads
in Figure 3 suggests that the variation of the spread parameter for
the maximization is best done in logarithmic scaling. Thus, we trans-
form the spread from the interval (0.005, 0.5) to the interval (0,1),
according to

(op) _ 1080 ~10g0.005
¢ log0.5—10g0.005

1°g10H75+3 1 Eﬁ +1.5,
- 3 5 log, @

before entering the maximization routine, and transform back, after
leaving that routine, by

(14)

zg(om)

_0.00500

x 3 (15)

Having transformed the allowable ranges for threshold and spread
to values in the interval (0,1), we are now able to specify beta dis-
tributions for these two parameters.

Choosing appropriate distribution parameters depends on the ex-
perimenter’s preferences. Setting p and ¢ to 1 in the beta distribu-
tion results in a rectangular, uniform distribution—that is, one that
assigns equal prior probability to each of the possible values for the
respective psychometric function parameter;’ this is shown as the
short dashed graph in Figure 4. Increasing the values for p,g slightly—
for example, top = ¢ = 1.2 (solid curve in Figure 4)orp = g = 1.4
(long dashes in Figure 4)—changes the beta distribution’s shape from
uniform to symmetrically inverse U-shaped with a maximum slightly
above 1 in the center region [B(0.5; 1.2, 1.2) = 1.1 and B (0.5; 1.4,
1.4) = 1.3] and a smooth decrease to zero at the borders. The prior
probability density for the threshold and spread parameter is then
more concentrated in the middle of the definition range. At the values
& =0.18 and & = 0.82, these inverse U-shaped densities intersect
with the uniform distribution, and, outside the interval (0.18, 0.82),
the densities quickly drop to zero. We propose to use these inter-
section points as &;, = 0.18 and &, = 0.82 in Equation 12a,
thereby extending the allowable range for fitted thresholds to val-
ues outside the interval (x,;,, X, ) specified by the experimenter.

This is useful for spotting formal errors: Whenever such values
occur, the input response data should be rechecked for consistency.

Final Optimization Problem!?
From Equations 6 and 7, the complete function that will be max-
imized is given by

F(©)=%(6,0.y, ) =B(O)L(9)|x)

k |:vi D C; —c,
= %P(G)P(U)P(V)P(A) 15 pee-0r0- W(x, 0147,

(16)

where Ppior(©) = B(O) = B(6, 0, ¥, A = [Nzoieoya; B(Epes 97)
denotes the multivariate prior given as the product of the individual
priors for the four parameters P(-) = B(; p., q.), as described in the
former sections; K is the normalization factor as given above; £ is
the number of stimulus levels used; /; is the number of presentations
at stimulus level x;; c; is the corresponding number of correct re-
sponses at the same level; and (/is the psychometric function as de-
fined in Equation 3. The actual ( p,¢) values of the beta distributions
used in the fitting are shown in Tables 1 and 2; the corresponding
beta distributions are illustrated in Figures 2 and 4.

RESULTS

Monte Carlo Simulations

Monte Carlo simulations for two designs of psycho-
physical experiments will be presented: (1) a single-
presentation design—that is, a special version of a constant-
stimulus design—with 100 stimulus levels and only one
presentation at each level; (2) data from a set of simulated
adaptive sessions, with stimulus placement according to
the algorithm proposed by Kesten (1958), combined with
a dynamic termination criterion based on the size of the
final Bayesian probability interval (see Treutwein, 1995).
For both applications, a psychophysical subject having a
psychometric function with a number of different shapes
was simulated. The procedure was the following: At some
stimulus level x, a single binary response, with a probabil-
ity for the correct response given by the value of the psy-
chometric function, was generated.!! This was repeated
for different stimulus values. Finally, the fit routine was

> 7
= 3 —— Beta(1.4,1.4)
‘5-*5 T — Beta(1.2,1.2)
O = 1 ---- Beta(1.0,1.0)
Qg 3
oo ]
a 3
T
0.0 0.2 0.4 0.6 0.8 1.0 ¢
r"l T T T II]III T T T I
0.005 0.01 0.05 0.1 0.5 spread
—o|.3o' ' 0 S '0!5 Y % ' '1!3 threshold

