
MKWI 2010 – Enterprise Resource Planning und Transformation von ERP-Systemen 1523

Towards a Model-based Service Integration
Framework for Extensible Enterprise Systems

Matthias Allgaier, Markus Heller, Martin Weidner

SAP Research, Karlsruhe

1 Motivation and Problem Description

In the vision of an Internet of Services (Janiesch et al. 2008, S. 71-75), services will
become tradable similar to manufactured goods. Organizations dynamically
interact as service consumers and service providers making use of a service
marketplace to design, offer and consume services. With the emergence of such
service ecosystems (Barros and Dumas 2006, S. 31-37), the simplified consumption of
services (Papazoglou 2007, S. 5-6) becomes a key challenge for enterprise
organizations. The direct integration of services (offered via a service marketplace)
into standard business applications running within enterprise systems (e.g. ERP
systems) is most promising as these systems reflect the core business processes of
an organization and can flexibly be enriched with complementary services.

From the perspective of an enterprise system two different service integration
scenarios can be distinguished (Figure 1).

In the first scenario the enterprise system is extended with a service using a pre-
defined service interface that has explicitly been foreseen by the enterprise system
provider when the system was shipped. Examples are (de-facto) standard interfaces
for Business-to-Business (B2B) or Application-to-Application (A2A) integration
scenarios known from the area of Enterprise Application Integration (EAI).

In the second scenario the enterprise system is extended with a service using a
service interface that has not been foreseen by the enterprise system provider when the
system was shipped. Before the service can be used core business application(s)
running within the enterprise system need to be adapted/extended on the affected
application layers, e.g. by adding new UI elements (presentation layer), adding a
new process step (business process layer) or extending a business object with a
new field (business object layer). Examples are services innovated by service pro-
viders in dynamically evolving service ecosystems. In both scenarios structural-

 The work presented in this paper is embedded into THESEUS/TEXO which is funded by means
of the German Federal Ministry of Economy and Technology under the promotional reference
01MQ07012. The authors take the responsibility of the contents.

 Matthias Allgaier, Markus Heller, Martin Weidner

1524

and/or behavioural mismatches between the service interfaces of the enterprise
system and the service provider are handled by service mediation components.

R R

RR

Scenario 1: Foreseen Service Integration using Standard Service

Enterprise System

Core

Business

Application

Service

Service

Impl.

Service

Interface

Service

Interface

Service

Mediation

(Optional)

Scenario 2: Unforeseen Service Integration using Extensibility Features

Service

Service

Impl.

Service

Interface

Enterprise System

Core

Business

Application

Adaptation/

Extension

Framework

Extension

Service

Interface

Service

Consumer

Service

Consumer

Service

Provider

Service

Provider

Service

Mediation

(Optional)

Figure 1: Service Integration Scenarios for Enterprise Systems

While multiple works exists that addresses the service mediation problem (scenario
1/2), to the best of the authors knowledge, no systematic engineering methodology
exists for the integration of unforeseen services (scenario 2) that will be the focus
of our research work. Typically enterprise systems only provide proprietary adapta-
tion and extension techniques with a low level of abstraction often requiring (i)
code modifications of the core business applications with a negative impact on
software-lifecycle-management as well as (ii) deep technical programming skills1.

In the last years Software-as-a-Service (SaaS) delivery models of enterprise systems
gained momentum in the enterprise software market (Lo et al. 2009, S. 10). As
SaaS subscribers do not employ specialized integration experts a more efficient
integration of services becomes a major requirement. We envision an approach
that (i) allows enterprise system providers to ship standard business applications
and (ii) at the same time offers dedicated extensibility features that allows partners
in a service ecosystem to seamlessly integrate new services at a later stage in the
software-lifecycle. Instead of programming and installing new components into a
dedicated host environment, as for example known from plug-in technologies (e.g.
Eclipse, cf. (Birsan 2005, S.40-42)), our work focuses on service integration.

