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Abstract.  Large costs arise at a seaport container terminal from the duration of 
the unloading of vessels and from the time a vessel is waiting to be unloaded. The 
optimal allocation of vessels to berth space (Berth Allocation Problem) becomes 
more and more important as its solution is also input to further terminal decision 
problems. We compare solutions for a realistic data Berth Allocation Problem 
found by a Composite Heuristic combining a tree search procedure and a pair-wise 
exchange heuristic with two metaheuristics. We apply Genetic Algorithms as it is 
widely used and flexible in adaption with promising results in logistics applications 
and propose a modified Particle Swarm Optimization for combinatorial optimiza-
tion. 

1 Introduction 

Today's increasing number of container shipments requires highly efficient logistics 
processes at container terminals (CT). Forecasts published by the Federal Ministry 
of Transport, Building and Urban Affairs estimate a four times higher transship-
ment of standard containers in German ports in 2025 than today (Tiefensee 2007). 
CT therefore represent an important interface in the global transport chain and 
have to fulfill two man functions: The transshipment of containers from mode to 
mode as well as the temporary storage of containers (Saanen 2004). In order to 
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improve CT performance, process optimization becomes more and more impor-
tant, as terminal extensions and technical modifications are highly cost intensive 
and underlie strategic long term restrictions.  

The increasing importance of the container flow especially demands for an ef-
fective berth management in CT. The Berth Allocation Problem (BAP) defines, 
where and when vessels will be allocated at the quay. As a result of the decomposi-
tion, this decision also has significant influence on subsequent processes and con-
tainer handling nodes, such as the crane allocation and container storage locations 
(Meier and Schumann 2007).  

This paper focuses on the BAP model described by Guan and Cheung (2004) 
and presents the solutions found by their proposed Composite Heuristic (CH) 
applied to realistic data sets based on observations of a German port. As the goal 
of this paper is to improve the provided results we use two different metaheuristics 
for comparison purposes. As a well-known and in a variety of optimization prob-
lems applied solution method we use a Genetic Algorithm (GA). For continuous 
optimization problems the Particle Swarm Optimization (PSO) shows promising 
results. Therefore in this work we present a modification of the PSO which is ap-
plicable to this kind of combinatorial optimization problem. 

The remainder of the paper is organized as follows. In Chap. 2 we give a litera-
ture review and present the BAP model. Chapter 3 introduces the CH, the GA and 
the modified PSO. In Chap. 4 we show our experimental setup, present the results 
and compare each optimization technique used. Finally in Chap. 5 we draw a con-
clusion.  

2 Berth Allocation Problem 

2.1 Literature Review 

The core processes in container terminal logistics are loading and unloading of 
vessels, storage of containers and delivery and dispatch of containers within the 
landside. The main decision areas for management can be derived from these 
tasks. In the simplest case, results from the problem areas of loading and unload-
ing of containers, berth allocation, assignment of quay cranes to vessels, yard-
planning and transport-planning are passed through. Figure 1 shows this idealized 
type process (Meier and Fischer 2006). 

Like Kim and Moon (2003), Cordeau et al. (2005), Nishimura et al. (2001) and 
Lokuge et al. (2004) we concentrate on the BAP, which is a significant part of con-
tainer terminal processes. 

In the literature several models for the BAP have been proposed. A compre-
hensive overview and literature review to CT processes and operations research 
optimization techniques is given by (Steenken et al. 2004) and again updated in 
(Stahlbock and Voß 2008). Berth allocation models published differ in assump-
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tions, restrictions and objective functions, especially in considering container stor-
age locations and the estimation of processing times. 

