
MKWI 2010 – Business Intelligence

1137

Towards a Service-Oriented Architecture
for Operational BI

A Framework for Rule-Model Composition

Josef Schiefer1, Andreas Seufert2

1UC4 Senactive Software GmbH, Wolfsgraben (Österreich)
2Institut für Business Intelligence, Steinbeis Hochschule Berlin

1 Introduction

The information revolution is sweeping through our economy. Dramatic
reductions in the cost of obtaining, processing, and transmitting information are
changing the way we do business. Information technology is transforming the
nature of products, processes, companies, industries and even the competition
itself.

As a consequence new approaches have to be put into action for decision-
making, too (Clark et al. 2007; Davenport and Harris 2007). One of the key
challenges is to move decision making applications (Business Intelligence) out of
the back room and embeds it into business, intertwining it with operational
processes and applications that drive current daily decisions. In essence,
Operational Business Intelligence merges analytical and operational processes into
a unified whole (Eckerson 2007; Van der Aalst 2004).

Therefore, information flows from different sources in the form of messages
or events, giving a hint of the state at a given time, such as the completion of
shipping an order have to be monitored and managed in real time.

Business Process Management (BPM) systems, also named as Business Process
Intelligence (BPI) systems, are software solutions that support the management of
the lifecycle of a business process (Grigori et al. 2004). In this context SOA
concepts and technologies for building BI applications are looked at to be of great
importance (Linders 2008). For the execution of business processes, many
organizations are increasingly using process engines supporting standard-based
process models (such as WSBPEL) to improve the efficiency of their processes
and keep the testing independent from specific middleware.

A major challenge of current BPM solutions is to continuously monitor
ongoing activities in a business environment (Sayal 2002) and to respond to

 Josef Schiefer, Andreas Seufert

1138

business events with minimal latency (Ingvaldsen and Gulla 2006). One of the
most promising concepts that approaches the problems of closed-loop decision
making and the lack of gaining real-time business knowledge is the concept of
Complex Event Processing (CEP), which was first introduced by Luckham (2005).

In this paper, we introduce the rule management of the CEP system SARI
(Sense And Respond Infrastructure) which was proposed by Schiefer and Seufert
(2005). The SARI system is able to process large amounts of events, and provides
functions to monitor, steer and optimize business processes in real time. The
system automatically discovers and analyzes business situations or exceptions and
can create reactive and proactive responses, such as generating early warnings,
preventing damage, loss or excessive cost, exploiting time-critical business
opportunities, or adapting business systems with minimal latency.

In SARI, business situations and exceptions are modeled with sense and
respond rules which have been designed to be created and modified by business
users. SARI offers a user-friendly modeling interface for event-triggered rules,
which allows to model rules by breaking them down into simple, understandable
elements. The main contribution of this paper lies in a new model for constructing
rules with a correlation model and a graph for representing business situations with
a combination of event conditions and event patterns. The proposed model can be
seamlessly integrated into the distributed and service-oriented event processing
platform.

The remainder of this paper is organized as follows. In Section 2, we review
related work. Section 3 introduces the framework demonstrates a concrete
example. In Section 4, we discuss the framework including runtime aspects of the
rule processing. Finally, in Section 5 we conclude our paper and give an outlook
for future work.

2 Related Work

Related work can be divided into work on active event processing, event algebras
in the active database community, work on event/action logics, updates, state
processing/transitions, and temporal reasoning in the knowledge representation
domain.

There has been a lot of research and development concerning knowledge up-
dates and active rules in the area of active databases and several techniques (Baralis
and Widom 1994; Bailey et al. 1997) based on syntactic (e.g. triggering graphs or
activation graphs), and semantics analysis of rules have been proposed to ensure
termination of active rules (no cycles between rules) and confluence of update
programs (always one unique outcome). The combination of deductive and active
rules has been also investigated in different approaches mainly based on the simu-
lation of active rules by means of deductive rules (Ludascher 1998). However, in

MKWI 2010 – Business Intelligence

1139

contrast to our work, these approaches often assume a very simplified operational
model for active rules without complex events and ECA-related event processing.

