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Abstract.  In this paper we consider the search in large state spaces with high 
branching factors and an objective function to be maximized. Our method portfo-
lio, which we refer to as heuristically guided swarm tree search, is randomized, as it 
consists of several Monte-Carlo runs, and guided, as it relies on fitness selection. 
We apply different search enhancement such as UCT, look-aheads, multiple runs, 
symmetry detection and parallel search to increase coverage and solution quality. 
Theoretically, we show that UCT, which trades exploration for exploitation, can be 
more successful on several runs than on only one. We look at two case studies. For 
the Same Game we devise efficient node evaluation functions and tabu color lists. 
For Morpion Solitaire the graph to be searched is reduced to a tree. We also adapt 
the search to the graphics processing unit. 

1 Introduction  

Morpion Solitaire (see Figure 1) is a pen-and-paper longest path state space problem 
played on an infinite grid with some set of marked intersections taken as the initial 
state. In each move k − 1 intersections are covered and a new one is produced by 
placing a (horizontal, vertical, or diagonal) line having k − 1 edges. (The usual 
setting is a Greek cross with 36 marked intersections and k = 5.) Edges of every 
two lines must not overlap. In the disjoint model two lines on the same alignment 
must not touch each other, in the touching model they can.  

Same Game1 (see Figure 2) is an interactive computer puzzle played on an n x m 
grid covered with nm balls in k colors. (Usually, n = m = 15 and k = 5). Balls can 
be removed, if they form a connected group of l > 1 elements. The reward of the 
move is (l−2)². If a group of balls is removed, the ones on top of these fall down. 
If a column becomes empty, those to the right move to the left, so that all non-
empty columns are aligned. Clearing the complete board yields a bonus reward of 
1,000 points. The objective is to maximize the total reward. Both optimization 

                                                      
1 See http://de.wikipedia.org/wiki/SameGame 
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problems are known to be NP-hard (Kendal et al. 2008, p. 31-34; Demaine et al. 
2006, p. 439-453). 

 

 
Figure 1: Morpion Solitaire: initial, intermediate and final position. 

  
In order to find optimized solutions to these two games, we sped-up search by 
using what we call Heuristically Guided Swarm Tree Search integrating search heuristics, 
duplicate and symmetry detection, tabu and look-ahead strategies as well as single 
root and set-based UCT (short for upper confidence bounds applied to trees) 
(Kocsis and Szepesvari 2006, p. 282-293). We exploited parallel hardware as avail-
able in multi-core CPUs and graphics cards on current personal computer systems. 

The paper is structured as follows. First, we introduce to the essence of guided 
runs and further search enhancements, including UCT. We look at different search 
heuristics and analyze the possible impact of having several independent runs. 
Next, we present a simple implementation of Parallel UCT along with some pseu-
do code. This parallelization is extended to work on sets, which are seeded with 
exploration results obtained on the GPU. Finally, we review related work, show 
experimental results, and conclude. 

2 Heuristically Guided Swarm Tree Search 

In random depth-first trials, also known as Monte-Carlo runs, successors are 
drawn at random. The game is played to the end, and the achieved result is record-
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ed. If it is better than the current high-score, both the score and the stack contents 
are stored for keeping track of the best solution found so far. 

 

 
Figure 2: Same Game: initial and final positions (not yielding final reward of 1,000). 

 

Algorithm 1 Selecting the next candidate using guided swarm tree search. 

next(Succs) { 

  htotal = 0; 

  for (i = 0; i < succs; i++) htotal += Succs[i].h; 

  random = rand[0..htotal - 1]; index = -1; ntotal = 0; 

  while (ntotal <= random) {index++; ntotal += Succs[index].h;} 

  return Succs[index];} 

 
In uninformed swarm tree search, the probability of a successor to be selected is 1 
divided by the number of successors, yielding a uniform distribution. Hence, at 
every sampled state, we determine the number of successors succs and a random 
number in {0,...,succs − 1}. Unfortunately, in state spaces with large branching fac-
tors, uniformed random runs often end up with inferior solution paths, so that 
improving them over time requires large amounts of time and space.  