We will address this problem with the proposition of a Service Integration Frame-
work as part of the THESEUS/TEXO2. Our work applies the design science re-
search methodology (Hevner et al. 2004, S. 75-105). This paper is structured as
follows: In Section 2 a motivating scenario is introduced; Section 3 outlines the
basic requirements for the framework. In Section 4 the main concepts of the
framework are presented and in Section 5 a first running prototype is described

1 e.g. SAP AG, ABAP Enhancement Framework, http://help.sap.com, visited 10-09-2009
2 http://theseus-programm.de/en-us/theseus-application-scenarios/texo/, visited 10-09-2009

MKWI 2010 – Enterprise Resource Planning und Transformation von ERP-Systemen

1525

that demonstrates the integration of a service into a user interface. Section 6 briefly
describes related work and Section 7 gives an outlook on future work.

2 Motivating Scenario

The following scenario from the automotive sector illustrates the envisioned integ-
ration of tradable services into enterprise systems. Due to legal changes in export
guidelines, a manufacturer of car seats has to certify his products to guarantee that
materials used within a car seat comply with ecological laws. A service provider offers
a service on the Service Marketplace that allows the calculation of eco values for pro-
ducts including certification. The company runs an enterprise system including a
Product-Lifecycle-Management (PLM) module that supports the company in the
design process of car seats (Screenshot in Figure 5 on page 1532). The core version
of this business application does not support the calculation of eco values for a
given bill of material. A product designer of the company accesses the Service
Marketplace directly from within his enterprise system and searches for services
that provide the missing functionality. He receives a list of matching services from
various service providers certified for his enterprise system. According to his wor-
king context the designer selects a service called “Eco-Calculator” and buys it on the
marketplace. Subsequently the service is automatically integrated into the core
business application without running a manual integration project: the user inter-
face of the core business application is extended with (1) an additional table
column (“Eco Value”) in the product components table, (2) an additional but-
ton (“Calculate Eco Value”) and (3) an additional field indicating the total eco
value for the car seat (“Entire Eco Value”). After the service is integrated into the
consumer application, the service can be used. If the total eco value fulfils the legal
requirements, a certificate is generated and passed to the consumer application.

3 Requirements

In the previous section, a motivating scenario has been presented to illustrate the
user’s perspective on service integration within enterprise systems. In the given
context of service marketplaces seamless and less-complex service consumption is
needed. Today, three main deficits can be observed in integration projects when an
enterprise system is extended by additional functionality or services: (1) Often
much manual effort (programming) is needed in major tasks to extend an enterprise
system. (2) Typically enterprise systems only provide proprietary adaptation and
extension techniques with a low level of abstraction (e.g. proprietary code-level inter-
faces where additional integration code can be plugged in). (3) It is often in the
responsibility of the human integration expert to identify and implement an optimal integ-
ration solution, to ensure that all needed integration details for the chosen integra-
tion alternative are provided and e.g. nothing is forgotten.

 Matthias Allgaier, Markus Heller, Martin Weidner

1526

The following research requirements can be derived from the motivating scenario and
the above observations for the development of a service integration framework:
(1) Develop a model-based integration approach to enable an integrator to model (or

design) the relevant integration aspects on a higher abstraction level (than e.g.
on implementation-level). For example, model checking, simulation, and de-
sign recommendation support can be offered on top of it.

(2) Enable a controlled extensibility modelling insofar as only a proven set of integra-
tion operations can be performed. This set of actions should capture best-
practice knowledge about frequent and relevant integration tasks.

(3) Develop a uniform modelling approach to enable the integrator to design the exten-
sion of an application on multiple application layers.

(4) Allow for the explicit definition and re-use of best-practice integration knowledge
in the course of an integration project.

We will address these requirements within the Service Integration Framework.

