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Abstract:  Spatially-explicit simulation models are commonly used to study complex ecological 

and socio-economic research questions. Often these models depend on detailed input data, such as 

initial land-cover maps to set up model simulations. Here we present the landscape generator EFFortS-

LGraf that provides artificially-generated land-use maps of agricultural landscapes shaped by small-

scale farms. EFForTS-LGraf is a process-based landscape generator that explicitly incorporates the 

human dimension of land-use change. The model generates roads and villages that consist of 

smallholder farming households. These smallholders use different establishment strategies to create 

fields in their close vicinity. Crop types are distributed to these fields based on crop fractions and 

specialization levels. EFForTS-LGraf model parameters such as household area or field size frequency 

distributions can be derived from household surveys or geospatial data. This can be an advantage over 

the abstract parameters of neutral landscape generators. We tested the model using oil palm and 

rubber farming in Indonesia as a case study and validated the artificially-generated maps against 

classified satellite images. Our results show that EFForTS-LGraf is able to generate realistic land-cover 

maps with properties that lie within the boundaries of landscapes from classified satellite images. An 

applied simulation experiment on landscape-level effects of increasing household area and crop 

specialization revealed that larger households with higher specialization levels led to spatially more 

homogeneous and less scattered crop type distributions and reduced edge area proportion. Thus, 

EFForTS-LGraf can be applied both to generate maps as inputs for simulation modelling and as a 

stand-alone tool for specific landscape-scale analyses in the context of ecological-economic studies of 

smallholder farming systems. 
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Abstract 
Spatially-explicit simulation models are commonly used to study complex ecological and socio-

economic research questions. Often these models depend on detailed input data, such as initial 

land-cover maps to set up model simulations. Here we present the landscape generator EFFortS-

LGraf that provides artificially-generated land-use maps of agricultural landscapes shaped by 

small-scale farms. EFForTS-LGraf is a process-based landscape generator that explicitly 

incorporates the human dimension of land-use change. The model generates roads and villages 

that consist of smallholder farming households. These smallholders use different establishment 

strategies to create fields in their close vicinity. Crop types are distributed to these fields based 

on crop fractions and specialization levels. EFForTS-LGraf model parameters such as household 

area or field size frequency distributions can be derived from household surveys or geospatial 

data. This can be an advantage over the abstract parameters of neutral landscape generators. We 

tested the model using oil palm and rubber farming in Indonesia as a case study and validated the 

artificially-generated maps against classified satellite images. Our results show that EFForTS-

LGraf is able to generate realistic land-cover maps with properties that lie within the boundaries 

of landscapes from classified satellite images. An applied simulation experiment on landscape-

level effects of increasing household area and crop specialization revealed that larger households 

with higher specialization levels led to spatially more homogeneous and less scattered crop type 

distributions and reduced edge area proportion. Thus, EFForTS-LGraf can be applied both to 

generate maps as inputs for simulation modelling and as a stand-alone tool for specific 

landscape-scale analyses in the context of ecological-economic studies of smallholder farming 

systems. 
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1 Introduction 

Over the last decades simulation models have increased in complexity as a response to 

increasing demands on the robustness of model predictions (Grimm & Berger, 2016). Recent 

simulation models tend to increasingly consider more details of real world systems, such as 

environmental heterogeneity (Grimm & Berger, 2016). For example, recent spatially-explicit 

simulation models in land-use science typically incorporate environmental heterogeneity by 

modelling the spatio-temporal distribution and dynamics of land-cover types (e.g. Ayllón et al. 

(2016), Tietjen (2016)). 

However, environmental data, such as land-cover maps, can often not be obtained at the 

necessary level of detail. This problem is especially prevalent in tropical regions, where constant 

cloud coverage limits remote sensing data usability. In such cases, as well as for systematic 

research analyses, it may be necessary to artificially generate land-cover maps that approximate 

reality. For this purpose, landscape generators (also called landscape simulators) have been 

developed (Langhammer et al., 2019). A typical landscape generator creates landscapes 

consisting of a grid of cells, where each cell is assigned a given land-cover type. Landscape 

generators can also be used to systematically generate many similar land-cover maps and thereby 

allow for scenario-based control of landscape characteristics. Moreover, the option of producing 

a range of (also non-realistic) landscapes, e.g. by setting population density or field sizes to 

unrealistically high values, is an important tool for testing potential scenarios and improving the 

understanding of model processes. 

Two approaches are known for landscape generators: pattern-based landscape generators and 

process-based landscape generators (Langhammer et al., 2019). Pattern-based landscape 

generators allow for control over the amount and spatial distribution of cover types with 

relatively low model complexity and only a small number of parameters. Many pattern-based 

landscape generators are based on artificial (e.g. fractal) algorithms and the resulting landscapes 

are often known as neutral landscapes (Gardner et al., 1987; With, 1997). However, real world 

land-cover patterns are often the result of historical land-use change by human interaction with 

the landscape and as such a result of the processes that shape these landscapes. Furthermore, the 

outcomes of these interactions often result in spatial patterns that differ substantial from those 

shaped by neutral processes. Thus, in contrast to pattern-based landscape generators, process-

based generators try to simulate the processes that lead to the pattern (Schröder & Seppelt, 

2006). The process-based approach can be more costly regarding the number of parameters and 

model complexity. However, parameters often have an empirical meaning and can be measured 

with surveys allowing for creation of artificial landscapes that mimic properties of real world 

landscapes of a certain study area. The resulting land-cover maps are often used to inform 

applied simulation modelling studies, oftentimes for model initialization. 

Two key processes driving anthropogenic land-use changes are the rapid expansion of roads 

(Laurance et al., 2009; Ibisch et al., 2016) and the related expansion and intensification of 

agricultural fields (Laurance et al., 2014). Models that incorporate these processes into models of 

landscape design, such as DYPAL (Gaucherel et al., 2006) and G-RaFFe (Pe’er et al., 2013), 

have been shown to successfully produce realistic ranges of landscape characteristics for 

anthropogenically-altered landscapes. 

For some model applications, however a land-cover map alone is not sufficient. For example, 

EFForTS-ABM, an agent-based model studying land-use change in agricultural landscapes 

dominated by smallholders in Indonesia, requires additional information regarding fields (as 

agricultural units) and land ownership, because smallholder households are modelled as agents 

that own these fields (Dislich et al., 2018). The determination of fields and allocation to specific 

households cannot be done using remote sensing data and is difficult to obtain using only 
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pattern-based landscape generators. In consequence, the human perspective is often lacking 

completely in landscapes used for ecological research (including modelling), and in fact, forming 

one of the key gaps between ecological and socioeconomic research. Thus, an extension of the 

process-based approach to landscape generation is needed that overcomes this mismatch and 

incorporates the human dimension of landscape ownership and management. 

Here, we present a new model, EFForTS-LGraf, for creating land-cover maps that represent 

agricultural areas dominated by smallholders. We focus on smallholders because they comprise a 

large proportion of farmers in most parts of the world. The model allows for flexible 

parameterization of the main processes shaping these landscapes, i.e. road creation and field 

establishment by smallholder farming households. The model algorithms follow the assumption 

that the creation and expansion of agricultural land is connected to road establishment, as has 

been reported in several case studies (e.g., Gatto et al. (2015), Kirby et al. (2006), Soares-Filho 

et al. (2001)). We build upon G-Raffe, an existing landscape generator that simulates the process 

of field establishment along roads (Pe’er et al., 2013) but does not explicitly incorporate the 

household dimension. We extended the algorithms of G-Raffe by using an agent-based 

modelling approach and introducing smallholder farming households that have a specific home-

base and a given household size. 

We present a detailed model description of EFForTS-LGraf, using the ODD (Overview, 

Design concepts and Details) protocol for describing agent-based models (Grimm et al., 2006, 

2010) and the ODD+D (ODD + Decision) extension of the protocol for describing agent-based 

models that involve human decisions (Müller et al., 2013). We take smallholder farming in 

Jambi province, Indonesia, as an example to demonstrate model applications using three 

approaches (Details, see Section 3): (1) We use a sensitivity analysis to quantify effects of 

EFForTS-LGraf model parameters on properties of the landscapes generated. (2) We compare a 

classified land-use map from our study region to the landscapes generated with EFForTS-LGraf. 

(3) In an applied case study we investigate effects of household consolidation and specialization 

on landscape patterns. All approaches are based on quantification of landscape characteristics via 

landscape metrics. 

