
MKWI 2010 – Planung/Scheduling und Konfigurieren/Entwerfen

2233

Construction of Configuration Models

Lothar Hotz

HITeC e.V., Universität Hamburg

Abstract

In this paper, a novel approach for creating configuration models is supplied y
introducing a meta-knowledge base that enables the construction of configuration
models. The meta-knowledge base represents all knowledge bases that can be
expressed with a given configuration language, in the case of this paper, with the
Component Description Language CDL. The meta-knowledge base itself is again
represented with CDL and thus, at the metalevel it can use configuration tools that
relay on CDL. With this approach inference techniques that are normally used for
configuration of technical systems can be applied for the construction of configu-
ration model, i.e. during knowledge acquisition and evolution.

1 Introduction

Knowledge-based configuration has its origin in the task of configuring physical
components like drive systems (Ranze et al., 2002) or elevators (Marcus et al.,
1988). For example in (Günter, 1995) configuration is defined as “the composition
of technical systems from parameterisable objects to a configuration, that fulfills a
certain task” or Stefik defines in (Stefik, 1995) configuration tasks as tasks that
``select and arrange instance of parts from a set''. The focus is set on the composi-
tion of parts to aggregates and thus, on the compositional relation has-parts.

Naturally, in all approaches descriptions of objects are composed, not the physi-
cal objects themselves. By doing so, configuration can be understood as model con-
struction (Buchheit et al., 1995; Hotz and Neumann, 2005; Hotz, 2009). From the
configuration point of view, model construction deals with the composition of
arbitrary artifacts on the basis of a logical theory. Hereby, a strict separation of the
logical theory, i.e. the knowledge base or configuration model, and the logical model,
i.e. the configuration or better construction, is issued. Starting from a knowledge base a
configuration system composes a construction that is consistent with the know-
ledge base, i.e. a logical model of the knowledge base is created.
Following this understanding of the configuration task the above mentioned has-
parts relation is more a has relation, which is applied to various domains e.g.

 Lothar Hotz

2234

services (Tiihonen et al., 2006), where e.g. a client has a certain insurance demand,
or to software (Hotz et al., 2004), where a software component has a certain fea-
ture, to scene interpretation (Hotz, 2006), where a certain scene description has
observed or hypothized objects or actions. The has relation determines what part
descriptions are to be integrated in a resulting construction (i.e. a system descripti-
on). By taking up such a perspective sometimes considered conceptual mismatches
(Tiihonen et al., 2006), which may come up, when using configuration systems in
non-physical domains, are avoided.

Taking a further step, one may look at configuration models as a type of soft-
ware that is constructed during a knowledge-acquisition process. Thus, the ques-
tions arise: “Can the construction of configuration models be supported by confi-
guration tools?” or “What are the parts that are composed in such an approach?”
or “How does a configuration model that enables the configuration of configura-
tion models (i.e. a meta-configuration model) look like?”.

An application of such a meta-configuration model is naturally to support the
knowledge-acquisition process needed for knowledge-based configuration systems.
In a first phase of a knowledge-acquisition process, the typically tacit knowledge
about a domain is extracted by applying knowledge-elicitation methods and high
interaction between a knowledge engineer and the domain expert (knowledge-
elicitation phase). A model sketch is the result, which in turn is formalized during the
domain-representation phase. During this phase a configuration model is created. The
configuration model has to be expressed with the facilities of a configuration lan-
guage. The meta-configuration model can be used to check such configuration
models for being consistent with the configuration language. Thus, by using the
meta-configuration model as a knowledge base of a configuration system, the do-
main-representation phase can be supported similarly to a configuration process.

In this paper, we will elaborate answers to the mentioned questions by first
presenting a construction language, i.e. the Component Description Language CDL,
which enables the description of domain objects (see Section 2). We than investi-
gate in a concept for a configurator that enables the configuration of arbitrary con-
figuration models, i.e. a meta configurator and its meta-configuration model (Section 3).
We partly implement such a meta configurator by using the configuration system
KONWERK (Günter and Hotz, 1999). A discussion and a summary are provided
in Section 4 and Section 5 respectively.

2 The Component Description Language

2.1 A Sketch of CDL

The Component Description Language CDL introduced here is similar to existing
other configuration languages as they are described in (Soininen et al., 1998;

MKWI 2010 – Planung/Scheduling und Konfigurieren/Entwerfen

2235

Stumptner, 1997; Felfernig et al., 2002; Cunis et al., 1991; Günter, 1995). The lan-
guage mainly consists of two modeling facilities:

Concept Hierarchy Domain objects are described using concepts, a specialization
hierarchy (based on the is-a relation), and structural relations. Concepts
gather all properties, a certain set of domain objects has, under a unique
name. A specialization relation relates a super-concept to a sub-concept, where the
later inherits the properties of the first. The structural relation is given
between a concept c and several other concepts r, which are called relative
concepts. With structural relations a compositional hierarchy based on the
has-parts relation can be modeled as well as structural relationships like
has-feature or has-concept. Parameters specify domain-object
attributes with value intervals, sets of values (enumerations), or primitive
values. Parameters and structural relations of a concept are also referred to as
properties of the concept. Instances are instantiations of the concepts and
represent concrete domain objects. When instantiated, the properties of an
instance are initialized by the values or value ranges specified in the concepts.