4 Service Integration Framework

This section presents the conceptualization of the Service Integration Framework.
In Subsection 4.1 the Service Marketplace scenario with relevant stakeholders and
their interactions is described. Subsection 4.2 introduces the main concepts of our
framework. The layered modelling approach is explained in subsection 4.3 with a
first sketch of a meta model as the central foundation of the envisioned solution.
Subsection 4.4 focuses on a context notion and adaptation patterns.

4.1 Service Ecosystem - Roles and Interactions for Service Integration

The Enterprise System Provider (Figure 2, lane 1) delivers standard business applicati-
ons running within enterprise systems. At the same time these core business appli-
cations provide the capability to be flexibly adapted/extended at a later stage in the
software-lifecycle. Therefore a description on how the core business applications
can be extended on the relevant application layers is delivered. A Service Provider
(lane 3) develops and tests a service, independent of the concrete service consumer
environment. The Service Integrator (lane 2) is responsible for providing an integrati-
on solution for the combination of (i) a core business application running within
an enterprise system and (ii) a service, leveraging the extensibility features of the
core enterprise system. The integration solution is tested (and optionally certified
by the enterprise system provider) and published on the Service Marketplace (lane 4)
where it can be offered to a potential high number of service consumer. A Service
Consumer (lane 5) can search for services offered on the service marketplace to
extend his core business application provided by the enterprise system provider.
Instead of purchasing a plain service description and manually integrating the ser-
vice into his core business application(s) the service consumer can select the integ-

MKWI 2010 – Enterprise Resource Planning und Transformation von ERP-Systemen

1527

ration solution offered by the service integrator. This solution allows the automatic
adaptation/extension the core business application(s) so that the service is fully
integrated into the enterprise system and ready for usage.

After the usage phase the service marketplace charges the service consumer for
the service usage and the service provider for the brokering of the service.

E
n

te
rp

ri
s

e

S
y

s
te

m

P
ro

v
id

e
r Describe

Extensible Parts

of Core Business

Applications

Deliver

Core Business

Applications

S
e

rv
ic

e

In
te

g
ra

to
r

Select Enterprise

System and

Service

Develop and Test

Integration

Solution

Publish

Integration

Solution

S
e

rv
ic

e

P
ro

v
id

e
r

Develop and Test

Service

Provide Service

Description

Pay

Marketplace

Mediation

S
e

rv
ic

e

M
a

rk
e

t-

p
la

c
e Offer Service

with Integration

Solution

Discover

Service

Charge

Service

S
e

rv
ic

e

C
o

n
s

u
m

e
r

Search

Service

Accept

Business

Model

Integrate

Service

Pay

Service

Execute

Service

Use

Service

Input / Output

Input / Output

Figure 2: Service Ecosystem – Roles and Interactions

4.2 Service Integration Modelling - Core Concepts

All information needed for service integration is captured within a set of descriptions
described below (Figure 3). Three different descriptions are created and maintained
by the responsible roles as follows:
(1) The Application Extensibility Description (left) represents a model of the core

business application’s extensibility capabilities and is maintained by the enter-
prise system provider. It contains all possible extension points where the appli-
cation can be extended or adapted. Such extension points model the offered exten-
sibility features of the application on top of the underlying enterprise system. For
example, extension points denote places in the application that can be used to
add a process step to a core process. Alternatively, extension points for the
user interface allow the addition of a new UI element, and so on.

(2) The Service Description (right) models the service’s capabilities with respect to
multiple aspects and is created by the service provider. Among other informa-
tion, the service description contains relevant information for the integration
of the service into core business applications (such as service operations with
input and output interfaces, supported data types, messaging choreographies,
offered default UI descriptions).

 Matthias Allgaier, Markus Heller, Martin Weidner

1528

(3) An Integration Description (bottom) is developed by the service integrator and
contains a set of relationships between elements in the enterprise extensibility
description and elements the service description. For this purpose, an integration
relationship or integration link is established between both elements3. The whole
integration description is the outcome of an integration design process based
on the two inputs (1) and (2). The integration description specifies all steps to
achieve the desired integration and can additionally reference any combinations
of software artefacts needed for the integration runtime system.

