
MKWI 2010 – Integration von Produkt und Dienstleistung - Hybride Wertschöpfung

2097

Managing Hybrid IT-Products

Adding IT Support to the SCORE Method

Philipp Langer1, Thomas Winkler2, Tilo Böhmann3, Helmut Krcmar1

1Lehrstuhl für Wirtschaftsinformatik,
Technische Universität München,

Boltzmannstr. 3, 85748 Garching

2avaso GmbH, München
Lichtenbergstr. 8, 85748 Garching

3ISS - International Business School of Service Management Hamburg,

Hans-Henny-Jahnn-Weg 9, 22085 Hamburg

1 Introduction

While the economic impact of pure in-kind transfers tends to decrease, because of
the declining differentiation possibilities, Hybrid Products (solutions) gain
relevance. Hybrid Products are aligned products and services, which are being
offered as integrated performance bundles (Johansson et al. 2003, S. 116-125).
Therefore, their special trait is the added value of the integration of both, products
and services, which helps to solve customer specific problems (Foote et al. 2001, S.
84). Consequently the value of the Hybrid Product is supposed to exceed the sum
of its parts.

Besides the possibilities of differentiation, utilizing Hybrid Products leads to a
better integration into the customer’s value creation chain (C1)1. The Hybrid Prod-
uct provider takes responsibility for the downstream activities in the value chain of
products, e.g. on the integration of products to complex systems, on the provision
and operation of such systems, or even on the conduction of customer business
processes. At the same time, this results in a change from a transactional to a

1 Cx = Challenge no.x

 Philipp Langer, Thomas Winkler, Tilo Böhmann, Helmut Krcmar

2098

more relational relationship (Galbraith 2002, S. 194-207). However, the shape of
these product-service bundles may vary a lot. On the one hand, there are simple
maintenance contracts that are being sold with machines and on the other hand,
Hybrid Products take the form of performance outcomes, which are connected to
Service-Level-Agreement (SLA) guarantees (Burianek et al. 2007; Kersten et al.
2006). Providers are aiming for higher turn-over by taking over downstream value
creation activities as well as higher profits.

Hybrid Products bear an especially high relevance in the IT sector. The offer-
ing of customer specific performance bundles, consisting of hardware, software
and services, is a widely used concept in this industry (Böhmann et al. 2006). An
example for such IT-services is the operation, maintenance and support of a large
Webhosting solution. With the providers facing a growing complexity in providing
such Hybrid Products, customers demand an even richer product variety and indi-
vidualization with reduced prices at the same time (Kratochvil und Carson 2005).
A resort to overcome these contradictory demands is the concept of standardiza-
tion, which is the key to realize the economy of large scale reuse (Kratochvil und
Carson 2005; Miller et al. 2002; Sawhney 2006) (C2). A method of standardization
known in the literature is productizing, which means that reusable components are
transferred into bricks and added to the knowledge base (Sawhney 2006) (C3).

In the next section, we will introduce the SCORE method, which addresses
these three mentioned challenges providing Hybrid IT-Products. Additionally, we
will present a short summary of a case study, which we will use to motivate the
need to add IT support to the SCORE method. In the main part, we will describe
the data model for the electronic Hybrid Product Catalogue (eHypCat) prototype.
The Hybrid Product Catalogue is used as fundamental information database for
the subsequent bid process.

2 The SCORE Method: A short summary

The SCORE method is a multi-level process enabling IT providers to identify
standardizable, elementary elements in existing projects, aggregating these elements
to modules (standardized bricks) and structuring these modules in a Hybrid IT-
Product Catalogue (solution portfolio). Using this Hybrid IT-Product Catalogue
the provider is able to recombine existing modules into individual, customer confi-
gured Hybrid IT-Products (Böhmann et al. 2008).

2.1 Case study at ACME

ACME is a medium-sized provider of web solutions. Typically, the firm designs,
operates, and improves web-based information systems for its customers, primarily
hosting customer systems in the firm’s own data centers. In 2006, ACME em-
ployed about 70 people with an annual turnover of approx. 7m Euro. ACME’s

MKWI 2010 – Integration von Produkt und Dienstleistung - Hybride Wertschöpfung

2099

main customer base is dominated by medium-sized firms that run highly successful
e-shops or online communities. These customers choose ACME because of the
firm’s substantial technical expertise and track record for superior quality of ser-
vice. Thus, the ability to offer customer-specific web solutions is ACME’s unique
selling proposition to differentiate from standard internet systems providers that
compete on price leadership. In the following sections, we will refer to the case
study at ACME, introducing certain examples to illustrate the respective purposes.

