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1 Introduction 

State-of-the-art AI planning systems are able to generate complex plans thanks to 
their efficient reasoning engines. In a large number of application domains, the 
plans are automatically executed by systems such as autonomous robots. In this 
context, it is not necessary to make these automated systems understand what they 
are actually doing during execution and why they are doing that. In other words, 
these systems do not need to understand the underlying semantics of the plans 
they execute and how these plans have been generated. 

However, there are a significant number of key application domains, such as 
disaster relief mission support or project planning, where plans are supposed to be 
executed by a human user who is not necessarily a planning expert, an application 
expert, or both. In addition, for real-world applications, the plans and the plan 
generation are often complex. In order to unlock a part of the application potential 
of the AI planning technology, it is necessary that the user trusts the technology 
(Glass et al. 2008, pp. 12-18). Increasing trust in AI planning systems requires the 
design and implementation of user-friendly interfaces and the development of plan 
explanation methods that allow for taking into consideration the human user’s 
queries related to some components of the plan about their meaning and relevance 
for the plan and giving back the appropriate information that answers these que-
ries. 

The verbal communication by speech constitutes the most natural form of 
communication for humans. By means of natural language dialogs in this work, we 
focus on the explanation of plans that are generated by a refinement-based planning 
system. Contrary to most approaches presented in the literature that try to provide 
explanations when backtracking occurs in failure situations during search, we as-
sume in this work that the plans for which explanations are looked for are consis-
tent. We present a domain-independent approach to enabling verbal human queries 
and producing verbal plan explanations. 
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The next section serves as an introduction to AI planning. Section 3 introduces 
plan explanations. Section 4 presents the formal framework for refinement-based 
planning that responds to the requirements imposed by the generation of plan 
explanations. In Section 5, we detail how to use refinement-based planning to ex-
plain plans to a human user. Section 6 describes our prototype system that allows 
for verbal user queries and the generation of verbal plan explanations. In Section 7, 
some related work is presented. We conclude and propose some future work in 
Section 8. 

2 AI Planning 

In Artificial Intelligence (AI), the classical planning problem consists in a set of opera-
tors, one initial state, and one goal state. The instance of an operator is called a 
task. A state is a set of positive literals. The world state can evolve; e.g., it changes 
when a task is executed, since every executed task has usually an effect on the cur-
rent world state. The objective is to select and organize tasks in time that allow one 
to attain the goal state from the initial state. These tasks and ordering constraints 
constitute a plan. Tasks can be executed in a world state, only if some precondi-
tions hold in this state. Each task is thus associated with preconditions and effects. 
A plan consists of tasks and temporal and causal relationships between these tasks. 
In a recent book, Ghallab, Nau, and Traverso (2004) present a survey about AI 
planning. 

A planning problem is a complex problem to solve, since it is highly combina-
torial: a large number of tasks to select and a huge number of conflicts that appear 
between tasks. Generated plans tend to be confusing, since they contain a large 
number of tasks and there are possibly a large number of ordering constraints 
between these tasks. 

3 Plan Explanations 

The general problem of designing and implementing interfaces between complex 
computer-based systems and humans appears in practice, when these two entities 
work together. In particular, if a plan is passed down to a human user in a form 
that only a machine can interpret, the user cannot find out the role and the mean-
ing of the plan’s tasks. In addition, if the plan contains a task that the user has to 
execute, the execution of the whole plan is thereby jeopardized. Here, the trust of 
the user in AI planning systems plays an important role. The approach we present 
to increase trust in these systems consists in providing the user with semantic and 
context-dependent information as well as logical information about plans. Depend-
ing on the nature of this information, we distinguish between substantial knowledge 
and executive knowledge. 
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3.1 Substantial Knowledge 

A prerequisite for the understanding of a plan is the domain-specific substantial 
knowledge. During the implementation of the plan, the information about the in-
volved physical systems and functions is notably important for users who are not 
application experts. 