Service

Description

Application

Extensibility

Description

InputInput

Integration

Description

Service

Provider

creates

Service

Integrator

Enterprise

System

Provider

performscreates

Designing the

Integration

Output

Figure 3: Inputs and Output for Integration Design

4.3 Layered Modelling Framework

Following a model-based approach, all descriptions introduced in the preceding
section are based on a common conceptual basis formalized in a meta model:
(1) The overall adaptation meta model defines all concepts for application extensibil-

ity descriptions, service descriptions and integration descriptions. It describes
identified best-practice integration knowledge on a type-level modelling
layer (e.g. how and with which constraints to relate service capabilities to the
application extensibility capabilities).

(2) Integration models represent concrete application extensibility descriptions, ser-
vice descriptions, or integration descriptions on an instance-level modelling layer.
Integration models are described with the concepts in the adaptation meta
model to detail all information for a concrete integration (e.g. for the integra-
tion of the service “Eco-Calculator” from Subsection 2).

Figure 4 illustrates both modelling layers with a cut-out of relevant elements of the
adaptation meta model (upper part) and instances of concrete integration mod-

3 Precisely, an integration link connects a concrete extension point and a concrete connector. The con-
nector concept is described more in more detail in Section 4.3.

MKWI 2010 – Enterprise Resource Planning und Transformation von ERP-Systemen

1529

els (lower part). The adaptation meta model (upper part of Figure 4) is partitioned into
a core meta model part at the top and several specific refinement parts below.

The core part of the meta model defines all core conceptual entities and their re-
lationships. For example, as explained below we separate between five central
modelling areas for modelling different part of a core business application, the
defined extension points, integration links (as explained above), connectors (ex-
plained below), and the relevant parts of a service. For all areas, all modelling ele-
ments of an area inherit from corresponding root model entities: Core Application

Entity, Core Extension Point Entity, Core Integration Link Entity, Core Link Connector

Entity, Core Service Entity.

Core

Integration

Link Entity

Add Button

Core

Application

Entity

Table

(View)

Add Table

Column

Core Service

Entity

Service

Operation

Table „T1"

ToEP toCON

Adaptation Pattern Definition: Add Table Column

Core

Extension

Point Entity

Value Connector

„BOM-C1"

Add Table

Column (T-EP#1, BOM-

C1)

Table-EP

„T-EP#1"

Table EP#1has
Value

Connector
has

Core Link

Connector

Entity

Input Value

„Bill of Material

(BOM)“

Output Value

„Bill of Material

(BOM) with Eco-

Values“

Service

Operation

„Calculate

EcoValue“

Adaptation Pattern Instance: Add Table Column (T-EP#1, BOM-C1)

Application Extensibility

Description
Service DescriptionIntegration Description

produces

Add Task

Core Part of

Adaptation

Meta Model

Specific

Parts of

Adaptation

Meta Model

Integration

Models

has ToEP toCON has

Is_a (inheritance)
Instance_of

X Association (Type X)
X Derived Association (Type X)

Meta Model Entity
Model Entity

Legend:

Bill Of

Material

represents

Business

Object

Bill Of

Material

represents

Business

Object

Type Level

Instance Level

Context

Instance_of Instance_of Instance_of Instance_of Instance_of Instance_of

(other

entities of

service

description)

Output

Value

Figure 4: Meta Model and Integration Models

Similarly, all relevant relationships between these entities are part of the core meta
model part. For example, the relationship has is modelled between Core Application

Entity and Core Extension Point Entity to denote that each entity of a core business
application can have (null or many) assigned extension points and so on. The cent-
ral modelling element Core Integration Link Entity models a direct connection
between an extension point (Core Extension Point Entity) and a connector (Core Link

