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1 Introduction and Motivation 

Large-scale, virtualization-based distributed computing environments have 
emerged during the last couple of years providing scalable computing resources as 
a service. From a customer perspective, these environments offer an almost inex-
haustible pool of resources that can be utilized at any time. Especially their ability 
to provision computational resources to virtual machines on demand renders them 
a promising hosting platform for permanently running enterprise applications. In 
the past, a main challenge in operating corporate data centers has been and still are 
resource demand fluctuations, recurring patterns at various time scales as well as 
trends and shifts in application resource demands (Urgaonkar et al. 2008; Gmach 
et al. 2008). In dedicated hosting environments these phenomena often required 
peak demand oriented capacity planning in order to prevent resource shortages, 
which in turn lead to low average resource utilization levels. Even in virtualized 
data centers that allow for workload consolidation, correlated bursts or regular 
peak demand periods require the acquisition and maintenance of large pools of 
physical servers. Enterprises that aim at lowering overall data center costs, which 
include (but are not restricted to) hardware acquisition, opportunity, energy, and 
labor costs for administration, can utilize this new breed of scalable application 
hosting platforms in order to achieve cost reductions. In order to compensate for 
peak demands or whenever the overall data center workload exceeds locally availa-
ble resource capacities, workloads can be evicted from the local data centers by 
offloading virtual machines into public IaaS (Infrastructure-as-a-Service) clouds. 
However, the existence of various pricing and tariff models renders capacity plan-
ning and management decisions difficult, even in highly transparent infrastructure 
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markets. On a strategic level, decision makers are confronted with the problem of 
selecting economically beneficial providers and virtual machine tariffs, while on an 
operational level the workloads to evict and the assignment of appropriate virtual 
machine types needs to be done in a way that conforms with the tariff and provid-
er selection outcomes. Both problems are highly interdependent and require so-
phisticated models for making efficient decisions. Consequently, we propose an 
integrated decision model for selecting virtual machine tariffs, types and workloads 
to evict from local data centers that aim at economic efficiency. Our model can be 
used to determine, given internal cost structures, an optimal mix of internal and 
external resources for a given planning period. 

1.1 Related Work 

The majority of related work in this field originates from research related to Grid 
computing; as IaaS Cloud Computing is an emerging computing paradigm, a sig-
nificant body of research literature has yet to be established. Conceptually, both 
paradigms share the infrastructure focus (the characteristics of IaaS and Grid com-
puting are explained in Weinhardt et al. (2009)). The research problem mentioned 
above can best be studied using the following three perspectives: research on TCO 
models, research on decision support tools and research on resource management. 
This paper focuses on a cost-oriented decision model only, as benefits resulting 
from the usage of IaaS resources are generally hard to quantify. One of the most 
important cost-oriented models both used in research and in real-life settings is the 
Total-Cost-of-Ownership (TCO) model; initially created by Gartner Inc. in the late 
1980s to assess the cost structure of Client/Server computing (Silver 2007). One of 
the latest varieties of TCO models applies the approach to the field of IaaS; Leong 
(2009) proposes a TCO model for IaaS which will act as one of the inputs for the 
TCO model used in this paper. As a researcher in Grid computing cost, Opitz et 
al. (2008) tries to quantify the total cost of ownership (TCO) for grid computing 
resource providers in absolute cost figures from real-world scenarios and comes up 
with an estimate for the total cost of a CPU hour offered by a commercial resource 
provider; the model in Opitz et al. does not include any storage costs, which are of 
major importance in business settings. So, the necessary cost calculations for com-
puting resource-consuming enterprises have to look different from the model in 
Opitz et al. for resource providers. Risch and Altmann (2008) analyzed a number 
of Grid computing scenarios using a cost-based approach; they showed that Grid 
computing is beneficial in scenarios, where either short and infrequent peaks have 
to be covered or where data backups have to be conducted or where lightly used 
resources have to be replaced. However, they recommend that each company per-
forms its own cost analysis as the benefits are depending on the cost level of the 
in-house resources. Gray (2003) specifically deals with the decision when to out-
source given the price ratios between the different computing resources. Generally, 
the business model behind Grid computing remains case-specific; he maintains 
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that business benefits are only realized for very CPU-intensive software applica-
tions. As a conclusion, it can be stated that the cost models for Grid computing 
found in the current research literature are rather incomplete, scenario-specific and 
not focused on the corporate decision-maker. 