2.2 The phases of the SCORE method

The SCORE method consists of the five phases “Objectives”, “Component Ana-
lysis”, “Modularization”, “Customer individual Configuration” and “Learning and
Development”.

The phase “Objectives” is used to identify relevant categories, markets and
target groups of the provider as well as strategic goals that should be resolved by
building a Hybrid IT-Product Catalogue, e.g. improving component quality, reduc-
ing costs or keeping flexibility.

As soon as these objectives are determined, the “Component Analysis” phase
begins. There, successful projects are being analyzed in order to identify reusable
service, product components, and procedures as well as dependencies among
them. Reusable components are stored in the DeliveryElement catalogue. In the
case study at ACME, different complex e-commerce solutions were analyzed and it
was found amongst others that ACME was adjusting an existing RedHat product
(Linux operating system) in order to facilitate the processes of installation and
update distribution in all appropriate projects. Formerly, reused elements were not
stored and consequently they were just utilized by accident or if the responsible
staff had experience with a similar project realized before. It is very important to
note that not only adjusted products were stored in the catalogue, but also reusable
processes, like “ACME OS installation”, procedures like “Change Management”
and customer integration cases like “Customer Requirements Engineering”.

The subsequent modularization phase is used to create modules (solution
bricks) by structuring identified DeliveryElements of the Hybrid IT-Product Cata-
logue. Creating modules is crucial in order to regroup DeliveryElements with
strong dependencies into one module, whereas the dependency coupling between
modules is loose (Baldwin und Clark 2000; Ulrich 1995). The SCORE method
proposes four different module types resolving different DeliveryElement charac-
teristics and a different grade of external factor integration (cf. (Böhmann et al.
2008). These modules are Process Performance Modules (PPM), System Providing
Modules 1 and 2 (SPM1, SPM2), and Integration Modules (IM). The four module
types are grouped into backend- (PPM, SPM1) and frontend-modules (SPM2, IM).
While backend-modules are used customer independently in a Hybrid Product
Factory, frontend-modules are characterized through the need of customer integra-
tion in the solution delivery.

 Philipp Langer, Thomas Winkler, Tilo Böhmann, Helmut Krcmar

2100

First of all, procedures, which are neither customer-specific, nor system specific,
are created as PPMs. These modules describe provider internal management
procedures like Incident Management, Change Management, Project Management
(PPM at ACME).

Then, SPMs are created. The SCORE method differentiates two types of
SPMs: SPM1 and SPM2. SPM1 describes a module variant comprising the whole
lifecycle of a Hybrid IT-Products, leaving little space for individual adjustments.
SPM2 is a frontend module, which means that it’s not highly specified and will be
adjusted to the customer’s individual requirements. At ACME SPM2 modules are
used to define interfaces to yet unknown, but eventually needed systems that are
required for certain customer projects. At ACME, this module keeps the informa-
tion who is able to handle unknown database systems, for example.

IMs are used as interfaces to integrate unknown customer requirements, the
always existent project part of customer individual projects. The usage of IM
enables the provider to encapsulate services delivered from an external factor, e.g.
the customer or a third party provider. Encapsulating delivery by a third party
provider is very important for the results view, because the provider should be able
to specify the quality of the Hybrid IT-Product as Service Level Agreements in the
contract. One of ACME’s projects, for example, required the usage of a third party
webshop that was coded exclusively for the customer. Here, ACME only offered
Service Level Agreements below the webshop application layer, e.g. the availability
of the network connection of the server.

The case study at ACME showed that about 80% of customer requirements
could be mapped on backend modules, whereas the rest of the requirements had
to be specified in the project. The result of the Modularization phase is a module-
based Hybrid IT-Product Catalogue. In the customer configuration phase, identi-
fied customer requirements are mapped onto these modules, which allow the pro-
vider to fulfill these requirements with a maximum of standardized components.
This phase is not well elaborated yet. The SCORE method only provides guidance
in terms of using the four modules, but it doesn’t give a hint on how to identify
customer requirements and to how map them on the Hybrid IT-Catalogue.