Connector Entity). The latter entity is used as a surrogate to reference to one or
more elements of a service description (model) indirectly. Not all possible
combinations of extension points and connectors are allowed. Instead, in the sense
of a required controlled extensibility (see requirement 2), it is formalized within the
meta model definition for the integration link (Core Integration Link Entity) which
combinations are allowed (while all other combinations are forbidden).
The specific parts of the meta model describe some additional aspects of integration
knowledge without a general meaning and therefore they are not in the core meta

 Matthias Allgaier, Markus Heller, Martin Weidner

1530

model part. For example, the figure shows extensibility capabilities of tables (Table)
that are shown in a user interface of the core business application and one (of
many possible) extension point (e.g. Table EP#1 (table column addition)) for a UI
table are depicted. The relationships of specific elements (e.g. Table) to elements in
the core part (e.g. Core Application Entity) is given by inheritance relationships in-

stance_of (other kinds of associations are possible). Because of the inheritance
relationships, the same relationships do not have to be modelled repeatedly in the
specific part and can be derived instead4. The extension point Table #EP1 (table
column addition) is linked with a connector representing a certain value (Value

Connector) via a Core Integration Link Entity of type Add Table Column. Similar integ-
ration relationships can be modelled for other combinations of extension points
and connector entities.

The lower part of Figure 4 shows a cut-out of related instance-level integration
models for application extensibility description, service description and integration
description. For illustration, the models are shown for the example of the service
“Eco-Calculator” into the described PLM business application mentioned in the
motivating scenario (see Section 2). The integration model for a service descrip-
tion (shown to the right) contains some important modelling elements for a (web)
service operation “calculateEcoValue” with one input and one output parameter.
The left part of the figure shows a cut-out of the integration model for PLM appli-
cation extensibility description with one specific selected table in the user interface
and one of the extension points allowed for this table: this extension point is for
adding a column to the given table. The middle part of the figure shows the inte-
gration model for the integration description with an application of the adaptation
pattern Add Table Column with its associations to the relevant entities in the integra-
tion models for the application extensibility description and the service description.

With this example the pattern-based modelling approach on the presentation
layer is introduced. In future versions we will extend this concept to address the
adaptation of the business process layer in the same way.

4.4 Context Orientation and Adaptation Patterns

On both, the meta model and the integration model layer, a context for model
entities consists of connected model entities and their relationships. For example,
in the adaptation meta model Table and Value Connector both are linked via
associations represents to element Bill Of Material, which is in turn an instance of a
Business Object meta model element (the context is indicated as a grey circle in the
figure). This context realizes a higher-value annotation and allows for
matchmaking in the meta model (and accordingly on the instance level). For

4 For example, the relationship Has between Table and Table #EP1 is implicitly already modelled in
the core part of the meta model which avoids modelling the relationship Has between Table and
Table EP#1 again.

MKWI 2010 – Enterprise Resource Planning und Transformation von ERP-Systemen

1531

example, possible candidates of extension points for the integration can be
discovered among all extension points based on given contextual dependencies
that have to be matched (e.g. referring to instances of a certain Business Object).

Adaptation patterns are introduced to group common patterns of model ele-
ments (and their relationships) into a pattern template for later re-use of the con-
served model structure. An adaptation pattern defines a certain association struc-
ture between an integration link and one or many other associated entities of the
meta model. For example, an adaptation pattern Add Table Column comprises the
(specific, table-related) meta model entities Add Table Column (a specific table-

related integration link), Table and Value Connector. A large set of adaptation pat-
terns can be defined to model very basic or elementary integration steps. Likewise,
adaptation patterns can be defined on the process layer (e.g. patterns like Add Proc-

ess Step, AddControlflow or on the service / business object layer (e.g. patterns like
Add Business Object Attribute). Another adaptation pattern Add Data Mapping can
address the data mapping between data passed between the user interface of the
core business application and a called web service forth and back. For the Eco-
Calculator example, bill of material data from the UI is mapped to an input mes-
sage of the web service “EcoCalculator” and the output message is mapped to
further UI elements. Adaptation patterns serve to help realizing controlled extensi-
bility (requirement 2) and to help in explicitly modelling and defining best-practice
patterns (requirement 4).The proposed conceptual framework for service integra-
tion as detailed in this section addresses all requirements 1 to 4 from Section 3.