Constraints Constraints summarize conceptual constraints, constraint relations, and
constraint instance. Conceptual constraints consist of a condition and an action
part. The condition part specifies a structural situation of instantiated concepts.
If this structural situation is fulfilled by some instances (the instances match
the structural situation), constraint relations that are formulated in the action
part are instantiated to constraint instances.1 Constraint relations can represent
restrictions between properties like all-isp or create-instance.
Figure 1 shows the definition of the predefined constraint relations used in
the following. The constraint relations create-instance and
integrate-instance are later used for constructing structural relations
and thus, provide main facilities for creating resulting constructions.

Knowledge processing is done by the inference techniques taxonomical reasoning,
value-related computations like interval arithmetic, establishing structural relations,
and constraint propagation. The structural relation as the main machinery causes
the constructive notion of the language: if such a relation is given between a con-
cept c and several relative concepts r, depending on what exists first as instances in

1 Thus, conceptual constraints are similar to rules, except the action part yields to instantiations of
constraint relations not to changes in objects like rules do.

integrate-instance <set1 instance1 instance2 set2>

 Integrate instance1 into set2 and instance2 into set1. instance1 and

 instance2 than have established structural relations among them.

all-isp <set type>

 Ensures that all objects in set are subtype of type.

Figure 1: Some predefined relations of CDL.

 Lothar Hotz

2236

the construction (c or one or more of the relative concepts r), instances for the
other part of the relation are created and the construction increases.

Figure 2: Example of a concept definition in CDL. The structural relation has

 elements is defined, which relates one aggregate with several parts and

 one part with several aggregates. Furthermore, several concepts are de-
 fined with number restricted structural relations. The right side of the op-
 erator := consists of the super-concept of all relative concepts and the to-

 tal minimal and maximal number of those concepts. The left side restricts
 the number of each type.

A configuration process (or better model-construction process) applies these inference
techniques in a certain way and constructs step-by-step a construction. At each
step a current partial construction is issued. The knowledge needed for this processing
is modeled by further modeling facilities, i.e. a task description and procedural
knowledge. The task description is given in terms of an aggregate, which must be
configured (the goal), and possibly additional restrictions such as choices of parts,

(define-relation :name has-elements

 :inverse element-of

 :mapping m-n)

(define-concept :name Door

 :specialization-of Opening

 :element-of

 ((:type Scene-Aggregate :min 0 :max 2)

 :=

 (:type Entrance :min 0 :max 1)

 (:type Balcony :min 0 :max 1)))

(define-concept :name Entrance

 :specialization-of Opening

 :has-elements

 ((:type Scene-Object :min 1 :max 3)

 :=

 (:type Door :min 1 :max 1)

 (:type Wall :min 0 :max 1)

 (:type Roof :min 0 :max 1)

 (:type Stairs :min 0 :max 1)))

(define-concept :name Balcony

 :specialization-of Scene-Aggregate

 :has-elements

 ((:type Scene-Object :min 1 :max 3)

 :=

 (:type Railing :min 1 :max 1)

 (:type Window :min 0 :max 1)

 (:type Door :min 0 :max 1)))

MKWI 2010 – Planung/Scheduling und Konfigurieren/Entwerfen

2237

prescribed properties, etc. Furthermore, the configuration process provides a
stepwise composition of a construction. Each step is one of the following kinds of
construction steps: top-down structuring (e.g. aggregate instantiation), bottom-up structuring
(e.g. part integration), instance specialization, and parameterization. A step reduces a pro-
perty value of an instance to a subset or finally to a constant. Procedural
knowledge declaratively describes the selection of those steps and the inference
techniques to be used.

Thus, adding facilities for task descriptions and procedural knowledge to CDL
one gets a complete configuration language like the Configuration Knowledge
Modeling Language CKML described in (Hotz et al., 2006). However, in this pa-
perw we concentrate on the first mentioned modeling facilities of concepts and
constraints and try to express them with CDL again. CDL is fully described in
(Hotz, 2009).

2.2 Parts of the Metamodel of CDL

For expressing the goals of this paper, we give more details for the definition of
structural relations in CDL.

Concepts and constraints of CDL are given by an abstract syntax (see Figure
3), a concrete syntax (see Figure 2 for an example2), and several consistency rules.