 

 
Figure 1: Decision areas in container terminals 

 
 

Table 1: Metaheuristics used in literature for the BAP 

Author  Year of Publi-
cation 

Metaheuristic Reference 

Nishimura et al. 2001 Genetic Algo-
rithm 

(Nishimura et al. 2001) 

Kim, Moon  2003 Simulated An-
nealing 

(Kim and Moon 2003) 

Dai et al.  2004 Simulated An-
nealing 

(Dai et al. 2004) 

Cordeau et al.  2005 Tabu Search (Cordeau et al. 2005) 

Moorthy, Chung  2006 Simulated An-
nealing 

(Moorthy and Chung 
2006) 

Wang, Lim 2007 Stochastic Beam 
Search 

(Wang and Lim 2007) 

 
Moorthy and Chung (2006) present a model for the home berth allocation as a 
tactical problem. It considers vessels planned on a weekly arriving basis not to be 
allocated on a plane, but on a cylinder so that the “wrap around effect (periodic-
ity)” (Moorthy and Chung (2006) is not ignored. The authors consider stochastical 
influence and try to optimize the trade-off between service quality (in waiting 
hours) and operational costs (in difference to the preferred berthing location). For 
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optimization, the authors use a sequence pair based simulated annealing approach 
(Moorthy and Chung 2006). 

Cordeau et al. (2005) use a Tabu Search heuristic for solving the BAP, investi-
gating discrete and continuous model formulations. They consider suboptimal 
berthing positions by increasing the estimated processing time and try to optimize 
the service time of all vessels (Cordeau et al. 2005). 

Another metaheuristic, namely a stochastic beam search algorithm, for solving 
the BAP is applied by Wang and Lim (2007). They compare their results to results 
coming from a simulated annealing approach and show promising results.   

Table 1 summarizes different metaheuristic solution approaches to the BAP 
ordered by year of its publication. 

 
The next section describes the used model for this research. 

2.2 Used Model 

In this paper we focus on the formulation of the BAP model, as it is proposed in 
(Guan and Cheung 2004). This formulation uses discretized time and space units, 
allows multiple vessel mooring per berth and considers vessel arrival times. Con-
tainer storage positions are not considered. Although, the need for integrated op-
timization arises, fast and efficient optimization techniques for the berth allocation 
are required, as they may also be used within integrated models as proposed in 
(Meier and Schumann 2007). 

The model uses the following decision variables, where ui describes the moor-
ing time of vessel i, vi describes the starting berth section occupied by vessel i and 
ci describes its departure time. T denotes the regarded time. 

For each vessel the following information is used and given from the used data 
set. The processing time pi for vessel i is gained from an estimation function 
f(TEU, vessel type). The size si of vessel i is measured in the number of berth sec-
tions where si ≤ S with S denoting the quaylength. Vessel i's arrival time is denoted 
by ai and the weight assigned for each vessel is wi. 

The mathematical formulation with relative vessel positions is then defined as: 

 

(1) 

subject to 

 

 

 

(2) 

(3) 

(4) 
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(11) 

 

(12) 

 

(13) 

 
To be on the left side of another vessel means that a predecessor's completion 
time is smaller than the successor's arrival time (see Eq. 12). Analogous being on 
top of another vessel means that its berthing position is larger than the following 
vessels' position and its size (see Eq. 13). 

Figure 2 illustrates a possible solution of the allocation of vessels to berth sec-
tions.  

The hatched areas indicate that the vessels' mooring time is later than its arrival 
time (u>a). The objective is to minimize the total weighted time in port (TIP) of all 
vessels (see Eq. 1), also called the flow resp. service time, see (Guan and Cheung 
2004; Cordeau et al. 2005).  
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Figure 2: Example allocation of vessels to berth sections 

 
The BAP formulation remains similar in publications in the literature, considering 
vessels as a rectangle in two dimensions operations time and length. Differences 
occur for example in modeling the quay as a straight line or of more complex 
shape. In the latter case vessels with specific sizes can berth at specific berth sec-
tion only. We use a straight line quay of 1700 meters discretized to 170 berth sec-
tions. 

The given data additionally contains the vessel type classification to feeder, me-
dium class or jumbo vessel, which is used for the estimation of the processing time. 