2 Model description 

2.1 Overview 

2.1.1 Purpose 

The general goal of the EFForTS-LGraf landscape generator is to create artificial maps of 

landscapes that are dominated, or strongly shaped, by agricultural activities. The grid-based 

maps include fields of various sizes and different crop types and other potential land-cover types 

as desired. These other potential land-cover types, such as forest, grassland, water bodies or 

degraded land are grouped into a single land-cover type (here, we used the general term 

’others’). In addition to fields, the model considers land ownership by assigning each field to a 

farming household agent. Artificial land-cover maps produced by EFForTS-LGraf can be used 

as a template, or input, for other models which, for example, can simulate the effects of land-use 

types on ecological and/or economic functions. The resulting maps may also be used as a starting 

point to analyse how farmer decisions alter land-use and shape land-use changes. 



6 

 

Figure 1: EFForTS-LGraf flowchart including process flow of main model processes and model inputs. 

2.1.2 Entities, state variables and scales 

The simulated landscape comprises several spatial units: cells, fields, households and the 

landscape. Roads are a non-spatial unit of EFForTS-LGraf as they are similar to polylines in a 

GIS context. Cells are the smallest spatial unit of EFForTS-LGraf. The landscape consists of a 

regular grid of these cells. The cell size can be set by the user and should approximately 

correspond to the smallest size of fields in the landscape. The extent of the landscape can also be 

set by the user. Cell attributes include its land-cover type, e.g. ’others’ or ’field’, and the 

household the cell belongs to (if any). Moreover, each cell has the attribute of whether it contains 

an intersecting road or not. The fields are composed of one or several contiguous cells that have 

all the same crop type and belong to (or are managed by) the same household. Each household 

has a home-base cell and owns one or several fields that do not need to occur next to each other. 

The household is represented by an agent that is establishing fields close to the household’s 

home-base cell during the simulation process. 
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Figure 2: Output map examples of EFForTS-LGraf. All maps include patches of inaccessible area (brown color) 

and roads (black lines). In the field ownership map (upper left), hues indicate field owners. In the crop type map 

(upper right) colors indicate fields with different crops. The agriculture-non-agriculture map (lower left), is a 

binary map that differentiates agricultural cells (purple) from other cells (grey). The ’others’ patches map (lower 

right) is similar to the agriculture-non-agriculture map but shows each separate patch of class ’other’ in another 

color. 

2.1.3 Process overview and scheduling 

EFForTS-LGraf is initialized with a landscape completely covered by cells of the general class 

’others’ (Fig. 1). Within the procedure "Road creation and household placement" a network of 

roads is established either artificially or taken as input from a realistic road map (see Road 

creation and household placement in Section 2.3.2). The number of households in the landscape 

is determined and households are placed onto the map by assigning home-base cells. All home-

base cells belong to the road network, i.e. home-base cells always have a road intersecting them. 

The spatial distribution of households may be completely random or aggregated in villages, 

depending on the village size distribution. In the "Field establishment" procedure, the households 

establish fields close to their home-base cell. This procedure is designed such that the resulting 

frequency distribution of field sizes as well as the resulting frequency distribution of household 

areas approximate the expected distributions set by the input parameters (see Field establishment 

in Section 2.3.2). Thereafter, the procedure "Crop type assignment" assigns crop types to the 

established fields based on input parameters such as fractions of crop types and specialization 

degree (see Crop type assignment in Section 2.3.2). Finally, different maps of the simulated 
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landscape are produced as model output, such as land-cover map and land-ownership map (see 

Output data in Section 2.3.2 and Fig. 2). 

2.2 Design concepts 

2.2.1 Theoretical and empirical background 

The main processes in EFForTS-LGraf build upon the assumption that households settle along 

roads and establish fields in close vicinity to their home. Such patterns have been reported in 

several case studies (e.g., Gatto et al. (2015), Kirby et al. (2006), Soares-Filho et al. (2001)) and 

have successfully been implemented in other landscape generators (Pe’er et al., 2013). EFForTS-

LGraf does not incorporate any temporal dimension. Instead of simulating the process of land-

use change over time explicitly, distributions of household and field sizes are used to create a 

landscape at one specific point in time. The model does not incorporate any environmental 

heterogeneity and all considered crop types are equally suitable throughout the landscape. 

However, the amount and distribution of crop types can be controlled by adjusting landscape 

proportions and household specialization levels for each crop type. 

2.2.2 Individual decision-making 

Households establish fields based on several decisions. They search for an unoccupied cell in the 

vicinity of their home-base and try to establish a field of a given size there. If this action is not 

successful, e.g. because the area between cells that are already occupied is too small, they 

continue to try in a different location. Finding an unoccupied cells depends on the current field 

establishment strategy (for Details see Field establishment in Section 2.3.2). If a household fails 

to establish a field for a given number of times under the current strategy, it switches the 

establishment strategy. Current establishment strategies include searching for unoccupied cells in 

vicinity of the home-base, in vicinity of already established fields, in neighboring cells of class 

’others’ with gradually increasing search radius, and searching for unoccupied cells that are 

surrounded only by unoccupied cells. If the attempt to establish a field of the given size fails for 

all potential strategies, a new field size is drawn from the field size distribution. 

2.2.3 Individual sensing 

As in reality, households are assumed to have full knowledge on land-use types and ownership 

of all cells in the landscape. A household cannot expand a new field into an already existing 

field, whether it is owned by a different household or by the same household. 

2.2.4 Interaction 

Households interact indirectly by land ownership, e.g. one household cannot expand a new field 

into the field of a different household. 

 

2.2.5 Heterogeneity 

Household agents are heterogeneous in their expected and realized household area. Households 

also differ in number, size and shape of established fields. Additionally, households may 

cultivate different proportions of crop types and some households may also specialize on one 

specific crop type. Households are aggregated in villages and have different initial home-base 

positions. The initial size of the village and home-base position may affect field establishment by 

the household, which may for instance result in higher distances between home-base and fields 

(in densely populated areas). These aspects of heterogeneity are mostly imposed by external 

inputs that determine the overall distribution of field sizes, household areas and village areas. 
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2.2.6 Stochasticity 

The location of household home-base cells along the road network is random. However, 

aggregation of households at certain locations can be controlled by providing a village size 

distribution (see Road creation and household placement in Section 2.3.2). Field sizes and 

household areas are drawn from a given probability distribution and are therefore also stochastic. 

In addition, in the case that the user chooses to create the road network within EFForTS-LGraf, 

the algorithm for road generation randomly assigns the location, direction and length of each 

road segment (see Section 2.3.2). 

2.2.7 Observation/Emergence 

The spatial arrangement of fields is an emergent property of the model and will thus differ 

between simulations. The emerging patterns can be compared to real maps or used to generate a 

set of virtual land-use maps. Aggregated model outputs that can be generated from the maps 

include spatially implicit data such as maximum distance between roads and fields. 

2.3 Details 

EFForTS-LGraf was implemented in NetLogo 6.0.2. 

 

 

2.3.1 Input data and Initialization 

Table 1. EFForTS-LGraf model parameters 

id Name on GUI Unit Description 

ts setup-type [-] households: number of villages and agricultural area are 

approximated by providing a fixed number of households; 

villages: number of households and agricultural area are 

approximated by providing a fixed number of villages; 

area: number of households and villages are 

approximated by providing the total agricultural area 

ns,h number-of-farmers [-] number of farming households in landscape 

ns,v number-of-villages [-] number of villages in landscape 

ns,a prop-agricultural-area [-] proportion of agricultural area in landscape 

ns,c households-per-cell [-] maximum number of household home-bases in one cell 

seeds rnd-seed [-] random seed of the simulation, only used when reps is true 

reps reproducable? [-] if true, the user-set random seed seeds is used 

ws width cell width of the landscape grid 

hs height cell height of the landscape grid 

cs cell-length-meter cell side length in meter of one cell of the landscape grid 

tr road-type [-] type of road algorithm (shapefile, artificial.perlin or 

artificial.graffe) 

ir,shp road-map-nr [-] number of road map file (only used when tr is shapefile) 

nr,art total-road-length cell total number of road cells in landscape (only used when tr 

is artificial.perlin or artificial.graffe) 
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mr,art min-dist-roads cell minimum distance [cells] between two roads (only used 

when tr is artificial.perlin or artificial.graffe) 

p1r,perl perlin-octaves cell octaves parameter for the perlin algorithm (only used 

when tr is artificial.perlin) 

p2r,perl perlin-persistence cell persistence parameter for the perlin algorithm (only used 

when tr is artificial.perlin) 

p3r,perl cone-angle cell cone-angle parameter for the perlin algorithm (only used 

when tr is artificial.perlin) 

p4r,perl dist-weight cell distance versus elevation weighting for the perlin 

algorithm (only used when tr is artificial.perlin) 

dv vlg-size-distribution [-] type of distribution for village size (constant, uniform, 

normal, log-normal) 