 

 
 
Figure 1: Domain Model with Additional Tags for Substantial Knowledge 

 
A classical domain model used for automated planning only contains the 
declaration of literals and tasks, but does not give any additional information about 
the use and role of these literals and tasks. Since the plan-explanation generation 
components of our approach are domain-independent, we need to extend the 
document describing the application domain for planning in order to make this 
additional information accessible to human users. In this way, we limit the effort 
necessary for adapting an existing planning domain for delivering explanations to 
human users. Figure 1shows an extract of a domain model in which additional tags 
are highlighted in brown. The domain model is enhanced with documentation tags 
that contain general descriptions of plan components, such as tasks and task 
parameters. For example, it is possible to explain to the human user that the role 
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of task ―calibrate‖ in the satellite domain is to calibrate an instrument, which is 
needed for taking a sharp image. The domain is also enriched with utterance tags 
that give the human user some context-dependent descriptions of tasks; i.e., these 
descriptions depend on how task parameters are instanciated for a given plan. For 
example, for a particular task such as ―calibrate(EutelSat,Thermograph2,Jupiter)‖ 
of the plan, it enables the human user to get to know that calibration direction 
Jupiter is used to calibrate instrument Thermograph2 of satellite EutelSat. 

3.2 Executive Knowledge 

The generation of plan explanations for a human user who is not a planning expert 
requires the analysis of the plan and the set of successful planning decisions that 
have led to the plan during search. The analysis is difficult to grasp by a human 
user because the logical dependencies between tasks of the plan are not necessary 
direct. In order to provide the logical description of a plan, the context-dependent 
information about its tasks is necessary but not sufficient, it is also necessary to 
understand the temporal and causal relationships between the tasks. This logical 
description of the plan relies on executive knowledge. The human users without plan-
ning expertise who are presented a plan would possibly ask for explanations about 
the ordering or temporal positions of tasks of the plan. 

The generation of plan explanations based on executive knowledge has to be 
implemented in a generic way in order to enable a domain-independent use. 

3.3 Requirements 

In order to ensure a smooth and natural dialog between the human user and the 
plan-explanation generation engine, the plan-explanation generation engine has to 
interpret the human user’s queries without ambiguity and quickly provide plan 
explanations that correspond to these queries. This requires a consistent represen-
tation of plans and plan components, and an easy access to them and to successful 
planning decisions; i.e., the plan components and the planning decisions have to be 
explicitly represented. 
 

4 A Formal Framework for Refinement-Based Planning 

Our approach to generating verbal plan explanations is based on a hybrid planning 
framework that integrates partial-order causal-link planning and hierarchical plan-
ning (Biundo and Schattenberg 2001, pp. 157-168). This framework uses an ADL-
like representation of states and basic actions (primitive tasks). States, preconditions, 
and effects of tasks are specified through formulae of a fragment of first-order 
logic. Abstract tasks can be refined by so-called decomposition methods, which provide 
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task networks (partial plans) that describe how the corresponding task can be solved. 
Partial plans may contain abstract and primitive tasks. With that, hierarchies of 
tasks and associated methods can be used to encode the various ways to accom-
plish an abstract task. 

A domain model 𝐷 =  𝑇, 𝑀  consists of a set of task schemata 𝑇 and a set 𝑀 of 

decomposition methods. A partial plan is a tuple 𝑃 =  𝑇𝐸, ≺, 𝑉𝐶, 𝐶𝐿 , where 𝑇𝐸 

is a set of task expressions (plan steps) 𝑡𝑒 = 𝑙: 𝑡(𝜏 ) with 𝑡 being the task name and 

𝜏 = 𝜏1 , 𝜏2 , … , 𝜏𝑛  the task parameters; the label 𝑙 is used to uniquely identify the 

steps of the plan. ≺ is a set of ordering constraints that impose a partial order on plan 

steps of 𝑇𝐸. 𝑉𝐶 are variable constraints i.e. co-designation and non-co-designation 

constraints on task parameters. Moreover, 𝑉𝐶 contains sort restrictions that re-

strict further co-designations. 𝐶𝐿 are causal links and provide the usual means to 
establish and maintain causal relationships among the tasks in a partial plan. A 

causal link  𝑡𝑒𝑖 , 𝜙, 𝑡𝑒𝑗   indicates, that formula 𝜙, which is an effect of task 𝑡𝑒𝑖 , 

supports (a part of) the precondition of task 𝑡𝑒𝑗 . A planning problem 𝜋 =  𝐷, 𝑃init  

consists of a domain model 𝐷 and an initial task network 𝑃init. The solution of a 

planning problem is obtained by transforming 𝑃init stepwise into a partial plan 𝑃 

that meets the following solution criteria: (1) all preconditions of the tasks in 𝑃 are 

safely supported by causal links; (2) the ordering and variable constraints of 𝑃 are 

consistent; (3) all steps in 𝑃 are primitive tasks. 
Transforming partial plans into their refinements is done by using so-called 