For describing CDL with an abstract syntax, we introduce three facilities: a
knowledge element, a taxonomical relation between knowledge elements, and a composi-
tional relation between knowledge elements. However, these facilities are not to be
mixed up with the above mentioned CDL facilities: concepts, a specialization relation,
and structural relations. See Figure 3, a CDL concept is represented with a knowledge
element of name concept, a CDL structural relation is represented with the know-
ledge element relation-descriptor. The fact that CDL concepts can have several struc-
tural relations is represented with a compositional relation with name has-relations.
Similarly parameters are represented with a compositional relation with name has-
parameters. Thus, the above mentioned modeling facilities of CDL are represented
with these metalevel facilities.

In Figure 4 further parts of the metamodel are given for representing structural
relations. The fact that a concept is related by a structural relation of other con-
cepts (the relative concepts) is represented with three knowledge elements and
three compositional relations in a cyclic manner.

Several consistency rules define the meaning of the syntactic constructs. Look-
ing at the structural relation, one rule defines that the types of the relative concepts
of a structural relation have to be sub-concepts of the concept on the left side of

2For the examples, the facade domain is used where the domain objects are parts of houses like
balcony, door, and stories. The purpose is to construct scene interpretations from facade images
(Hotz, 2008).

 Lothar Hotz

2238

the operator := (rule-5). Additionally consistency rules are given that check CDL
instances, e.g. one rule defines when instances match a conceptual constraint
(rule-6).

3 A Concept for a Meta Configurator

3.1 What CDL provides

The main feature of CDL is given by the use of its inference techniques like con-
straint propagation (see Section 2). By representing the knowledge of a domain
with modeling facilities of CDL (like concepts with specialization, structural, and
constraint relations) those inference techniques can be applied for model construc-
tion. This representation is basically a generic description of domain objects of a
domain at hand. For the representation of concrete domain objects this description
is instantiated. Such instances are related to each other through the relations. Fur-
thermore, instances can be checked for concept membership.

property

language construct

parameter descriptorrelation descriptor concept

concept instance

1..n

has-parametershas-relations

taxonomical relation
knowledge element

name

has-superconcept

has-instances
0..n

compositional relation with

name and defaults

1..1 1..1

1..n

property

language construct

parameter descriptorrelation descriptor concept

concept instance

1..n

has-parametershas-relations

taxonomical relation
knowledge element

name

has-superconcept

has-instances
0..n

compositional relation with

name and defaults

1..1 1..1

1..n

Figure 3: Metamodel for a concept of CDL

MKWI 2010 – Planung/Scheduling und Konfigurieren/Entwerfen

2239

concept

0..n 1..n structural specificator
minimum

maximum

relation descriptor
name

operator

has-relations

has-concept

has-spec

concept

0..n 1..n structural specificator
minimum

maximum

relation descriptor
name

operator

has-relations

has-concept

has-spec

Figure 4: Metamodel for a structural relation of CDL

What does this mean for the representation of CDL in CDL? In this case, the do-
main consists of CDL knowledge bases. A Meta-CDL knowledge base (Meta-
CDL-KB) generically represents all knowledge bases that can be expressed with
CDL (see Section 3.2). Doing so, the above mentioned inference techniques can be
used for CDL knowledge bases. For example, a knowledge base G for a certain
domain D (like the facade domain) can be created through instances of concepts of
the Meta-CDL-KB. Examples are concept-mm for representing concepts and parame-
ter-mm for representing parameters (see Figure 5). These concepts are related to
each other e.g. concept-mm has-parameters parameter-mm. Through a configuration
process, which applies the inference techniques of CDL in a certain way, a know-
ledge base G of a domain D can be created. Furthermore, a given knowledge base
can be checked, if it can be constructed in principal with the Meta-CDL-KB, i.e. if
it is a CDL knowledge base. An architecture that supports these tasks is given in
Section 3.3.

3.2 CDL in CDL

For the presentation of CDL, in Section 2 three facilities are used, i.e. knowledge
elements, taxonomical relation, and compositional relation. Those are mapped to the CDL
constructs concept, specialization relation, and structural relation respectively. For exam-
ple, the knowledge elements for describing the CDL facilities in Figure 3 concept,
relation, and parameters are represented with the metaconcepts concept-mm, relations-
descriptor-mm, and parameter-mm (see Figure 5).

Furthermore, the consistency rules of CDL have to be represented. This is
achieved by defining appropriate constraints, which in turn use value-related com-
putations (Section 2) for computing appropriate values. In Figure 6 a conceptual
constraint is represented, which checks the types of a structural relation.3

Also instances can be represented on the metalevel by including a metaconcept
instance-mm for them. Through these instances also conceptual constraints and their
matching instances can be represented (see Figure 7). Furthermore, the fact that
instances fulfill a certain conceptual constraint is represented through establishing

3 For a complete mapping of the CDL consistency rules to conceptual constraints see (Hotz, 2009).

 Lothar Hotz

2240

appropriate relations using the constraint relation integrate-instance. Note
that also self references can be described, e.g. a concept-mm is related to itself via the
has-superconcept-mm relation (see also the loop in Figure 3).

Figure 5: Formalizing the knowledge elements shown in Figure

 3 with CDL concepts.