3 Optimization Algorithms 

3.1 Composite Heuristic 

Along with the model formulation of the BAP used in this paper the CH was pro-
posed by Guan and Cheung (2004). After obtaining an initial assignment of the 
vessels to the berth section for each batch, all batches are sequenced according to 
their exact arrival time. The algorithm cycles through all batches and does some 
testing: 

For each pair of vessel rectangles in consecutive batches it is tested if the pair-
wise exchange heuristic is able to reduce the objective value. In case of a successful 
reduction this pair is declared as a possible candidate. As long as there are possible 
candidates, the one with most reduction to the objective value is selected and the 
exchange is implemented. If there is no candidate the tree search procedure is 
applied and the vessels are moved left as much as possible. 
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procedure CompositeHeuristic

0.Obtaininitialassignmentforeachbatch

1.Sequencebatchesaccordingto their

batch arrivaltime 

2.forall batches Bi do

2.1 foreachpair of vesselswithone

in B
i

and onein B
i+1

, ifthe

pair-wiseexchangeheuristiccan

reducetheobjectivevalue, then

declarethispair as a candidate. Ifthere

isno candidategoto step2.3 

2.2 Selectthecandidatewiththemaximum

reductionand implementtheexchange.

2.3 Applythetree-searc hprocedure in Bi and

movevesselrectanglesto theleftas much

as possible.

Set i = i + 1 and goto step2. 

3.Iftheobjectivevaluecanbereducedin 

step2, thenseti = 1 and goto step2. 

Otherwiseterminate. 

end procedure

 
 

Figure 3: Pseudo-code of the CH (Guan and Cheung (2004)) 

 

 
Figure 4: Interaction of PWE and TS within the CH 

 
This is done as long as there are batches left not having been examined. The CH 
works as described in the following pseudo-code (see Figure 3). For a detailed 
overview to the simple pair wise exchange (PWE) heuristic and the more complex 
tree search (TS) procedure we refer to Guan and Cheung (2004). The following 
Figure 4 shows the interaction of PWE and TS within the CH. 

Contrary to some earlier published berth allocation models in literature, see e.g. 
Kim and Moon (2003) and also Nishimura et al. (2001), Guan and Cheung (2004) 
set aside a location term within the objective function (see Eq. ((1). This can only 
be useful within an isolated model as it is considered here for the berth allocation, 
because the operation time of the vessel (assumed to be given in the model) 
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strongly depends on the vessels berthing position, so in a non-isolated model, e.g. 
the terminal environment, this would not lead to satisfying results. 

3.2 Genetic Algorithm 

As the GA is widely applied to different types of problems and showed promising 
results in logistics applications like the examined BAP (Nishimura et al. 2001) we 
use it for comparison purposes.  

The GA is a population-based metaheuristic and belongs to Evolutionary 
Computation (EC) algorithms, that uses natural evolutionary techniques in order 
to solve complex optimization problems.  

Since its introduction by Holland (1998) in the fifties, GA have proved its wide 
applicability in many areas, for logistics optimization problems as well.  

 

 
Figure 5: Pseudo-code of the GA (Dorigo and Stützle 2004) 

 
Starting with an initial, not necessarily randomized population, containing n (n>1) 
individuals, further (fitter) populations will iteratively be generated, using evolu-
tionary elements. Individuals within a population start searching for new solutions 
at the same time, each of them representing a solution for the optimization prob-
lem. Using genetic operators, such as reproduction, recombination and mutation, 
individuals produce offspring and their quality is measured with the help of a fit-
ness function. This fitness value determines the probability for reproduction. The 
higher this value is, the higher is the probability of a individual for being selected 
and therefore being part of the next generation. 

The recombination (or crossover operator) combines information from two or 
more individuals and produces some offspring. The mutation operator introduces 
random modifications to this process. Applying these operators, it is also possible 
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to leave local optima, which is an important property for heuristic algorithms. The 
procedure of the GA is shown in Figure 5. 
As EC algorithms are widely published, we refer to the literature for a detailed 
overview for more information, see e.g. (Leguizamón et al. 2007; Reeves 2003; 
Holland 1998). 