plan modifications. Given a partial plan 𝑃 =  𝑇𝐸, ≺, 𝑉𝐶, 𝐶𝐿  and domain model 𝐷, a 

plan modification is defined as 𝑚 =  𝐸⨁, 𝐸⊖ , where 𝐸⊕ and 𝐸⊖ are disjoint sets 

of elementary additions and deletions of plan components over 𝑃 and 𝐷. Consequent-

ly, all elements in 𝐸⊖ are from 𝑇𝐸, ≺, 𝑉𝐶, or 𝐶𝐿, respectively, while 𝐸⊕ consists 
of new plan components. This generic definition makes the changes explicit that a 

modification imposes on a plan. Applying a modification 𝑚 =  𝐸⨁, 𝐸⊖  to a plan 

𝑃 returns a plan 𝑃′  that is obtained from 𝑃 by adding all components of 𝐸⊕ and 

removing those of 𝐸⊖. Hybrid planning distinguishes various classes of plan mod-
ifications such as task expansion, causal link insertion, and task insertion. 

For a partial plan 𝑃 that is a refinement of the initial task network of a given 
problem, but is not yet a solution, so-called flaws are used to make the violations of 
the above criteria explicit. Flaws list those plan components that constitute defi-
ciencies of the partial plan. We distinguish various flaw classes including the ones 
for causal threats, unsupported preconditions of tasks, and inconsistencies of vari-
able and ordering constraints. 

It is obvious, that particular classes of modifications are appropriate to address 
particular classes of flaws while others are not. For example, the modifications of 
the class ―causal link insertion‖ can address the flaws of the class ―unsupported 
preconditions of tasks.‖ A modification trigger function, which is used in the algo-



 Bidot, Biundo, Heinroth, Minker, Nothdurft, Schattenberg 

 

2314 

rithm presented by Schattenberg, Weigl, and Biundo (2005, pp. 258-272), relates 
flaws to modifications that are suitable to eliminate them. 
The plan generation process works as follows: (1) the flaws of the current plan are 
collected; if no flaw is detected, the plan is a solution; (2) suitable modifications are 
generated using the modification trigger; if for some flaws no modification can be 
found, the plan is discarded (dead-end); (3) selected modifications are applied and 
generate further refinements of the plan; (4) the next candidate plan is selected and 
we proceed with (1). 

This formal framework very well responds to the requirements imposed by the 
generation of verbal plan explanations, since plan components and plan decisions 
(i.e. plan modifications) are explicitly represented. 

5 Plan Explanations for Refinement-Based Hybrid Planning 

When considering a plan 𝑃 generated by a planning system based on our formal 
framework, the retrieval of executive knowledge is quite obvious: we can easily 

access the task components of 𝑃, including task expressions, task parameters, and 
variable constraints. 

However, the understanding of individual tasks of the plan is not sufficient to 
comprehend the whole plan, since its temporal and causal structure links the tasks. 
In other words, in order to grasp the whole plan, a human user needs to under-
stand how the plan was generated with the help of executive knowledge. Our for-
mal framework for refinement-based planning allows for an explicit representation 
of the search space explored during the plan generation process thanks to flaws 
and plan modifications, and it is possible to explore this search space backwards in 
order to search for the relevant flaws and plan modifications that explain the pres-
ence of particular components in the plan, such as tasks, causal links, and ordering 
constraints. The complexity of this analysis depends on the number of successful 
planning decisions and on the temporal and causal structure of the plan. In this 
work, we assume that a human user becomes a set of tasks that are partially or-
dered and asks for explanations that can justify the ordering of two tasks, or the 
temporal position of a particular task. For each user’s query, the number of plan 
explanations has to be relatively small, otherwise the user is overwhelmed with 
information. 

5.1 Explanations for the Ordering of Two Tasks 

In our formal framework, the most important plan components to consider during 
the analysis of the search space for finding some plan explanations justifying the 
ordering of two tasks are causal links and ordering constraints. 
A causal link expresses a direct dependency between two tasks and indicates in the 
same time the required ordering of them. The analysis accounts not only for direct 
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causal links but also for indirect causal links. The logical dependency between two 

tasks 𝑡𝑒𝑖  and 𝑡𝑒𝑗  is indeed not necessarily direct; e.g. there may be another task 𝑡𝑒𝑘  

that is directly related to 𝑡𝑒𝑖  and 𝑡𝑒𝑗 , respectively, via causal links. 