(define-concept :name concept-mm

 :specialization-of named-domain-object-mm

 :concept-of-dom-mm (:type domain-mm)

 :superconcept-of-mm

 (:type concept-mm :min 0 :max inf)

 :in-some-mm (:type some-mm :min 0 :max inf)

 :has-superconcept-mm

 (:type concept-mm :min 0 :max 1)

 :has-relations-mm

 (:type relation-descriptor-mm :min 0 :max inf)

 :has-parameters-mm

 (:type parameter-mm :min 0 :max inf)

 :has-instances-mm

 (:type instance-mm :min 0 :max inf))

(define-concept :name relation-descriptor-mm

 :specialization-of named-domain-object-mm

 :relation-of-mm (:type concept-mm)

 :has-left-side-mm (:type some-mm :min 1:max 1)

 :has-right-side-mm (:type some-mm :min 0:max inf)

 :has-relation-definition-mm

 (:type relation-definition-mm :min 1:max 1))

(define-concept :name some-mm

 :specialization-of domain-object-descriptor-mm

 :parameters ((lower-bound [0 inf])

 (upper-bound [0 inf]))

 :in-relation-left-mm

 (:type relation-descriptor-mm)

 :in-relation-right-mm

 (:type relation-descriptor-mm)

 :some-of (:type concept-mm))

(define-concept :name instance-mm

 :specialization-of named-domain-object-mm

 :instance-of-dom-mm (:type domain-mm)

 :instance-of-mm (:type concept-mm)

 :matching-instance-of-mm

 (:type conceptual-constraint-mm)

 :has-relations-mm

(:type relation-descriptor- mm :min 0 :max inf)

 :has-parameters-mm

(:type parameter-mm :min 0 :max inf))

MKWI 2010 – Planung/Scheduling und Konfigurieren/Entwerfen

2241

Figure 6: A conceptual constraint representing consistency rule 5. The concepts of

the right side of a relation descriptor has to be sub-concepts of the left
side.

Figure 7: Describing conceptual constraints with there matching instances on the

 metalevel.

3.3 A Meta-Knowledge Server

In this section, we describe the use of the Meta-CDL-KB for the construction of a
CDL knowledge base for arbitrary domains. This use is realized by introducing a
Meta-Knowledge Server (MKS) for supervising the construction of the CDL
knowledge base. The MKS handles the current status of the evolving CDL know-
ledge base during the knowledge acquisition process as well as the current status of
CDL instances during a configuration process.

(define-conceptual-constraint :name consistency-rule-5

 :structural-situation

 ((?c :name concept-mm)

 (?rd :name relation-descriptor-mm

 :relation-of-mm ?c)

 (?svt :name some-mm

 :in-relation-left-mm ?rd)

 (?stdi :all :name some-mm

 :in-relation-right-mm ?rd))

 :constraint-calls

 ((all-isp ?stdi ?svt)))

(define-concept :name conceptual-constraint-mm

 :specialization-of named-domain-object-mm

 :structural-situation

 (:type concept-expression-mm :min 1 :max inf)

 :constraint-calls

 (:type constraint-call-mm :min 1 :max inf)

 :matching-instances

 (:type instance-mm :min 0 :max inf))

(define-conceptual-constraint

 :name instance-consistency-rule-6

 :structural-situation

 ((?cc :name conceptual-constraint-mm)

 (?i :name instance-mm

 :self (:condition

 (instance-matches-cc-p *it* ?cc))))

 :constraint-calls

 ((integrate-instance-relation ?i

 (matching-instance-of ?i) ?cc

 (matching-instances ?cc))))

 Lothar Hotz

2242

In Figure 8, we sketch the first case. the MKS uses the Meta-CDL-KB as configu-
ration model M. Furthermore, MKS uses the model-construction process for
supervising the construction of a configuration model G of a given domain. If e.g.
a concept c of the domain is defined with define-concept the MKS is
informed. The MKS observes the activities during the construction of the CDL
knowledge base, i.e. during the domain-representation phase. The MKS

 supplies services like check-knowledge-base, add-conceptual-constraint,

 creates appropriate instances of Meta-KB-CDL metaconcepts (e.g. concept-
mm or conceptual-constraint-mm),

 applies the typical model-construction process by using procedural know-
ledge,

 uses constraint propagation for checking the consistency rules,

 completes the CDL knowledge base by including mandatory parts, and

 checks consistency of created parts of G.

The MKS integrates concepts of G as instances of metaconcepts of M in the cur-
rent partial construction, which represents G at the metalevel. Changes in already
defined concepts are represented by backtracking on the metalevel model-
construction process. For example, first a parameter of a concept is some how
modeled, e.g. a value for that parameter is modeled. This is constructed in the
metalevel model-construction process as a configuration step. If later this parame-
ter value is changed, the MKS performs a backtracking step to the previously per-
formed configuration step for that parameter value. Thus, the previous parameter
value is taken back and the new parameter value is configured. By using already
developed backtracking approaches for knowledge-based configuration, especially
dependency-based backtracking (see (Hotz et al., 2004; Ferber et al., 2002)), de-
pendencies of modeling decisions can be automatically managed. Thus, changes of
a CDL configuration model (i.e. during the knowledge-acquisition process or dur-
ing evolution (Männistö and Sulonen, 1999)) are basically changes of G, i.e.
changes of the currently constructed model on the metalevel. In other word, Evolu-
tion is backtracking on the metalevel.