When problem-specific knowledge is encoded into the random sampling 
process, much better solutions can be obtained. Such knowledge can be thought of 
as the result of an evaluation (a.k.a. fitness or heuristic) function h from states to 
some positive numbers. In Heuristically Guided Swarm Tree Search we, therefore, 
apply non-uniform sampling (see Alg. 1), which is best thought of as a fitness se-
lection according to the relative strength of the successors’ evaluation. 
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Algorithm 2 Generating and evaluating successors in the Same Game. 

hull(i, j, c, r) { 

 if (i < 0 || i > n - 1 || j < 0 || j > m - 1) return 0; 

 if (board[i][j] != c || vis[i][j] == r) return 0; 

 vis[i][j] = r; 

 return 1 + hull(i+1,j,c,r) + hull(i,j+1,c,r) +  

            hull(i-,j,c,r) + hull(i,j-1,c,r); } 

void populate(i, j, val, iter) { 

  if (i < 0 || i > n - 1 || j < 0 || j > m - 1) return; 

  if (vis[i][j] != r) return; vis[i][j] = 0; 

  if (count[i][j] == 0) count[i][j] = v; 

  pop(i+1,j,v,r);pop(i,j+1,v,r);pop(i-1,j,v,r);pop(i,j-1,v,r);} 

computesuccs() { 

  succs = 0; vis = value = count = 0; 

  for (j = 0; j < n; j++) for (k = 0; k < m; k++) 

      if (board[j][k] != ’0’) { 

        if (count[j][k] == 0) { 

          count[j][k]=hull(j,k,board[j][k],succs); 

          pop(j,k,count[j][k],succs); } 

      succx[succs] = j; succy[succs++] = k; } 

  for (j = 0; j < n; j++)  

      for (k = 0; k < m; k++) value[j][k] = score[count[j][k]]; 

  return succs; }  

3 Search Heuristics  

Evaluation Functions In both games, we combine the computation of successors 
with their evaluation. In Morpion Solitaire we use a simple function that prefers 
dense line arrangements and touching lines. As rewards in the Same Game are im-
mediate, we apply an evaluation function that takes into account the current and 
the remaining score (see Alg. 2). The algorithm to compute all successors obvious-
ly requires time O(nm), and has been fine-tuned by using a stack instead of a recur-
sive implementation. 

Duplicate and Symmetry Detection In BFS and UCT we incorporated hashing for 
duplicate detection, avoiding redundant work at a tree node that has already been 
explored. Simple hash functions map the core of the state. For Morpion Solitaire the 
bounding box can be included. Given that we are interested in some good solu-
tions, for parallel UCT we use a bit-state hash table without any collision resolution 



MKWI 2010 – Planung/Scheduling und Konfigurieren/Entwerfen 

 

2299 

strategy. Symmetrical states, which can be detected by reflecting the board hori-
zontally, vertically and diagonally, are also omitted from the UCT/BFS tree. 

Tabu Colors and Lookahead For the Same Game we perform a one step lookahead 
once every fixed number of iterations. If larger groups are eliminated, the changes 
in the game due to gravity and alignment are considerable. Not performing the 
actual change in the successors looses too much information. 

Even though our state evaluation procedure and look-ahead procedure are ef-
ficient, the invocation of the look-ahead after each step led to a program with 
small progress. The mixture of information gathering every l th iteration seemed 
was a key to success. (We chose l to be between 5 and 20.) 

In the Same Game we additionally implement the strategy proposed in (Schadd 
et al. 2008, p. 1-12) to prevent the tabu color to be selected in order to build large 
groups as a hard constraint, so that successors on unforced selection get a fitness 
value and selection probability 0. In most cases, the tabu color with the largest 
number of balls gave the best results, while in some cases the choice of other col-
ors was more effective. 

UCT (Kocsis and Szepesvari 2006, p. 282-293) is a value-based reinforcement 
learning algorithm. The action value function is approximated by a table, contain-
ing a subset of all state-action pairs. A distinct value is estimated for each state and 
action in the tree by Monte-Carlo simulation. The policy used by UCT balances 

exploration with exploitation according to the formula , 

where  is the value stored at each node,  is a constant to be adapted to the prob-

lem at hand,  the visits to the actual node  to be evaluated, and  is the number 

of visits to the parent of . 
UCT is the algorithm of choice in playing two-player games with hardly access-

ible evaluation functions such as Go2 , and in general game playing (Genesereth et 
al. 2005, p. 62-72). It also applies to single-agent state space maximization prob-
lems with large branching factors (Schadd et al. 2008, p. 1-12) by propagating the 
maximum leaf value to the root, like in our implementation. UCT has two phases. 
In the beginning of each run it selects actions according to knowledge contained 
within the UCT tree. Once it leaves the scope of this search tree it has no know-
ledge and behaves randomly. Thus, each state in the tree estimates its value by 
Monte-Carlo simulation. As more information propagates up the tree, the policy 
improves, and the Monte-Carlo estimates are based on more accurate returns. 