µv vlg-size-mean_ha hhs mean of village size distribution 

σv vlg-size-sd_ha hhs standard deviation of village size distribution 

dv vlg-min-distance cell minimum distance between villages 

dh hh-area-distribution [-] type of distribution for household area (normal, 

lognormal) 

µh hh-area-mean_ha ha mean of household area distribution 

σh hh-area-sd_ha ha standard deviation of household area distribution 

ni inaccessible-

areafraction 

[-] fraction of landscape covered by inaccessible area (e.g. 

large-scale plantations, protected area) 

li inaccessible-

arealocation 

[-] location of inaccessible areas (either random or 

roadconnected) 

di inaccessible-

areadistribution 

[-] type of distribution for inaccessible area (constant, 

uniform, normal) 

µi inaccessible-area-

mean 

ha mean of inaccessible area distribution 

σi inaccessible-area-sd ha standard deviation of inaccessible area distribution 

tf field-type [-] distribution: field sizes are drawn from the provided 

distribution; percentage: mean of the field size 

distribution is adjusted to the percentage set by µh 

df field-size-distribution [-] type of distribution for field sizes (constant, uniform, 

normal, log-normal) 

µf field_size_mean_ha ha mean of field size distribution 

σf field_size_sd_ha ha standard deviation of field size distribution 

pf field-size-percentage [-] sets percentage to adjust µf by multiplication with µh 

(only used when tf is percentage) 

sf field-shape-factor [-] controls if fields are mostly rectangular (value 1) or 

narrow 

(higher values) 

tstrat strategies-type [-] type of field strategies selection; manual: choose 

establishment strategies by manual selecting; id: use a 

predefined list of strategies 

s1strat s1.homebase [-] field establishment strategy 1: establishment close to own 

home-base (true/false) 
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s2strat s2.fields [-] field establishment strategy 2: establishment close to own 

fields (true/false) 

s3strat s3.nearby [-] field establishment strategy 3: establishment in nearby 

’others’ cell (true/false) 

s4strat s4.avoid [-] field establishment strategy 4: establishment in nearby 

’others’ cell surrounded by ’others’ cells (true/false) 

nstrat change-strategy [-] number of unsuccessful tries for field establishment after 

which search strategy is changed 

Istrat field-strategies-id [-] overwrites manual strategies selection and determines a 

pre-specified list of search strategies for field 

establishment 

(e.g. s1, s2, s4) 

tl land-use-assignment [-] crop type assignment algorithm; landscape-level-fraction: 

approximate fractions of crop types; landscape-

levelspecialization: approximate fractions of crop 

types and fractions of household specialization 

 

idl LUT-l-name 

(l=1,2,3,4,5) 

[-] name of crop types l (l=1,2,3,4,5) 

frl LUT-l-fraction 

(l=1,2,3,4,5) 

[-] fraction of agricultural area under crop type l 

(l=1,2,3,4,5); fractions must sum up to 1 

frl,spec LUT-l-specialize 

(l=1,2,3,4,5) 

[-] minimum fraction of area under crop type l (l=1,2,3,4,5), 

which is farmed by specialist households 

fl LUT-fill-up [-] crop type (ID) to fill up fractions if sum of frl is smaller 

than one 

 
 

 

A potential external input for EFForTS-LGraf is a map of an existing road network (option real-

road-map). Most of the model parameters (Table 1) can be estimated from empirical studies or 

remote sensing data. In addition to model parameters (numeric), switches (logical, categorical) 

allow turning on and off certain model processes (Table 1). Several distribution parameters 

affect model behaviour and outcomes: (1) A household size distribution, from which the total 

agricultural area of each household is sampled during model initialization. (2) A village size 

distribution, from which the village sizes (number of households per village) are sampled during 

model initialization. (3) A field size distribution, from which the areas of the single field units 

are sampled during field establishment. (4) Inaccessible area distribution, from which areas of 

each inaccessible area patch are sampled during model initialization. Different distribution types 

are possible and include constant, uniform, normal and log-normal shapes. Additionally, road 

parameters, crop type proportions, crop type specialization levels and field establishment 

strategies need to be set. Most of the model parameters can be estimated from empirical studies 

or remote sensing data. 

The initialization procedure first updates world dimensions according to the parameters ws and 

hs. All cells in the landscape are initialized as ’others’ cells, with no household or fields. At that 

stage, cells are not owned by anybody. Global variables are set according to the user inputs and 

the output plots of the model are refreshed. Next, a sample of the household size distribution is 

drawn to initialize household properties. While the creation and placement of household agents 
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is performed by the submodel "Road creation and Household placement" (see Section 2.3.2), the 

properties of the household agents are already determined during initialization. EFForTS-LGraf 

provides three options for household initialization via the parameter setup-type (ts). Depending 

on the chosen setup-type, the user provides either (1) a fixed number of households ns,h (option: 

households). The number of villages and the proportion of agricultural area are then 

approximated by using the defined village size and household size distributions; (2) the number 

of villages ns,v (option: villages). The number of households and the proportion of agricultural 

area are then approximated by using the defined household size distribution; (3) the proportion 

of agricultural area ns,a (option: area). The number of households and the number of villages are 

then approximated by using the defined household size and village size distributions. 

Each of the above options generates a preliminary list of households. Each household has 

three properties: household-ID, household size and village-ID. The household sizes approximate 

the defined household size distribution, whereas the village-IDs are assigned in such a way that 

resulting village sizes approximate the defined village size distribution. 

2.3.2 Submodels 

Road creation and household placement 

After initialization, first all roads are created and then households are placed along the 

established road network. Roads are treated as landscape items without a dimension, i.e. like 

polylines in GIS. Just as any other cell, cells with an intersecting road have a land-use type. 

There are three options for road creation: (1) a road network is created based on an existing road 

map in an input file (option: real.shapefile); (2) a road network is artificially created based on a 

random elevation model (option: artificial.perlin); or (3) a road network is artificially created 

based on the straight road creation algorithm of the G-Raffe landscape generator (option: 

artificial.graffe). For details on road creation and household placement see section 1.1.1 in 

Appendix I. 

Once the road network is established, households are created and placed along the road 

network. First, the algorithm determines the number of villages depending on the pre-generated 

list of households from the initialization procedure. Then, based on the number of villages and 

village-IDs, village centers are created on random road network cells complying with the 

minimum distance between village centers, dv. Then the households are placed randomly on road 

cells around village centers matching the corresponding village-IDs, i.e. each household 

establishes a home-base cell at the assigned cell. There is a cap to the number of household 

home-bases on one cell ns,c. 

Inaccessible areas are an optional landscape feature of EFForTS-LGraf, defining patches of 

areas that are not available for use by smallholder agriculture. This option allows defining either 

areas belonging to large-scale company plantations or protected (forest) areas. Given the overall 

fraction of the landscape covered by inaccessible area, fracp (Table 1) and the inaccessible area 

size distribution, patch sizes are drawn from the distribution until the total size of inaccessible 

area patches matches the defined landscape fraction. From this list, each patch is then created by 

first selecting a starting location, which can be either a random cell in the landscape (option 

random for li) or a random road cell (option road-connected for li). From this starting location, a 

square-shaped field of the given size is created, following the basic field establishment rules 

(details see section 1.1.2 in Appendix I). 

Field establishment 

The field establishment procedure determines the size and spatial location of fields, but does not 

yet determine the actual crop within fields. This is assigned in the next procedure (see "Land-use 
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assignment" below). Fields are established by household agents and an attempt to establish a 

field comprises three steps: (1) deciding on the field size, (2) moving to a potential location, and 

(3) making sure there is enough space to establish a field of the desired size in this location (for 

details see section 1.1.2 in Appendix I). In case of a successful attempt, the household gains 

ownership of these established field cells. By gaining ownership, the realized household area 

increases and field establishment continues until each household realizes its expected household 

size that was determined during initialization. 

In other words, to realize the expected household size distribution, the procedure loops over 

all households that are marked as still growing, i.e. all households where the realized area of 

owned fields does not yet exceed the expected household size. At the first stage, these are all 

households because each household establishes at least one field. In every iteration, each relevant 

household draws a field size from the field-size distribution. If the projected household area, 

including the additional field, is below the expected household size, then the household attempts 

to establish a field of this size. If the projected area exceeds the expected household size, an 

attempt for establishment would take place only if the absolute difference between projected 

household area and expected household area is smaller after establishing the field. Otherwise, the 

household does not establish the field and becomes a non-growing household. After each 

establishment loop, households that have reached their final size become non-growing 

households, namely are excluded from the next iteration of field establishment. At the end of 

each loop, if the total realized agricultural area exceeds the expected cover of agricultural area, 

the field establishment procedure is halted. 