Several Complex Event Processing (CEP) and Event Stream Processing (ESP)
systems have been developed, where many of them use an SQL-based approach
for querying event streams. An example is Esper (2007), which is an Open Source
Event Stream engine that allows to analyze event streams with SQL-queries for
defining correlations between events and for detecting event patterns. Aurora (Ab-
adi et al. 2003), as well as its successors Borealis (Abadi et al. 2005) and Medusa
(Zdonik et al. 2003), are also SQL-based processing engines, which provide effi-
cient scheduling service and QoS delivery mechanisms.

RuleCore, an approach proposed by Seirio and Berndtsson (2005), is an event
driven rule processing engine supporting Event Condition Action (ECA) rules, and
providing a user interface for rule building and composite event definition.

Wu et al. (1998) propose an event correlation approach with rules in the “con-
clusion if condition” form which are used to match incoming events often via an
inference engine. Based on the results of each test, and the combination of events
in the system, the rule-processing engine analyzes data until it reaches a final state.

Chen et al. (2006) show an approach for rule-based event correlation. In their
approach, they correlate and adapted complex/structural XML events correspond-
ing to an XML schema. The authors describe an approach for translating hierar-
chical structured events into an event model which uses name-value pairs for stor-
ing event attributes.

ECA rules have been also proposed by several authors for workflow execu-
tion, e.g., Barbará et al. (1994), Bussler and Jablonski (1994), and Dayal et al.
(1990). In event-driven workflow execution, events and event-condition-action
rules are the fundamental mechanisms for defining and enforcing workflow logic.
Processing entities enact workflows by reacting to and generating new events. The
foundation on events facilitates the integration of processing entities into coherent
systems. Some of these systems (Barbará et al. 1994; Dayal et al. 1990) use compo-
site events to detect complex workflow situations. EVE is a system proposed by
Geppert and Tombros (1998) using ECA rules for workflow management address-
ing the problem of distributed event-based workflow execution.

3 Framework for Event-Based Rule Services

Sense and respond rules allow detecting business situations by discovering event
patterns. When an event patterns has been discovered, they can automatically trig-
ger responses. The key requirements of sense and respond rules can be
summarized as follows:

Event-triggered Rule Evaluation. Sense and respond rules enable compa-
nies to monitor their business, IT and organizational processes in real time, and
respond to exceptions and capitalize on time-sensitive business opportunities as

 Josef Schiefer, Andreas Seufert

1140

soon as new events occur within the business environment. In other words, the
evaluation of sense and respond rules is triggered by events delivering the most
recent state and information from the business environment.

User-friendly Rule Modeling. Sense and respond rules support the graphic
modeling of decision-making scenarios. Decision trees proved to be very unders-
tandable for human beings. For modeling business situations, sense and respond
rules use decision graphs which are an extension of decision trees for representing
rules, thereby enhancing the understandability and expressiveness of rules, and
shortening the learning curve for users.

Building Complex Rules with Divide and Conquer. Sense and respond
rules can break down complex business situations in simple understandable condi-
tions, which can be combined with each other for composing more complex con-
ditions. The input of sense and respond rules are events and also the output are
also so-called response events, which are raised when a rule fires. The fired events can
be used as input for other (or even the same) rule for further evaluation, thereby
effectively combining multiple rules.

Event Pattern Recognition. Event patterns are discovered when an event or
multiple events occur that match the pattern's definition. Sense and respond rules
allow to combine one or more event pattern with arbitrary event conditions in
order to describe complex business situations.

Adaptability. Due to the graphical model and modular approach for con-
structing rules, sense and respond rules can be easily adapted to business changes.
New event conditions or event patterns can be added or removed from the rule
model in order to model changing business situations.