Besides this construction of CDL knowledge bases the MKS can scrutinize
CDL instances, which are created during a model-construction process. For this
task, MKS is supplied with such instances (see Figure 9) and creates instances of
the metaconcept instance-mm. By doing so consistency rules for instances
represented as conceptual constraints on the metalevel can be checked.

Looking from the MKS perspective the construction of a CDL knowledge
base can be seen as the interpretation of an external system similar to the interpre-
tation of an outside scene. MKS observes the construction of the CDL knowledge
base and tries to integrate the observations by using the Meta-CDL-KB. This task
is similar to scene interpretation where evidence in a scene is interpreted by con-
structing an interpretation on the basis of a model for anticipated scenes. Thus,

MKWI 2010 – Planung/Scheduling und Konfigurieren/Entwerfen

2243

similar implementations can be applied for the MKS like top-down and bottom-up
structuring, spontaneous instantiation, and merging (see also (Hotz and Neumann,
2005; Hotz, 2006)).

We implemented parts of the meta configurator with the configuration system
KONWERK (Günter and Hotz, 1999). The Meta-CDL-KB could be used for
constructing knowledge bases for a PC-domain. However, first experiments de-
mand the need of highly interactive facilities for visualizing the complex relational
structures of meta-level instances, e.g. visualizing which some-mm instance belongs
to the which concept-mm during the configuration process.

Constructing domain model G

for domain D

Create instances of concept concept-mm

Process model construction including
checking the consistency rules for concepts

Provide completed domain model
as current partial construction

Meta knowledge server with
domain model M

Define CDL concepts for domain D

Accepting consistent concepts and
additional model parts

Concepts as evidence

Consistency results,
completed domain model

Constructing domain model G
for domain D

Create instances of concept concept-mm

Process model construction including
checking the consistency rules for concepts

Provide completed domain model
as current partial construction

Meta knowledge server with
domain model M

Define CDL concepts for domain D

Accepting consistent concepts and
additional model parts

Concepts as evidence

Consistency results,
completed domain model

Figure 8: Meta-knowledge server applied to constructing a configuration model.

Constructing of a configuration of a
technical system by using domain model G

Create instances of concept instance-mm

Process model construction including
checking the consistency rules for instances

Provide partial configuration for the technical
system as partial configuration of domain model M

Create CDL instances

Accepting consistenc instances

Instances as evidence

Consistency results

Meta knowledge server with
domain model M

Constructing of a configuration of a
technical system by using domain model G

Create instances of concept instance-mm

Process model construction including
checking the consistency rules for instances

Provide partial configuration for the technical
system as partial configuration of domain model M

Create CDL instances

Accepting consistenc instances

Instances as evidence

Consistency results

Meta knowledge server with
domain model M

Figure 9: Meta-knowledge server applied to constructing a configuration.

4 Discussion

The model-construction view as it is emphasized in this work is a systematic gene-
ralization of structure-oriented configuration like it is provided by (Günter, 1995;
Soininen et al., 1998) and others. This is mainly achieved by focusing on the struc-
tural relation, which ensures existence of instances in the resulting construction.
These instances build the constructed model. This model is a description of the
desired technical system, which is used e.g. for the production process. In this
sense, also other configuration approaches like connection-based (Mittal and
Frayman, 1989), resource-based (Heinrich and Jüngst, 1991), or function-based
(Najman and Stein, 1992) can be seen as model-construction approaches. This
view to configuration enables the concise application of configuration tools in
environments like services, software, or like in this paper on metalevels. However,
for model construction seldom supported facilities are needed as there are:

 Lothar Hotz

2244

 The representation and processing of cyclic relational structures. Those
techniques are sometimes avoided like in [Magro et al., 2002; Arlt et al.,
1999].

 Sophisticated control mechanisms like bottom-up and top-down construc-
tion. Typically only top-down is emphasized in configuration systems.

 Connecting model construction with other external systems or the real
world during the model-construction process demands spontaneous instan-
tiation of concepts. In configuration systems only for creating the know-
ledge base external data like databases are used and the resulting configura-
tion is exported for producing the configured system.

The creation of a metamodel for CDL with the aid of CDL has its tradition in self-
referencing approaches like Lisp-in-Lisp (Brooks et al., 1983) or the metaobject
protocol, which implements CLOS (the Common Lisp Object System) with CLOS
(Kiczales et al., 1991). Such approaches demonstrated the use of the respective
language. In case of CDL the metaknowledge server is enabled. It makes strong
use of the implemented inference techniques of CDL like constraint propagation.