The decision-support perspective is the second important perspective on the 
potential of Grid computing. Kenyon and Cheliotis (2004) addressed the area of 
Grid resource commercialization. They conceive Grid resources as commodities 
and apply financial instruments for conventional commodities like gas or electricity 
to those resources. Within the scope of their analysis, they identified the necessity 
for decision support, when Grid users buy or sell Grid resources on a Grid mar-
ketplace. However, the need for such elaborated decision support models will only 
arise in a real Grid resource market. 

In the area of resource management, Rolia et al. (2003) suggest a resource-
management framework for automatic software application placement in the data 
center using Grid-computing principles like resource allocation and scheduling. 
Their main focus lies on the optimization of in-house data-center resources; they 
do not address the question under which conditions to use external resources. 
Their optimization approach minimizes the number of CPUs and does not consid-
er actual cost factors from an enterprise environment.  

Literature on outsourcing decision-support such as the reviews of Gonzalez et 
al. (2006) and Dibbern et al. (2004) show that the question of what to outsource 
has mostly been analyzed conceptually or in a positivist fashion so far, but not 
through mathematical modeling, even though cost is universally recognized as a 
dominant criterion for outsourcing (Gottfredson et al. 2005). 

In the following section, a cost model, an optimization model and a regression 
model are developed and their underlying assumptions are stated. In Sec. 3, the 
models are instantiated and experiments are set up to determine the driving factors 
for hybrid IaaS usage in a cost-optimal fashion; the solution is then discussed and 
future research directions are given in the last section. 

2 Methods 

In this section, an optimization model for cost-optimal assignment of virtual ma-
chines to computing resources and a linear regression model for analyzing statistic-
al properties of those assignments are presented. Both are fundamental for analyz-
ing the question of IaaS computing use cases. 

2.1 Optimization Model 

Current infrastructure providers offer virtual machines on demand that can be 
entitled with any of a predefined set of resource bundles. We denote a specific 

resource bundle as a virtual machine type and define, for each resource e  E, the 
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maximum amount of guaranteed resources available to a virtual machine at any 
point in time (e.g. the number of CPU cores or the amount of RAM assigned to 
that particular virtual machine). Each type of virtual machine is associated with a 
tariff. Customers can decide to make initial investments and buy virtual machine 
time contingents. A contingent is valid for a certain time period (the discount 
period) and consist of an initial capacity sd of computing time and a certain hourly 
tariff cvm. The initial capacity is charged as a lump sum, afterwards the computing 
fees will be hourly billed. We also factor in extra capacity as a percentage of the 
overall, aggregated capacity to allow for some failover capacity or hot stand-by 
resources. The model furthermore assumes, that any application can take advan-
tage of a scale-up approach, i.e. it can make use of additional IT resources once 
they become available. 
  Table 1: Model parameters 

I Set of available servers in the enterprise data center. si is the computing ca-

pacity of server type iI. 

J Set of all hosted business applications. It is assumed that each application 
runs in its own virtualized environment on a separate software stack and 

operating system. pjt is capacity demand of virtual machine jJ at time period 

t T. ni
jt are the inbound networking requirements, no

jt are the outbound 
networking requirements and nsto

jt are the storage requirements of virtual 

machine jJ at time period tT. 

E Set of all resource bundles available from the IaaS provider. se is the compu-

ting capacity of server type eE. 

T Set of all time slots T = {t1…tn}, (tT) of equal length in the planning period 

K Set of all discount periods K = {k1…kl|kx = {txd …tx(d+1)}, where d is the 
number of time slots in which a contingent is valid and where l the number 
of discount periods. 

 Ratio of failover capacity to regular capacity in the corporate data center. The 
ratio depends on the criticality of the involved application system. Produc-
tion-grade ERP systems are usually secured by a high-availability setup in 

which  = 1. 

 
The CPU, networking and storage requirements can be estimated from historical 
real-world system traces coming from performance monitoring systems (c.f. Rolia 
et al. (2003)). Table 2 and Table 3 describe the cost model used throughout the 
paper. It  is based on work of Leong (2009) and Gray (2003), but does not feature 
LAN costs, which are magnitudes cheaper than Internet transports (Gray 2003). 
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Table 2: Cost model for enterprise resources 

Cost 
factor 

Explanation 

Server 
Expenses 

The regular payments per period for internal server hardware could 
either be the server rent or server depreciation costs. The server ex-
penditures do not depend on the actual server utilization; if the server 
is used within T, its expenditures have to be paid for the complete 
time interval T. Potential hardware replacements and other repairs are 
included in the hardware cost (the hardware cost also includes cost 
factors like electrical power, cooling, hardware handling, operating 
system license, virtualization software licenses, server operations and 
data center facilities and other software fees). Cost chw

i for running a 

server iI for one period of time in the enterprise data center. 