Figure 4. Beta distributions used as priors for the threshold 6 and o spread (inverse slope) pa-
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Table 1
Values for the Parameters ( p,q) of the Beta Distributions Used
in our Fits for Threshold 0, Spread o, and Lapsing Rate A

6 o A
(12,12 (1.4,1.4) 0.5.8)

Parameters

(».9)

Table 2
Suitable Values for the Parameters ( p,q) of the Beta Distribution
for the Guessing Rate vy for Different Experimental Designs
(Yes/No, Two-, Three-, Four-, Five-, Eight-,
and Nine-Alternative Forced Choice)
14
Yes/No 2-AFC 3-AFC 4-AFC 5-AFC 8,9-AFC

(1.0,5.0) (10,10) (6.7,13) (5,14) (4.2,15) (2.7,14.6)

Parameters

(1,9

called with this set of simulated binary responses, to re-
cover the (known) parameters of the simulated psycho-
metric function. By repeating this process, it is, therefore,
possible to evaluate the fitting routine with respect to bias
and precision in recovering the known properties of the
simulated psychophysical subject from limited samples.

Single-presentation design. One of the advantages of
our method of fitting binary response data is that it is ca-
pable of handling data that contain predominantly single
responses—that is, that the responses need not to be pooled
before fitting. The single-presentation simulation repre-
sents a special variant of the method of constant stimuli, in
which each stimulus value is presented only once but a large
number of different levels is used. As stimulus levels, we
arbitrarily used a range of [1,100]; threshold bias can, there-
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fore, be interpreted as a percentage. Weuseda9 X 3 X 3 X
11 factorial design, with the following conditions: A sub-
ject was simulated having its threshold at nine different lo-
cations, 8[{10, 20, 30, 40, 50, 60, 70, 80, 90} and having
three possible values of the spread parameter, o [1{5, 10,
20}; three values for the guessing rate, y[1{0, 0.333,0.5},
were used, corresponding to a yes/no, a three-alternative,
and a two-alternative forced-choice design; and 11 dif-
ferent lapsing rates, A (J{0, ... 0.1}, in steps of 0.01,
were used. These conditions result in 891 different pa-
rameter combinations. At each parameter combination,
200 different random samples, or simulated sessions,
were drawn, each consisting of 100 binomial responses at
the different stimulus values x = [1, ... 100]. The re-
sponse probability p was given by the corresponding
psychometric function. These data were fed into the fit-
ting routine. One prototypical session, with the simu-
lated responses and the corresponding underlying and
fitted psychometric function, is shown in Figure 5.

In the next step, these fits to 200 simulated sessions,
each consisting of 100 binary responses, yielded a distri-
bution of fitted parameter values. One of these distribu-
tions is shown in Figure 6, for the same underlying psy-
chometric function as that in Figure 5. There is a certain
variability of parameter estimates, but the four biases of
the parameters are all small. For the different combinations
of true parameter values, the simulations yielded 891 dis-
tributions similar to those in Figure 6. To assess the fitting
routine’s precision, two measures from each of these dis-
tributions are useful: the deviation of the estimate’s mean
from the prescribed (true) value (i.e., the bias B) and the

—(x=6)/0))

y =7+ Q=72 /(1 + exp(
“ T T T T l T T T T I T
1.04 w®o
- q1----- underlying psychometric function
8 0.84— fitted psychometric function
. ’ 0 simulated response data
S 4
© 0.6
o i
.0
+ 044
5 |
O
o 0.2
O 4
0.0 ®® oo o aom®D

om®

T T T T T T T

0 25

T T T T ¥ T T T T T T T

50

stimulus level

Figure 5. One session of a single-presentation design (simulated response data); propor-
tion of correct responses versus stimulus level. Dashed curve: underlying psychometric
function with parameter set § = 50, o = 10, v = 0.333, and A = 0.01. Open symbols: simu-
lated responses, determined in their proportion of correct/incorrect by the former. Solid
curve: fitted psychometric function with parameter set 6 = 48.1, oo = 11.9, ¥ = 0.332, and