The meta-knowledge server is basically an implementation of a configuration
tool on the basis of the Meta-CDL-KB, i.e. of a configuration model. A typical
configuration tool is implemented with a programming language and an object
model implemented with it. During this implementation one has to ensure correct
behavior of model construction and the inference techniques. By using CDL this
behavior (e.g. the consistency rules) is declaratively modeled, not implemented.
The bases for this realization are of course the implementation of value-
computation methods and constraint mechanisms.

The here introduced meta-knowledge base has some relations to metamodeling
approaches like described in (Hesse, 2006; Kühne, 2006; OMG, 2006;). Thus, in
the following, we take a first glance to some aspects of metamodeling (see also
(Asikainen and Männistö, 2009) for a deeper analysis of metamodeling). The main
task of metamodeling is to specify modeling facilities that can be used for defining
models, see for example (OMG, 2007): “A metamodel is a model that defines the
language for expressing a model”. Or compiled to terms used here: “The Meta-
CDL-KB is a configuration model that defines CDL, which in turn is used for
expressing a configuration model” (see Figure 10). However, the notion of model-
ing is still not finally fixed (see (Hesse, 2006; Kühne, 2006)), or as (Hesse, 2006)
says: “A complete and unanimously accepted theory of modeling is still emerg-
ing.”. Besides these theoretical issues, in our approach a more pragmatical and
operational view is taken, i.e. how to apply a metamodel for supporting the use of
the language the metamodel defines. From this perspective, let us examine the
Requirements Specification Language RSL (Kaindl et al., 2007; Smiałek et al., 2007;
Hotz et al., 2009). A metamodel defines elements typically used for specifying re-
quirements as their are use-cases, scenarios etc. A tool (RSL-Tool) enables a re-

MKWI 2010 – Planung/Scheduling und Konfigurieren/Entwerfen

2245

quirements engineer to express her use-cases etc. through a user interface and the
tool constructs a requirements specification expressed in RSL. Thus, the metamo-
del of RSL is used by the implementor of the RSL-Tool, which in turn ensures a
requirements specification that is compliant to the metamodel of RSL (see Figure
10). However, the implementation is done manually and specific for the RSL-
metamodel. The creation of metamodel compliant models can be supported by a
configuration tool.

A configuration tool supplies mainly three tasks:
1. It enables the expression of a configuration model that is consistent with

the configuration language, which the tool implements. For this task, it per-
forms consistency checks of given configuration models (or parts of it)
with the language specification.

2. On the basis of the configuration model, the configuration tool supports
the creation of constructions that are consistent with the configuration
model. For this task, the tool interprets the logical expressions of the con-
figuration model and creates constructions according to these definitions.

3. The configuration tool supplies user interfaces for expressing the configu-
ration model and for guiding the construction process. The configuration
model can be typically given in textual forms or with graphical user inter-
faces that enable the creation of concepts and constraints.

Thus, a configuration tool contains means for supporting the step from a domain
model to a system specific model (see Figure 10). By introducing configuration
models in the model chain as presented in Figure 10, an additional level is intro-
duced, i.e. the domain-model level. This level represents all systems of a domain.
The model for a system is an instantiation of the domain model. This instantiation
is computed by a configuration tool. In our metamodeling approach based on the
Meta-CDL-KB this instantiation facility is used for supporting the step from the
configuration language to the domain model, i.e. the domain-representation phase.
By applying the configuration tool to a domain model that contains every model of
a language, i.e. by applying it to the Meta-CDL-KB, the construction of a domain
model of an arbitrary domain is supported. This is achieved because of the general
applicability of the language constructs of CDL, which are based on logic (see
Section 2). Furthermore, other advantages of configuration tools, like a declarative
representation of the configuration model, or the use of the inference techniques
can thus applied to the Meta-CDL-KB.

A similar approach as supplied by the meta-knowledge server is provided by
(Kienzler, 2000) who uses meta planning. A primary construction process is sup-
ported by a secondary analysation process on the metalevel. The configuration
process is controlled by a meta planner. The meta planner is strongly coupled with
the configuration process. However, it is realized by a further external implementa-
tion not in the configuration language itself.

 Lothar Hotz

2246

Other approaches like (Dietrich et al., 2004) also use a metamodel approach for
supporting the configuration process. However, by using a configuration language
for expressing the metamodel, in our approach a configuration tool can directly
applied for making use of the metalevel.