Crop type assignment 

After all fields are established, crop types are assigned to them. The current model version 

supports up to five different crop types and two alternative ways to distribute the crop types 

(parameter tl). The first option (landscape-level-fraction) distributes crop types randomly among 

fields according to fractions of overall crop types. The second option (household-level-

specialization) aims at additionally incorporating specialization for crop types at the household 

level. In this latter case, an additional input parameter is used for each crop type which describes 

the specialization by households for this particular crop type. The level of specialization is 

primarily a proportion ranging from 1 (all households that cultivate this crop type would 

cultivate this crop type exclusively) to zero (no preference for specialization in this crop type). 

For example, a specialization value of 0.7 for crop type 1 would mean that 70% of households 

that cultivate crop type 1 have only fields of crop type 1 and no field of any other crop type. The 

remaining 30% of households have fields of various crop types. Note that realized specialization 

levels can be higher than the input specialization levels, since the value determines a field-level 

outcome, and hence, all households with only one field are specialists by default. 

Output data 

The landscapes produced by EFForTS-LGraf contain information on various spatial scales 

(landscape level, household level, fields, cells) and can be visually inspected in different formats: 

• Land-use maps: depict land uses in different colors (classes: agriculture, road, 

inaccessible, home-base, ’others’) 

• Crop type maps: similar to land-use map with additional classification of crop types 

• Agriculture-non-agriculture map: depicts the distinction between agricultural cells and 

cells of class ’others’ 

• Field-patches map: depicts the different fields on the map in different colors 

• Household-patches map: differentiates fields based on the different households they 

belong to 
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• Habitat-patches map: depicts clusters of cells belonging to the same patch of class 

’others’ in different colors. Roads, fields and inaccessible areas function as separators for 

patches. 

Maps are produced at the resolution cell-length-meter cs. Cell labels such as patch-IDs and 

owner-IDs, and spatial elements such as roads, home-bases and households can be selected to be 

drawn on top of these maps. All spatial outputs can also be stored as raster maps (ASCII) to 

allow using the generated landscapes for other model applications (Details on raster output see 

section 1.1.3 in Appendix I). An additional feature ("create-3D-map" function) uses the NetLogo 

3D functionality to create a 3D rendered map that displays trees, crops and buildings using 3D-

shapes in realistic densities (Fig. 4 in Appendix I). 

3 Scenarios and Parameterization 

Table 2. Landscape metrics description 

landscape metric short range description 

landscape-shape-index LSI LSI ≥ 1,without limit measure of class aggregation or 

clumping 

largest-patch-index LPI 0 < LPI ≤ 100 percentage of total landscape area 

comprised by the largest patch of 

a class 

mean-patch-area - ≥ 0,without limit mean patch area of all patches of a 

class 

n-patches - ≥ 0,without limit total number of patches of a class 

patch-cohesion-index PCI 0 ≤ PCI ≤ 100 physical connectedness of patches 

of a class 

 

We demonstrate the capabilities and potential uses of EFForTS-LGraf based on the example of 

smallholder-dominated agricultural areas in Jambi province in Sumatra, Indonesia. During the 

last decades, this region has faced severe land-use changes, mainly deforestation and agricultural 

expansion (e.g., Koh (2011)) and loss of ecosystem-functioning of the transformed landscapes 

(e.g., Dislich et al. (2017)). In order to provide agricultural maps that incorporate smallholder 

households and field ownership, we parameterized EFForTS-LGraf using household data from a 

smallholder survey of relatively large size (701 farming households) that was performed in 

Jambi province (Fig. 3) (Euler et al., 2017; Krishna et al., 2017). Jambi province is characterized 

by small villages with farming households that are mostly of relatively small size (median survey 

data 3.5 ha) and within these villages, small-scale fields with mostly oil palm and rubber. By 

parameterizing EFForTS-LGraf for a specific study region, the generated maps can be used to 

inform scenario-based studies such as the application of the agent-based simulation model 

EFForTS-ABM (Dislich et al., 2018). To show EFForTS-LGraf’s model and output capabilities, 

we followed three approaches. In approach 1 (Sobol sensitivity analysis), we determined how 

variability in the landscapes generated by EFForTS-LGraf can be apportioned to the different 

model parameters. In approach 2 (Validation), we assessed the characteristics of typical 

landscapes in the Harapan region in Jambi province and applied an optimization algorithm in 

order to generate artificial landscapes with similar characteristics. In approach 3 (Applied case 

study), we present an applied simulation scenario that investigates effects of household 

consolidation and crop specialization on landscape characteristics. For all approaches, we 

quantified the landscape characteristics using five landscape metrics that are either class-based or 

aggregated on class-level: landscape-shape-index (LSI), largest-patch-index (LPI), mean-patch-
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area, the number of patches (n-patches) and patch-cohesion-index (PCI) (Table 2, for a more 

detailed description see FRAGSTATS manual (McGarigal et al., 2012)). We used the R-package 

SDMTools v1.1 to calculate landscape metrics of all landscapes (VanDerWal et al., 2014). 

 

 

Figure 3: Distribution of household areas, village areas and field sizes, based on household surveys carried out in 

our study area in Jambi province, Sumatra, Indonesia. 

For approach 1, we conducted a Sobol sensitivity analysis, i.e. a global variance-based 

sensitivity analysis for all model parameters including the parameters of the artificial road 

creation algorithm of EFForTS-LGraf (for parameterization details, see section 1.2.1 in 

Appendix I). The Sobol method measures direct effects and interaction effects of model 

parameters on model output (here: landscape metrics) (Sobol, 1990; Chan et al., 2000; Saltelli et 

al., 2010; Jansen, 1999). By applying a Sobol parameter sampling design, we generated 8000 

different landscapes that cover a large parameter range of EFForTS-LGraf. Such analysis helps 

understand model processes and may be useful to reproduce certain landscape features. For 

instance, if one is interested in generating landscapes along a gradient of characteristics, the 

sensitivity analysis allows identifying which parameters can realize that gradient and how. 

For approach 2 (Validation), we used a land-cover map (classified satellite image from 2013) 

from the Harapan region in Jambi province that features a large gradient of land-use intensities 

(Melati, 2017) (see Fig. 4). The original landcover map has a spatial resolution of 5×5 m and an 

overall classification accuracy of 68.4% (Melati, 2017). In order to allow for comparisons with 

our artificially-generated landscapes, we scaled the land-cover map to the same resolution as our 

generated EFForTS-LGraf landscapes, which is 50×50 m cells. The original classified land-

cover map consisted of 9 classes which we reclassified into two final land-cover types: fields and 

’others’ (fields consist of original classes rubber and oil palm; ’others’ consist of original classes 

secondary dryland forest, shrub, bare land, settlement, water body, cloud, shadow). While we did 

not explicitly assess the overall classification accuracy of the final reclassified and rescaled map, 
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overall classification accuracy is expected to improve trough reclassification into more general 

classes. From the reclassified land-cover map, we sampled 3 randomly placed landscapes, 100 × 

100 cells in size (no overlaps) and calculated the five landscape metrics for each of these 

sampled landscapes and each land-cover type (fields and other). For each sample, we performed 

a genetic algorithm in order to recreate these samples with EFForTS-LGraf (Kumar et al., 2010; 

Willighagen & Ballings, 2015). The algorithm uses the proportion of agricultural area from the 

samples, but varies all road, household, village and field establishment parameters. For each 

generated landscape, a fitness value is calculated by comparing the landscape metrics of the 

generated landscape to the landscape metrics of the current sample. The algorithm then tries to 

minimize the total deviance by repeated creation of landscapes with adjusted parameters. The 

genetic algorithm was set up with 50 different initial parameterizations per sample (population 

size) and 25 iterations. In approach 2 (validation), we also compared the ranges of landscape 

metrics of the 8000 generated landscape from the Sobol sensitivity analysis (approach 1) to 

landscape metrics of 100 landscapes. These landscapes were randomly sampled (allowing 

overlaps) from the reclassified land-use map (results, see section 1.2.2 in Appendix I). 

EFForTS-LGraf not only allows us to generate land-cover maps, but also to conduct applied 

modelling studies (approach 3). Empirical data from Jambi, Indonesia indicates an increase over 

time in the area owned by households (Euler et al., 2016). Smallholder households also tend to 

specialize on one specific crop type (Klasen et al., 2016). Increasing household area and 

specialization on one crop may cause drastic changes in landscape composition and 

configuration. We analyzed whether EFForTS-LGraf can reproduce these changes by generating 

a set of landscapes with different levels of crop specialization and household area using a Latin 

hypercube sampling design with 500 samples (McKay et al., 1979). We randomly selected one 

village from the household survey in Jambi and cropped a road polyline shapefile based on a 

spatial layer covering the road network of Jambi. We used the classified satellite image of the 

village to estimate the proportions of oil palm and rubber in the agricultural landscape (oilpalm = 

0.5, rubber = 0.5). 