Service-oriented Rule Processing. Sense and respond rules are executed by
event services, which supply the rule engine with events and process the evaluation
result. Event services can run distributed on multiple machines and facilitate the
integration with external systems.

3.1 Rule Characteristics

Sense and respond rules separate multiple aspects for the definition of rules which
are specified and modeled separately. These three aspects are as follows:

Correlation. The definition of relationships and dependencies between events
that are relevant for the rule processing are performed declaratively with correla-
tion sets. With correlation sets, a rule engine is able to construct sequences of
events that are applied to the condition defined in the rule. A business activity
spanning some significant period of time can be represented by the interval be-
tween two or more events. For example, a transport might have a TransportStart
and TransportEnd event-pair. Similarly, a shipment could be represented by the
events ShipmentCreated, ShipmentDelivered and multiple transport event-pairs. A
correlation set allows to associate such events by using the events’ context data
(e.g. ShipmentID, or TransportID).

MKWI 2010 – Business Intelligence

1141

Event/Condition/Action (ECA) Model. Sense and respond rules use a
graphical model for describing constraints of events for business situations. ECA
rules automatically perform actions in response to events provided stated
conditions hold. The actions of sense and respond rules generate response events,
which can be used triggering business activities or evaluating further rules.

Event Patterns. Event patterns complement the ECA model and allow sepa-
rating the pattern matching logic from the action triggering. Event patterns solely
describe business situations, such as event conditions or the discovery of missing
events (e.g. a door is opened without closing it on time).

3.2 Rule Model

In the following, we present a sense and respond rule model for automatically
detecting and responding to online betting fraud. For our example, we assume that
a rule discovers a conspicuous number of high stake bets and checks betting limits.
Scoring is used for measuring the overall number of high stake bets and betting
limit overruns. When modeling the rule for the above-stated business problem, we
first have to identify the events which have to be evaluated for the rule processing.
For our example, we consider the following event types: Bet Placed, triggered when
a customer places a bet on the betting platform, Bet Won signaling that a placed bet
by a customer was won, and Bet Lost signaling that a placed bet by a customer was
lost.

Figure 1 shows a sense and respond rule for the above-stated business scena-
rio. Event condition shapes are used to check whether high stake bets occurred or
betting limits have been reached. If an event condition evaluates to true, a custom-
er score is increased by one. After increasing the score, it is checked against a thre-
shold in another event condition shape. Based on the outcome of the threshold
checking, betting alerts are generated. If there were too many high stake bets won
and the betting limit was overrun multiple times, the customer account will be
immediately blocked. On the right side of the figure, a correlation set (McGregor
and Schiefer 2004) is shown which declaratively defines the relationships of the
betting events. The rule engine needs the information of the correlation set in or-
der to evaluate the event sequences of a particular player on the gambling platform.

The modeled sense and respond rule fully fulfills the stated business require-
ments. Nevertheless, there are some shortcomings in the first solution. The gen-
eration of alerts and the blocking of a customer account is directly linked to the
event pattern matching logic. Another related shortcoming is that we had to model
the high stake bet matching and betting limit overrun matching in one model in
order to decide when to block a customer account. In the following, we show how
to overcome these shortcomings with event pattern modeling.

 Josef Schiefer, Andreas Seufert

1142

Figure 1: Sense and respond rule for reacting on betting fraud patterns

3.3 Event Pattern Modelling

In this section, we show how sense and respond rules can be broken down into
reusable rule parts. In our previous example, we modeled two fraud scenarios in a
single rule model. By defining each fraud scenario as a separate event pattern, it is
possible to reduce the complexity of the rule and reuse the matching logic.

Figure 2 shows two event pattern models from the previous example. There is
an event pattern model for high stake bet fraud and for betting limit fraud. Each of
the fraud patterns has a pattern activator for collecting output information for the
user of the pattern. A pattern model can have also input parameters. For instance,
in the example, we define StakeLimit, WonAmountLimit and OverrunLimit as
input parameters which can be set when using the pattern in a rule.

