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Abstract: In this paper, a strategy framework for coordinating decentralized autonomous 
agents is presented and applied within a smart energy grid. The framework brings together 
the concept of policy-based computing and market-based coordination. In this context, 
agents can be seen as self-interested entities that are governed by their local policies. Effi-
cient coordination between these self-interested agents is realized through a market me-
chanism that incentivizes the agents to reveal their policies to the market. By knowing the 
agent’s policies, an efficient solution for the overall system can be determined. Leveraging a 
declarative, policy-based approach facilities the specification of highly customizable strate-
gies that can be easily adapted to various resources and markets. As an example for a real-
world application, the framework is used for efficient balancing of decentralized energy 
supply (e.g. photovoltaic, wind power, CHP) and demand (e.g. households, businesses) in a 
power grid. 

1 Introduction 

One of the fundamental questions within multi-agent systems research is how 
autonomous, self-interested agents can be coordinated in a way that the global 
performance of the system is maximized. In recent years, market mechanisms have 
become popular as efficient means for coordinating self-interesting agents compet-
ing with each other about scarce resources/tasks. A wide range of different negoti-
ation or auction mechanisms have been proposed in this context – many of them 
exhibiting favorable properties such as efficiency or/and incentive compatibility. 
The latter becomes an important feature in competitive multi-agent systems as 
markets incentivize the autonomous agents to reveal their private information 
truthfully to the market. Having full information from the participating agents the 
market could determine a global optimal solution that cannot easily manipulated by 
malicious agents. 
When using a market-based coordination framework in a multi-agent system, the 
design of the agent strategies for interacting with the market mechanisms becomes 

a crucial element. In this context, two major streams of work can be identified: (i) 
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On the one hand there are some widely used agent platforms such as JADE (o. J.) 
(Java Agent Development Framework) or Cougar (o. J.). While they provide some 
basic coordination (including some market) mechanisms such as negotiation and 
auction protocols, they do not support the agent developers in specifying domain-
specific agent strategies for participating in the coordination process. This makes 
the development of agents often very cumbersome and complicated since for each 
resource and market mechanism different strategies are needed and no design time 

support for strategy development is provided. (ii) On the other hand, there are a 
lot of powerful systems implementing (often domain specific) marketplaces, which 
also provide some means for developing the corresponding agent strategies. The 
Trading Agent Competition (Wellman et al. 2001) provides a testbed for non-
cooperative agent strategies. Commercially highly relevant application examples 
can be found within the financial domain, where the area of algorithmic trading 
has become increasingly important over the last years (Parkes and Huberman 
2001). However, these strategies are specific for a concrete market mechanism and 
domain. Therefore, they are not geared towards highly configurable strategies that 
provide the flexibility to add resources at runtime. For example, when developing 
an agent-based energy market, agents representing households must adapt their 
strategy in a plug’n’play fashion when adding or removing appliances in the house-
hold. While there is work that addresses agent strategy design using more general 
setting (Giménez-Funes et al. 1998, Vytelingum et al. 2005), these approaches still 
lack the flexibility and configurability required to support highly configurable strat-
egies. 

To address this issue, the paper extends the generic strategy framework pre-
sented in Vytelingum et al. (2005) to support developers in specifying device spe-
cific agent strategies. It can be used to implement widely autonomous bidding 
agents that are able to interact with different market mechanisms in various do-

mains. The architecture leverages the idea of policies (Kephart and Walsh 2004) for 
realizing a high-degree of autonomy while making sure that the agents behave 
within a predefined action space. As these policies are declarative descriptions they 
can be added and removed at runtime which allows to adapt the strategies dynami-
cally. For example, in the energy market scenario new appliances in the household 
may come with their policies how they can be regulated. These policies can be used 
by the energy trading agent to adapt its strategy to the new setting. 

The paper is structured as follows. In Section 2, we first introduce the generic 
agent strategy framework. Subsequently, in Section 3 we describe a realization of 
the architecture within the energy domain and conclude in Section 4 with a short 
outlook. 
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2 Agent Architecture 

In this section, we introduce the agent architecture for the agents that allow auto-
mated trading on the energy markets. The automation involves autonomous acqui-
sition, storage and processing of information by the agent which is also displayed 
by the steps perception, cognition and action in Figure 1. As also depicted in the 
figure, these steps can be assigned to the three layers of agent strategy design as 
defined in Vytelingum et al. (2005). In the following we discuss each layer (step) in 
more detail. 