A =0.012.
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estimate’s standard deviation S. The bias shows the sys-
tematic deviation between the fitted parameter and its true
value; it is seen in Figure 6 as the distance between the
arrow and the dashed line. The estimate’s standard devia-
tion is a measure of the random error introduced by the es-
timation process. It is seen in the figure as the width of
the distribution. By subtracting the true values from the
estimates, we get distributions of estimate deviations from
the true value (not shown), which have the same shape but
are shifted along the parameter axis such that the true val-
ues are at zero. The mean and the standard deviation of
that distribution of estimate deviations are the two mea-
sures of interest—bias B, which is a measure for system-
atic misestimation, and variability S, which reflects the
random estimation error, respectively. Note that the stan-
dard deviation of estimate deviations is equal to the stan-
dard deviation of the estimate itself; these two terms are,
therefore, used synonymously. The distributions of these

two measures are shown in Figures 7 and 8, respectively:
Figure 7 shows the distribution of estimate biases B, for
the four parameters p = 6, g, y, and A, and Figure 8 shows
the distributions of those estimates’ standard deviations,
S, Note that these are second-level statistics: Each bias or
standard deviation in Figure 7 or Figure 8 is itself based on
a distribution like that in Figure 6. Taking all 891 condi-
tions together, a total of around /8 million responses were
simulated in this part of the evaluation.

Concerning the accuracy of the estimates, the best re-
sults are obtained for the threshold and spread param-
eter. A majority of threshold biases lies between 2% of
the range [1..100], and all threshold biases are between
—6% and +8%. Spread estimate biases are all between
—4 and +5, with a majority being between +2 (for an in-
terpretation of these values, see Figure 3, bottom, the
graphs for 03, 0,, and 05). Guessing rate estimate biases
come out equally well. Perhaps less convincing are the
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results for the lapsing rate biases: Given that the lapsing
rate will typically be less than 5%, the overall range of
13% appears quite large.

Although there is little systematic error (as can be seen
from Figure 7), Figure 8 shows that the results for random
error are less favorable: Although the variation of thresh-
old estimates, for example, can be as low as 2% of the
range [1 ... 100], higher values are frequent, up to 14%
and more. Similarly, spread estimation can have standard
deviations of up to 14—16, although there are also those
lucky cases in which the standard deviation is below 2.
Guessing rate and lapsing rate estimation is more success-
ful, with a majority of standard deviations lying around
5%. A reason for these results is readily apparent: Stim-
uli, in this design, are evenly spaced along the stimulus
axis. On the one hand, comparatively few stimuli are lo-
cated around the threshold, where they contribute to the
estimation of threshold and spread. A majority of stim-

uli, on the other hand, are located away from the thresh-
old—that is, in a region where they contribute to the es-
timation of the guessing and lapsing rates.

The bias distribution for the lapsing rate (Figure 7, up-
per right) and the distribution of standard deviations for
the other three parameters (Figure 8, threshold, spread,
and guessing rate) are pronouncedly nonnormal. The ques-
tion arises, what this implies and where this nonnormal-
ity stems from. There might be a systematic dependency
on somehow unfavorable parameter constellations for
which the estimates for different parameters covary with
each other. Another explanation might be influences of
the range boundaries: When the simulated data set does
not cover the relevant range of the psychometric func-
tion, only part of the ogive is matched by stimuli—for
example, when O is 10 or 90. To detect such influences
of parameter constellations, the data shown in Figures 7
and 8 were regrouped, as is illustrated in Figure 9 and de-
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scribed below, and were subsequently replotted in Fig-
ures 10 and 11. Each subplot in the latter two figures rep-
resents the variation of a simulated condition and the in-
fluence of this variation on the fitted parameters.

The grouping rule by which these distributions were
formed was to collect all points that share the value of the
underlying parameter that is varied (i.e., that on the ab-
scissa) and to thereby collapse over all remaining param-
eter combinations. Each subplot in Figures 10 and 11 thus
contains all datapoints, in a different arrangement each.
To illustrate the regrouping, Figure 9 shows threshold
distributions grouped by the underlying threshold value
as histograms, together with the total histogram in the
figure’s top. Above each histogram in Figure 9 is a so-
called median-box plot that summarizes the histogram:
The center is the median of the data falling in this group;
the upper and lower box edge delimits the upper and
lower hinge, respectively, a hinge being the median of
the (upper or lower) half of all points; the “whiskers” de-
limit the full range of the values. The median box is a
graphical representation of Tukey’s (1977) five number

summary (minimum, first quartile, median, third quartile,
maximum). In Figures 10 and 11, these median boxes are
overlaid by the data points contained in that group (the
latter overlapping considerably). These two figures il-
lustrate the errors introduced by the sampling (only a fi-
nite number of responses was simulated) and the fitting
process: Figure 10 shows the bias (i.e., the systematic
error), and Figure 11 the standard deviation (i.e., the ran-
dom variability).

