
MKWI 2010 – E-Commerce und E-Business

1289

Dynamically Scalable Architectures for
E-Commerce

A Strategy for Partial Integration of Cloud Resources in an
E-Commerce System

Georg Lackermair1,2, Susanne Strahringer1, Peter Mandl2

1Chair for Business Informatics, Technical University Dresden
2Chair for Business Informatics, University of Applied Sciences Munich

1 Motivation

E-commerce became an important economic factor during the last years. Ap-
proximately 38.5 million customers in Germany have already bought goods or
services online. Furthermore the total revenue in Germany is expected to rise from
46 billion Euro in 2006 to 145 billion in 2010. Increasing mobile web usage and
the trading firms' expanding international activities boost this development even
further (Stahl et al. 2009).

This growing acceptance of e-commerce will result in an increasing number of
both transactions and customers. Considering the extensive and increasing usage
of search agents, web-crawlers and interactive elements in addition, workloads in e-
commerce will rise significantly. Moreover, the advancing integration with other
systems, like other shops requesting catalogue data, causes additional requests to
handle.

At the same time, intense competition among retailers tends to result in more
demanding requirements with respect to functionality, usability, availability and
performance. Rising workloads and more demanding requirements are nowadays
handled with statically scaled systems, where the capacity is determined by the
expected maximum workload. This results in low resource utilization in data cen-
ters conflicting with rising energy costs and CO2 emissions.

Fluctuation in workloads impairs the situation even further. After Microsoft
released Windows 7, various news channels and blogs reported that many online
shops had serious performance problems and some servers broke down com-
pletely (Computerbase, 2009; Chronicle, 2009). This highlights the problem that
workload forecasts are difficult and that surges of visitors can exceed the expected
maximum workload significantly. An examination of a B2B shop system showed

 Georg Lackermair, Susanne Strahringer, Peter Mandl

1290

that even in this domain the workload fluctuation is an issue. The Windows 7 ex-
ample points out that forecasting workloads and ad hoc extension of computing
power pose problems still to be solved.

A solution to these problems could be provided by a strategy for partial inte-
gration of cloud computing resources in e-commerce systems. There are many
different definitions of cloud computing (Armbrust et al. 2009; Hayes, 2008). In
our work we focus on the usage of virtualized computing capabilities on the inter-
net, which is also called utility computing or Infrastructure as a Service (IaaS). Tur-
ban et al. (2008, p. 19-13) define utility computing as ―computing power and stor-
age capacity that can be used and reallocated for any application—and billed on a
pay-per-use basis.‖ A strategy for a partial usage of such virtualized resources on
the internet can be realized by implementing a flexible architecture that allows
dynamic scaling on the application level. Such an architecture would allow to add
resources from the cloud to an online-shop dynamically and on-demand.

After referring to the underlying research approach the paper discusses a par-
tial cloud strategy and provides an example calculation showing its benefits. Fur-
thermore, a general architecture is sketched for implementing this strategy into a
system. Finally a flexible architecture is proposed for a shop to support integration
of cloud resources on the basis of the general architecture.

2 Research Approach and Scope of the Paper

The underlying overall research project is based on a design science approach as
suggested by Hevner et al. (2004) and Hevner (2007). The paper at hand focuses
on motivating the relevance of the addressed research problem and suggests a first
sketch of an architecture that might help solving this problem. As design science
"is inherently iterative" (Hevner et al. 2004, S. 87) and is organized along several
design and test cycles our first step is to present the results of a first design cycle.
In a next step a prototypical implementation will allow effective evaluation. In
order to derive test data for a first evaluation and to further substantiate the relev-
ance of our research we are currently analyzing workload data of a series of online-
shops. Some preliminary results are already included within this paper to back up
our argumentation but are not the main focus here.

3 A basic E-Commerce System

Laudon and Traver (2009, p. 10) define e-commerce as "digitally enabled commer-
cial transactions between and among organizations and individuals." According to
Illik (2002, p. 131ff) an online-shop is the central system in e-commerce.

Figure 1 depicts a basic architecture of today's e-commerce systems, which is
derived from our own analysis of typical systems and which is also consistent with
Turban et al. (2008, p. 19-3ff). The system usually consists of various intercon-

MKWI 2010 – E-Commerce und E-Business

1291

nected subsystems. An online-shop is the core component that implements the
processes for selling goods and services and presents the system to users and cus-
tomers. It is mostly realized as a multi-layered web-application which is accessed
by a web-browser.