 

 
 
Figure 1: Agent Strategy Framework 

2.1 Information Layer 

The information layer contains information which an agent  has gathered 

from the market, the environment or its own private information at time  with 

. Much in line with Vytelingum et al. (2005), we can define the market and 
agent state as follows. 

 
Definition 1 (Market State) A market state captures the public information that 

is available at a certain point in time . Is is defined via a vector 

 where  represents the trading object,  the clearing 

price and  the overall traded quantity at time , and  the orders to buy or 

sell energy which are present in the order book at time .1 The expressivity of a 
bid b is defined through the bidding language in the market (c.f. Section 3.3). 

                                                      
1 Note that full disclosure of  is only available for markets with public order book. Markets with 

sealed bids usually publish only the highest bid and ask. We thus define the market state as 
. 
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Given the set of publicly available information on the market, the agents internal 
state containing private information such as preferences is defined below. 

 

Definition 2 (Agent State) An agent ’s state at time  is defined by the vector 

 where  specifies whether the agent acts as 

buyer or seller,  defines the quantity of energy required (or provided) by the 

agent at time ,  the reservation price of an agent, and  the computa-

tional resources available at the given point in time. 
 

In addition to the Market and Agent State there might be additional information 
necessary dependent on the application scenario. For example, assuming a smart 
grid scenario where decentralized energy demand and supply is allocated using a 
market mechanism the state of the power grid might also be relevant for the calcu-
lation of the optimal allocation. As such additional information is not yet perceived 
by the agent or market, we add an additional Environment State which captures this 
application specific information. 

 

Definition 3 (Environment State) The environment state  captures the 

values of a set of applications specific variables  over time . The 

variables are not part of the agent itself nor can they be observed on the market 
directly. They can be rather perceived by the agent when observing its direct envi-
ronment. 

 
Typically, information about environment states is perceived via sensors (e.g. mea-
surement of frequency or voltage in a electrical grid) and is aggregated to a higher 
level of abstraction that can be interpreted by the agents. 

2.2 Knowledge Layer 

On this layer previously defined information is combined with polices given at 
design time. These polices capture general rules that define admissible actions and 
thereby constrains the strategy space of an agent. In the following, we adopt a 

rather general approach for defining the strategy space  of a market agent. 
 

Definition 4 (Strategy Space) The strategy space  available to an agent  at time 

 is defined by a cartesian product  covering the 

agent ’s action space , the possible states  and the market mechanism 

descriptions . Consequently, a strategy  available to agent  defines which 

action  should be executed for a given market mechanism  in a given 

state . 
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The description of a market mechanism is important if more than one mechanism 
(e.g. onesided mechanisms like the english or dutch auctions, or double auctions) 
should be supported. There are several approaches how market processes can be 
formalized and described (Lomuscio et al. 2001, Bartolini et al. 2005, Love et al. 
2008). For example, the Game Description Language GDL (Love et al. 2008) for-
malizes games – which are also general formulation of auction protocols – using 
Datalog and thereby also formally describes the action space for the agents that 
can be reused in our strategy definition. 

By constraining the strategy space  policies define whether a certain action is 
allowed for a market mechanism in a given state. In general policies can be seen as 
a set of constraints that have to be met by a solution to a certain problem. In litera-
ture solving a problem specified by a set of constraints is denoted as constraint satis-
faction problems (CSP) (Dechter 2003). A CSP is described by a set of attribute iden-

tifiers  – each representing one aspect of the problem – and the domains of these 

attributes . As our goal is to specify constraints over the strategy space we as-

sume . 
 

Definition 5 (Constraint Satisfaction Problem) A CSP within the scope of this 

paper is a tuple , where  represent the involved attributes of the prob-

lem,  the domains of these attributes and  a set of constraints that defines 

whether a given configuration   is allowed or not. A 

constraint  consists of a scope and a relation, i.e. . The scope 

of a constraint is a -tuple of attribute labels  and the relation 

 of a constraint the set of -tuples defining the allowed attribute values 

 for the given scope.2 As enumeration of all possible relations 
is often not feasible (e.g. for infinite domains) we allow relations to be defined via 

predicates . 