Next, we illustrate how the event patterns can be used in the rule model. Fig-
ure 3 shows a rule using the modeled event patterns. The event pattern shapes
represent pattern proxies with input and output parameters. The input parameters
can be set with a value or calculated by an expression. The output parameters can
be used for bindings in event actions (e.g. attribute bindings of response events as
shown in the figure). A pattern proxy is activated if the activator of the corres-
ponding event pattern fires. As the figure shows, we have been able to encapsulate
the fraud scenarios within two event patterns which can be parameterized and
reused in a rule.

AND

When high stake bet won…

Stake > 3

Conditions (OR)

Bet Won

True False

High stake bet scoring

Score Type: HighStakeBetsWon

CustomerID (BetPlaced.CustomerID)

Properties

Increment: 1

Check high stake bet threshold

$HighStakeBetsWon >= 3

Conditions

True False

Alert customer service...

CustomerID (BetPlaced.CustomerID)

AccountID (BetPlaced.AccountID)

BettingAlert

AlertLevel (Medium)

Reason(“Number of high stake bet…“)

When betting limit reached...

BetAmount > SportEvent.BettingLimit

Conditions

Bet Placed

True False

Betting limit scoring

Score Type: BettingLimitReached

CustomerID (BetPlaced.CustomerID)

Properties

Increment: 1

Check betting limit threshold

$BettingLimitReached >= 2

Conditions

True False

Alert customer service...

CustomerID (BetPlaced.CustomerID)

AccountID (BetPlaced.AccountID)

BettingAlert

AlertLevel (Medium)

Reason(“Betting limit reached…“)

Block customer account...

CustomerID (BetPlaced.CustomerID)

AccountID (BetPlaced.AccountID)

BlockAccount

BlockingDateTime(Now())

Reason(“High stake bets and betting…“)

WonAmount > 1000 <Event Type>

Bet Placed

BetID

SportEventID

CustomerID

Stake

BetAmount

<Event Type>

Bet Won

BetID

WonAmount

DateTime

...

]

][

<Event Type>

Bet Lost

BetID

LostAmount

DateTime

...

][

[

C
o

rr
e

la
ti

o
n

 s
e

t
fo

r

c
o

rr
e

la
ti

n
g

 b
e

tt
in

g
 e

v
e

n
ts

MKWI 2010 – Business Intelligence

1143

Betting Limit Fraud Pattern

When high stake bet won…

Stake > $StakeLimit

Conditions (OR)

Bet Won

True False

High stake bet scoring

Score Type: HighStakeBetsWon

CustomerID (BetPlaced.CustomerID)

Properties

Increment: 1

Check high stake bet threshold

$HighStakeBetsWon >= $OverrunLimit

Conditions

True False

When betting limit reached...

BetAmount > SportEvent.BettingLimit

Conditions

Bet Placed

True False

Betting limit scoring

Score Type: BettingLimitReached

CustomerID (BetPlaced.CustomerID)

Properties

Increment: 1

Check betting limit threshold

$BettingLimitReached >= $OverrunLimit

Conditions

True False

WonAmount > $WonAmountLimit

Too many high stake bets won...

CustomerID (BetPlaced.CustomerID)

AccountID (BetPlaced.AccountID)

Output Parameters

Activation State: High Stake Bet Alarm

HighStakeBetWon ($HighStakeBetsWon)

Too many betting limit overruns...

CustomerID (BetPlaced.CustomerID)

AccountID (BetPlaced.AccountID)

Output Parameters

Activation State: Betting Limit Reached Alarm

BettingLimitOverruns ($BettingLimitReached)

High Stake Bet Fraud Pattern

Figure 2: Separate event pattern models

AND

Alert customer service...

CustomerID (Pattern1.CustomerID)

AccountID (Pattern1.AccountID)

BettingAlert

AlertLevel (Medium)

Reason(“Number of high stake bet…“)

Alert customer service...