An online-shop obtains its master data from a content management system
(CMS) and additional information like available stock of an article are fetched from
the enterprise resource planning (ERP) or inventory management system. Tracking
data is sent to a tracking system; orders are forwarded both to the ERP system
and, if needed, to a payment provider. Besides that, a shop system can have de-
pendencies to further systems, i.e. an external logistics system.

Figure 1: The Subsystems of a Basic E-Commerce System

The basic components of an online-shop are described below:

 The Cart component holds a list of articles which the user intends to buy.
This information is usually stored permanently.

 The Catalog component presents the offered articles to the user. Articles
contain descriptive texts, pictures and various attributes. It is common to
assign the products to categories.

 The Order component implements the process of starting the business
transaction. The component forwards orders to the ERP system which
initiates the processing of the transaction.

The user interface (UI) is usually presented by means of a web-browser which runs on
a client machine. The browser communicates with the server-side by sending requests
to a dedicated web server, which forwards the requests for further processing and
delivers the results back to the browser. The processing logic can be replicated and
usually runs in application servers. Persistent data is stored in a database cluster.

 Georg Lackermair, Susanne Strahringer, Peter Mandl

1292

4 Suggested Strategy

For small- and medium-sized businesses (SMBs) it is quite a difficult task to im-
plement dynamic scalability into a web-based system. Running the whole applica-
tion on own hardware would scale quite well, when it comes to static scaling of a
system. Yet its downside is revealed, when an application is to be scaled down after
a peak or in times with just a little workload, as owned hardware generates costs,
even if shut down.

Therefore, outsourcing of the infrastructure by using cloud resources seems to
be appealing, because in the cloud the computing capabilities can be adapted easily
and dynamically. But the usage of external service providers has some major draw-
backs: A survey among CIOs in Germany pointed out that security concerns and
probably evolving dependencies seem to be the most important reasons against the
usage of computing capabilities via the internet (TecChannel, 2009). The men-
tioned dependencies refer to the costs of changing technology and providers,
which is described as ―lock in‖ by Shaprio and Varian (1998, p. 106). Hayes (2008)
emphasizes transparency issues and Quality of Service (QoS) as major concerns
when it comes to Cloud Computing. Armbrust et al. (2009) provide a comprehen-
sive overview on problems involved in using this approach – in contrast to the
other references, this work points to the problem that providers operate on a het-
erogeneous legal basis.

An appropriate strategy must take these concerns into account: Critical com-
ponents like the frontend web server and the database server may remain in-house,
while parts of the application are deployed remotely in virtual machines. The
needed infrastructure will be allocated from Infrastructure as a Service-providers
(IaaS) who offer virtualized machines for rent. To address the major concerns
connected to Cloud Computing, a suitable IaaS-provider must meet several re-
quirements.

From a business perspective it is important, that the pricing model is based on
a low level of fixed costs. As the instances in the cloud will be online only for small
periods of time, higher variable costs are acceptable, while low or no fixed cost are
desirable. Preferably an instance is paid for the hours online, without any base fee.
From a technological perspective, there should not be any restrictions about the
system that is running inside a virtual machine hosted by an IaaS-provider. There
could be restrictions on the operating system or installed software which could
cause migration problems and finally would contribute to a lock in. In addition to
this, the interface for activating virtual machines should be publicly accessible and
standardized. This again minimizes switching costs. If those requirements are met,
a multi-sourcing strategy could be implemented, which adds flexibility and de-
creases dependencies on a single provider (Wannewetsch, 2007, p. 150).

In the following we discuss how the major concerns related to Cloud Comput-
ing can be addressed in detail.

MKWI 2010 – E-Commerce und E-Business

1293

5 Addressing Cloud Computing Concerns

In the first run, we focus on the basic technical concerns about Cloud Computing,
namely evolving dependencies on a provider, QoS-problems and transparency.

5.1 Evolving dependencies

Some approaches like Google App Engine1 require that the hosted application is
programmed against a proprietary API. Furthermore, as data is stored on
proprietary systems SMBs could fear to run into migration problems, once they
intend to change the provider and find the data locked (Armbrust et al., 2009).
Therefore, the components to be distributed in the cloud should be programmed
against standardized APIs and should not store data locally (see 5.3).

For the distribution of an application across network borders, the affected
components must be able to integrate dynamically into an application – the con-
figuration may change quite frequently, as the distributed components might be
deployed on different nodes, hosted by varying providers. Besides a dynamic link
in, standardized mechanisms for invocation of those components, e.g. Web Ser-
vices (Alonso et al., 2004, p. 152ff) should be used.