In Figure 10, consider first those subgraphs that lie on
the main diagonal and show the dependency of a para-
meter’s estimation bias on the true value of that same pa-
rameter. Although there is little effect to be seen for the
parameters threshold, spread, and guessing rate, there
are drastic effects for the lapsing rate (top right). Lapsing
rate bias shows a steep, approximately linear variation
with the true value, where more negative biases are cou-
pled to the higher true values. Higher lapsing rates—un-
der the given circumstances—are thus harder to estimate,
with the estimated psychometric function’s high asymp-
tote being systematically higher than the prescribed value
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(A being systematically underestimated). At the same
time, biases are not only larger but are also increasingly
variable the higher the true value is, and, for true lapsing
rates of 5% and above, there is not a single case of zero
bias (i.e., of correct estimation).

The reason lapsing rates are underestimated is simple:
The prior was chosen as being plausible for an attending
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observer, who rarely lapse. The tested range of true val-
ues for the lapsing rate extended up to 10%, that limit re-
flecting an inattentive observer, to see what happens in
those unexpected cases. High lapsing rates are preserved
by the fit, although they come out smaller than the cor-
responding true values.

The conclusion to be drawn from the graph is that the
overall negative bias seen in Figure 7 for the lapsing rate
estimates largely stems from those cases in which the
true lapsing rate values were untypically large. Our fit-
ting routine systematically underestimates large true laps-
ing rates. This can be inferred from comparing the top
right graph of Figure 10 with the others in the same row:
None of these other three graphs for the lapsing rate show
any systematic pronounced variation with the independent
parameter, except for some effects from thresholds be-
tween 70% and 90% of the scale, discussed below. There
is, of course, in all those three graphs an overall negative
bias apparent, but that is just a reflection of the fact that
each graph contains the full data set—that is, it just rep-
resents a regrouping of the data.

Consider next the rightmost column of graphs in Fig-
ure 10, which show how true lapsing rate influences the
estimates of the other parameters. Again, the influence is
pronounced at too high true values. There is little influ-
ence on guessing rate estimation, which is not surprising,
since guessing rate is reflected in different responses than
is lapsing rate. Spread and threshold bias, however, clearly
show a systematic dependency on true lapsing rate, with
larger spread and threshold biases for the higher (unfa-
vorable) true lapsing rates.

For the illustration of these results, a typical situation
of misfit is shown in Figure 12. True threshold, spread,
and guessing rate parameters have been chosen as the
middle ones of the tested ranges and are representative of
these simulations; lapsing rate has been chosen at the un-
favorable extreme of 10% (solid lines). A typical fit is
shown (dashed lines), with fitted parameters chosen, from
Figure 10’s rightmost column, as the medians at A = 10%.

The deviation between true and fitted psychometric
functions in Figure 12 is small. But since the deviations
in these simulations are systematic, they are of interest.
The result that a reduced slope and increased threshold
accompany the underestimated lapsing rate can be intu-
itively understood as follows: The inadequate prior, ef-
fectively, increases the overall span (1 — y— A) of the
psychometric function by approximately 5%. Response
behavior is inherently ambiguous, in that wrong responses
can stem both from incomplete perception (shallow slope)
and from insufficient concentration on the task (lapsing).
Through the underemphasis of lapsing by the prior, wrong
responses tend to be attributed by the ML algorithm to in-
complete perception rather than to lapsing. This will be
most apparent above threshold, where more correct than
incorrect responses are present and the wrong attribution
thus flattens the psychometric function and increases its
spread and threshold. Put formally, spread and threshold
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grouping and the bar-like representation.

covary with lapsing rate in the optimization space such
that a bias in one parameter leads to an opposite bias in the
covarying parameters.