CustomerID (Pattern2.CustomerID)

AccountID (Pattern2.AccountID)

BettingAlert

AlertLevel (Medium)

Reason(“Betting limit reached…“)

Block customer account...

CustomerID (Pattern1.CustomerID)

AccountID (Pattern1.AccountID)

BlockAccount

BlockingDateTime(Now())

Reason(“High stake bets and betting…“)

Too many high stake bets won...

High...

##
#

IN Parameters OUT Parameters

StakeLimit (int): 3

WonAmountLimit (...): 1000

CustomerID (int)

AccountID (int)

HighStakeBetsWon (int)

Too many betting limit overruns...

Bettin...

##
#

IN Parameters OUT Parameters

OverrunLimit (int): 2 CustomerID (int)

AccountID (int)

BettingLimitOverruns (int)OverrunLimit (int): 3

Figure 3: Using event patterns in a rule

 Josef Schiefer, Andreas Seufert

1144

4 Discussion

4.1 Sense and Respond Rules

Sense and respond rules offer a new way for business users to define and manage
the response to typical patterns of business events. A key advantage of sense and
respond rules is that they allow to graphically model a comprehensive set of event
conditions and event patterns without using nested or complex expressions. In
contrast, SQL-based system for querying event streams require technical
knowledge for specifying and changing event queries which makes them difficult
to use for a wider range of users.

Sense and respond rules flexibly combine rule triggers which can be used to
define IF-THEN-ELSE decisions. Event conditions and event cases can be
checked for a true or false evaluation, and facilitates the implementation of “oth-
erwise” situations. Complex decision scenarios are displayed with a decision graph
which can delegate the decision-making to pattern models.

By describing correlation and event pattern aspects in a separate model, the de-
finition of event conditions and patterns are simplified. Correlation sets capture
the relationships between events and can also be defined with a graphical model. A
separate event pattern model allows capturing the detection of business situations.
The advantage of modeling and reusing event patterns are:

 Event patterns can be used parameterized and reused in various types of rules

 Rule complexity is reduced by breaking down large rule models into smaller
rule parts

 Clean separation of event pattern matching logic and the binding logic of
event actions.

These characteristics of modeling rules are essential when building rule sets for
large industry solutions. Rule sets for industry solutions must be highly
configurable and reusable for a wide range of business problems.

The service-oriented event processing system of SARI allows to flexibly link a
rule service, processing sense and respond rules with other services. Event services
are executed in parallel and controlled by the system. Services can be used to pre-
pare the data for the rule processing as well as to process the response events gen-
erated by the rule service. The input and output for sense and respond rules are
events which are delivered and processed by event services. Sense and respond
rules, therefore, allow an easy integration within a service-oriented system envi-
ronment.

However, the SARI system also has a drawback compared to SQL-based ap-
proaches for event stream processing. Using SQL for event stream queries allows
to seamlessly integrate relational database systems by joining database tables with
events that stream into the system. SARI requires services for preparing event data
for the rule processing.

MKWI 2010 – Business Intelligence

1145

4.2 Event Processing with Rule Services

The SARI system uses an event processing model (EPM) for modeling event-
driven processes. An EPM allows to integrate multiple services and adapters which
can be used to implement event-driven processes. Dependent on the requirements
and the business problem, the event services and adapters can be flexibly
conjoined or disconnected. Links between the components and services represent
a flow of events from one service to the next. The following issues are defined
with the EPM:

 Structure for the processed events and data

 Configuration of services and adapters for processing steps, including their
input and output parameters

 Interfaces to external systems for receiving data (Sense) and also for respond-
ing by executing business transactions (Respond)

 Data transformations, data analysis and persistence
A rule service is part of an EPM and can be configured with rule sets and linked
with other services. EPMs allow to model which events should be processed by
the rule service and how the response events should be forwarded to other event
services. Figure 4 shows an EPM for the previous example. Data is collected and
received from adapters which forward events to event services that consume them.