Storage The storage costs include all surrounding activities like backup and 
recovery, device management etc. Cost: co

t for one period. 

 
Table 3: Cost model for IaaS resources 

Cost factor Explanation 

Virtual machine CPU 
hour 

Cost cvm for running a virtual machine in a time con-
tingent under the hourly tariff. The IaaS provider 
offers the OS licenses along with the server. The 
software cost is included in the server rent. It is as-
sumed that support and management service charges 
are already included in the virtual machine charges. 

Time Contingent fee Cost cdisc cost of buying a contingent. 

Cloud storage Cost cstor
t for using a unit of storage for one  time 

period. 

Internet bandwidth Internet transports are fundamental; only the variable 
cost of Internet bandwidth is considered here, as the 
Internet connection will most likely be used by other 
IT systems in the enterprise. Cost: cwan 

Data transfer outbound Cost of serving data from the IaaS provider. Cost: cout 

Data transfer inbound Cost of uploading data to the IaaS provider. Cost: cin 

 
The task of the optimization model consists of assigning each software application 
in each period to a resource from either the internal or the external pool. The mo-
del is essentially a mixed-integer programming problem (MIP). The decision vari-
ables of the optimization model are as follows: if xijt is set to 1, then application j 
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will run on the internal server i in period t; xejt is defined in the analog way for 
external servers e in period t. zi records if the internal server i was used at all in T 
(e.g. z1 = 1 means that internal server 1 was used at least once). This information is 
required to accurately calculate the hardware costs. yk records if any external re-
source was used in discount period k; if that is the case, then the external compute 
fees for that discount period are factored in the total cost. o aggregates the required 
size of the internal storage infrastructure. ctcc

k stores the total computing cost in 
discount period k. The objective function combines the cost factors and the 
decision variables in one function, which is solved to minimize total costs; table 4 
shows the summands of the objective function. 

 
Table 4: Objective function summands 

 
 

The constraints of the optimization model are as follows: one application is 
assigned to exactly one server per period. It is neither possible to run one applica-
tion on several servers nor to run several application instances during the same 
period. Each IaaS resource can only run at most a single application instance; 
hence it is not possible to consolidate virtual workloads on a IaaS resource, as they 
are already virtualized. The combined load per period placed on each internal or 
external server is at most the maximum capacity per period of that server; zi is set 
as soon as server i is used at least once in T. The internal storage requirements 
mandate that  o is set to the minimal amount of internal storage required across all 
periods. The total computing cost ctcc

k in discount period k is at least as big as the 
one-time fee for the time contingent and it is at least as big as the amount needed 
to cover the sum of the hourly compute fees in discount period k. As a result, the 
minimum of the two cost factors, time contingent cost and hourly computing cost, 
is chosen for each discount period. 
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2.2 Linear Regression Model 

The main purpose of developing this regression model is the assessment of the 
internal validity of the aforementioned optimization model; in case the optimiza-
tion model is internally valid, the regression model will prove obvious relationships 
between the variables of the optimization model. Moreover, it can be helpful in 
finding previously unknown relationships. The basis for the regression model is 
the experimental data coming from the optimization model runs. Each of those 
runs can be considered an experiment in which a certain number of business appli-
cations are assigned to internal and external resources per time slot in a cost op-
timal fashion. Hence, the regression model is constructed in several step. First we 
define which experiments to execute. The total number of possible experiments is 
the cardinality of the power set Q over J with |Q| = 2|J|. It is obvious that, even 
for a small number of applications, only a sample of the entire population can 

actually be analyzed in experiments. In the following, JaQ (na = |Ja|) will desig-
nate the set of applications for one experiment. The total number of experiments 
and the choice of experiments depends on the purpose of the analysis and the 
required statistical confidence level. As a second step, the sum per time slot of all 