The last phase of the SCORE method is the “Learning and Development”
phase. The SCORE method only succeeds if finished projects are analyzed in the
end of a project and gained know-how is transferred to the knowledge base of the
catalogue. For example, if a SPM2 module is used successfully in a project, it
should be analyzed for reusability in future projects At ACME, the ORACLE da-
tabase lifecycle might be defined in detail after a successful project as it is a candi-
date to be transferred into a SPM1 module.

MKWI 2010 – Integration von Produkt und Dienstleistung - Hybride Wertschöpfung

2101

3 A data model to add IT-support to the SCORE method

In the following section we will describe the application and outcomes of the
SCORE method in the case study at ACME. The results are used to discuss the
general need of IT-support for the SCORE method. As a next step, we will
introduce the core data model used in the eHypCat prototype.

3.1 Utilizing the SCORE method in practice at ACME

The utilization of the SCORE method at ACME led to the definition of 111 mo-
dules comprising 287 DeliveryElements. At the beginning Microsoft Word was
used as tool in the Component Analysis phase. We used separate Word templates
to summarize analyzed projects, to identify and to describe DeliveryElements.
Furthermore, dependencies between these elements were documented in Word
and in Microsoft Excel (redundantly). Afterwards we started to utilize Word and
Excel templates for creating modules, but we soon found out that the growing
number of DeliveryElements led to an exponential growth in managing these ele-
ments (cf. Figure 1 – Quality). One reason for this is that changing information in
one element entails a series of concurrent slow and error-prone changes in all
dependant elements, e.g. changing the name of a process led to a change in all
Excel templates holding dependencies to this process (cf. Figure 1 – Speed).
Furthermore the usage of non-database dependant tools offers only a very small
group of people to work on the project at the same time, because working on the
same document at the same time is impossible and therefore teamwork is
impossible.

Even if it was possible to create the Hybrid IT-Product Catalogue, the man-
agement of real world data exceeds the limits of Word and Excel. The continuous
change of the IT DeliveryElements during the catalog’s lifecycle requires the pos-
sibility of versioning DeliveryElements and Modules, e.g. if a Module is imple-
mented at a customer site and later changed because of technology updates, the
provider still needs to hold information on the deprecated version to assure the
module delivery and management at the customer site. So, there even exist depen-
dencies between different versions of one module (cf. Figure 1 – Manageability).

Additionally, there is a great demand for qualified dependencies with the pos-
sibility to apply fine grained rules. For example, a customer requiring a high availa-
bility solution should fire a rule changing the quantity model of the proposed solu-
tion. Even more complex rules could arise which leads to inclusions or exclusions
of DeliveryElements or modules, hence such rules impact the customer’s solution
setup and architecture.

 Philipp Langer, Thomas Winkler, Tilo Böhmann, Helmut Krcmar

2102

Table 1: Advantages utilizing the proposed IT prototype

Prototype

Advantages

Comparison

Without developed prototype With developed prototype

Quality Management is difficult for a large
number of documents, which leads
to error- prone synonyms and ho-
monyms.

 Missing Overview of the sum of all
existing elements leads to failing
module development.

 Complex dependencies are not
manageable. Only one-hop depen-
dencies are stored in one docu-
ment, therefore dependency check-
ing leads to a multi-document tra-
versal.

 Centralized database
concept avoids redundant
elements.

 Dependency checking is
made easy through vi-
sualization.

 Application and verifica-
tion of fine grained rules
along different layers of
the architecture becomes
possible.

Speed Distribution of Word and Excel files
as well as a missing versioning sys-
tem impedes teamwork.

 The effort on element management
rises exponentially, e.g. an element
name change entails the change of
all dependant documents.

 The idea of database
concept enables team-
work on the Hybrid Prod-
uct catalogue in large
teams.

 Changes on elements are
conducted only once and
updated automatically
through the catalog.

Manageability IT Architectures and therefore the
Hybrid Product catalog underlie
continuous changes in a lifecycle
view: Versioning as a subsequent
requirement is impossible with
Word and Excel.

 The selectable granularity for the
elements is limited.

 Versioning is imple-
mented.

 XML export of the ele-
ments enables their ex-
change and facilitates
manageability.