Metamodel Language Model in the LanguageMOF/UML:

RSL: RSL-Metamodel
given as
UML-Profile

RSL
Requirements model for
a certain domain (e.g. an
Emergency system)

Configuration model/
Model of a domainCDL view:

Construction/
Model of a system

CDLMetamodel of CDL

Realized by RSL-specific tool

Realized by the CDL-specific configuration tool
that interprets the knowledge base representing
the configuration model

Realized by a knowledge engineer

Configuration model/
Model of a domain

Meta-CDL view: Construction/
Model of a system

CDL represented
with Meta-CDL-KB

Metamodel of CDL

Realized by CDL-specific
configuration tool

Realized by a requirements engineer with
support of the RSL-specific tool

Realized by a knowledge engineer with
support by the CDL-specific configuration
tool that interprets the Meta-CDL-KB
representing the metamodel of CDL

Realized by the CDL-specific configuration tool
that interprets the knowledge base representing
the configuration model

Realized by CDL-specific
configuration tool

defines

Metalevel Language level System-model levelDomain-model level

Metamodel Language Model in the LanguageMOF/UML:

RSL: RSL-Metamodel
given as
UML-Profile

RSL
Requirements model for
a certain domain (e.g. an
Emergency system)

Configuration model/
Model of a domainCDL view:

Construction/
Model of a system

CDLMetamodel of CDL

Realized by RSL-specific tool

Realized by the CDL-specific configuration tool
that interprets the knowledge base representing
the configuration model

Realized by a knowledge engineer

Configuration model/
Model of a domain

Meta-CDL view: Construction/
Model of a system

CDL represented
with Meta-CDL-KB

Metamodel of CDL

Realized by CDL-specific
configuration tool

Realized by a requirements engineer with
support of the RSL-specific tool

Realized by a knowledge engineer with
support by the CDL-specific configuration
tool that interprets the Meta-CDL-KB
representing the metamodel of CDL

Realized by the CDL-specific configuration tool
that interprets the knowledge base representing
the configuration model

Realized by CDL-specific
configuration tool

defines

Metalevel Language level System-model levelDomain-model level

Figure 10: Relations between metamodels and domain models and their tool

 support.

5 Summary

The paper shows how a configuration language can be expressed with its own
representation facilities. Thus, the parts that are composed in such a case are the
modeling facilities the configuration language supplies, i.e. concepts, parameters,
constraints etc. The configuration model contains concepts, parameters, con-
straints that again represent concepts, parameters etc. By doing so, inference tech-
niques that are provided by the language can be used for constructing configura-
tion models and thus, support the knowledge-acquisition process. In this case, the
configuration tool is mainly used for checking the consistency of the constructed
configuration models. Thus, the use of the inference techniques supports the for-
mal basis of such processes. Further work will emphasize user-interface tools that
support the visualization and manipulation of highly structured relationships in-
cluding cyclic structures that occur on the metalevel.

MKWI 2010 – Planung/Scheduling und Konfigurieren/Entwerfen

2247

References

Arlt V, Günter A, Hollmann O, Wagner T, and Hotz l (1999). EngCon -
Engineering & Configuration. In Proc. of AAAI-99 Workshop on
Configuration, Orlando, Florida

Asikainen T and Männistö T (2009). A metamodelling approach to configuration
knowledge representation. In Proc. of the Configuration Workshop on 22th
European Conference on Artificial Intelligence (IJCAI-2009), Pasadena,
California

Brooks RA, Gabriel RP, and Steele L (1983) Jr. Lisp-in-Lisp: High Performance
and Portability. In Proc. of Fifth Int. Joint Conf. on AI IJCAI-83

Buchheit M., Klein R, and Nutt.W (1995) Constructive Problem Solving: A Model
Construction Approach towards Configuration. Technical Report TM-95-01,
Deutsches Forschungszentrum für Künstliche Intelligenz, Saarbrücken

Cunis R, Günter A, and Strecker H(Hrsg.) (1991) Das PLAKON-Buch. Springer
Verlag Berlin Heidelberg

Dietrich AJ, Hümmer W, and Meiler C (2004) Meta model based Configuration
Approach for mass-customizable Products and Services. In Proceedings of the
4thWorkshop on Information Systems for Mass Customization (ISMC 2004),
Madeira Island, Portugal

A. Felfernig, G. Friedrich, D. Jannach, M. Stumptner, and M. Zanker. A Joint
foundation for Configuration in the Semantic Web. In Proc. of the
Configuration Workshop on 15th European Conference on Artificial
Intelligence (ECAI-2002), pages 89–94, Lyon, France, July 21-26 2002.

Ferber A, Haag J, and Savolainen J (2002) Feature Interaction and Dependencies:
Modeling Features for Re-engineering a Legacy Product Line. In Proc. of 2nd
Software Product Line Conference (SPLC-2), Lecture Notes in Computer
Science, pages 235–256, San Diego, CA, USA

Günter A and Hotz L.(1999) KONWERK - A Domain Independent
Configuration Tool. Configuration Papers from the AAAI Workshop, pages
10–19

Günter A. (1995) Wissensbasiertes Konfigurieren. Infix, St. Augustin

Heinrich M and Jüngst E (1991). A Resource-based Paradigm for the Configuring
of Technical Systems from Modular Components. In Proc. of 7th IEEE Conf.
on Artificial Intelligence for Applications (CAIA’91), pages 257–264, Miami
Beach, Florida, USA