Returning to Figure 10, a final effect that needs men-
tioning is the reduced accuracy of lapsing rate estimation
when thresholds are high, between 70% and 90% (top
left graph). This can be readily understood by realizing that
a high threshold implies a situation in which the stimu-
lus range is insufficient to let the psychometric function
go “all the way up,” where lapsing would be apparent.

Figure 11 shows the random errors of estimation, in a
similar arrangement as that in Figure 10 that shows the
systematic errors. The figure in many aspects confirms

the conclusions drawn from the previous figure. Thresh-
old estimation (bottom left graph) works well over a wide
middle range of true values, with increased variability at
the high extreme of true threshold at 90, although the bias
there is still low. Smaller spreads (steep slopes) are more
accurately estimated than are larger ones (graph 0/0). It
is interesting that a guessing rate of zero (graph y/y) is
overall better estimated (small median of variability) than
are larger guessing rates but that there is, at the same time,
a large number of outliers with high variability at a guess-
ing rate of zero. The lapsing rate (top right graph) shows
the corresponding influence on variability to that on bias,
high lapsing rates leading to increased variability of esti-
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Figure 11. Regrouping of the data from Figure 8, similar to Figure 10. It shows how the random variability of the estimates depends

on the true parameter values.

mation. Too high a lapsing rate further decreases the ac-
curacy of spread and threshold estimation (right column
of graphs). Finally, note the increased number of outliers
in guessing rate estimation when the threshold is low
(graph y/ ©)—that is, when there are few responses below
threshold on which to base estimation.

Figures 11 and 10 can be summarized in the following
general hypotheses: (1) the range of stimulus values used
in the experiment should cover the range of major vari-
ability of the psychometric function; (2) the more the
prior distributions misrepresent the distribution of the
true parameter values, the more bias is introduced in the
fitting of that parameter (our simulations show this for
the case of the lapsing rate parameter); (3) a failure to fit
one parameter is accompanied by failures to fit other
parameters that covary in the optimization space; and

(4) spread, threshold, and lapsing rate estimates covary
with each other.

Adaptive stimulus placement. In a second set of
Monte Carlo simulations, we have studied the properties
of our fitting technique with data from an adaptive stim-
ulus placement strategy. From the standpoint of psycho-
metric function fitting, such data pose the problem of
being unevenly distributed along the stimulus axis—a
natural consequence of the optimization toward efficient
determination of thresholds. As adaptive placement strat-
egy, we have chosen accelerated stochastic approximation
(Kesten, 1958), which, although rarely used in psycho-
physics, holds promise of being a particularly efficient
variant, thus posing a critical test for our fitting routine.
Since, in Kesten’s original publication, it was left unspec-
ified how the threshold estimate should be obtained (other
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than just taking the last stimulus value in the series, which
is a rather rough estimate when runs are short), we used
our method to calculate final estimates for all four param-
eters of the psychometric function. Kesten’s placement
rules are a special variant of a staircase, or up—down, pro-
cedure: The session is started with a reasonable initial step
size c at some plausible stimulus intensity x;. For the sec-
ond presentation, the stimulus intensity is decreased by
¢(1 — ¢ if the response was correct (z; = 1) and is in-
creased by c@if the response was incorrect (z; = 0). Pa-
rameter @stands for the desired level of performance at
threshold (for example 0.5 for a yes/no design or 0.75
for a two-alternative forced-choice design). The rule im-
plies different step sizes for upward and downward steps,
except for the special case of ¢= 0.5 (i.e., for a yes/no
design with zero guessing and lapsing rates). After the
second presentation, the step size is diminished whenever
a shift in response category occurs (from correct to in-
correct or vice versa). The placement of the stimulus lev-
els can be described by

Zz, - o,
L+ mgyi

(17

where, X, is the stimulus level presented on trial n, Z,, is
the subject’s response on that trial (i.e., 1 for a correct and

0 for an incorrect answer), ¢ is an initial step size, and
mg,ig 18 the number of shifts in response category. This
sequence is guaranteed to converge to x,;—the stimulus
level x at which performance level is ¢—if the number of
presentations # is large enough (see Kesten, 1958; Treut-
wein, 1995).