To mimic the increase in household area, we set the proportion of agricultural area in the 

landscape to a fixed value of 50% and varied the mean of the log-normal household area 

distribution from 1 ha to 3 ha within the Latin hypercube sampling design. The total number of 

households in the landscape was then estimated based on the proportion of agricultural land. 

With increasing mean values of the household area distribution, this yielded fewer households 

but the same total agricultural area in the landscape. We used two crop types (oil-palm and 

rubber) and varied the specialization levels for oil-palm from 0 (specialist by chance) to 1 

(always specialists) within the Latin hypercube sampling design. For crop type 2 rubber we set 

the specialization level to 0 (for parameterization details, see section 1.2.3 in Appendix I). We 

analyzed the resulting landscapes via the five selected landscape metrics from previous 

approaches (Table 2). We calculated linear regression models for each landscape metric and 

crop type combination and calculated standardized regression coefficients to estimate 

parameter and interaction effects on landscape metrics of the generated landscapes. 

Execution of NetLogo simulations and output post-processing where performed with R and 

the R-package nlrx (R Core Team, 2018; Salecker & Sciaini, 2018). 
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Figure 4: Snapshot of the reclassified satellite image of Harapan region in Jambi province. Grey cells indicate 

land-cover type ’others’, which consist mostly of secondary forest but includes all other remaining nonagricultural 

land-cover classes, such as settlements and water bodies. Yellow cells indicate fields, which consist of oil palm 

and rubber plantations. 
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4 Results 

4.1 Approach 1: Sobol Sensitivity Analysis 

 
Figure 5: Approach 1, sensitivity analysis: Sobol total and main effects of EFForTS-LGraf model parameters on 

landscape metrics grouped by land-use classes fields and ’others’. Tile color of each parameter output 

combination indicates the total effect of parameter changes on the output metric. Colors of dots within each tile 

show the main effect of parameter changes on the output metric. Thus, tiles with dark color and a bright dot have a 

large total effect but a small main effect indicating strong interaction effects, whereas tiles with dark color and a 

dark dot indicate strong main effects. For abbreviations and model parameterizations, see section 1.2.1 in 

Appendix I. 

 

Two parameters, total-agricultural-area, defining the resulting proportion of agricultural area in 

the generated landscapes and field-strategies-id, defining the set of field establishment strategies 

that is used by the households, had significant total (sum of direct and interaction effects) and 

main effects (direct effects without interaction) on a wide range of landscape metrics (Fig. 5). 

For some landscape metrics such as LPI or LSI these two parameters showed only main effects 

(indicated by dark tile and dot shading in Fig. 5). The landscape shape index (LSI) was only 

affected by the parameter proportion-agricultural-area. The mean patch area was the only 

output landscape metric that was significantly affected by all model parameters. For some output 

metrics (LSI, n patches, PCI), the proportion-agricultural-area had a larger effect on ’others’ 

class indices, whereas the field-strategies-id had a larger effect on the fields indices. 

Interestingly this pattern was reversed for the output metric mean patch area, where the 

proportion-agricultural-area had a larger effect on the mean patch area of field patches and the 

field-strategies-id had a larger effect on the mean patch area of ’others’ class patches. 
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4.2 Approach 2: Validation 

 
Figure 6: Approach 2, validation: A, B and C show sampled maps (100 × 100 cells, 50 m resolution) from the 

reclassified satellite image of the Harapan region, Jambi province, Indonesia. Yellow cells indicate agricultural 

area, grey cells indicate land-use class ’others’. We applied genetic algorithm optimization to tweak EFForTS-

LGraf model parameters in order to recreate these map samples. This was done by calculating deviances in 

landscape metrics between the sampled map and the generated map and minimizing this deviance with each 

generation of the algorithm. We ran the algorithm for each map sample (A, B, C) individually and stored the final 

parameterization with the lowest deviation. Using these final parameterizations we generated 4 maps for each map 

sample to account for stochasticity during the map creation process (A.1-A.4, B.1-B.4, C.1-C.4). The generated 

maps have the same resolution as the map samples (100 × 100 cells, 50 m resolution) but are displayed at 1/4th 

size. 

The re-classified satellite image of the Harapan region, Jambi, shows a large heterogeneity in the 

distribution of agricultural patches (Fig. 4). Large-scale clustered agricultural areas can be found 

in the North-East, whereas in the North, West and South, agricultural patches are more scattered. 

Harapan rainforest conservation area is located in the centre of the image and does not contain 

any agricultural fields at all.  

The three landscapes that were sampled from this map reflect this gradient with agricultural 

proportions ranging from of 0.13 (sample 1, Fig. 6) over 0.23 (sample 2, Fig. 6) to 0.46 (sample 

3, Fig. 6). All three samples also show a large heterogeneity in patch sizes, field sizes and 

distribution of fields (see Fig. 6). While the genetic algorithm was able to find parameterizations 

that recreate many properties of the sampled landscapes, not every detail could be matched (see 

Fig. 7). Especially large patches of agricultural area could not be recreated accurately (yellow 

ranges for mean.patch.area and n.patches, Fig. 7). However, even the highest deviation 

(mean.patch.area of agricultural patches) was still below 1.5%. The landscape shape index (LSI), 

patch cohesion index (PCI) and total area could be matched very accurately, both for agricultural 

patches and patches of class ’others’. 
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Figure 7: Approach 2, validation: Landscape metrics deviations of generated maps derived by application of a 

genetic algorithm (see maps A.1-A.4, B.1-B.4, C.1-C.4 in Fig. 6), to landscape metrics of original samples from 

the reclassified satellite image of the Harapan region, Jambi province (see maps A,B,C in Fig. 6). Yellow dots and 

line ranges represent landscape metrics of agricultural patches, grey dots and line ranges those of patches of class 

’others’. 

4.3 Approach 3: Applied case study 

In all generated landscapes, fields were distributed mainly along the road network that was used 

to set up the model (Fig. 8). We observed inter-linking effects of household area and 

specialization on aggregation of crop types in the landscape by visual comparison of resulting 

land-use maps (Fig. 8). High specialization on oil palm led to much higher spatial aggregation of 

crop types when household area was larger, compared to smaller household area (Fig. 8). 

Within the boundaries of our assumptions we did not find any significant effects of oil palm 

specialization (specialization, orange bars in Fig. 9) or interaction effects (size*specialization, 

blue bars in Fig. 9) on ’others’ landscape metrics (see standardized regression coefficients for 

’others’ patches in Fig. 9). However, the landscape shape index (LSI), the mean patch area, the 

number of patches and the patch cohesion index (PCI) were significantly affected by the 

household size distributions (size, black bars in Fig. 9). For increasing household areas we 

found increased aggregation (negative landscape.shape.index coefficient), smaller patches 

(negative mean.patch.area coefficient), slightly higher total number of patches (positive 

n.patches coefficient) and fewer perimeter cells (positive patch.cohesion.index coefficient) of 

’others’ patches (Fig. 9). 

The landscape metrics of agricultural patches of the two crop types where clearly affected by 

household area, specialization on oil palm and interaction effects of both parameters (see oil 

palm and rubber bars in Fig. 9). In a system with two mono-cultural crop types, high 

specialization on one crop type indirectly affects the spatial distribution of the other crop type. 

Patch aggregation was higher for both crop types with increasing specialization and household 

area (negative landscape.shape.index coefficients). Mean patch area was higher for high 

specialization and larger households (positive mean.patch.area coefficients). Accordingly, the 

number of rubber and oil palm patches strongly decreased with increasing household area and oil 
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palm specialization (negative n.patches coefficients). There were fewer perimeter cells for high 

specialization levels and larger household areas (positive patch.cohesion.index coefficients). 

Landscape shape index and mean patch area showed a considerable amount of interaction effects 

between both parameters suggesting non-linear relationships, which could also be observed from 

investigating raw data from the simulations (see Fig. 3 in section 1.2.3 in Appendix I). 