 Initially the events are enriched in order to prepare the event data for the rule
processing. A typical example would be the attachment of information about the
customer (e.g. the source event only provides an account ID and the associated
customer ID needs to be added). The rule service processes the enriched events

...

Event Processing Model

Adapter...

Enrichment Service

(Betting Events)

Enrichment Service

(Payment Events)

Rule Service

Fraud Inspection

Notification Service

Account Mgmt

Service

Call Agent

Notification Service

...

...

...

Rule

Repository

Rule Authoring and

Management Tools

Adapter...

Adapter...

Figure 4: Event processing model with rule service

 Josef Schiefer, Andreas Seufert

1146

according to the sense and respond rules and generates response events when a rule
fires. The fired response events are published on the output port of the rule service
and are forwarded to other services. As shown in Figure 4, the response events are
sent to a service for sending notifications to fraud inspection department and call
agents, or to services which allows to automatically changing the status of a user
account. Sense and respond rules are stored and managed within a rule repository.
SARI includes authoring and management tools which can be used by business users
for graphically defining and modifying rule sets as introduced in the previous
sections.

4.3 Rule Evaluation

During runtime, the rule service automatically correlates events emitted to the
SARI system. Correlated event data is managed with correlation sessions (McGre-
gor and Schiefer 2004), which are automatically activated before a triggering event
is used for evaluating event conditions or patterns. Correlation sessions can be
persistent and are used to maintain the current rule state. With correlation sessions,
sense and respond rules can use the captured event data for accessing data of
correlated events which has been previously processed. Furthermore, the sessions
are used to maintain the state of activated ports of rule triggers.

The rule service uses a dependency graph of preconditions for determining
whether an event action is executed. Figure 5 shows an example of a dependency
graph with four rule triggers (circles) and one event action (rectangle). For this
example, we assume that the rule triggers (1) and (2) are defined as OR precondi-
tion for rule trigger (3). As shown in the figure, initially the port of rule trigger (3)
is activated, then the port of rule trigger (2) and (4).

Figure 5: Dependency graph with activations of rule elements

OR OR OR OR

1 2

4

3

5

1 2

4

3

5

1 2

4

3

5

1 2

4

3

5

a) b) c) d)

FIRE!!

MKWI 2010 – Business Intelligence

1147

As soon as all preconditions of an event action is fulfilled, the event action (5)
fires. Please note, the rule service does not consider the order of rule trigger
activations; for firing an event action is only relevant that the preconditions of its
dependency graph evaluate to true.

5 Conclusion and Outlook

Event-based systems have been largely studied and used building and monitoring
loosely coupled business solutions. This paper presented sense and respond rules
for responding to business situations based on events which have been captured by
an event-based system. Business situations are composed with event patterns and
rule triggers which can be arbitrary combined and trigger actions when a rule fires.
Sense and respond rules can be graphically modeled which makes it easier for bu-
siness users to adapt rules for business changes. In runtime, the rules are processed
by event services running on multiple machines and which can be seamlessly integ-
rated in an event processing model.

The work presented in this paper is part of a larger, long-term research effort
aiming at developing an event-driven rule management system. This system will
allow users to model and manage comprehensive rule sets for industry solutions. A
key focus of this future research work will be the visualization of events which
have been processed with sense and respond rules.

References

Abadi DJ, Carney D, Cetintemel U, Cherniack M, Convey C, Lee S, Stonebraker
M, Tatbul N, Zdonik S (2003) Aurora: A new model and architecture for data
stream management. VLDB Journal 12, pp. 120–139.

Abadi DJ, Ahmad Y, Balazinska M, Çetintemel U, Cherniack M, Hwang JH,
Lindner W, Maskey AS, Rasin A, Ryvkina E, Tatbul N, Xing Y, Zdonik S
(2005) The Design of the Borealis Stream Processing Engine. In: Proc. of the
Conf. on Innovative Data Systems Research, Asilomar, CA, USA, 277–289.