 

A strategy  is evaluated with respect to a k-ary constraint with 

 and  as defined below: 

 

 (1) 

 

The Equation 2 is evaluated to 1 for a given constraint  and a given strategy  if 

there is a tuple in the relation  , for which each attribute value  matches 

the corresponding attribute value  in the configuration. The predicate match is 
used to compare two attribute values. In the most simple case, where attribute 

                                                      
2 Note that the definition assumes that the constraint is defined on the first  attributes. 
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values represent “flat” datatypes, such as integers or strings, this could be realized 

by a simple syntacticcomparison, e.g. match  if  . 

In order to judge a strategy  as admissible, Equation 2 has to hold for all 

constraints . This is ensured by the following formula: 
 

 (2) 

Based on the evaluation of constraints we are able to define the set of acceptable 

strategies  for agent  by removing the strategies that violate at least one 
constraint: 

 

  (3) 

The set  is therefore the strategy space that has to be considered in the behavior-
al layer where the best strategy is selected and executed. 

2.3 Behavioral Layer 

The behavioral layer is responsible for deciding on the best action to take at each 
point in time. In order to select an action, we have to rank the strategies according 
to preferences of the agent. This can be done by defining a utility function 

 over the relevant strategy space . Then the best strategy is deter-
mined by solving the following maximization problem: 

 

 (3) 

Given the best strategy, we execute the action  contained in the tuple  which 
typically involves sending one or more bids to the market. Note that the utility 
function and strategy space typically depends on the application scenario as well as 

market mechanism used. In this context, the available set of actions  is deter-
mined by the bidding language of the market mechanism used. For example, in an 
one-shot auction only one bid can be send to mechanism while in sequential auc-
tion protocols more complex actions might be involved. Another important appli-
cation-dependency is the selection of the best price that should be sent to the mar-
ket. While for incentive compatible mechanisms bidding the real reservation price 

 is the dominant equilibrium strategy for all agents (independent of the strate-

gy of the other agents), for other market mechanisms this is not the case as strateg-
ic over- or underbidding might increase the expected return for individual agents. 
Due to this scenario-dependency we outline the application of the crete Smart 
Grid scenario in Section 3. 
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2.4 Summary 

Before coming to a concrete application scenario of the strategy framework we 
shortly summarize the agent reasoning process as shown in Figure 2. In the first 
step, market, environment and agent state information are perceived and passed to 
the cognition step. Here the information is interpreted using the agents policies. 
This leads to a set of acceptable strategies that are evaluated using a given utility 
function. The action contained in the utility maximizing strategy is finally executed 
and the corresponding bid(s) is/are send to the market. 

 

 
Figure 2: Bidding process according to strategy framework. Note that for sake of 

reading time-dependency is omitted in the figure. 

3 Application: Smart Energy Grid 

In this section, the agent framework defined above is applied within the energy 
domain. The power network will be penetrated more and more with decentralized 
energy supplier like wind power, photovoltaic and CHPs (Combined Heat and 
Power) connected to the distribution grid (low and medium voltage). Some of 
them are also fluctuating and only limited controllable. For a economical, ecologi-
cal and network stable power generation and consumption a intelligent balancing 
of supply and demand is needed. 

For that reason producers and consumers can coordinate each other instantiat-
ing and using local energy markets. Introducing intelligent coordination mechan-
isms is to assure an optimal balancing of the energy supply and demand while gua-
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ranteeing grid capacity constraints and additional quality criteria. The rational be-
hind using electronic markets as a coordination mechanism is the decentral nature 
of our scenario without a fully informed central agent. In such scenarios where 
self-interested provider, consumer or prosumer agents try to optimize their per-
sonal utility in cooperation or competition with other agents, a coordination me-
chanism must incentivize the individual agents to reveal their goals to reach a glob-
al optimum for the overall system. As discussed above, markets can provide effi-
cient mechanisms in the presence of selfish agent that optimize social welfare in 
the market. As each of the appliances and decentralized energy supplier require 
needs its own adapted bidding strategies, a strategy framework based on policies 
that can be seamlessly combined provides thus the right means to realize custo-
mizable agent bidding strategies. 

In order to fully specify a market mechanism, we have to define two aspects: a 
bidding language for communicating the agents’ preferences to the market and the 

mechanism itself consisting of the allocation function  and pricing function . 