5.2 Quality of Service

In the described scenario it is assumed that components in the cloud are added and
removed frequently. Furthermore network connection between such a component
and other system components can fail. Traditional clustering therefore provides
state replication to handle server breakdowns. Across network boundaries, how-
ever, this does not seem to be reasonable, as the connections between the cluster
nodes are slower, less available and hardly predictable with respect to reliability and
latency. As a consequence of this distributed components should be stateless, as
such components are easier to recover or migrate in failover situations (Brown,
2008, p. 525ff).

5.3 Transparency

Small- and medium-sized companies might want to keep control over persistent
data and keep the backend system in-house. According to Kaufman et al. (2002)
privacy of information is a very important aspect of data security. Therefore, data
should either be encrypted or not stored at all on machines in the cloud.

The components that are running on machines in the cloud should meet the
same security level as components that interact within a closed network. Caching
supports this requirement as this makes persistent storage outside trusted data

1 http://code.google.com/appengine/

http://code.google.com/appengine/

 Georg Lackermair, Susanne Strahringer, Peter Mandl

1294

centers redundant. Furthermore, all communication with the distributed components
should be encrypted, e.g. with VPN tunnelling. In addition to this, cloud compo-
nents’ access rights on backend systems should be limited to read-only access.

6 An Architecture for Dynamic Scaling

An architecture for a partial integration of external computing capabilities is de-
picted in Figure 2.

Figure 2: An Architecture for Dynamic Scaling

The application needs to contain a component which controls the cloud instances.
Basically, this means to switch on and shut down the instances. An instance has to
register as an available node, when the start-up is finished. The cloud control also
decides when to add a new node or when to remove a node from the application.
Therefore, this component must process information from various sources almost
in real-time. Methods and models described by Menascè et al. (2000; 2004) provide
a rich set of approaches for capacity planning. However, the concepts still need to
be adapted to the specific situation of an automatic planning process.

From the architectural sketch, the most important functional requirements can
be derived:

 Link in: When a new node is added to the application, the superordinate
node, e.g. the balancer needs to get notified about this event to direct
workload to the new node.

 Migration: When the decision is made to shut down a node, a mechanism
must make sure that remaining sessions get migrated to nodes that remain
active.

MKWI 2010 – E-Commerce und E-Business

1295

 Monitoring: The cloud control needs to monitor subordinate nodes to get
information about the resource utilization. Furthermore, a trend analysis
of workload as well as ad-hoc-analysis of tracking data help to indicate
workload evolution for the short term.

 Planning: For forecasting of peak situations planning information needs to
be processed. This information is used for long term workload evolution.

The implementation of the link-in and migration mechanisms seem to be techni-
cally feasible, as link-in could be based on common presence protocols like
XMPP2. Existing migration mechanisms for fail-over and load-balancing could
possibly be adapted. For monitoring it has to be decided, which information about
resource utilization, workload evolution and tracking is available and how it can be
processed automatically. For determining the resource utilization all nodes could
send information about CPU utilization or waiting processes to the cluster control.
Furthermore, the web server could send alerts in case of a significant rise or fall of
incoming requests. Ad-hoc analysis of tracking data could help to detect patterns in
which peak situations arise.

Processing of planning data can be used to predict times in which peaks or
minimal workload are likely. For example, after the introduction of a new product
it might be probable that the number of visitors rises significantly. It has to be
examined, which information can be provided by different plans and how the data
must be provided to be able to process the information computationally.

7 Example: Amazon Elastic Compute Cloud

In order to estimate the economic benefits of a dynamically scaling architecture,
total costs of ownership (TCO) for the first year are calculated. The calculation is
based on the pricing model for Amazon Elastic Compute Cloud3, which is shown
in Table 1. For sake of simplification the approach of using market prices for rent-
ing virtual machines seems to be fairly realistic.

Amazon offers two different kinds of virtual machines: Small and large instances,
whereas a large instance has approximately four times computing capabilities of a
small instance. Therefore the example compares the flexible usage of four small

2 http://xmpp.org
3 http://aws.amazon.com/ec2/

Table 1: Pricing Model for Amazon Elastic Compute Cloud

 On-Demand Reserved BEP

Small 0.10$ per hour 325$ + 0.03 $ per hour 4643 hours

Large 0.40 $ per hour 1300$ + 0.12 $ per hour 4643 hour

http://xmpp.org/
http://aws.amazon.com/ec2/

 Georg Lackermair, Susanne Strahringer, Peter Mandl

1296

instances to a single large instance. An instance can be rented on-demand, which
means that the customer pays per hour an instance is running. A reserved instance
can be rented for a year for a base fee plus a relatively small hourly rate. The
Break-Even (BEP) is at 4643 hours. Another interesting aspect is that a large in-
stance causes exactly four times the costs of a small instance.