The two tasks 𝑡𝑒𝑖  and 𝑡𝑒𝑗  can be directly ordered by a single ordering con-

straint or indirectly ordered by several ordering constraints if some tasks are placed 

between 𝑡𝑒𝑖  and 𝑡𝑒𝑗 . Explaining the presence of an ordering constraint between 

two tasks reverts to finding a set of flaws and plan modifications that are related to 
the insertion of this ordering constraint. There are two classes of plan modifica-
tions that are responsible for the insertion of an ordering constraint into a plan: 
―task expansion‖ and ―ordering constraint insertion.‖ The class ―task expansion‖ is 
adequate to address the flaws of the following classes: ―abstract task,‖ ―unsup-
ported precondition,‖ and ―causal threat.‖ The class ―ordering constraint inser-
tion‖ is appropriate to eliminate the flaws of class ―causal threat.‖ Explanations for 
inserting ordering constraints into a plan are indeed diverse: presence of an ab-
stract task, an unsupported precondition, or a causal threat. For example, Figure 2 
represents a linear plan and the task hierarchy associated it. The plan is composed 
of 5 primitive tasks. The 4 arrows represent ordering constraints between these 
tasks. During the plan generation process, the abstract task ―do_observation‖ was 
expanded into two tasks: ―activate_instrument‖ and ―take_image.‖ When consider-
ing the ordering of two tasks that were inserted into the plan by expanding an ab-
stract task, the plan explanation for this ordering is the task expansion defined in 
the planning domain; e.g., the tasks ―turn_to‖ and ―calibrate‖ are ordered and were 
inserted into the plan in order to expand the abstract task ―auto_calibrate.‖  
 

 
Figure 2: A Linear Plan and its Task Hierarchy for the Satellite Planning Domain 

 
The order in which the classes of plan explanations are given to the user is prede-
fined in this work. An ordering of two tasks which is due to the removal of a caus-
al threat is of upmost priority. Of lower priority is the expansion of an abstract 
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task. Furthermore, the direct causal links are more important than the indirect 
causal links for plan explanations, since they express direct causal dependencies. 

5.2 Explanations for the Temporal Position of a Single Task 

While the analysis concentrates only on the relationships between two tasks for 
justifying the ordering of them, the whole plan has to be analyzed for generating 
plan explanations for the temporal position of a single task. In this context, it is 
also more complex to generate plan explanations, since the temporal position of 

this single task 𝑡𝑒𝑖  is relative to other tasks. The analysis is composed of two parts: 
(1) the identification of the direct predecessor tasks and the direct successor tasks 

of 𝑡𝑒𝑖  (i.e. the direct neighbor tasks of 𝑡𝑒𝑖); (2) the search for some plan explana-

tions that justify the ordering of 𝑡𝑒𝑖  and its direct neighbor tasks.  

The identification of the direct neighbor tasks of 𝑡𝑒𝑖  can be done by analyzing 
the ordering constraints between all the tasks of the plan. 

As for the ordering of two tasks, there are three types of explanations for in-

serting ordering constraints between 𝑡𝑒𝑖  and its neighbor tasks: presence of an 
abstract task, an unsupported precondition, and a causal threat. The removals of 

causal threats with respect to the task 𝑡𝑒𝑖  during the plan generation process are 

very important, since these ordering constraints are often inserted between 𝑡𝑒𝑖  and 

its direct neighbor tasks. By analogy, the direct causal links of 𝑡𝑒𝑖  can be connected 

to the direct neighbor tasks of 𝑡𝑒𝑖 . If 𝑡𝑒𝑖  and at least one of its direct neighbor 
tasks were inserted into the plan by expanding an abstract task, then the plan ex-
planation for the ordering of these tasks is the task expansion defined in the plan-
ning domain. 