Distribution histograms of the four estimated param-
eters, for simulations of a two-alternative forced-choice
and of a yes/no design, are presented in Figures 13 and
14, respectively. The simulated sessions were terminated
when a certain level of confidence for the threshold pa-
rameter was reached (see Treutwein, 1995, p. 2517; Treut-
wein, 1997, Equation 4). This confidence level was delib-
erately set low to see how useful results with a rather
limited number of trials are. With the set termination cri-
terion, the sessions terminated, on average, after 18.2 trials
for the yes/no design and after 63.1 trials for the two-
alternative forced-choice design. In both designs, the
threshold, guessing rate, and lapsing rate all come out
accurately—that is, without a systematic deviation. The
variability of threshold estimates is probably a little high
for some applications, and one would use more trials when
this is the case. The results show, however, that even as
few as 20 responses per session allow a reasonable estima-
tion of threshold and simultaneous estimation of further
parameters. The spread parameter is less well estimated,
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however, the estimate showing a prominent negative bias
in both designs. We have no explanation for why steep
rather than shallow psychometric functions are predom-
inant. A large variability of the slope or spread is to be
expected, though, given the placement strategy, which is
optimized for the estimation of threshold: The adaptive
strategy tries to place the trials at the location of the
threshold—that is, at a single point—so that slope estima-
tion is unreliable (if the strategy were completely
successful to present all stimuli there, the slope would be
undefined, and any value of the slope parameter would
satisfy the fit). If the goal is to determine slope more pre-
cisely and still efficiently, a different adaptive strategy is
required, preferably one with a bimodal placement dis-
tribution centered around the expected threshold (see
King-Smith & Rose, 1997).

Application to Experimental Data

Monte Carlo simulations provide a systematic and un-
ambiguous way of evaluating the proper working of a
statistical procedure. Nevertheless, data from real experi-

ments often pose unexpected difficulties for any new sta-
tistical method, and, ultimately, a method’s worth will be
demonstrated by wide application. As a first step, the
new fitting procedure has been applied for post hoc analy-
sis of data from several psychophysical tasks, one of which
will be presented here. The data stem from a spatial nine-
alternative forced-choice task for obtaining a certain mea-
sure of temporal resolution of human visual performance,
the so-called double-pulse resolution. The task was to de-
tect a temporal flicker in one of nine light spots presented
at different locations in the visual field. Eight of the lo-
cations were arranged on the circumference of a circle,
and one in its center; the subjects had to identify the lo-
cation of the randomly chosen flickering target stimulus.
The method and results are described in Treutwein and
Rentschler (1992). Here it suffices to state the expected
range for thresholds, which is from 0 to 100 msec, and
to note that data should not be pooled over the nine al-
ternatives for two reasons: For one, double-pulse resolu-
tion (i.e., threshold) is variable across the visual field,
and second, a possible response bias toward one of the
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Figure 14. Same as Figure 13, but for a yes/no experimental design.

nine different alternatives would lead to a relatively in-
creased guessing rate for that alternative. Although the
subjects were instructed to use all the alternatives when
guessing, each subject did exhibit such bias; the preferred
location for guessing was different between subjects.!2
The stimulus levels—in this task, the duration of the tar-
get’s dark interval—were chosen by an adaptive proce-
dure of the Bayesian type (YAAP; Treutwein, 1997). On
average, 36 presentations (33—42) were necessary at
each stimulus location in a session to reach the threshold’s
set reliability level. Sessions were repeated many times
under identical stimulus conditions for the same subject
to obtain information about the variability of the psycho-
metric function; the data from 25 repeated sessions are
shown in Figure 15. Several sources contribute to the over-
all variability: (1) variability (random error) of estimation,
which is of primary interest here; (2) variability of the
subject’s performance, owing to fatigue, for example; and
(3) systematic changes in the subject’s performance—for
example, through learning.

Most resulting psychometric functions in Figure 15 re-
semble each other quite well. There are, however, also
some remarkable outliers: In some cases, the slope is

markedly reduced; in others, the lapsing rate is increased.
Since, for real psychophysical data, we cannot know the
underlying data-generating process and since it is diffi-
cult to define goodness-of-fit measures for sparse and
unbinned binary data (see Agresti, 1990, chap. 4.6), we
give a graphical representation of the goodness of fit in
Figure 16. For this purpose, we took, as an example, the
25 data sets of the lower left panel of Figure 15—which
contains one case of reduced slope and one of increased
lapsing rate—and plotted, separately for each session, the
fit and the corresponding raw data. Each subplot in Fig-
ure 16 shows the cumulated rate of correct answers in its
lower part and the number of presentations in the upper
part; the case of increased lapsing rate is the one on bot-
tom left, and that of reduced slope is the next to the right.