Multiple Runs For Morpion Solitaire we experimented with different number of 

runs in UCT. Let us consider  and  for  = 1: 

 

  

  

                                                      
2 See, e.g., http://www.lri.fr/∼teytaud/mogo.html 
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… … 

  

  

  

 
Let us assume an artificial example with a complete binary tree of depth 30. At all 
leaves of the left subtree of the root we find a value 10, and in the right subtree all 
leaves have value 0, except one with the optimum value 100. One random run 
finds the maximum with probability 1/230. Subsequently, we find the sole optimum 
after an expected number of 230 runs. 

UCT, however, will first make two runs, which establish the value 10 on the 
left branch with probability 1 and value 0 on the right branch with probability 
1/229. Afterwards, the optimum can no longer be achieved. This example indicates 
that critical decisions at the root are rarely withdrawn, so that drawing more ran-
dom samples at a node can indeed be advantageous. 

4 Simple Parallel UCT 

Parallelizing UCT to multiple cores is a hot research topic. Different approaches 
have been proposed (Enzenberger and Müller 2009; Cezenave and Jouandeau 
2009, p. 1-6), all with their individual pros and cons. We propose a simple novel 
Parallel UCT variant (using pthreads), that achieves a close-to-optimal speed on 
multi-core machines. It only uses a single lock on the variable for increasing the 
number of nodes in the UCT tree. The main routine for calling different threads is 
displayed in Alg. 3. It also initializes the search to the start state, allocates space for 
the node array node, the hash table. The procedure called by each thread is an 
infinite loop, initializing the search and the UCT sub-procedures.  

 

Algorithm 3 Invocation of the threads in Parallel UCT. 

uctmontecarlo(thread) { 

  while (1) { 

    init(thread); 

    index[thread] = uct(depth[thread], thread); 

    if (index[thread] > 0) montecarlo(thread);} 

main() { 

  init(); highscore = 0; 

  for (i = 0; i < THREADS; i++) // spawn light-weight processes 

    thread_create(threads[i], uctmontecarlo);} 
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Algorithm 4 Parallel UCT algorithm. 

uct(depth, thread) { 

 j = 0; depth = 0; expandleaf[thread] = 1; 

 while (node[j].leaf == 0) { 

  maxv = 0; maxs = -1; succs = 0; 

  for (i = 0; i < node[j].numberofsuccs; i++) { 

   s = node[j].successors[i]; 

   if (node[s].count == 0) { 

    maxv = infinity; maxs = s; expandleaf[thread] = 0; 

    Succs[thread][succs++] = s;} 

   else { 

    v=node[s].value+C*sqrt(log(node[j].count)/node[s].count); 

    if (node[s].value == 0) v = 0; 

    else if (v > maxv) {maxv = v; maxs = s;}}} 

    if (maxs == -1) {node[j].value = 0; return -1;} 

    if (succs > 0) {maxs = next(Succs[thread],succs);} 

    node[j].count++; 

    j=maxs; stack[thread][depth] = node[maxs]; 

    doMove(node[maxs],thread); depth++;} 

  node[j].count++; 

  if (expandleaf[thread]) { 

    if (search(sol[thread])) {node[j].value = 0; return -1;} 

    else {expandnode(j,thread); insert(sol[thread]);}} 

  return j;} 

 
The growth of the search tree in UCT is shown in Alg. 4 and the according Monte-
Carlo search is displayed in Alg. 5. 

At a leaf node the UCT tree is enlarged by generating the successors of the en-
countered leaf node. Note that once all successors have been expanded, the selec-
tion of successors in the top-down phase of the algorithm is deterministic. If there 
are still successors left, one is chosen randomly. If a node has been fully explored, 
its value is set to 0 and is omitted from further processing. 