6 Experimental System 

For some types of information, the graphical modality is adequate; the complete 
task hierarchy associated with a plan would be difficult to express verbally. For 
some other types of information, speech is better suited: semantically rich data, 
such as the description of a machine or the functions thereof can often be better 
disclosed via spoken language. Moreover, specific plan explanations can be given 
quickly and concisely via spoken language. In order to implement our approach to 
generating verbal plan explanations, we have created a prototype system that 
allows for speech interaction with a human user. The basic components of the 
prototype system are shown in Figure 3.  
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Figure 3: Prototype Architecture 

 
The planning system we have used for our experiments is PANDA, which inte-
grates hierarchical planning and partial-order causal-link planning. Note, that we 
did not modify PANDA for realizing this prototype system, which means that 
other planning systems could be possibly used instead of PANDA. When a plan is 
generated, the information coming from the plan generation process is prepro-
cessed and stored in the component ―application‖ to speed up the plan-
explanation generation process: XML data which contains the task hierarchy cor-
responding to the plan is created. During the preprocessing phase, a partial repre-
sentation of the plan is stored in a further XML file in which every task of this plan 
is associated with some substantial knowledge. This document, which is the basis 
for the interactions with the human user, represents the tasks and the ordering 
constraints of the plan but does not contain any information about causal links. It 
provides the basis for interaction, since it is possible to create adequate grammars 
stored in VoiceXML data from this. This procedure is based on transforming the 
XML documents with the help of a fitting XSL stylesheet into VoiceXML docu-
ments. The created documents are then interpreted by the speech server that ac-
cesses them via a web server. This spoken language dialog system (SLDS) also 
integrates a speech interface to provide the dialogue to the user. 

The human user communicates with the prototype system via a Voice over In-
ternet Protocol software. Once the human user gets a plan, the SLDS gives four 
possible alternatives to him/her: to describe the plan, to describe some compo-
nents of the plan, to explain the ordering between two tasks, or to explain the 
temporal position of a single task of the plan. These dialogs are generated dynami-
cally, since the selection of a plan component depends on the plan under consider-
ation. 

For example, the user’s query for explanation of an ordering between two tasks 
is transmitted to the component ―application‖ via a web server. The component 
―application‖ analyzes the executive and substantial knowledge and generates then 
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plan explanations. These explanations are then transformed into a VoiceXML 
fragment, the content of which is finally read to the human user. 

7 Related Work 

Most existing work in AI planning confines itself to representing visually abstract 
plan concepts. The plan-generation process and the temporal ordering of tasks are 
thereby not adequately described for people who are neither planning experts nor 
application experts. In most cases, the semantic and the provenance of plan com-
ponents are cryptic for non-expert users. The most common representation form 
of a plan is thereby a graph, which allows for visualizing the temporal ordering of 
its tasks. 

Vrakas and Vlahavas (2005, pp. 975-998) use ViTA Plan, a visual tool for adap-
tive planning that is able to display a plan in the form of a graph in which the 
nodes represent tasks and the arrows represent causal links between tasks. Agosta 
and Wilkins (1996, pp. 6-8) and Kundu et al. (2002) propose a graphical represen-
tation of a plan, but the tools they present allow for the visualization of the whole 
plan without explaining the underlying causal and temporal structure of the plan to 
end users. 

Contrary to our work, the term ―explanation‖ in the AI planning literature is 
commonly associated with the set of elements that cause backtracking in failure 
situations during search. Zimmerman and Kambhampati (1999, pp. 605-611) use 
the term pilot explanation to designate the failures that occur in the previous search 
levels of the graph developed using the Graphplan algorithm (Blum and Furst 
1997, pp. 281-300). The idea is to maintain the pilot explanation structure captur-
ing the failures encountered at previous levels of search, using it to guide the 
search at the next levels. 

8 Conclusion and Future Work 

In this work, we presented a domain-independent approach to generating verbal 
plan explanations. This approach is based on a formal framework for refinement-
based hybrid planning. We have developed a prototype system that can address 
different types of verbal human queries: given a plan, he/she can ask not only for 
semantic or context-specific information about plan components, but also for 
justifications about the ordering of two tasks or the temporal position of a single 
task. This work unlocks a part of the application potential of the AI planning tech-
nology, as it instills trust in the user of the technology thanks to the support for 
plan explanations. 

The unimodal verbal explanations of a plan are not sufficient. The human user 
will not always be able to deal with the large amount of information associated 
with the explanations. But a large number of explanations with a graphical repre-
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sentation can also be quickly confusing. Choosing the adequate modality used to 
represent a specific plan explanation seems to be a key issue in this context. In 
other words, multimodal approaches to generating plan explanations are promising 
future work. 
The quality of plan explanations could be improved by modifying planning do-
mains and the component ―application‖ of the prototype system. Associating 
weights to causal links depending on how important they are in the application 
domain could allow for filtering plan explanations. Another improvement would 
be to take into account the user’s profile and adapt the plan explanation generation 
to it. 
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