One can see that the increased lapsing rate in that es-
timate results from one single wrong response (Figure 16,
bottom, left graph). The one case of reduced slope in the
example (Figure 16, bottom row, second column) is ac-
companied by stimulus levels spreading over an untypi-
cally large range. Some other reason outside the percep-
tual processes (perhaps a failure of the equipment, an
inadvertent change of viewing distance, or sleepiness of



FITTING THE PSYCHOMETRIC FUNCTION 103

proportion of correct responses p,

T T T
80 100 20

T T

40 60 80 100 100

stimulus level [ms]

Figure 15. Fitted psychometric functions to repeated measurements in a psychophysical nine (spatial)
alternatives forced-choice task, described in the text. The subgraphs are spatially arranged analogous to
the stimulus positions in the visual field—that is, the outer eight graphs correspond to the eight peripheral
positions on a circle around the middle position and the center graph refers to foveal presentation. Each
subplot shows 25 logistic psychometric functions, each the best fitting to the data from a single session. For
the nine locations together, these functions represent 225 fits.

the subject) may have contributed to incoherent response
behavior; the data set might be given further attention or
ultimately excluded from further analysis.

DISCUSSION

With Monte Carlo simulations, we were able to show
that as few as 20 trials are sufficient to recover the param-
eters of a simulated subject in a yes/no task. For scarce data
collected with an adaptive placement strategy, consider-
able bias for the spread is to be expected. Whether this
failure to precisely recover the spread parameter is a con-
sequence of assessing all four parameters simultaneously,
is a consequence of the adaptive strategy, or is inherent in
the ML method, is difficult to decide. There is some evi-
dence in the literature (McKee et al., 1985; O’Regan &
Humbert, 1989; Swanson & Birch, 1992) that favors one

of the latter two views, but there is, as yet, not enough
evaluation of the ML method published for psychophys-
ical application. Available studies fail to cover a compa-
rable range of parameter values and fail to assess sys-
tematic interdependencies between threshold and slope,
as well as the implication of mismatched guessing and
lapsing rates. The data by Swanson and Birch show that
erroneous specification of the lapsing rate introduces
large bias and a large standard deviation for the estimated
threshold values. A possible cause for this bias and vari-
ability of the estimated threshold is that the lapsing rate
is fixed at a wrong value. Simultaneous estimation of the
lapsing rate with our routine will reduce the bias.

As in all multidimensional fits, the parameter esti-
mates covary with each other in the optimization space.
For the present case, this means that all four parameters
of a psychometric function can only be estimated with
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Figure 16. Repeated psychophysical measurements: Data from the bottom left graph in Figure 15 (i.e., 25 repeated sessions at fixed
stimulus conditions). Each of the 25 subfigures shows the number of presentations (top), the raw data cumulated at each stimulus level
(closed circles in bottom part), and a fitted psychometric function (solid line), all as a function of stimulus level.

some interdependence between the estimates. Although
this might be undesirable in very special cases, the advan-
tage of our method is that the rigid assumptions of com-
plete knowledge of the other parameters in the conven-
tional threshold-only fits are relaxed. Our results show
that simultaneous estimation of the lapsing rate improves
the accuracy for threshold and slope estimation when an
appropriate prior for the lapsing rate is chosen.
Although the Bayesian approach is often debated reli-
giously, we think that its application provides a straight-

forward and reasonable way to realize constraints for a
problem that is otherwise difficult to solve. We have cho-
sen beta distributions for specifying the prior informa-
tion. Another choice is that of penalized likelihoods, but
this approach is counterintuitive in that it weights high and
low guessing and lapsing rates as equally probable. We
find the deliberate construction of prior distributions that
reflect the beforehand knowledge the more appealing.
The selection of the family of beta distributions as priors
for the guessing and lapsing rates is reasonable on the



basis that the beta distributions are the conjugates to the
binomial distribution; psychophysical responses at a fixed
stimulus value are binomially distributed. For threshold
and spread, we lack a theoretical foundation for the spe-
cific choice of the beta distribution and have chosen it for
convenience. The priors for the latter two parameters
should ideally be specified with empirically determined
values of the beta distribution’s (p,q) parameters such
that the latter reflect the prior knowledge—that is, the
distribution of threshold and spread estimates in a repre-
sentative group of the population. King-Smith et al. (1994)
used priors in their adaptive placement strategy for thresh-
old measurement (ZEST) that are based on analytical ap-
proximations to histograms (19.000 and 70.000 thresh-
old, for two different experimental tasks).