Hesse W (2006). More matters on (meta-)modelling: remarks on Thomas Kühne’s
matters”. Journal on Software and Systems Modeling, 5(4):369–385

 Lothar Hotz

2248

Hotz L and Neumann B. (2005) Scene Interpretation as a Configuration Task.
Künstliche Intelligenz, 3:59–65

Hotz L, Krebs T, and Wolter K.(2004) Dependency Analysis and its Use for
Evolution Task. In 18th Workshop, New Results in Planning, Scheduling and
Design (PuK2004). University of Oldenburg

Hotz L, Wolter K, Krebs T, Deelstra S, Sinnema M, Nijhuis J, and MacGregor
J.(2006) Configuration in Industrial Product Families - The ConIPF
Methodology. IOS Press, Berlin

Hotz L, Wolter K, Knab S, and Solth A. (2009) Ontology-based Similarity of
Software Cases. International Conference on Knowledge Engineering and
Ontology Development, KEOD, Madeira

Hotz L (2006). Configuring from Observed Parts. In C. Sinz and A. Haag, editors,
Configuration Workshop, 2006,Workshop Proceedings ECAI, Riva del Garda

Hotz L (2008) Modeling, Representing, and Configuring Restricted Part-Whole
Relations. In J. Tiihonen, editor, Configuration Workshop, 2008, Workshop
Proceedings ECAI, Patras

Hotz L (2009). Frame-based Knowledge Representation for Configuration,
Analysis, and Diagnoses of technical Systems (in German), volume 325 of
DISKI. Infix

Kaindl H, Smiałek M, Svetinovic D, Ambroziewicz A, Bojarski J, Nowakowski W,
Straszak T, Schwarz H, Bildhauer D, Brogan JP, Ssamula Mukasa K, Wolter K,
and Krebs T (2007). Requirements specification language definition. Project
Deliverable D2.4.1, ReDSeeDS Project

Kiczales G, Rivieres J des, and Bobrow DG (1991). The Art of the Metaobject
Protocol. The MIT Press, Cambridge, MA, CA

Kienzler.F (2000) Synthesis versus Analysis in model-based AI-Planning Systems?
PIAKON - a autoadaptive diagnostic Solution Approach for Action Planing
and Configuration Problems (in German). PhD thesis, University of Ulm

Kühne T (2006). Matters of (Meta-)Modeling. Journal on Software and Systems
Modeling, 5(4):369–385

Magro D, Torasso P, and Anselma L (2002). Problem Decomposition in
Configuration. In Configuration Workshop, 2002,Workshop Proceedings ECAI,
Lyon, France

Männistö T and Sulonen R. (1999) Evolution of Schema and Individuals of
Configurable Products. In Proc. of ECDM’99 - Workshop on Evolution and
Change in Data Management, Versailles, France

MKWI 2010 – Planung/Scheduling und Konfigurieren/Entwerfen

2249

Marcus S, Stout J, and McDermott J.(1988) VT: An Expert Elevator Designer that
uses Knowledgebased Backtracking. AI Magazine, pages 95–112

Mittal S and Frayman F (1989). Towards a Generic Model of Configuration Tasks.
In Proc. of Eleventh Int. Joint Conf. on AI IJCAI-89, pages 1395–1401,
Detroit, Michigan, USA

Najman O and Stein B (1992). A Theoretical Framework for Configurations. In
Proc. of Industrial and Engineering Applications of Artificial Intelligence and
Expert Systems: 5th International Conference, IEA/AIE-92, pages 441–450

OMG.(2006) Meta Object Facility Core Specification, version 2.0, formal/2006-
01-01. Object Management Group

OMG (2007). Unified Modeling Language: Infrastructure, version 2.1.1,
formal/07-02-06. Object Management Group

Ranze C, Scholz T, Wagner T, Günter A, Herzog O, Hollmann O, Schlieder C,
and Arlt V (2002). A Structure-based Configuration Tool: Drive Solution
Designer - DSD. In Eighteenth national conference on Artificial intelligence,
pages 845–852, Menlo Park, CA, USA, American Association for Artificial
Intelligence.

Smiałek M, Bojarski J, Nowakowski W, Ambroziewicz A, and Straszak T. (2007)
Complementary use case scenario representations based on domain
vocabularies. Lecture Notes in Computer Science, 4735:544–558, 2007.

Soininen T, Tiihonen J, Männistö T, and Sulonen R (1998). Towards a General
Ontology of Configuration. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing (1998), 12, pages 357–372

Stefik M (1995) Introduction to Knowledge Systems. Morgan Kaufmann, San
Francisco, CA

Stumptner. M (1997) An Overview of Knowledge-based Configuration. AI
Communications, 10(2):111–126

Tiihonen J, Heiskala M, Paloheimo K-S, and Anderson A (2006).Configuration of
Contract Based Services. In C. Sinz and A. Haag, editors, Configuration
Workshop, 2006, Workshop Proceedings ECAI, Riva del Garda