load traces in Ja for the same resource group is calculated 



aJj

jtt pp , and analog 

for no
jt; nsto

jt. This step leads to three unified load traces pt, no
t, nsto

t , in which the 
summation should have leveled out any negative correlations among the traces. 
The third step consists of calculating two characteristic measures for each of those 
three unified time series, the arithmetic mean and the empiric coefficient of varia-
tion; those values will be the independent variables in the regression model and are 

called 
stoo nnp ,,  for the averages and sp; sn

o ; sn
sto for the standard deviations. For 

example: 
a

Tt
t

nT

p

p
*


 . The averages are additionally divided by na; otherwise, the 

averages and the coefficient of variation would automatically become larger, as na 
increases and this would negatively affect the regression model. In the fourth step, 
the cost optimization model computes the resource assignments of applications to 

internal and external servers; only those applications aJj will be used for the 

optimization run. After the run, the decision variables contain the values which 

IaaS  servers have been used. This information is used to determine Ŷ , the depen-
dent variable which counts the average number of deployed Cloud instances per 

time slot: . In the fifth step, an analysis of the correlation 

between the independent variables and Ŷ , the dependent variable can be con-
ducted. The relationship will then describe, how those statistical properties are 
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related to IaaS usage and will help answering the question under what conditions 
IaaS usage is beneficial. The linear regression model thus has the following basic 
formulation: 

 
b1…7 are the regression coefficients. Inbound network loads ni are not part of 

the model as they are assumed to be strongly positively correlated to their counter-
parts no. 

3 Results 

3.1 Scenario definition 

The values of the enterprise cost factors were estimated from literature sources. 
The values used are similar to those suggested in Hamilton (2008) and Armbrust et 
al. (2009). J, the set of all hosted business applications, consists of 18 real-world 
SAP ERP systems in this scenario. Their resource consumption (pjt ;ni

jt ;no
jt ;nsto

jt ) 
were measured as part of the performance monitoring ongoing in corporate data 
centers. The load traces used here were collected from Mid-February until end of 
April 2009 (n=65 days); their temporal resolution is one day, i.e. the load traces 

contain the maximum of each day’s resource consumption.  is 0, as the ERP 
systems in this sample were development systems with no safety capacity in place. 
In this scenario, GoGrid1 was used as a provider of resource bundles E. They offer 
four differently sized time contingents on a monthly basis. In each of the following 
optimization runs, the most efficient tariff was chosen. In total, 31 experiments 

were conducted (6 experiments for each level of na with na{3;6;9;12;15} and one 
experiment with na = 18); as each experiment required 4 runs of the optimization 
model, a total of 124 runs were executed. Additionally, the optimization model was 
parameterized in another set of experiments to just utilize enterprise resources; 
another sequence of 31 experiments was conducted in that fashion. The optimiza-
tion model was computed using the mixed-integer linear programming solver SCIP 
(Achterberg 2007). 

3.2 Experimental results 

When comparing the total cost of the experiments using IaaS computing with the 
total cost of the experiments using only enterprise resources, the Cloud-based 
experiments were on average 28% cheaper than those in the enterprise datacenter. 
However, the standard deviation of those average savings lies at 15%, which indi-
cates a high volatility in the saving potential. 

                                                      
1 http://www.gogrid.com  

http://www.gogrid.com/
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The regression model was then applied to the results from the Cloud-based 
optimization runs to analyze the determinants of those savings. For assessing the 
regression model, the adjusted coefficient of determination R2, the F statistic (as a 
measure of goodness-of-fit) and the standard error have been calculated. The 
adjusted R2 is 0,915 which indicates that the linear model accounts for almost all 
the variance in the sample. The F statistic is 47,25, which means that we have to 
reject the null hypotheses, that there is no relationship between the independent 
and the dependent variables. The level of significance is well below 5%.  

Table 5 shows the correlation coefficients and their statistical properties. The 
p-value on the coefficients shows the level of significance of this variable, as de-
termined by a two-tailed t-test. b1, b2, b4 are significant at least on a 5% level, b5 is 
significant on a 10% level, whereas b3, b6, b7 are not significant for any reasonable 
level. The beta values are standardized correlation coefficients and show the rela-
tive importance of every coefficient; the higher the beta value, the stronger the 
impact on the dependent variable. The use of a linear model can be justified as the 
assumptions of the linear regression model are satisfied (based on Backhaus et al. 
(2006)): the number of correlation coefficients is smaller than the number of ob-
servations, the regressors are error-free with high probability as they were meas-
ured directly on the affected servers using performance monitoring software. Au-
tocorrelation and heteroscedasticity among the error terms can be neglected as a 
visual inspection of the residual plot showed no signs of those effects. Hence, the 
internal validity of the model can be assumed. 