For parallelization, the algorithm increases the number of node visits when 
walking down the tree, applying the UCT formula at every successor node. This is 
in contrast to the usual sequential implementation where node counts are updated 
bottom-up. The advantage for an early increase is that different threads likely lead 
to different leaves. 
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Algorithm 5 Parallel Monte-Carlo search. 

void montecarlo(thread) { 

  succs = 0; 

  while (1) { 

    Succs = expand(); 

    for (i = 0; i < |Succs|; i++) 

    if(canMove(Succs[i],thread))succ[thread][succs++]=Succs[i]; 

    if (succs == 0) break; 

    r = next(Succs); 

    stack[thread][depth[thread]] = succ[thread][r]; 

    doMove(thread); depth[thread]++;} 

  if (depth[thread] > highscore) highscore = depth[thread]; 

  j = index[thread]; 

  while (j != -1) { 

    if(node[j].value<depth[thread])node[j].value=depth[thread]; 

    j = node[j].parent;}} 

     
At each node in the Monte-Carlo search, we always generate all successors. When a 
run is finished, we check whether a new highscore has been obtained, so that we 
can backup the according stack. At the end of the procedure, we store the obtained 
value at the search tree leaf where the Monte-Carlo run has started and propagate 
the outcome bottom-up to the root of the UCT search tree, so that the root value 
always reflects the optimal value found in its leaves. We checked that race condi-
tions leading to inconsistencies (not harming the validity of UCT) at inner nodes 
did not appear. 

5 Set-based Parallelization 

An alternative to the parallelization given above is to seed the search with a larger 
set of root nodes and to use UCT to explore the k best of them for a fixed number 
of nodes. 

To achieve this, we use an implementation of a priority queue Q based on 
weak-heaps (Edelkamp and Wegener 2000) (for worst-case efficient priority queues, 
see (Edelkamp 2009)). The queue contains the indices of the nodes in the UCT 
tree along with their corresponding number of expansions, the maximal depth 
reached, and the resulting UCT value. The queue is organized according to these 
UCT values (higher values are better). 
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To come up with a set of states to insert into the queue, we initially all perform a 
complete BFS up to a certain layer. For each state in this layer, we create one node 
in the UCT tree (and one corresponding element in the queue). 
The removal of the maximal element is done by swapping it with the last one in 
the queue, decrementing the queue’s size and re-establishing the correct order. 
This can be done in logarithmic worst-case time. We repeat this removal of the 
maximal element, until we come up with the k best ones. 

 Typically, we assume k/n being very small, with n being the number of threads 
we use. For the parallelization, each thread takes the first unused element and per-
forms a normal UCT run starting at this element. The result will be re-inserted into 
the queue. For this, at first only the maximal depth and the number of expansions 
are updated, the corresponding element is swapped with the one at position size 
and the size of the queue is incremented. At this time, the order of the queue is not 
correct. As we need to update the UCT values of all elements in the queue when 
the total number of expansions is changed, we delay this step until all the k nodes 
are expanded. Then, we update all UCT values and need to re-organize Q. In total, 

extracting the k-best elements requires at most  
comparisons. 

6 GPU-based State Space Exploration 

Given that the number of cores and the processing power on the graphics card in 
form of a GPU is much larger than on the CPU, we used general-purpose GPU 
programming to generate the large state space efficiently. The computational mod-
el is very different from the one on the CPU. Programming the GPU requires a 
special compiler, which translates the code to native GPU instructions. The GPU 
architecture executes the same instructions running on all processors and supports 
different layers for memory access. It allows concurrent reads to one memory cell, 
but forbids simultaneous writes. 

Progress in state space search on the GPU (Edelkampand Sulewski 2009) 
shows that using the GPU, speed-ups achieved in exploring permutation games 
can be up to 30. Recent findings (Edelkamp et al. 2009) suggest that significant 
speed-ups on the GPU are available also for the complete exploration of other 
combinatorial games. For our case of solving games with a large branching beha-
vior, we aim at both fast successor generation and large-scale search. So far, we 
have applied GPU search only to Morpion Solitaire, but most design options are 
available for Same Game as well. 

Based on different time and space considerations, a state is represented by its 
stack. Two states are the same if their sorted stacks match. Bounding boxes for 
each stack can be maintained and state symmetries and hash functions can also 
easily be applied to the entire stack to eliminate duplicates efficiently. 
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In the BFS parallelization the GPU extends all stacks in parallel one step at a time. 
Given the small memory requirements of stacks especially in low search depth, 
millions of stacks can be extended in parallel. As the GPU has a memory limitation 
and BFS levels naturally grow rapidly, the search has been externalized to store 
data on the hard disk. Duplicate detection is delayed and performed similar to the 
setting in I/O efficient model checking proposed in (Barnat et al. 2007, p. 281-
293), where the generated state set stored in RAM is checked against the explored 
one on disk while avoiding additional external sorting efforts. 