3.2 The Data Model Overview

Before introducing the core data model, we will give an insight on our general idea
of modeling Hybrid IT-Products (cf. Figure). The main idea is to implement a
four-layer architecture to support the idea of modularization, which is an extension
to the original three-layer architecture (Böhmann 2004). The first layer represents

MKWI 2010 – Integration von Produkt und Dienstleistung - Hybride Wertschöpfung

2103

the architecture layer, which is used to manage the DeliveryElements (elementary
elements) of the catalogue, e.g. managing dependencies between DeliveryElements
and Properties. Here, DeliveryElements are combined to modules. Modules form
the configuration layer and assure different functions. On one hand, they form the
smallest hybrid unit fulfilling a set of customer requirements over the lifecycle of a
contract. On the other hand, different modules are combined together to meet all
customer requirements in a customer individual product, the third layer of the
architecture. Modules, as well as DeliveryElements are invisible to the customer to
prevent unbundling and cherry picking. The key to map customer requirements on
modules are FeatureTypes. Each of them describes a set of customer relevant pro-
perties of DeliveryElements, e.g. product properties like “VPN” or quality proper-
ties like “AVAILABILITY”. The required properties are identified in the
requirements engineering processes using e.g. rule based questionnaires during the
bid process of Hybrid Products. Therefore the questionnaire as a sample method
represents the requirements engineering layer. As a main contribution in the exten-
sion of the three-layer architecture, the utilization of this architecture considers the
relationship between customer and provider: The customer expresses his
requirements to the provider and is able to control if these requirements are met
without knowing how the provider delivers these requirements (cf. Figure 1).

Figure 1: The data model overview of Hybrid Products

3.3 The Data Model in Detail

In the following subsection, we will describe the data model in detail and we will
give some examples to illustrate the suitability for daily use (cf. Figure 2).

As stated above, the FeatureType is a key element of the data model. It de-
scribes a number of properties, whereas each property belongs to a single Feature-
Type and is described throughout a UnitType. Each Property is either a product
property indicating the need for a product or a quality property indicating the need
for services. For example, if the FeatureType is RAM, there are technical proper-
ties describing the amount of RAM as RAM-size like 512 MB RAM, 1024 MB
RAM and properties describing the speed as RAM-speed like PC-2100. Further-

Customer
View

Provider
View

 Philipp Langer, Thomas Winkler, Tilo Böhmann, Helmut Krcmar

2104

more all measurable Properties indicate the possibility to add quality warranties as
Service Levels. If the FeatureType is network switch, a property like “Port” would
be measurable in terms of availability: The ServiceLevelMeasureType used would
be “Push”, the ServiceLevelPlace would be inside the subnet and the ServiceLe-
velPeriod would be “One month”. These attributes of ServiceLevelMeasure may
require additional properties and subsequently DeliveryElements assuring the
promised Service Level. This means that FeatureTypes are defined by Properties
that hold dependencies to DeliveryElements, but there are also FeatureTypes that
do not hold any properties. In this case FeatureTypes are categories summarizing a
FeatureType subset, which represents the same family of functions, like network
security.

A FeatureType category is named Offering Element. The sum of all Offering
Elements defines the catalogue structure we call the Hybrid Product Catalogue.
Offering Elements are important because each of them contains an amount of
questions (QuestionBranch) with associated configuration rules in Object Con-
straint Language (OCL) needed for the identification of suitable properties confi-
guring customer individual needs during the bid process. Through utilizing the
RulePropertyRequirement association, rules can be applied to sort out unfitting
properties to customer requirements. An Offering Element would be for example
“PC Collaboration”. This means that different people work together using the
same data. One question in this context could be if people work together in one
place or if they work together spread over the globe, e.g.at home. If people work
together from their respective home offices, a rule has to be applied, which creates
a requirement “need of a Virtual Private Network (VPN)”, resulting in a subset of
further questions (RuleQuestionRequirement) defining the exact properties.