3.1 Bidding language 

Generally, a bidding language defines the preferences that an agent wants to reveal 

to the market, i.e. bidding is about reporting the preference function . When 
designing a bidding language, there is a trade-off between the expressivity of the 
language, the privacy loss of users and the complexity of the market mechanism. 
For example, a bidding language could support expressing how valuation changes 
depending on time, on available units, etc. For the energy scenario we therefore 
decided to use a quite restricted bidding language. This has the advantages that we 
are able to implement a quite efficient mechanism and the agents do not have to 
reveal too much private data to the mechanism. However, note that this could lead 
to less efficient markets if dependencies between bids cannot be compensated with 
local agent intelligence (e.g. smart splitting of originally complex into simple bids). 
A general overview of bidding language with different expressivity can be found in 
Nisan (2000). 

Based on these considerations, we define the set of requests to buy energy  

and the set of offers to sell energy  where  and  

holds. A bid each  represents a tuple  where  defines the res-

ervation price for a single unit of the good  (i.e. maximal price for requests and 

minimal prices for offers) and  defines how many units of the good 
are desired/provided. As for the good energy it is reasonable to assume divisibility, 

the overall reservation price for a good  is given by  or simply . 
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3.2 Mechanism Design 

Having defined how agents submit their bids and asks to the market, we are able to 
define the choice and payment functions. As we have multiple producer and con-
sumer agents in the energy market, our goal in this section is to design a two-sided 
market mechanism – often called double auction or exchange. In addition, for energy 
markets we can assume divisible bids (i.e. partial execution of bids), a call market 
(i.e. accumulation of bids over a period of time), buy-side and sell-side aggregation 
of bids, and risk-neutral agents with quasi-linear preferences. 

Given the set of requests  and offers , the winner determination problem 
is defined as allocation function that maximizes the social welfare in the market. 
The corresponding linear program is defined as follows. 

 

  (4) 

 
 (5) 

  (6) 

  (7) 

Unfortunately, defining the payment function (and the mechanism as a whole) in a 
way that the resulting double auction is efficient, incentive compatible and budget 
balanced mechanism is generally impossible as stated by the seminal impossibility 
theorem of Myerson and Satterthwaite (1983). However, it is possible to design a 
mechanism that meets two of the three properties. In literature, several different 
variants have been proposed. Using the well-known Vickrey-Clark-Groves (VCG) 
mechanism we get an efficient and incentive compatible auction, however, budget-

balance cannot be guaranteed any more. To calculate prices the offers  have to 

be arranged in descending order  and requests  in ascending 

order  w.r.t. their prices. We then determine the index  where 

 with  in  and  in . Given this index  we set the price for buyers 

to  and for sellers . Other approaches which imple-
ment a budget balanced mechanism are – for instance – presented in McAfee 
(1992). 
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3.3 Bidding Strategy 

Given the market mechanism previously specified in this section, we are able to 
further define a bidding strategy for energy markets using the agent strategy 
framework introduced in Section 2. As a wide range of different systems are con-
nected to an electricity grid (ranging from appliances of private households to 
complex industrial machines) and each of these systems has to implement different 
bidding strategies, a generic strategy framework as specified in Section 2 greatly 
facilitates the system implementation task. 

In the following we give examples how the framework can be used to define 
strategies for some typical smart grid agents. 

3.3.1 Defining the information layer 

First, we have to adapt the information layer to the the smart grid market scenario. 

This requires to adapt the market state to the market mechanism 

 defined in Section 3.2. As electricity is a highly homogenous 

good, the trading object  represents simply electricity according to the IEC Norm 
60038:1983 with a predefined set of quality criteria, such as frequency between 

50hz and a voltage level of 230V with a tolerance of 10V . As the market me-

chanism does not reveal the bids of other participants we assume . The 

 is a tuple  representing the bid/ask-

spread in the market and  is the overall amount of electricity traded at time  

measured in kwh. 

Second, the agent’s private state  is 

adapted as follows: the agent is either a buyer, seller or prosumer, i.e. 

,  represent the maximal amount of electricity 

that can be presumed by agent  at time ,  is the maximal/minimal valuation 

of a single kwh electricity, and   is currently not used within the smart grid 

scenario. 
Third, the environment state observable by all agents comprises information 

about the status of the electricity network that can be measured via sensors, such 

as frequency , voltage , or current  and time  . Consequently, 

. In addition, specific sensor data might be available to 

some of the agents which could include the current temperature of within a fridge, 
the current load of a manufacturing machine, etc. 