For static scaling a large instance will be constantly running and therefore the
price function can be defined as

1300$ h 0.12$ ps

where h means the number of hours per year. In contrast to this a dynamically
scaled system can be composed of four small instances. One instance needs to
provide constant availability, because it contains the web server and the cloud con-
trol component. Due to the pricing model, a reserved instance is most reasonable
for this purpose. The additional instances are added on-demand. The price func-
tion can be derived as

n

i

iihn18.0$) 325 h (0.03$ pd

where n is the number of utilization classes, which classifies the overall resource
utilization of all available computing resources. The number of hours that the sys-
tem’s utilization is classified in utilization class i is defined as hi.

For dynamic scaling some utilization classes have to be defined:

CUCh

CUCh

CUCh

CUh

75.0:

75.05.0:

5.025.0:

25.00:

100

75

50

25

where U means the resource utilization and C the overall computing capability, i.e.
CPU capacity. The utilization class h25 means the number of hours per year in
which the overall computing capabilities are utilized up to 25 %, whereas h50 means
a resource utilization that is equal or greater than 25 % but less than 50 %, and so
on. As we assume equal computing power in every node, each load class represents
a certain number of small instances needed to handle the workload. In this exam-
ple h25 demands one – the constantly available reserved – instance, h50 two, h75
three and h100 four. This means that for h50 one additional on-demand instance is
needed, for h50 two, for h75 three and for h100 four.

MKWI 2010 – E-Commerce und E-Business

1297

Table 2: Comparison of Static and Dynamic Scaling

Utilization profile TCO calculation

h25 h50 h75 h100 ps pd delta

20 % 50 % 20 % 10 % 2351.20 $ 1639.00 $ -30.29 %

30 % 40 % 20 % 10 % 2351.20 $ 1551.40 $ -34.02 %

40 % 30 % 20 % 10 % 2351.20 $ 1463.80 $ -37.74 %

50 % 35 % 10 % 5 % 2351.20 $ 1201.20 $ -48.92 %

The results of various sample calculations are shown in Table 2. The workload
profiles in the table are assumptions based on our own observation of an online-
shop. The relative low average workload is consistent to Armbrust et al. (2009, p.
10) who suggest that ―for many services the peak workload exceeds the average by
factors of 2 to 10‖. Even if the workload profiles are estimated, the calculation
reveals the potential efficiency of the proposed strategy. Moreover, first results of
an analysis of a B2B e-commerce system indicate that assuming a relative low
mean CPU utilization is realistic. We analysed CPU-utilization of an application
server that logged every ten minutes over a period of 23 days and the classification
of 3289 data rows has the following distribution:

%0.0

%3.0

%6.26

%0.73

100

75

50

25

h

h

h

h

As the table shows (see column delta), for a relative low mean CPU utilization,
dynamic application scaling would result in significant cost savings.

8 Application Architecture

This part describes necessary changes in a shop's architecture to support the inte-
gration of cloud resources. This sketch is mainly based on the principles of service-
oriented architectures (SOA). For our work we reduce the high-level approach of
Richter et al. (2005) to the technical level, which implies loosely coupled compo-
nents, e.g. Web Services as described in Turban et al. (2008, p. 19-17ff).

In our scenario, it is assumed that service lookups do not occur on high fre-
quency – a server instance looks up the needed services on start-up and later just
on failure of the known provider. Thus, peer-to-peer-based SOA is proposed, as

 Georg Lackermair, Susanne Strahringer, Peter Mandl

1298

longer latency times for service lookups are acceptable. Nevertheless, any central-
istic SOA approach would also be appropriate. Moreover, a dedicated service regis-
try becomes redundant, which reduces the systems’ dependency on the availability
of such a component.

8.1 Shop-Instances

As mentioned in section 5, shifting to an extensively cached application is neces-
sary for applying such an architecture. Several solutions for distributed caching
already exist. Regarding the assumed fluctuation of server instances, for the de-
scribed scenario, a P2P network could be used as a distributed cache mechanism,
as P2P protocols are self-organizing and therefore can handle fluctuation in a net-
work quite well. Whenever an application instance starts, it retrieves a huge
amount of catalogue data from a database. A server could share its cached contents
with other server instances, without involving the database server during the start-
up. The new node will retrieve content data from an already running node. This
prevents a dynamically scaled system from causing additional workload on the
database server, which is in general considered to be the bottleneck in e-commerce
applications (Zhang et al., 2004)

Furthermore, self-organized caching will reduce the workload of the backend
systems, as querying for the initial instantiation of the caches descent as well as
cache updates do not necessarily need to be propagated to every server instance.