As soon as all needed properties are defined throughout the questionnaire, an
automated process of DeliveryElement resolution is executed. The aim is to identi-
fy all DeliveryElements that are needed to fulfill the specified Properties before. If,
for example, a VPN for 100 people was needed, all VPN Firewalls (DeliveryEle-
ment) which are able to manage at least 100 VPN tunnels at the same time (fea-
tured in) would be selected. The result of this process is the FeaturePropertyDefi-
nition covering all selected DeliveryElements. Dependencies between Delive-
ryElements are also represented through properties. The Association FeaturePro-
pertyRequirement is used to describe these dependencies, e.g. the property operat-
ing system depends on the property server, which leads to the dependency be-
tween all DeliveryElements that incorporate operating system and server. The
resulting DeliveryElements of the resolution form the collectivity of deliverables
matching the standardizable requirements formulated by the customer. In this
phase, the selection still holds competitive DeliveryElements (elements that fulfill
the same requirement) as well as complemental, dependant and precluding Delive-
ryElements. Sticking to the example above, there exist different VPN Firewalls
that meet the requirement of at least 100 VPN tunnels. Since another requirement
might require high network availability and therefore specific services like remote

MKWI 2010 – Integration von Produkt und Dienstleistung - Hybride Wertschöpfung

2105

management, these services might be applicable to only a subset of the identified
VPN Firewalls reducing the amount of comparative DeliveryElements. The next
process step is to exclude precluding DeliveryElements from the selection, which
results in a selection covering compatible but yet partly comparative DeliveryEle-
ments which might be sorted in additional filters, e.g. pricing or quality filters. De-
liveryElements are furthermore divided into Products, Software and Services. The
design of Services is more demanding than the design of products or software,
which are only described through Properties. In contrast to them, Services com-
prise the description of a process as a series of activities. The additional design of
these activities is important, because operationalResponsibilities are stored there as
well as input- and output documents and working plans: These additional items are
important for both, the operations phase and the contracting phase providing e.g.
cost relevant information. For example, the need to mandate a senior technician to
fulfill activities is more expensive than mandating a young trainee.

Furthermore a big problem in delivering solutions is the missing integration in
the phase of DeliveryElement development. Additionally, promising quality as-
pects like Service Levels requires the embedding of the “to be monitored Ele-
ments” in a lifecycle concept, incorporating their scope and state. These require-
ments are met with the introduction of Modules. Modules are the smallest hybrid
elements of the catalogue from the viewpoint of the provider, but they are invisible
to the customer to avoid unbundling. Every module is of a certain module type.
Possible ModuleTypes are CANDIDATE, ABSTRACT, and MODULE. The
ModuleType ABSTRACT is a template for a function family of modules. It defines
a minimum set of required FeatureTypes. The set of these FeatureTypes is not
necessarily an Offering Element: An ABSTRACT Module may require Feature-
Types of different Offering Elements, e.g. the ABSTRACT Module “SafeNet-
work” may contain FeatureTypes like “VPN” from the Offering Element “PC
Collaboration” as well as FeatureTypes like “Hotline” from the Offering Element
“Customer Support”. Utilizing ModuleTypes as templates for implementing Mod-
ules of the same kind helps to preserve the quality of the module variants belong-
ing to the same ModuleType as its children, e.g. all Modules implementing Safe-
Network supply “Hotline Support”. A Module CANDIDATE is used to describe
a module, which uses an ABSTRACT Module as a template, but is not fully engi-
neered yet. The CANDIDATE Module therefore represents a top-down approach
in the module development. In this case, the product management decides to
create a module with certain characteristics, e.g. a “Highly Available Firewall”
which requires properties that are not met yet by existing Firewalls (DeliveryEle-
ments), like redundancy. This means that needed DeliveryElements must be devel-
oped before the CANDIDATE Module may be transferred to a Module and used
in the catalogue.

Being the smallest unit for customer individual configuration, Modules incor-
porate a set of DeliveryElements delivering Properties. Following the propositions
of the SCORE method, Modules exist in different levels of maturity. They can be