3.3 Particle Swarm Optimization 

For improving the provided results of the described CH and GA we use a meta-
heuristic, which has not yet been applied to the BAP. The PSO was originally de-
veloped by Kennedy and Eberhard in 1995 (Kennedy and Eberhard 1995) for 
finding solutions for continuous optimization problems and showed promising 
results. In this chapter we present the main idea of classical PSO and introduce a 
modified metaheuristic for combinatorial optimization. 

 Classical Metaheuristic 

Reynolds, Heppner and Grenander studied the behavior of birds (Reynolds 1987; 
Heppner and Grenander 1990). While Reynolds focused only on the birds' move-
ment, Heppner and Grenander added a place to roost to the model. Additionally 
on finding their way to the best place to roost the birds were equipped with an-
other behavior: They want to stay in the flock. These two goals are contrary to 
each other. The more attractive a place to roost becomes for a bird, the higher the 
wish to land at this point which will cause other birds to go into this direction as 
well. 
Based on this idea, Kennedy and Eberhard implemented social behavior to the 
birds and called them particles, because they are mass- and collision-free. They also 
enabled a particle to memorize the best position it found so far and to memorize 
the best position found within the whole swarm.  
Originating with random positions xi within the solution space the algorithm calcu-
lates fitness values f(xi) based on the optimization problem. The particles are rep-
resented by their actual position xi, their actual velocity vi and their personal best 
position yi (Van Den Bergh 2002). After the initialization, the iterative process of 
optimization begins where the personal best values pbest and the best values within 
the swarm gbest are updated and new positions, velocities and fitness values are 
calculated. This process terminates as soon as a previously defined fitness value is 
obtained or a threshold for the number of iterations is exceeded (Shi 2004). The 
pseudo-code for this procedure is shown in Figure 6 (Kennedy et al. 2001). 
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Figure 6: Pseudo-code of PSO 

 
The personal best position for each particle is obtained with ((14). 

 

(14) 

 
With the size s of the swarm the global best position is defined as: 

 (15) 

 
A particles' velocity at time t+1 is given by the influences of the personal best 

and the global best position: 

 (16) 

 
with influence of social factors 0 ≤ c1,c2 ≤ 2, two uniform distributed random 
variables r1 ~ U(0,1), r2 ~ U(0,1) and the restriction of velocity in [-Vmax, Vmax]. The 
factors c1 and c2 regulate the strength of the influence of the personal best and 
global best position on the calculation of the new velocity. With c2 > c1 the swarm 
tends to converge in a certain region near the global best particle whereas c1 > c2 
leads to a better exploration of the solution space. 

With the restriction of the solution space within [-xmax, xmax] the particles' posi-
tion is: 

 (17) 
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 Metaheuristic for Combinatorial Optimization 

As the original PSO cannot be applied to a combinatorial optimization problem, 
we propose a modified heuristic in this chapter which is applied to the mentioned 
BAP, based on the description of an application of the PSO to university course 
timetabling problem (Brodersen and Schumann 2007). The swarm characteristics 
of the algorithm will not be modified and the procedure of the optimization proc-
ess is similar to the one of the classical PSO.  

Every particle has its actual position xi(t) and its personal best position ypbest(t). 
The neighborhood used is global so that at time t every particle knows the global 
best position ygbest(t-1) from the previous iteration t-1. According to the classical 
PSO ((14) and ((15) give the personal best and global best position. The new veloc-
ity cannot be derived from ((16). It has to be modified to be usable for this special 
combinatorial problem. 

Based on a randomly generated allocation of vessels to berth sections the new 
position xi(t+1) is derived by running different steps on the basis of the actual 
position: 

1. Randomly swap two berth sections for two vessels from within the ac-
tual position 

2. Randomly copy a berth section from within the personal best position 
3. Randomly copy a berth section from within the global best position 
4. With a given probability change a vessel's position randomly 

The iterative process stops when a previous defined number of iterations is ex-
ceeded or a defined threshold for a found solution is obtained. Figure 7 shows the 
process of this modified PSO. 