Conclusions

We have developed a constrained generalized ML
(CGML) method to fit all four parameters of a descrip-
tive psychometric function—namely, threshold, spread,
guessing rate, and lapsing rate. Given the binary nature
of the responses, the existence of nonzero asymptotes
(guessing and lapsing rates) creates certain difficulties for
parameter estimation. We give an overview of the theory
behind the method, which is scattered over different areas
in the statistical literature. Our method is a constrained
extension of a later variant of Finney’s (1971) probit analy-
sis, which maximizes the log-likelihood numerically.
The method is capable of analyzing binary-response raw
data and can be used with sparse data (20—100 trials,
depending on the experimental design, seem to be suffi-
cient). Possible applications are the final parameter esti-
mation in experiments using adaptive strategies for the
stimulus placement like standard staircase procedures—
where often the only estimate is that of averaged rever-
sal points (see, e.g., Garcia-Pérez, 1998; Kaernbach,
1991; Wetherill, 1963) or stochastic approximation where
the estimate is the last tested value (Kesten, 1958; Rob-
bins & Monro, 1951). To demonstrate our fitting method’s
dependability and applicability, we performed extensive
and careful simulations with a broad range of simulated
parameter values. The method was further tested with data
from psychophysical experiments. Our results show that
it is possible to fit all four parameters of a psychometric
function dependably.
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NOTES
1. In the bioassay literature, the high and low asymptotes are usu-

ally called natural immunity and natural response rate, instead of laps-
ing and guessing rate.

2. This assumption of independence has sometimes been named the
high threshold assumption (Green & Swets, 1966).

3. The routines have been implemented in the programming lan-
guages Modula-2 and are currently maintained in Component Pascal
(see http://www.oberon.ch). Readers interested in the program source
code or a machine-translated version in C should contact the first au-
thor.

4. We thank an anonymous reviewer for drawing our attention to this
fact. Our approach enhances such a likelihood maximization by in-
cluding Bayesian constraints. All available implementations of probit
analysis, to our knowledge, stay with Finney’s earlier work and use the
iteratively reweighted linear regression on the transformed data.

5. For the cumulative normal, the position parameter 8is the mean,
and the spread parameter o'is the standard deviation of the normal prob-
ability density function.

6. The Gumbel distribution plotted over a linear abscissa is equiva-
lent to the Weibull plotted over a logarithmic one.

7. For an overview of available optimization routines, see Fletcher
(1995) or take a look at the Web page http://www.mcs.anl.gov/home/
otc/Guide

8. Although actually £' was minimized, we speak of maximizing
the likelihood L .

9. Using a rectangular distribution as prior for a specific parameter
would be equivalent to pure ML estimation and allows someone who is
extremely skeptical about Bayesian priors to resort to ML.

10. A second anonymous reviewer drew our attention to the similar-
ity between our approach of fitting a psychometric function and the
Bayesian estimation methods used to fit item-characteristic curves in
item response theory (IRT; see, for example, Hambleton, 1989; Ham-
bleton & Swaminathan, 1985). In IRT, as in psychophysics, the param-
eters of a sigmoid function are estimated and data are also scarce. In
psychophysics, the independent variable is the stimulus level (a physical
quantity), whereas, in IRT, the independent variable is the (unobserv-
able) ability of a subject that underlies her/his performance in a specific
test item—that is, a variable that can be scaled arbitrarily.

11. We used a linear congruential random number generator with seed
65539, multiplier 69069, and modulus 23!, which results in a period
length of approximately 22 (Routine RN32 from the CERN library).

12. It has been reported that normal human subjects are unable to be-
have randomly (Brugger, Landis, & Regard, 1990).
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