 
Table 5: Regression model 

Variables Coefficients Coefficient 
values 

t Stat P-value Beta Value 

Intercept b0 -0,7170 -1,3953 0,1762  

na b1 0,3772 5,1855 0,0000 0,8159 

p  
b2 -1,4111 -4,8447 0,0001 -0,5620 

sp b3 -0,2738 -1,3997 0,1750 -0,1215 

ston  
b4 0,0074 4,9895 0,0000 0,5474 

sn
sto b5 6,5614 1,7964 0,0856 0,2265 

on  
b6 0,0058 0,2595 0,7976 0,0156 

sn
o b7 -0,0105 -0,4835 0,6333 -0,0464 

4 Discussion 

Based on the experimental results described above, a first observation seems 
noteworthy: na, the number of applications available for Cloud computing, posi-
tively impacts IaaS usage more than any other variable. This leads to the hypothesis 
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that the cost-effectiveness of Cloud computing rises with the amount of Cloud-
ready business applications; this outcome seems logical, given that Cloud providers 
offer time contingents where bigger contingent are associated with lower marginal 

cost for IT resources. Interestingly, p , the variable with the second largest impact, 

has a negative effect on IaaS usage. This means that the more business applications 
become Cloud-ready, the less cost-effective it is to deploy them in the Cloud. This 
outcome could be explained with the higher consolidation potential that a growing 
number of virtualized applications possesses. The hypothesis here is that, the more 
applications are available for internal server assignment, the better those internal 

servers can be utilized. The amount of storage ston is the variable which exerts the 
third biggest impact on IaaS usage and which is positively correlated to it. This 
outcome seems sensible and as modern ERP systems usually have rather demand-
ing storage requirements compared to other applications and as the Cloud storage 
cost is assumed to be smaller than the storage cost in the corporate data center (see 
3.1 for the cost values). sp is not statistically significant, so it can be concluded that 
it does not exert any measurable effect on IaaS usage based on the data in this 
sample. This outcome suggests the rather counterintuitive hypothesis, that Cloud 
use cases which offload peak IT resource demands into the Cloud may not be 
beneficial cost-wise for the client; this notion is further supported by the negative 
sign of the correlation coefficient of this variable. However, further research is 
needed on this hypothesis, as sp might simply not be an adequate measure for CPU 
load variability.  

4.1 Limitations on the Research Design and Material 

The results presented above abstract from the differences in the technical proper-
ties of IaaS resources and corporate data center resources and solely focuses on the 
cost aspect. Switching costs (for transferring applications between the Cloud and 
the corporate data center) are not included in the optimization model because it is 
assumed that the technical incompatibilities will be neglectable in the future; cur-
rently switching costs can still be assumed to be considerable. The effect of switch-
ing costs in the optimization model on IaaS usage will likely be negative; switching 
costs increase the total cost of Cloud usage and hence, the necessary critical mass 
of applications for a beneficial IaaS usage will be higher.     

The optimization model also currently does not allow for several competing ta-
riffs per time slot in one model; only one tariff per time slot can currently be in-
cluded. There is no linear formulation of the resulting multi-tariff optimization 
problem, but linearity is required for certain desired properties of the solution 
approach (availability of efficient solvers, feasibility of global optimization ap-
proach). The external validity of the regression model must be considered rather 
low because of the small number of experiments; however, it can be argued that 



MKWI 2010 – IT Performance Management / IT-Controling 

 

 

205 

the results obtained show a clear first glimpse of the influence factors and their 
effects on IaaS usage.  

4.2 Conclusion 

This paper suggests a novel model of optimizing the cost of IT resource usage for 
enterprises and demonstrates a way to analyze the optimization model outcomes. 
The resulting method is helpful for both optimizing the internal and the external 
deployment of an application; it can be set up using data that is readily available in 
the enterprise (system traces, internal cost figures). A business scenario demon-
strates the usefulness of the method. However, as the scenario shows, using exter-
nal resources is mainly beneficial for scenarios in which a great number of applica-
tions with low computing requirements and high storage requirements need to be 
outsourced. A careful analysis of a larger number of business scenarios and a larger 
number of IT resource providers has to be conducted in order to verify those find-
ings. 
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