Bailey J, Crnogorac L, Ramamohanarao K, Sondergaard H (1997) Abstract
Interpretation of Active Rules and its use in Termination Analysis, Proceedings
of the Sixth International Conference on Database Theory (ICDT), Delphi,
Greece.

Baralis E, Widom J (1994) An algebraic approach to rule analysis by means of
triggering and activation graphs, In VLDB 94.

Barbará D, Mehrota S, Rusinkiewicz M (1994) INCAS: A Computation Model for
Dynamic Workflows in Autonomous Distributed Environments. Technical
Report, Department of Computer Science, University of Houston.

 Josef Schiefer, Andreas Seufert

1148

Bussler C, Jablonski S (1994) Implementing Agent Coordination for Workflow
Management Systems Using Active Database Systems. Proc. 4th RIDE-ADS,
Houston.

Chen SK., Jeng JJ, Chang H (2006) Complex Event Processing using Simple Rule-
based Event Correlation Engines for Business Performance Management.
CEC/EEE 2006, Palo Alto.

Clark T, Jones M, Armstrong C (2007) The Dynamic Structure of Management
Support Systems. Theory, Development, Research Focus and Directions. MIS
Quarterly Vol. 31 No. 3, 603- 607.

Davenport TH, Harris JG (2007) Competing on Analytics. The New Science of
Winning, Boston.

Dayal U, Hsu M, Ladin R (1990) Organizing Long-Running Activities with
Triggers and Transactions. Proc. SIGMOD, Atlantic City, NJ.

Eckerson W (2007), Best Practices in Operational BI. Converging Analytical and
Operational Processes. TDWI Reserarch.

Esper (2007) http://esper.sourceforge.net, 2007-03-10.

Geppert A, Tombros D (1998) Event-Based Distributed Workflow Execution
with EVE Proc. iFiP Int'l Conf. Distributed Systems Platforms and Open
Distributed Processing (MIDDLEWARE '98).

Grigori D, Casati F, Castellanos M, Daysal U, Sayal M, Shan MC (2004) Business
Process Intelligence. In: Computers in Industry, 53, S. 321-343.

Ingvaldsen JE, Gulla JA (2006) Model-Based Busines Process Mining. Information
Systems Management, 23, S. 19-31.

Linders S (2008) Opportunities and limitations of using SOA concepts and
technologies for building BI applications: a Delphi Study. University of
Twende.

Luckham D (2005) The Power of Events, Addison Wesley.

Ludascher B (1998) Integration of Active and Deductive Database Rules, Phd
thesis, University of Freiburg, Germany.

McGregor C, Schiefer J (2004) Correlating Events for Monitoring Business
Processes, 6th International Conference on Enterprise Information Systems
(ICEIS), Porto.

Sayal M, Casati F Dayal U, Shan MC (2002) Business Process Cockpit, Proceedings
of the 28th VLDB Conference, HP.

MKWI 2010 – Business Intelligence

1149

Schiefer J, Seufert A (2005) Management and Controlling of Time-Sensitive
Business Processes with Sense & Respond, International Conference on
Computational Intelligence for Modelling Control and Automation, Vienna.

Seirio M, Berndtsson M (2005) Design and Implementation of an ECA Rule
Markup Language. RuleML, Springer Verlag, pp. 98–112.

Van der Aalst W (2004) Business Alignment. Using Process Mining as a Tool for
Delta Analysis. In: Proceedings of the 5th Workshop on Business Process
Modelling, Development and Support (BPMDS), Riga.

Wu P, Bhatnagar R, Epshtein L, Bhandaru M, Shi Z (1998) Alarm correlation
engine (ACE), In Proceedings of the IEEE/IFIP 1998 Network Operations
and Management Symposium (NOMS), New Orleans.

Zdonik S, Stonebraker M, Cherniack M Cetintemel U, Balazinska M, Balakrishnan,
H (2003) The Aurora and Medusa Projects. IEEE Data Engineering Bulletin,
26(1).