To meet the security requirements defined in section 5, read-only data can be
distributed into the cloud. This could be catalogue data like categories, articles or
the search index.

8.2 Access to Backoffice Systems

Current shop systems are networking with various other systems, e.g. CMS, CRM,
ERP, DBMS and others. For integration of these applications service-oriented
approaches are often used. Most common are Web Services or RESTful Services.
For consuming a service an application looks up a central service registry for fetch-
ing information about the service and invokes the service directly. For enhanced
flexibility, services can publish the corresponding service descriptions on a P2P
network. This will reduce maintenance and configuration issues, while adding
availability to the lookup service. A drawback of a P2P-based lookup is a longer
response time. In this scenario this seems to be acceptable as it is assumed that the
configuration of backend systems does not change frequently and, thus, service
lookups occur only on start-up and on configuration changes. Nevertheless, a
server-based lookup-service implementing e.g. UDDI4 could also be used.

4 http://uddi.xml.org

http://uddi.xml.org/

MKWI 2010 – E-Commerce und E-Business

1299

8.3 Load Balancing

For providing load balancing and enhanced availability many systems use redun-
dant web servers. A front-side web server redirects incoming clients to different
server nodes. HTTP clustering is usually set up with static configuration, which
decreases flexibility. The JXTA-based framework Shoal can operate across net-
work borders and therefore is a good choice, as JXTA applies principles of self-
organization5. If a system runs with a single superordinate balancer, simple pres-
ence protocols like XMPP6 can be used for the exchange of presence information.
Another possibility is to add a message queue to the balancer.

9 Conclusion and Outlook

The paper pointed out the benefits of a partial integration of cloud resources into
an online shop for small- and medium-sized companies. The conflict between
rising energy costs, fluctuating workloads and continuously high availability re-
quirements will simply demand mechanisms that enable automated and dynamic
scaling of such an application. Besides, largely underutilized servers cause unneces-
sary emissions.

Preliminary results of an analysis of a B2B system underline the problem
clearly: Over a period of 23 days the mean CPU-utilization was 19.6 % with a
maximum of 60 % and a minimum of 0.1 %, while the standard deviation amounts
30 %. This means, that the server was largely underutilized, while the deviation
indicates a high fluctuation. This is supported by the fact that 80 % of the daily
requests were received in twelve hours, while in the other twelve hours only the
remaining 20 % were received. The steepest increase of 40 % points to the prob-
lem that the server utilization can change significantly within a few minutes. A
conclusion of this study regarding dynamic scalability can be that components that
are distributed on cloud resources require a short start-up time. This means that it
is infeasible to load the full cache of e.g. catalogue data before being accessible.
Ad-hoc queries in the already running instances could determine the most re-
quested data items and prioritize those for caching.

For a deeper understanding of how the integration of cloud resources affects
an organization, more studies on the following subjects need to be performed.

Cloud Computing: The TCO calculation in this paper is based on the Amazon
Elastic Compute Cloud. To evaluate the economical benefits of the proposed
strategy more providers have to be examined in consideration of services, pricing
model and technical integration into applications. Comparisons of major providers
can be found in Rad et al. (2009) and Hayes (2008). In the next step, we will exam-

5 https://jxta.dev.java.net/ , https://shoal.dev.java.net/
6 http://xmpp.org

https://jxta.dev.java.net/
https://shoal.dev.java.net/
http://xmpp.org/

 Georg Lackermair, Susanne Strahringer, Peter Mandl

1300

ine the technical interfaces with which cloud providers expose the virtualized re-
sources to customers to define a standardized way of managing those resources.

Automated Scaling: Just little is known about automated scaling. It is still not
proven, how precise top-down capacity planning is in practice and how the data
for e.g. forecasting business evolution can be determined and processed automati-
cally – almost at real-time. Obviously this process should demand less computa-
tional resources than what can be saved by dynamic scaling. Thus, a bottom-up
approach seems to be appealing: The cluster control would monitor all the nodes
in the system and detects the situation in which an additional instance is needed or
an instance can be shut down. However, as the demand of computational capabil-
ity should be kept low, monitoring data cannot be transferred and analyzed in very
short periods. This conflicts with the finding described above, that the utilization
can rise significantly within minutes. It becomes obvious that neither of both ap-
proaches provides satisfying results. Therefore, influencing factors have to be stud-
ied in detail to combine the predictive approach with the reactive one.