 

 

Figure 8: Approach 3, applied case study: (a) Google Satellite imagery, showing the village Lantak Seribu in 

Renah Pamenang District, Merangin Regency, Jambi. The road network of this village (yellow lines) was selected 

to generate examples of artificial agricultural smallholder landscape maps with EFForTS-LGraf for different 

household sizes and specialization levels. (b-e) Examples of artificial land-cover maps. Examples (b) and (c) 

consist of smaller households that own only some fields whereas households in (d) and (e) are larger and own 

more fields. In (b) and (d), land uses are distributed to fields completely at random, whereas in (c) and (e), 

households specialize completely on one land use. In (b - e), green cells indicate oil palm fields, yellow cells 

indicate rubber fields, grey cells indicate cells of class ’others’, purple cells indicate household home-bases and 

black lines indicate roads. 
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Figure 9: Approach 3, applied case study: We generated land-cover maps with varying household area and 

specialization levels for oil palm and calculated five selected landscape metrics for the two crop types (oil palm 

and rubber) and patches of class ’others’. The colored bars illustrate the corresponding standardized regression 

coefficients (SRC) from linear model regressions. Bars display significant importances of household size (size), 

specialization level (specialization) and the importance of interactions between these two parameters on the 

selected landscape metrics. Parameter names and values are described in section 1.2.3 in Appendix I. Landscape 

metrics are described in Section 3, Table 2. 

5 Discussion 

Although various landscape generator approaches have been developed in the past, only few of 

them are process-based, have a distinct focus on agricultural land or incorporate any human 

dimension (Langhammer et al., 2019). The main goal of our study was to fill this gap by 

developing the landscape generator EFForTS-LGraf. The process-based algorithms of EFForTS-

LGraf explicitly reflect the linkage of agricultural expansion and deforestation to road and 

infrastructure development (Gatto et al., 2015; Kirby et al., 2006; Soares-Filho et al., 2001). 

This allows not only to generate realistic-looking landscapes, but also links the model to one of 

the world’s central sources of environmental pressures, i.e. road expansion (Ibisch et al., 2016). 

Another key power of the model is explicit consideration of smallholder farming households and 

elements that characterize smallholder decisions and socio-economic patterns such as land 

ownership and farm economy – and how these shape landscapes. In this, the model helps 

overcoming an important barrier between ecological and socio-economic research, allowing one 

to explore the behavior of agricultural-natural frontiers as a socio-ecological system (Berkes et 

al., 1998). 

The process-based nature of the model algorithms and parameters allow to formulate and 

evaluate specific questions through adjustment of the model parameterization. Particularly the 

final analysis (approach 3) demonstrates how the model can be used to explore how factors that 

affect smallholder decisions and socio-economic processes shape landscape patterns and, 

thereby, biodiversity and ecosystem services. Notably, global processes of agricultural 
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intensification comprise two elements that are captured by the model, namely a trend of 

specialization toward monocultures and an increase in field sizes and area owned by fewer 

smallholders (Pe’er et al., 2014), accompanied by an ongoing decline in rural employment (e.g. 

(Pe’er et al., 2017) for the EU). Our simulation experiment revealed that household 

consolidation and crop specialization indeed had a large impact on various landscape 

characteristics. Although these effects were expected to some extent, our analysis showed that 

the inter-linkages between household-level processes and landscape characteristics were 

significantly affected by interaction effects of consolidation and specialization. Such 

identification of interactions and non-linear relationships may be important for a wide range of 

ecological studies. 

We assessed the basic functionality, parameter sensitivity and validity of EFForTS-LGraf by 

performing a sensitivity analysis and a validation against real-world satellite imagery. The Sobol 

sensitivity analysis (approach 1) revealed that the proportion of agricultural area (proportion-

agricultural-area) and the selection of establishment strategies (field-strategies-id) were the 

most important parameters across all landscape metrics. However, the effect of each parameter 

highly depended on the chosen landscape metric. For example, mean patch area was affected by 

nearly all model parameters, whereas the largest patch index was nearly exclusively affected by 

the proportion of agricultural area. We used the setup-type ’area’ to initialize the households of 

each model simulation. Therefore, household area parameters by definition had little influence, 

since they were largely pre-set. This also means that we can expect larger household area 

parameter effects on landscape metrics when using the setup-type ’household’. The three 

different setup-types of EFForTS-LGraf allow for great flexibility in parameterizing the model. 

Depending on the application, it may be important to generate landscapes with the same 

proportion of agricultural area, but different household properties (approach 3). When the total 

number of households in the area is unknown but the typical village sizes and the number of 

villages in the area can be estimated, the setup-type ‘village’ can be used to approximate the 

number of households. 

Our artificially-generated landscapes showed high capacity to match various landscape 

metrics when compared to classified satellite images and showed high flexibility to generate a 

broad range of maps along a gradient of spatial structures (see Fig. 4, 7 and section 1.2.2 in 

Appendix I). Both are important features of landscape generators. Depending on the approach, it 

may be important to recreate specific maps trough pattern-based optimization approaches or to 

generate many different maps along a gradient of specific landscape characteristics. 

Besides these technical approaches, EFForTS-LGraf can be applied for a wide range of 

potential applications. First of all, the generated maps can be used to inform other modelling 

studies, as has been successfully done with the simulation model EFForTS-ABM (Dislich et al., 

2018). We are also planning to apply and validate EFForTS-LGraf to other agricultural regions 

where high quality remote sensing data are available, such as Central Europe. Additionally, 

EFForTS-LGraf can be used to perform policy-relevant applications, e.g., testing the future 

impacts of road expansion, especially in developing regions such as Indonesia and impacts of 

agricultural policies such as the CAP in the EU. 

Currently, EFForTS-LGraf produces maps for one specific point in time. Considering the 

huge pressures of road expansion on natural habitats, particularly in developing countries 

including in Indonesia (Laurance et al., 2014), incorporating a temporal component explicitly 

might be a useful extension to the model. Such an extension would allow to create time series of 

maps with roads and fields occurring gradually. The assumption that at the beginning of map 

generation, each cell is equally suitable for field establishment is another limitation of EFForTS-

LGraf. A potential model extension could add heterogeneous land-use types to the initial state of 

the landscape (e.g. forest, grassland, peatland, instead of assigning type ’others’ to all cells). By 
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consideration of differential pressure for land-use change depending on these land-use types, 

more complex landscape patterns could be created. We decided to develop EFForTS-LGraf with 

a clear focus on linking geospatial information, such as road polyline shapefiles and land-use 

fractions, with empirical data, such as household size and field size distributions. 

When comparing model outcomes with reclassified land-cover maps from Harapan region 

(approach 2), we also revealed some systematic differences. Most prominently, the area of 

agricultural patches was underestimated in the generated landscapes, whereas the area of ’others’ 

patches was overestimated. This mismatch may partly be explained by the homogeneous field 

establishment of model households. Although households are able to adjust their field 

establishment strategies if they are not successful, each household uses the same set of strategies 

and switches after the same number of unsuccessful tries. Adding household-level heterogeneity 

to field establishment strategies would allow for increased local field aggregation heterogeneity 

but would also add complexity to the model. In the current model version, crop types can be 

assigned to fields based on the user-set fractions and specialization levels. Future model 

extensions may also contain additional algorithms to control spatial clustering of certain crop 

types. 

In conclusion, EFForTS-LGraf combines economic smallholder survey data and spatial 

information to generate landscapes featuring the characteristics of observed agricultural 

smallholder landscapes. EFForTS-LGraf is especially useful for applications where agricultural 

maps need to be provided in conjunction with corresponding economic household data which 

can not be obtained from remote sensing alone. Due to its flexibility, EFForTS-LGraf can be 

utilized for a wide range of applications, such as: (1) map generation by providing specific 

economic case study data, (2) application of pattern-matching approaches to match generated 

maps with realistic land-use maps, and (3) generating maps along gradients of properties on 

household or landscape-level. EFForTS-LGraf contributes to the set of already published 

landscape generators and fills an important gap through its application of process-based 

algorithms with a distinct focus on road expansion, agricultural land and explicit consideration of 

human dimensions of land-use change. 
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9 Appendix 

9.1 Model Details 

9.1.1 Details on road creation and household placement 

EFForTS-LGraf offers three options for road creation: (1) roads can be read in from an existing 

road map (option: real.shapefile); (2) a road network is artificially created based on a random 

elevation model (option: artificial.perlin); (3) a road network is created based on the straight road 

creation algorithm of the G-Raffe landscape generator (option: artificial.graffe). 

To upload an existing real road map, one needs to store the respective shapefile of the roads, 

the projection file and a second shapefile that only includes the extent of the map. After loading 

the shapefile, the world is re-sized if necessary. All cells that have a road intersecting are 

identified as road cells. 

The Perlin algorithm mimics situations in which roads are created depending on elevation 

gradients. First, a simple perlin noise elevation model is created by adding several random noise 

grids with decreasing weight (perlin parameters p1r,perl, p2r,perl, p3r,perl) [1,2]. The first road is then 

created by connecting two random locations in the landscape. First, a road-building-agent is 

created on one of these two random locations. For each neighboring cell, the road-building-agent 

calculates the distance to the destination cell (second random location) and the elevation 

difference to the agents‘ current location. The total score of each cell is then determined by 

weighting the distance and elevation criterion depending on the continuous parameter p4r,perl 

(€[0,1]). The road-building-agent then moves to the cell with the highest score, establishes a 

road-cell there and continues to move and create road-cells until it reaches the final destination. 