3.3.2 Defining the knowledge layer 

In the knowledge layer the general guidelines are specified how a specific agent 
should behave. This is done by specifying a set of policies constraining the allowed 
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strategy space. In order to get an intuition about the policy driven approach, we 
give some simple examples for such policies in the smart grid domain. 

 
Demand Profile: A customer (or prosumer) has to be able to specify his prefe-
rences with respect to the electricity demand. Typically, the overall required 

amount of electricity  is split in an amount  essentially required by 

agent  and the sheddable load  that is negotiable according to the 

market price. In this context,  is the share of inflexible demand. Thus, the 

minimal required load can be expressed by constraining  (part of the agent 

state) using the constraint  with 

 . 

 
Appliances Specification: As the share of inflexible and negotiable energy de-

pends on the appliances of the customer (i.e. ), 

the demand profile can be constructed from individual policies coming with this 

appliances. This also means that  could also be defined for individual ap-

pliances separately. In addition, policies can regulate whether an appliance such as 
a fridge, industrial manufacturing machine, etc. can either (i) reduce total load in 

time  to some extend or (ii) shift load from time  with high energy prices to a 

later point in time  where energy prices are cheaper (i.e. load shedding). An 
example for a constraint defining that a certain quantity of load can be shifted 

within a timeframe  can be done with the following policy: 

 with 

≤ +  stating that aggregated electricity within the period , +  has to be 

above a given threshold . 

 
Pricing: While for the inflexible load a unlimited price is offered by the customer, 
the maximal price for the shaddable load depends on the customers attitude. A 
very simple strategy to define the extend to which electricity is bought above the 

-level could be defined using the historical market prices. Let  be the 

price elasticity of a customer with . Therefore, a highly 

negative   represents a ”savaholic” whereas a _i near zero represents a rather 
convenient customer with a low responsiveness w.r.t. the market price. Therefore, 

we can define a constraint on the customer’s reservation price 

 with . 

 
Analogously to the policies on customer side, policies for electricity producers 
could be defined. For example, each type of energy plant such as solar plants, wind 
turbines, or combined heat and power plants come with common policy sets that 



 Steffen Lamparter, Silvio Becher, Michael Pirker 

 

794 

regulate whether/how production schedules can be changed dynamically, define 
the the marginal costs, etc. In addition, policies may specify regulatory constraints 
important for the security of energy supplies or antitrust guidelines. 

As policy specification are purely declarative, policies from different appliances 

 can be combined to policy sets  which are evaluated using 2 leading to the set 
of strategic. This is a huge advantage of the framework as appliances are constantly 
added or removed and this should be supported in a plug’n’play fashion. 

3.3.3 Defining the behavior layer 

As we rely on an incentive compatible market mechanism in our application exam-
ple, the behavior layer can be much simplified as already discussed in Section 2.3. 

In this special case, the action space is simply  where a tuple 

represents a bid  defining the maximal valuation of agent  and the 

required quantity . As the dominant – and thus  maximizing – strategy of a ra-
tional agent is to reveal its true valuation and maximal quantity, the only rational 

action is to choose strategy  with minimal deviation from  and  de-

fined in . 

4 Conclusion and Outlook 

In this paper, a formal bidding strategy framework is proposed that specifies the 
information available to the agents at runtime, the policies defined at agent design 
time, and the behavior that selects the optimal action. As the framework follows 
the idea of a declarative policy based approach, the agent strategies can be seam-
lessly composed from resource-specific policies (e.g. appliance/plant specific po-
lices) and dynamically changed during runtime. This is essential for applying agent 
technology in many realworld scenarios such as the introduced smart grid applica-
tion. 

Based on a first implementation of the system for the energy domain, we are 
currently evaluating whether the agent strategy framework is on the one hand ex-
pressive enough to support the specification of the required strategies and on the 
other hand sufficient intuitive for agent developers to be applied in real world 
settings. For the latter we are currently working at appropriate APIs and user inter-
faces. Furthermore, we plan to carry the framework forward to additional scena-
rios (with different market mechanisms) in order to ensure the generic applicabili-
ty. 
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