Even if there are some obstacles remaining towards a fully automated mecha-
nism, this paper shows the potential of dynamic scaling for small- and medium-
sized companies who cannot balance hardware utilization. Fully outsourcing into
the cloud is not attractive, as this creates dependencies. However, as the calculation
in section 7 shows, a dynamically scaled application that integrates cloud resources
results in significant economic and ecological savings and reduces the mentioned
dependencies.

References

Alonso G, Casati F, Kuno H, Machiraju V (2004) Web services: concepts,
architectures and applications. Springer, Berlin, Heidelberg.

Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G,
Patterson D, Rabkin A, Stoica I, Zaharia M (2009) Above the Clouds: A
Berkeley View of Cloud Computing. EECS Department, University of
California, Berkeley. UCB/EECS-2009-28.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html.

Brown P (2008) Implementing SOA: Total Architecture in Practice. Addison-
Wesley.

Computerbase (2009) Riesiger Ansturm auf vergünstigtes Windows 7 (Update 2).
http://www.computerbase.de/news/software/betriebssysteme/windows/win
dows 7/2009/juli/riesiger ansturm windows 7/, visited: 2009/07/23.

Chronicle M (2009) Das Windows 7 Pre-Order Drama! http://www.montie.de/
2009/07/16/das-windows-7-pre-order-drama/, visited: 2009/07/23.

Hayes B (2008) Cloud Computing. CACM 51(7):9-11.

MKWI 2010 – E-Commerce und E-Business

1301

Hevner A, March S, Park J, Ram, S (2004) Design Science in Information Systems
Research. MIS Quarterly 28(1):75-105.

Hevner AR (2007) A Three Cycle View of Design Science Research. Scandinavian
Journal of Information Systems 19(2):87-92.

Illik, J (2002) Electronic Commerce. Oldenbourg Wissenschaftsverlag.

Kaufman C, Perlman R, Speciner M (2002) Network Security: Private Commu-
nication in a Public World. 2nd Edition. Prentice Hall PTR, New Jersey.

Laudon K, Traver C (2009) E‐Commerce: Business. Technology. Society.

5th Edition. Pearson International Edition.

Menascé DA, Almeida VAF (2000) Scaling for E-Business. Prentice Hall PTR,
New Jersey.

Menascé DA, Almeida VAF, Dowdy LW (2004) Perfomance by Design. Prentice
Hall PTR, New Jersey.

Rad MP, Badashian AS, Meydanipour G, Delcheh MA, Alipour M and Afzali H
(2009) A Survey of Cloud Platforms and Their Future. In: Gervasi O et al.
(Eds.) Computational Science and Its Applications. Proceedings ICCSA 2009.
LNCS 5592: 788-796. Springer, Berlin, Heidelberg.

Richter JP, Haller H, Schrey P (2005) Serviceorientierte Architektur.
http://www.gi-ev.de/service/informatiklexikon.html. Informatiklexikon der
Gesellschaft für Informatik.

Shapiro C, Varian H (1998) Information Rules: A Strategic Guide to the Network
Economy. Harvard Business School Press, Boston.

 Stahl E, Krabichler T, Breitschaft M, Wittmann G (2008) E-Commerce-Leitfaden.
http://www.ecommerce-leitfaden.de, visited: 2008/05/20.

TecChannel (2009) Cloud Computing schürt Angst vor Kontrollverlust.
http://www.tecchannel.de/test technik/news/1993816/sicherheitsbedenken
bei cloud computing/, visited: 2009/07/23.

Turban E, Lee JK, King D, McKay J, Marshall P (2008) Electronic Commerce – A
Managerial Perspective. Prentice Hall.

Wannewetsch H (2007) Integrierte Materialwirtschaft und Logistik. Beschaffung,
Logistik, Materialwirtschaft und Produktion. 3. Auflg. Springer, Berlin,
Heidelberg.

Zhang Q, Riska A, Riedel E, Smirni E (2004) Bottlenecks and their Implications in
E-commerce Systems. In: Chi C-H, Steen M van, Wills C (Eds.) Web Content
Caching and Distribution. Proceedings WCW 2004. LNCS 3293: 273-283.
Springer, Berlin, Heidelberg.