This way, we constructed a complete search engine, combining breadth-first 
and depth-first search, eventually exploring the entire search space. Facing the size 
of the problems, however, even with large amounts of time and space, the problem 
of fully exploring Morpion Solitaire practically remains unsolved. Therefore, we used 
parallel search on the GPU mainly to give rise to good seeds for the UCT mechan-
isms in form of large breadth-first layers in set-based UCT. 

7 Related Work 

The best known solution for Morpion Solitaire in the touching model has 170 
moves. It has been found by Charles-Henri Bruneau and was published by Pierre 
Berloquin in April 1976 in Science & Vie.3 For the disjoint version the current 
record has been found with the help of a computer.4 In 2009 Tristan Cazenave 
documented a solution to the disjoint problem with 80 moves using Nested 
Monte-Carlo Search (Cazenave 2009, p.456-461; Cazenave and Jouandeau 2009, p. 
1-6). 

 For the Same Game, Takes and Kosters (2009, p. 249-256) use Monte-Carlo 
search to compute a solution of 76,764, improving some previous result of 
73,998.5 Tristan Cazenave reports solutions on Same Game as well (Cezenave 
2009, p. 456-461). His record of 77,934 points was obtained with Nested Monte-
Carlo Search. The overall best solution we could find in the Internet are the 82,604 
points submitted by a player called spurious ai6 . 

There are a number of different parallelizations of Monte-Carlo Search/UCT. 
We highlight the ones, which we found most related. 

 
- According to a personal conversation with one of the authors of the gen-

eral game player (Genesereth et al. 2005, p. 62-72) MALIGNE, they use a 
large number of processors, without any communication between them. 

                                                      
3 The solution we coded is available at http://euler.free.fr/morpion.htm and is dated 1982 by 
J.B.Bontè. 
4 According to http://www.morpionsolitaire.com the currently best computer solution for the touch-
ing version reported by Tristan Cazenave has 144 moves. 
5 See http://www.js-games.de/eng/games/samegame/lx/play. 
6 See http://www.js-games.de/eng/highscores/samegame/lx. 
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To prevent each processor from doing the same, they start one instance of 
their player on each and provide it with a different UCT value. 

- The approach in our general game playing agent GAMER is similar to the 
single-run parallelization presented in (Cezenave and Jouandeau 2007). We 
start one master UCT process and several slave processes. Each slave de-
velops its own UCT tree. In contrast to MALIGNE, all these processes 
have the same UCT value. To prevent all the processes from creating the 
same trees, we use different seeds for the random number generators. The 
master manages only the root of a UCT tree (representing the current 
state). After each UCT run, each process informs the master process of 
the chosen move and the achieved result and the master updates its root 
correspondingly. The move that has achieved the best average result dur-
ing all the runs is performed. 

- Tristan Cezenave has ported Nested Monte-Carlo Search (Cezenave 2009, 
p.456-461; Cezenave and Jouandeau 2009, p.1-6) to a shared memory mul-
tiple core scenario. Recall that Nested Monte-Carlo search is a limited-
depth BFS with Monte-Carlo runs invoked at the leaf and best values 
propagated to the root. In contrast to UCT the search tree does not adapt 
to the solutions found. Besides parallelizing Monte-Carlo search but not 
UCT, the parallelization mechanisms are different to the ones that we have 
considered. 

- In his epsilon-trick7, Lukasz Lew forces the threads to use an edge that has 
been selected by the UCT formula in one node more than once. This is 
implemented by an additional counter that releases the edge preference 
once exceeding the threshold. The idea has similarities to our approach of 
enforcing multiple runs. 

- In the context of their Go-player, Müller and Enzenberger (2009) provide 
lock-free implementation of UCT based on a processor dependent imple-
mentation trick that has been used in chess beforehand. The trick involves 
inline assembler and relies on the order of instruction execution in Intel’s 
x86 architecture. 
 

                                                      
7 http://computer-go.org/pipermail/computer-go/2007-January/008057.html 
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Figure 3: States distribution, BFS-layer 9 after 2,000 initial Monte-Carlo evaluations 

8 Experiments 

We ran experiments using an Intel i7 processor with 4 hyper-threaded cores, 12 
GB of RAM, and two Nvidia GTX 280 graphics cards. The speed-ups obtained on 
the CPU are considerable (we recorded 780% – 800% CPU usage). 

Morpion Solitaire We first generated the state space with BFS on the GPU, 
which was truncated, when the GPU space was exhausted. Then each state in BFS-
layer 9 was evaluated by running 2,000 Monte-Carlo simulations. The obtained 
distribution of maximal solution depths is shown in Fig. 3. 