5 Demonstration Prototype

To demonstrate the proposed approach we have implemented a running prototype
for the Eco-Calculator scenario introduced in Section 2. The left part of Figure 5
shows the dialog that is used by the service consumer to search for applicable ser-
vices on the service marketplace. When the user selects a service it is automatically
integrated into the business application. The right part of Figure 5 shows the PLM
business application that has been implemented based on the Microsoft Silverlight
framework5. During the integration of the service the core business application is
extended on the user interface layer with (1) an additional table column, (2) an
additional button and (3) an additional field.

5 http://www.microsoft.com/Silverlight/, visited 10-09-2009

 Matthias Allgaier, Markus Heller, Martin Weidner

1532

1

2

3

1

2

3

Figure 5: Prototype of Business Application

In Figure 6 the architecture of the prototype is shown. The application extensibility
description (left part) defines three instances of the type Core Application Entity
representing the adaptable parts of the core business application. Each of these
models provides a dedicated extension point of the type Core Extension Point Entity:
T-EP#1 allows the extension of table T1 with an additional table column, BP-EP#2
allows the extension of the button panel BP1 with an additional button and P-EP#3
allows the extension of the panel P1 with another field.

InputInput

Service

Integrator

Designing the

Integration

Application Extensibility

Description

PLM Business Application

Core Application

Entity

Core Extension

Point Entity

Table “T1“

(Product Components)
T-EP#1

Button Panel “BP1“

(Product View)
BP-EP#2

Panel “P1“

(Product Visualization)
P-EP#3

... ...

Adaptation Enactment Engine

PLM Business Application (Microsoft Silverlight)

Integration Description (delivered through TEXO Service Marketplace)

Adaptation Patterns Core Extension Point Entity

AddTableColumn T-EP#1

AddButton BP-EP#2

AddField P-EP#3

... ...

Core Link Connector Entity

Service Operation: calculateEcoValue / Output-Message / EcoValues

Service Default UI: Button “Calculate EcoValue“

Service Operation: calculateEcoValue / Output-Message / TotalEcoValue

...

Step

1

2

3

...

Output

UI Adaptation Manager

Native Extensibility Features (API)

Service

Consumer

Service Description

Eco Calculator

Business Aspects

Default User Interface

Operations

calculateEcoValue

Input Message: BOM

Output Message: EcoValues

...

uses

parameterize

adapt

Input

Tool

Description/

Model

Legend:

Artefacts
generates

deploy

Figure 6: Architecture of Prototype implemented in Microsoft Silverlight

MKWI 2010 – Enterprise Resource Planning und Transformation von ERP-Systemen

1533

The service description (right part) with its different aspects is shown, modelled as
instances of type Core Service Entity. Based on these models the service integrator
defines the integration description (middle part of Figure 6) that instantiates three
adaptation patterns for the required extensions: AddTableColumn, AddButton,
AddField. The Adaptation Enactment Engine (implemented in Java) is parameterized
by the integration description and forwards it to the UI Adaptation Manager that
actually adapts the PLM business application by reusing its native extensibility
features (e.g. APIs) provided by the Microsoft Silverlight framework6.

6 Related Work

As outlined in Section 1 our work is related to existing approaches from the areas
of B2B Integration, e.g. (Bussler 2003) and Enterprise Application Integration (EAI)
e.g. (Hophe and Woolf 2003). Instead of focusing on bridging structural- and/or
behavioural mismatches between service interfaces using an Enterprise Services
Bus (ESB) our work concentrates on the controlled extensibility of an enterprise
system for unforeseen service integration, cf. (Studer et al. 2007, S. 259-279).