4 Experiments and Results 

4.1 Settings 

We use four realistic data sets with 62, 62, 64 and 59 vessels arriving within a plan-
ning horizon of 8 days. The quaylength is set to 1700 meters. Within the data sets 
each vessel description contains day and hour of arrival, TEU to be processed, size 
and the vessel's category as feeder, medium or jumbo vessel. The processing time 
is estimated as a function of TEU and its category. Feeder vessels will be handled 
by two, medium by three and jumbo vessels by four quay cranes. Each quay crane 
is expected to reach 20 TEU/h. The batch length for the CH is set to 12h. We 
apply the exact hourly vessel arrival times given from the data sets for the CH, as 
we do for both metaheuristics. 

To compare the optimization methods, we set the maximum number of func-
tion evaluations to 50000 for each metaheuristic setup and data set. 
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Figure 7: Process of the PSO for combinatorial optimization problems 

 
We set the number of iterations to a value dependent on the used population size, 
e.g. within the PSO a swarm size of 20 leads to a maximum number of iterations 
of 2500. 

To obtain a good estimator for the achieved fitness value for both metaheuris-
tics GA and PSO we set the number of replications to 31. This is not necessary for 
the CH because there is no stochastic influence. 

The settings we used for GA can be obtained from Table 2. We try 10 differ-
ent settings for the GA, using two different selection rates and successively in-
crease the mutation and crossover rate.  

All experiments for the GA are conducted with a population size of 100.  
For PSO we use swarm sizes 20, 60 and 100 and use 0.0, 0.5 and 1.0 as prob-

ability for in Chap. 3.3 introduced step 4.  
These settings reflect the character of the canonical PSO. 
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Table 2: Parameter settings for GA 
Setting Population size Iterations Mutation rate Crossover rate Selection rate 

V1 100 500 20 20 60 

V2 100 500 40 40 60 

V3 100 500 60 60 60 

V4 100 500 80 80 60 

V5 100 500 100 100 60 

V6 100 500 20 20 80 

V7 100 500 40 40 80 

V8 100 500 60 60 80 

V9 100 500 80 80 80 

V10 100 500 100 100 80 

4.2 Results 

In addition to the results of the CH we compare the PSO and GA with the best 
value found by 50.000 randomly generated solutions. This procedure randomly 
generates berth sections. The vessels then are shifted left as much as possible. All 
proposed (meta-)heuristics achieve good results for the objective minimizing the 
total weighted time in port for all vessels for the given realistic data BAP.  

While the PSO performs best in all four used data sets the GA does not ex-
ceed the results of the CH in three cases. In the fourth case the data seams not to 
be appropriate for using the CH. As expected the randomly generated solutions 
were far behind. 

Table 3 gives an overview of the results provided for all examined parameter 
settings of all used algorithms in all four data sets. For every algorithm the mean 
values and standard deviations for 31 replications are shown and best mean values 
within the class of algorithm are marked bold. Additionally the best mean values 
found compared to all other results within a data set is marked with "*". 
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Table 3: Provided results for all data sets 
 Data set # 
 #1 #2 #3 #4 
Algorithm (set-
ting) 

mean sd mean sd mean sd mean sd 

Random 2651 43.65 2417 39.94 2586 32.35 2429 45.49 

CH 2273 0 2078 0 2256 0 2346 0 

GA (V1) 2358 45.22 2164 49.15 2342 35.97 2177 48.07 
GA (V2) 2370 53.05 2169 51.10 2348 42.09 2197 55.19 
GA (V3) 2329 56.11 2132 48.55 2304 42.06 2223 63.28 
GA (V4) 2484 82.52 2294 57.42 2442 52.62 2314 87.94 
GA (V5) 2524 78.16 2291 75.89 2471 77.61 2361 91.39 
GA (V6) 2368 39.34 2162 52.62 2349 36.62 2169 43.04 
GA (V7) 2403 57.36 2201 55.26 2370 41.02 2227 44.47 
GA (V8) 2421 62.88 2231 64.40 2413 69.85 2298 67.73 
GA (V9) 2450 65.88 2266 68.82 2419 61.90 2298 67.59 
GA (V10) 2482 69.96 2268 59.55 2441 54.73 2307 56.52 