Thus, by adjusting the parameter p4r,perl, the algorithm gives a higher weight to the distance 

(values near 1) of the connection allowing for straight roads or to the elevation gradient (values 

near 0) of the connection allowing for wiggling roads. If the nr,art is not reached yet, another road 

is created by selecting one random point on an already established road and another location in 

the landscape that is at least mr,art cells away from any other road. 

Under the G-RaFFe algorithm all roads are straight and start along the left or lower edge of 

the simulation area and are directed either vertically, horizontally or diagonally within the 

landscape. Road length is drawn randomly within the interval [1,√𝑤𝑠
2  + ℎ𝑠

2]. The parameter 

mr,art determines the minimum parallel distance in cells between two roads. Roads are created 

until the number of road cells reaches nr,art. This road creation option is in most parts adopted 

from the road creation algorithm of the G-RaFFe model [3]. 

9.1.2 Details on field establishment 

During the EFForTS-LGraf field establishment procedure, households attempt to establish a field 

in three steps: first deciding on the field size, second moving to a potential location and third 

making sure there is enough space to establish a field of the desired size in this location.  

Step one: The size f of the field is drawn randomly from the field size frequency distribution. 

Step two: Move to an ’others’ start cell using one of four search strategies, which can change 

during the model run: 

1. Random walk to an ’others’ cell starting from the home base (s1.homebase) 

2. Random walk to an ’others’ cell starting from one of the fields of this household 

(s2.field) 

3. Determine an ’others’ cell within a defined radius from the home base (s3.nearby) 

4. Determine the closest ’others’ cell which is surrounded only by ‘others’ cells (s4.avoid) 
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The selection and order of these search strategies can be defined on the model interface. At 

the start cell, the household turns in a random compass direction (north, east, south or west) and 

starts with the field establishment procedure by trying to establish a first row of cells that will 

belong to the field. The household agent moves forward cell by cell until it either meets a cell 

which is already a field or a home base or an inaccessible area cell. To ensure reasonable field 

shapes, the minimum length l of this first row needs to be the side length of the smallest square 

that fits into the field size. The maximum length of this first row is then set to be the side length 

of the next larger square that fits into the field size. Because this algorithm restricts field sizes to 

rather quadratic shapes, the maximum length can be further modified by the parameter sf which 

allows to proportionally increase the length of the first row. This results in narrower field shapes. 

If the establishment of the first row is not successful, the other possible compass directions for 

the first row are tested. Once a first field row is established, the farmer tries to expand the field to 

the left or right of this row until the field reaches its predefined size f. If expansion to one side of 

the first row did not result in the designated field size, the field is extended also to the other side. 

If also this expansion does not yield the designated field size, all so far added field patches are 

removed, the household moves back to the start cell and starts over again with the first field row 

in a different direction. If all possible four compass directions do not lead to a successful field 

establishment, the farmer selects a new random start cell and tries again to establish a field of the 

designated field size f. The parameter nstrat defines in how many locations a household tries to 

establish fields before it switches the search strategy to the next strategy. If the household failed 

to establish fields for all selected strategies, the model will stop and report a warning message 

that field establishment was not successful. In such cases, the resulting landscape is incomplete 

because not all households reached their final size. This might especially happen under certain 

model parameterizations where households and field sizes tend to be very large without adjusting 

the total dimensions of the landscape. 

9.1.3 Details on EFForTS-LGraf spatial output 

The spatial information of generated landscapes can be exported as *.asc raster files in order to 

allow exchange to other model applications. EFForTSLGraf contains export functions for the 

following raster files: 

• Road-raster: 0 for non-road cells, 1 for cells that have a road intersecting 

• Homebase-raster: -1 for non-home base cells, household identity number 

(p_homebase_id) for home base cells. Multiple raster files are written if ns,c > 1. 

• Ownership-raster: -1 for cells that are not owned, household identity number (p_owner) 

for cells that are owned by a household. Note: inaccessible areas do not show up in this 

output. 

• Land-use-type-raster: 0 for ’others’ and road cells (i.e. also home bases), 1, 2, 3, 4, 5 for 

the different crop types, 1000 for inaccessible areas 

• Patch-id-raster: -1 for cells that are not smallholder fields (also inaccessible areas), 

patch identity number (p_id) for smallholder fields 

• Matrix-patch-raster: -1 for cells that have a road intersecting and that are not ’others’ 

cells, ’others’ patch identity number (p_matrixcluster_id) for ’others’ cells. 

Besides raster output, the write-road-shapefiles procedure creates a polyline shapefile from 

the current road network, which is useful if one of the artificial road creation algorithms has been 

used. Additionally, EFForTS-LGraf offers an output function that utilizes the 3D renderer of 

NetLogo, to create a three dimensional illustration of the generated landscape using trees, palms 
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and houses to visualize the different crop types (Fig. 1). With little code adjustments, this feature 

could in general be used to display other crop types as well. 

 

 

Figure 1: 3d rendered snapshot of EFForTS-LGraf. White lines represent the real road polylines derived from GIS 

data. ’Others’ cells are illustrated as green shaded tree shapes. Oil palm plantations are illustrated as orange 

colored palm rows. Rubber plantations are illustrated as yellow colored tree rows. Agroforestry cells are 

illustrated as mixed rows and trees in blue and green color. Settlements are illustrated by small house symbols. 

9.2 Analysis Details 

9.2.1 Approach 1: Sobol sensitivity analysis  

We created a parameter input matrix in order to calculate Sobol Sensitivity Indices for model 

parameters on different outputs (here: landscape metrics). The parameter matrix was created by 

variation of parameters in defined ranges (Table 1). The parameter matrix was created with 500 

samples and 10 bootstrapping replicates which results in 9500 simulations. For calculating 

sensitivity indices we used the optimized Sobol estimator proposed by Jansen [4–7]. 
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Table 1: Sobol sensitivity analysis parameter ranges 

Id Name on GUI variation value 

ts setup-type constant "area" 
ns,h number-of-farmers not in use - 

ns,v number-of-villages not in use - 

ns,a prop-agricultural-area uniform min=0.05, max=0.75 

ns,c households-per-cell uniform (integer) min=3, max=6 

seeds rnd-seed set externally - 

reps reproducable? constant true 

ws width constant 100 

hs height constant 100 

cs cell-length-meter constant 50 

tr road-type constant "artificial.perlin" 

ir,shp road-map-nr not in use - 

nr,art total-road-length uniform min=500, max=1000 

mr,art min-dist-roads constant 5 

p1r,perl perlin-octaves uniform min=2, max=12 

p2r,perl perlin-persistence uniform min=0.1, max=0.9 

p3r,perl cone-angle uniform min=90, max=180 

p4r,perl dist-weight uniform min=0, max=1 

dv vlg-size-distribution constant "uniform" 

µv vlg-size-mean_ha uniform min=10, max=20 

σv vlg-size-sd_ha uniform min=2, max=10 

dv vlg-min-distance uniform min=1, max=10 

dh hh-area-distribution constant "log-normal" 

µh hh-area-mean_ha uniform min=0.25, max=3 

σh hh-area-sd_ha uniform min=0.25, max=1 

ni inaccessible-area-fraction constant 0 

li inaccessible-area-location not in use - 

di inaccessible-area-

distribution 
not in use - 

µi inaccessible-area-mean not in use - 

σi inaccessible-area-sd not in use - 

tf field-type constant "percentage" 

df field-size-distribution constant "normal" 

µf field_size_mean_ha not in use derived as percentage 

from hh-area-mean_ha 
σf field_size_sd_ha uniform min=0.25, max=2 

pf field-size-percentage uniform min=0.1, max=0.9 

sf field-shape-factor uniform min=0.7, max=2  

tstrat strategies-type constant "id" 

s1strat s1.homebase not in use derived from field-

strategies-id 
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s2strat s2.fields not in use derived from field-

strategies-id 
s3strat s3.nearby not in use derived from field-

strategies-id 
s4strat s4.avoid not in use derived from field-

strategies-id 
nstrat change-strategy uniform min=5, max=20 

istrat field-strategies-id uniform (integer) min=1, max=9 

tl land-use-assignment constant "landscape-level-

fraction" 
 

idl LUT-l-name 
(l=1,2,3,4,5) 

constant l=1: "fields"; l>1 not in 

use 
frl LUT-l-fraction 

(l=1,2,3,4,5) 
constant l=1: 1; l>1 not in use 

frl,spec LUT-l-specialize 
(l=1,2,3,4,5) 

not in use - 

fl LUT-fill-up constant "LUT-1-fraction" 

 

9.2.2 Approach 2: Validation 

To study the range of landscape characteristics that EFForTS-LGraf can create, we performed a 

second validation approach in addition to the genetic algorithm validation approach (see 

Approach 2, main text). From the reclassified land-cover map, that was used for the genetic 

algorithm validation approach, we sampled 100 randomly placed landscapes, 100×100 cells in 

size (landscapes may overlap), and calculated the five landscape metrics for each of these 

sampled landscapes and each land-cover type (fields and other). We compared the landscape 

characteristics (landscape metrics) of these landscapes to the 9500 artificially generated 

landscapes from the Sobol sensitivity analysis (approach 1). To allow comparability, all 

agricultural crop types within the generated landscapes were aggregated to one class (fields) and 

the remaining area was classified as class ‘others’. 