Different related work is available in the field of adaptive software systems, how-
ever with the majority of work focusing on self-adaptive systems in the domain of
mobile and pervasive computing (cf. MADAM/MUSIC research projects7).

In the area of component-based software engineering our work is related to the con-
cept of plug-in technologies that allow the development and installation of com-
ponents into a core application framework (Birsan 2005, S.40-46). Plug-in tech-
niques have also been used in combination with a software product line suite to
support runtime adaptation of an ERP system (Wolfinger et al. 2008, S.21-25). In
contrast to these plug-in approaches we concentrate on service integration, not on
component integration, cf. (Overhage and Turowski 2007, S. 4-8).

For the extension of the presentation-layer our work is related to approaches
from the field of Adaptive User Interfaces mainly focusing on the abstract definition
of user interfaces (e.g XIML or UIML8). For the extension of the business process
layer of an enterprise system (future work) our work is related to the area of Adap-
tive Process Management, mainly with respect to process flexibility patterns cf. (Mulyar
et al. 2008, S. 95; Weber et al. 2008, S.438-466).

7 Conclusion and Future Work

We have presented a model-based framework to achieve the unforeseen integra-
tion of services into extensible enterprise systems. A prototype for presentation

6 Optionally platform-specific artefacts will be generated and deployed by the UI Adaptation Manager
7 http://www.ist-madam.org, http://www.ist-music.eu, visited 10-09-2009
8 http://www.ximl.org, http://www.uiml.org, visited 10-09-2009

 Matthias Allgaier, Markus Heller, Martin Weidner

1534

layer integration of services into core business applications demonstrates our ap-
proach. The current prototype is restricted to the extension of the presentation
layer. In future versions we plan to support the adaptation on the business process
layer in the same way as this becomes particularly relevant in enterprise context.

References

Barros A, Dumas M (2006) The Rise of Web Service Ecosystems. IT Professional
8 (5): 31-37.

Birsan D (2005) On Plug-ins and Extensible Architectures. Queue 3 (2): 40-46.

Bussler C (2003) B2B Integration: Concepts and Architecture. Springer, Berlin.

Hevner AR, March ST, Park J, Ram S (2004) Design Science in Information
Systems Research. MIS Quarterly 28 (1): 75-105.

Hohpe G, Woolf B (2003) Enterprise Integration Patterns - Designing, Building,
and Deploying Messaging Solutions. Addison-Wesley Professional, Boston.

Janiesch C, Ruggaber R, Sure Y (2008) Eine Infrastruktur für das Internet der
Dienste. HMD - Praxis der Wirtschaftsinformatik 45 (261): 71-79.

Lo H, Wang R, Garbini, JP (2009) The State of Enterprise Software 2009.
Forrester Research, Cambridge.

Mulyar N, van der Aalst WMP, Russell N (2008) Process flexibility patterns. BETA
Working Paper Series, WP 251, Eindhoven University of Technology.

Overhage S, Turowski K (2007) Serviceorientierte Architekturen - Konzept und
methodische Herausforderungen. In: Nissen V, Petsch M, Schorcht H (Hrsg)
Service-orientierte Architekturen. Chancen und Herausforderungen bei der
Flexibilisierung und Integration von Unternehmensprozessen. Deutscher
Universitätsverlag, Wiesbaden.

Papazoglou MP (2007) Web Services: Principles and Technology. Pearson -
Prentice Hall, Upper Saddle River.

Studer R, Grimm S, Abecker A (2007) Semantic Web Services - Concepts,
Technologies and Applications. Springer, Berlin.

Weber B, Reichert M, Rinderle-Ma S (2008) Change patterns and change support
features - Enhancing flexibility in process-aware information systems. DKE 66
(3): 438-466.

Wolfinger R, Reiter S, Dhungana D, Grünbacher P, Prähofer H (2008) Supporting
Runtime System Adaptation through Product Line Engineering and Plug-in
Techniques. In: 7th IEEE International Conference on Composition-Based
Software Systems (ICCBSS’08), Madrid.