PSO (20, 0.0) 2224* 12.66 2034 5.47 2238 5.86 2069 5.02 
PSO (20, 0.5) 2230 12.00 2034 4.95 2238 6.50 2068* 5.26 
PSO (20, 1.0) 2238 6.89 2033* 5.52 2237 7.09 2070 4.08 
PSO (60, 0.0) 2225 10.96 2035 6.46 2236* 8.62 2068* 6.54 
PSO (60, 0.5) 2230 11.34 2036 5.61 2236* 7.77 2070 4.71 
PSO (60, 1.0) 2232 13.47 2033* 6.90 2237 6.31 2068* 7.22 
PSO (100, 0.0) 2225 10.03 2036 5.21 2238 7.58 2070 4.02 
PSO (100, 0.5) 2232 10.79 2033* 6.30 2240 6.17 2068* 5.38 
PSO (100, 1.0) 2233 11.21 2034 7.15 2236* 8.53 2072 4.32 

 
PSO provides best results in every tested data set with small standard deviations 
whereas standard deviations of the GA are even bigger than those of the randomly 
generated results. The best values of each algorithm for the different data sets are 
shown in Figure 8. 

 
Figure 8: Results for best parameter setting of algorithms 
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A more detailed view of the results is presented in Figure 9 which shows boxplots 
of the best found parameter settings of all used algorithms for all used data sets.  

The random algorithm provides the worst results regarding mean values and 
standard deviations. The CH provides better results than the GA, especially re-
garding that the standard deviation of the GA is quite big. In contrast the CH has 
the advantage of not having to choose from a variety of parameter settings, except 
from the determination of the batch size.  

Comparing CH and PSO this advantage is diminished, because PSO on the 
one hand provides better mean values for all used data sets. On the other hand for 
all data sets even the maximum values of 31 replications for the best setting of 
PSO do not exceed the provided results of the CH. 

 

 
Figure 9: Detailed overview of provided results (boxplots) for all data sets 
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5 Conclusion 

In this paper we applied a GA and a modified Particle Swarm Optimizer to a real-
istic data BAP. This problem is part of the CT management problem. We were 
able to modify the PSO in that way that it is applicable to this kind of combinato-
rial problem. The results provided by GA and PSO were compared to those of a 
CH being state-of-the-art for solving the BAP. We could show that the the PSO 
provides better results than those provided by CH and GA. Comparing both 
population based metaheuristics we find that PSO converges much faster than the 
GA and apart from that provides the best results found within the conducted ex-
periments. 
We found several problems occurring at CH while performing our experiments. 
The assumptions made in (Guan and Cheung 2004) strongly keep this approach 
fixed to its isolated model, while GA and PSO are much more flexible in use, e.g. 
in adding the lost location term within the fitness function. This would be part for 
a non-isolated approach, which is clearly accepted for future research, see e.g. 
(Meier and Schumann 2007; Stahlbock and Voß 2008; Steenken et al. 2004).  

By setting a new arrival time for vessels to the beginning of each batch known 
information will get lost. Also the question arise, which arrival time should be used 
within the fitness function. 

There is no advice or method given in (Guan and Cheung 2004) how to 
choose the batch size, which has a crucial impact on the CH. 
Furthermore the authors note that the TS procedure should be limited to 15 ves-
sels. According to the forecast of (Tiefensee 2007) regarding the growth of con-
tainer handling in ports this seems not to be appropriate for future requirements. 

In future research it is very likely to have a look at the integration of the BAP 
into the whole CT processes and problems (Meier and Schumann 2007). Because 
all problems are interconnected with each other it is a crucial part for finding good 
solutions that good metaheuristics are applied. 
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