Large heterogeneity was found in landscape metrics from 100 randomly placed sample 

landscapes (100 × 100 cells) within the classified land-cover map (point distributions in Fig. 2). 

Landscape metrics were calculated as a function of ’others’ cells area, because most indices are 

very sensitive to class proportions. The landscape shape index (LSI) quantifies the spatial 

aggregation of patches for each land-cover type. Compared to our generated landscapes, the 

sampled landscapes covered a relatively small range of aggregation levels (Fig. 2). For 

landscapes with small ‘others’ area, our generated landscapes had higher LSI than the sampled 

landscapes. The largest patch index was almost linearly correlated with the ’others’ area 

(negative for agricultural patches, positive for ’others’ patches). With increasing ‘others’ area, 

the mean patch area was exponentially increasing for ‘others’ patches in both, the generated and 

the sampled landscapes. For fields, the mean patch area was almost constant at a very low level. 

Compared to our generated landscapes, the number of ‘others’ patches was relatively low, 

especially for landscapes with small ‘others’ area. The patch cohesion index (PCI) quantifies the 

shape complexity and perimeter density of patches and showed a decreasing trend for 

agricultural patches with increasing ’others’ area. For ’others’ patches, the patch cohesion index 

was almost constant across the 100 sampled landscapes.  

Comparing the 9500 landscapes that were generated within the Sobol sensitivity analysis 

approach (approach 1) with the 100 realistic landscapes, many characteristics found in the 

sampled landscapes (point distributions in Fig. 2) were covered by our generated landscapes 
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(background shading in Fig. 2). The generated landscapes covered a wide range of landscape 

shape index (LSI) values. However, generated landscapes with small ‘others’ area showed 

systematically higher LSI values. The largest patch index (LPI) distribution was matched very 

accurately and all sampled landscapes lay within the boundaries of the 9500 generated 

landscapes. EFForTS-LGraf was also able to reproduce a wide range of mean patch area 

although the observed heterogeneity in the sampled landscapes was significantly lower. The 

variety of the total number of patches was reproduced for field patches, but did not fit well for 

‘others’ patches, especially when ‘others’ area was small. For the patch cohesion index all 

sampled landscapes lay within the boundaries of our generated landscapes. 

 

 

 

 

Figure 2: Points indicate distributions of landscape metrics from 100 landscape samples (100 × 100 cells) from 

the re-classified satellite image of the Harapan region. Background shading indicates distributions of landscape 

metrics from 9500 generated landscapes of the same size and resolution (sobol sensitivity analysis, approach 1). 

The darker the shading, the more often a landscape with the corresponding index value has been generated. Index 

distributions of ’others’ cells and patches are presented in the upper row (green points, ’others’), whereas index 

distributions of field cells and patches are presented in the bottom row (yellow points, fields). 

In order to visualize the similarity between sampled and generated landcover maps, we 

selected three different example landscapes with different ’others’ cells area from the 100 

samples of the Harapan land-cover map and three example landscapes from the 9500 generated 

artificial landscapes with matching ’others’ area (Fig. 3). By visual comparison, the resulting 

landscapes from EFForTS-LGraf showed similar spatial clustering of patches and patch sizes 

although the landscapes from the Harapan land-cover map contained slightly more small field 

patches that were slightly more scattered across the ’others’ area. This matched the observation 

from the landscape metrics comparison, where the sampled landscapes from the classified 

landuse map had a significantly greater number of field patches compared to our generated 

landscapes (Fig. 3, n patches). 
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Figure 3: Three of the 100 sampled landscapes from the re-classified satellite image (a, b, c) and three generated 

EFForTS-LGraf landscapes from the Sobol sensitivity analysis (d, e, f). Grey cells indicate ’others’ cells and 

yellow cells indicate fields. For the EFForTS-LGraf landscapes, black cells indicate household home bases and 

lines indicate artificially generated roads. 

 

9.2.3 Approach 3: Applied case study  

We created a parameter input matrix in order to calculate effects of household consolidation and 

household level specialization on different outputs (here: landscape metrics). The parameter 

matrix was created by variation of the two parameters household-area-mean_ha and LUT-1-

specialize (Table 2). We generated the parameter matrix by using a Latin Hypercube sampling 

design with 500 samples [8]. We simulated three repetitions of the parameter matrix to account 

for stochastic effects. We analyzed the resulting landscapes via the five selected landscape 

metrics from previous approaches. We calculated linear regression models for each landscape 

metric and crop type combination and calculated standardized regression coefficients to estimate 

parameter and interaction effects on landscape metrics of the generated landscapes (coefficient 

results, see main text). Additionally, we investigated the raw data by plotting landscape metrics 

as a function of specialization level, grouped by household size (see Fig. 4). 
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Table 2: Applied case study parameter ranges 

id Name on GUI variation value 

ts setup-type constant "area" 

ns,h number-of-farmers not in use - 
ns,v number-of-villages not in use - 
ns,a prop-agricultural-area constant 0.5 
ns,c households-per-cell constant 1 
seeds rnd-seed set externally - 
reps reproducable? constant true 
ws width constant 100 
hs height constant 100 
cs cell-length-meter constant 50 

tr road-type constant "real.shapefile" 

ir,shp road-map-nr constant 3 
nr,art total-road-length not in use - 
mr,art min-dist-roads not in use - 
p1r,perl perlin-octaves not in use - 
p2r,perl perlin-persistence not in use - 
p3r,perl cone-angle not in use - 
p4r,perl dist-weight not in use - 

dv vlg-size-distribution constant "uniform" 
µv vlg-size-mean_ha constant 15 
σv vlg-size-sd_ha constant 6 
dv vlg-min-distance constant 10 

dh hh-area-distribution constant "log-normal" 

µh hh-area-mean_ha uniform min=1, max=3 
σh hh-area-sd_ha constant 0.91 

ni inaccessible-area-fraction constant 0 
li inaccessible-area-location not in use - 
di inaccessible-area-

distribution 
not in use - 

µi inaccessible-area-mean not in use - 
σi inaccessible-area-sd not in use - 

tf field-type constant "distribution" 

df field-size-distribution constant "log-normal" 
µf field_size_mean_ha constant 0.49 
σf field_size_sd_ha constant 0.77 
pf field-size-percentage not in use - 
sf field-shape-factor constant 1 

tstrat strategies-type constant "id" 

s1strat s1.homebase not in use derived from field-

strategies-id 
s2strat s2.fields not in use derived from field-

strategies-id 
s3strat s3.nearby not in use derived from field-

strategies-id 
s4strat s4.avoid not in use derived from field-

strategies-id 
nstrat change-strategy constant 10 
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istrat field-strategies-id constant 1 

tl land-use-assignment constant "household-

levelspecialization" 
 

idl LUT-l-name 
(l=1,2,3,4,5) 

constant l=1: "oilpalm"; l=2: 

"rubber"; l>2 not in use 
frl LUT-l-fraction 

(l=1,2,3,4,5) 
constant l=1: 0.5; l=2: 0.5; l>2 not 

in use 
frl,spec LUT-l-specialize 

(l=1,2,3,4,5) 
uniform/constant l=1: min=0, max=1; l=2: 

0, l>2 not in use 
fl LUT-fill-up constant "LUT-2-fraction" 

 

 

Figure 4: Five selected landscape metrics, for two crop types (oil palm and rubber) and ’others’ patches (matrix) 

calculated for land-cover maps generated by the model using a latin hypercube sampling approach. Plots show the 

value of the landscape metrics versus household specialization level on oil palm. Differences in household size 

distributions are shown by colours with darker colors indicating larger household size. These are grouped into 

small (1 - 1.65 ha, yellow), medium (1.66 - 2.32 ha, green) and large (2.32 - 3 ha, purple). Lines show smoothed 

trends and standard error using the locally weighted scatterplot smoothing (LOESS) method. 
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