 Philipp Langer, Thomas Winkler, Tilo Böhmann, Helmut Krcmar

2106

either fully (SPM1, PPM) or partly (SPM2) specified. If they are partly specified,
neither products nor service processes are explicated; there exists only a mapping
between the ModuleType and the SPM2 Module as well as the definition of orga-
nizational roles and process outcomes (cf. Table 1). Modules are also used to inte-
grate the external factor: Since interfaces between modules are documented as
property-dependencies between them, the operationalResponsible OrgaUnit may
be the customer or a third party supplier. Defining the role operationalResponsible
is very important for Hybrid IT-Product contracts, because it helps to clarify rights
and liabilities as well as consequences of unbundling and Service Levels in the
contract. If the customer insists on self-delivery of a FeatureType like “VPN”, the
concept of unbundling forces him to self-delivery of all associated DeliveryEle-
ments in the same module as “VPN”, so cherry picking on the customer side is
made nearly impossible. The SCORE method proposes a fourth Module Type, the
Integration Module (IM). Integration Modules are used to add unstandardizable
customer requirements.. The analysis of projects at ACME has shown that in sev-
eral complex IT projects there has been a highly individual part, which could not
be anticipated before (about 20% of the projects). The existence of the Integration
Module helps to combine both, the standardizable und the unstandardizable part
of the project.

4 Conclusion

Managing data of Hybrid Products is relevant for companies that increasingly
compete on the base of customer individualization. In this paper, we introduce IT
support for the SCORE method in order to develop a Hybrid Product Catalogue
from former projects in the IT industry. As main contribution of this paper, we
extend the already existing Three-Layer Architecture invented by Böhmann.
Through utilizing examples from the validation study, we explain the structure of
the proposed data model enabling the creation of Hybrid Product Catalogues for
the IT industry in detail.

MKWI 2010 – Integration von Produkt und Dienstleistung - Hybride Wertschöpfung

2107

Figure 2: The data model for Hybrid Products in detail

 Philipp Langer, Thomas Winkler, Tilo Böhmann, Helmut Krcmar

2108

References

Baldwin, C.Y.; Clark, K.B. (2000) The power of modularity, MIT Press,
Cambridge, Mass.

Böhmann, T. (2004) Modularisierung von IT-Dienstleistungen - Eine Methode für
das Service Engineering, Deutscher Universitäts-Verlag, Wiesbaden.

Böhmann, T.; Langer, P.; Schermann, M. (2008) Systematische Überführung von
kundenspezifischen IT-Lösungen in integrierte Produkt-
Dienstleistungsbausteine mit der SCORE Methode. Wirtschaftsinformatik,
Vol. 50(Nr. 3).

Böhmann, T.; Taurel, W.; Krcmar, H. (2006) Paketierung von IT-Dienstleistungen:
Chancen, Erfolgsfaktoren, Umsetzungsformen. Technische Universität
München, Lehrstuhl für Wirtschaftsinformatik.

Burianek, F.; C., I.; Bonnemaier, S.; Reichwald, R. (2007) Typologisierung hybrider
Produkte. München: Lst. Für Betriebswirtschaftslehre - Information und
Management der TU München.

Foote, N.W.; Galbraith, J.R.; Hope, Q.; Miller, D. (2001) Making solutions the
answer. McKinsey Quaterly, (Nr. 3), S. 84.

Galbraith, J.R. (2002) Organizing to deliver solutions. Organizational Dynamics,
Vol. 31(Nr. 2), S. 194-207.

Johansson, J.E.; Krishnamurthy, C.; Schlissberg, H.E. (2003) Solving the solutions
problem. McKinsey Quarterly, (Nr. 3), S. 116-125.

Kersten, W.; Zink, T.; Kern, E.-M. (2006) Wertschöpfungsnetzwerke zur
Entwicklung und Produktion hybrider Produkte: Ansatzpunkte und
Forschungsbedarf. In: Wertschöpfungsnetzwerke. Hrsg.: Blecker, T.;
Gemünden, H.G. Berliin 2006, S. 189-202.

Kratochvil, M.; Carson, C. (2005) Growing Modular: Mass Customization of
Complex Products, Services And Software, Springer, Berlin.

Miller, D.; Hope, Q.; Eisenstat, R.; Foote, N.W.; Galbraith, J.R. (2002) The
problem of solutions: Balancing clients and capabilities. Business Horizons,
Vol. 45(Nr. 2), S. 3-12.

Sawhney, M. (2006) Going Beyond the Product: Defining, Designing and
Delivering Customer Solutions. In: Going Beyond the Product: Defining,
Designing and Delivering Customer Solutions. Hrsg.: Lusch, R.; Vargo, S.
M.E. Sharpe, Armonk, NY 2006.

Ulrich, H. (1995) The role of product architecture in the manufacturing firm.
Research Policy, Vol. 24(Nr. 3).