The advantage of the GPU search is that it is complete, i.e., it eventually will 
explore the entire search space. The current best solution on the GPU is 116. Our 
current best solution length, obtained with parallel UCT (15 threads and 100 runs) 
is 128; one solution is displayed in Fig 1. Seeded with the first 15 steps of Bonté’s 
solution, the best solution we could obtain has a length of 130=115 + 15. Seeded 
with 111 steps, we could reproduce a solution of 170 moves. 

Same Game Our single-threaded version already beats the reported maximum of 
82,604 found in the Internet (see Table 1). Hence, for parallelization, we only ap-
plied an embarrassing parallel approach, in which the program is invoked with differ-
ent UCT values and tabu-colors. For a fixed UCT value and sufficient RAM avail-
able we subsequently obtain a 5-fold speed-up. 

9 Conclusion 

We considered advances to random search procedures like UCT yielding some 
new strategy that we refer to as Heuristically Guided Swarm Tree Search. We applied a 
flexible random choice model based on the fitness of the successors. For Morpion Soli-
taire the results are close and in the Same Game the results are state-of-the-art. 

 
 
 



MKWI 2010 – Planung/Scheduling und Konfigurieren/Entwerfen 

 

2307 

Table 1: Results for the Same Game. 

Game Points Iteration Tabu  

Color 

Game Points Iteration Tabu  

Color 

0 2,561 188,633 1 10 2,796 130,496 2 

1 4,995 319,991 Max 11 3,710 425,892 Max 

2 2,858 1,342,750 Max 12 3,271 259,438 3 

3 4,051 1,289,432 Max 13 2,432 632,190 Max 

4 4,633 1,264,406 Max 14 3,877 240,061 2 

5 5,003 302,745 Max 15 6,074 787,383 Max 

6 2,717 534,920 Max 16 5,166 905,760 Max 

7 4,622 28,433 Max 17 6,044 1,126,290 Max 

8 6,086 688,276 max 18 5,019 22,732 Max 

9 3,628 767,966 3 19 5,175 477,067 Max 

    Sum 84,718   

 

References 

Barnat J, Brim L, and Simecek P (2007) I/O efficient accepting cycle detection. In 
CAV. 

Cazenave T (2009) Nested monte-carlo search. In IJCAI. 

Cazenave T and Jouandeau N (2007) On the parallelization of uct. In Computer 
Games Workshop (CGW). 

Cazenave T and Jouandeau N (2009) Parallel nested Monte-Carlo search. In 
IPDPS. 

Demaine E, Demaine M, Langerman A and Langerman S (2006) Morpion solitaire. 
Theoretical Computer Science, 39(3). 

Edelkamp S (2009) Rank-relaxed weak queues: Faster than pairing and Fibonacci 
heaps? Technical Report 54, TZI Universität Bremen. 

Edelkamp S, Messerschmidt H, Sulewski D and Yücel C (2009) Solving games in 
parallel with linear-time perfect hash functions. Technical Report 52, TZI 
Universität Bremen. 



 Stefan Edelkamp, Peter Kissmann, Damian Sulewski, Hartmut Messerschmidt 

 

2308 

Edelkamp S and Sulewski D (2009) Parallel state space search on the gpu. In 
Symposium on Combinatorial Search. 

Edelkamp S and Wegener I (2000) On the performance of weak-heapsort. In 
STACS. 

Enzenberger M and Müller M (2009) A lock-free multithreaded Monte-Carlo tree 
search algorithm. In Advances in Computer Games (ACG).  

Genesereth M, Love N and Pell B (2005) General game playing: Overview of the 
AAAI competition. AI Magazine, 26(2). 

Kendall G, Parker A and Spoerer K (2008) A survey of NP-complete puzzles. 
International Computer Games Association Journal (ICGA). 

Kocsis L and Szepesvari C (2006) Bandit based Monte-Carlo planning. In Machine 
Learning: ECML 2006. 

Schadd MPD, Winands MHM , van den Herik HJ, Chaslot G and Uiterwijk 
JWHM (2008) Single-player monte-carlo tree search. In Computers and 
Games. 

Takes FW and Kosters WA (2009) Solving samegame and its chessboard variant. 
In T. Calders, K. Tuyls, and M. Pechenizkiy, editors, 21th Benelux Conference 
on Artificial Intelligence (BNAIC 2009). 


