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1 Introduction 

Many organizations have to face optimization problems in their day-to-day busi-
ness. Popular examples are scheduling problems where jobs have to be assigned to 
machines or employees to shifts or vehicle routing problems (VRPs) (Lenstra and 
Kan 2006) where it has to be decided how and in which order goods are delivered 
to (and/or picked up from) different stations, taking into account a number of 
constraints. Such problems usually have some optimization functions like 
minimizing the make span in job-shop scheduling or minimizing the overall sum of 
all routes in VRPs. These problems are known to be NP-complete and thus, in the 
general case, it is not tractable to perform an uninformed search in the solution 
space to find the optimal solution due to complexity. 

As a trade-off between computational time and solution quality heuristic ap-
proaches have been introduced. These approaches do not exhaustively search the 
solution space but try to find a good solution by applying some domain specific 
heuristics or metaheuristics. Most of these metaheuristics start with a fixed set of 
parameters which does not change during runtime. Different metaheuristics are 
more suitable for different types of problems than others because of their charac-
ter. Genetic Algorithms (GA), for example, are a fast optimization technique 
(Koza 1995). Depending on the binary construction of the different solutions and 
the easy way to mutate a solution, the genetic algorithm creates, in comparison to 
other metaheuristics, a new solution with a fast computation of the next genera-
tion. The disadvantage of this technique is that the best solution is found not as 
often as with other approaches (Koza 1995). The metaheuristic Particle Swarm 
Optimization (PSO) has been introduced by (Eberhart and Kennedy 1995). It also 
performs a randomized parallel search in the solution space. In comparison to 
PSO the computation of the next generation’s individuals is faster in genetic algo-
rithms but PSO focuses earlier to a specific minimum. Depending on the problem 
(i.e., the fitness landscape), different metaheuristics or varying parameters lead to 
better or worse efficiency in the optimization process. In standard metaheuristics 
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no dynamic changes (i.e., no adaptation) in parameter settings during the optimiza-
tion process are intended. If an optimization starts, it will run until the termination 
criterion is reached. Finding the right termination criterion is another task when 
using metaheuristics. If the optimization terminates too early, a good solution may 
not be found. If the computation runs too long, computation time is wasted with-
out relevant increase in the solution quality. We want to face these problems of 
missing dynamics during the optimization process and of finding adequate parame-
ter sets for a combination of advantages of metaheuristics in this paper. 

This paper is structured as follows. In section 2, we discuss how other existing 
frameworks address our challenges. In the third section we describe our frame-
work and how a metaheuristic can be implemented. The fourth section provides an 
example how the framework can be used for optimization with PSO. In section 5 
we discuss our approach and finally we take a brief look at the next steps or mode-
specific options for our framework. 

2 Related Work 

Many different frameworks for using various metaheuristics are available. Most of 
them offer a lot of pre-defined functionality and metaheuristics like GA, Evolu-
tionary Algorithm (SPEA2 and NSGA2), and Particle Swarm Optimization etc. 
The most common frameworks are OPT4J1, JMETAL2, EvA23 and JGAP4. These 
frameworks are libraries for JAVA and combine a lot of functionality for using 
metaheuristics. All types of metaheuristics can be initialized with different parame-
ters and settings. To use the frameworks it is necessary to specify the problem in a 
specific language and implementation type. This translation is often difficult and a 
well known problem, because if there are abstract classes in the problem instance 
one has to write an en- and decoder for any problem types. After solving the prob-
lem of the translation into the right language, every optimization type can be con-
figured and tested with the problem. During runtime of the optimization process 
there is no interaction between the optimization and the program which uses the 
optimization. Everything must be coordinated and configured before the start of 
the computation. The second handicap is that no dynamic adaptation of the opti-
mization is possible. If disadvantageous parameters were chosen, one would have 
to wait until the end of the optimization process to change them. These ap-
proaches do not allow to use or combine intermediate results of different meta-
heuristics during runtime. Additionally, dynamic environmental changes influenc-
ing the search space or the fitness function cannot be taken into account until the 
optimization process reaches its termination criterion. 

                                                      
1 http://opt4j.sourceforge.net 
2 http://jmetal.sourceforge.net 
3 http://www.ra.cs.uni-tuebingen.de/software/EvA2/ 
4 http://jgap.sourceforge.net 
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The Paradiseo5 framework provides distributed optimization on more than one 
central processing unit. Furthermore, it allows multi-objective problem types 
(Cahon et al. 2004). It has a straightforward implementation interface for adding 
new metaheuristics but there exists no interface for interrupting or observing the 
optimization process during runtime. It is possible to start the optimization and 
collect the data at the end of the optimization process. If one wanted to change 
parameters during runtime, he would have to stop and restart. Changing the fitness 
function leads to the loss of the current status of the optimization. The advantage 
of Paradiseo is that all integrated metaheuristics can be computed in parallel.  

Finding the best parameters for a metaheuristic is a non trivial-task (Lee and 
El-Sharkawi 2008). Lots of techniques have been used to find the best parameter 
set for PSO (Tewolde et al. 2009). The disadvantage of the learning techniques is 
the iteration process where for every parameter set the whole optimization must be 
computed to get the information for the training set. Other approaches try to “un-
derstand” the fitness function first in a theoretical way and decide which parame-
ters could be the best for the specific fitness landscape (Hutter et al. 2006).  
Standard tuning methods are based on one or a fixed set of fitness functions and 
hence do not work well on other fitness functions especially if the fitness function 
changes during runtime. The real world shows us, that changes in the fitness func-
tion often happen. If a packet delivery driver starts with his route, he will compute 
an optimized route so that all packets are delivered in an efficient way. If he gets 
the information that one packet gets a new delivery address, he will have to re-
compute his way with this changed fitness function. Even if the fitness function 
changes only marginally during computation (e.g., packet A should be delivered to 
B and not C) it might be necessary to adapt the parameter set in order to maintain 
the result quality.  

The dynamic exchange of solutions between different metaheuristics without 
losing information about the prior optimization is an open task and has never been 
done to the knowledge of the authors. The metaheuristics are usually run from the 
start to a termination criterion in order to get good results. But if the fitness func-
tion changes, changing the metaheuristic can be an advantage, e.g., because the 
fitness landscape might not be as cliffy as before. In this case it is better to change 
the metaheuristic without losing the solutions achieved so far. 

With these problems of missing dynamics in mind we have developed a new 
agent-based approach (Lorion et al. 2009). In this work the framework is extended 
to acquire the missing dynamics in optimization processes. 

                                                      
5 http://paradiseo.gforge.inria.fr 
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3 Framework for Dynamic Combination and Adaptation of 
Metaheuristics 

In this section we present the architecture of our framework and describe how the 
optimization process can be controlled. We also give an example how new meta-
heuristics can be integrated, enhanced and controlled during runtime. 

3.1 Architecture 

The main structure of the framework is the agent construct. Figure 1 shows the 
abstract architecture of the framework agent. The advantage of an agent-based 
structure is the flexibility of the agent. The reasoning of the agent allows for 
steering the metaheuristic autonomously and enables problem-specific decision 
making. A social behaviour which affords the communication between agents is 
specified and lets the agents solve a problem together in a multi-agent system by 
exchanging their solutions (or information about the optimization process) of a 
problem. The agent contains a simple perceive-next-do structure (Wooldridge 
2009). In dynamic environments the agent collects information with the sensors 
and via the communication device. The communication device allows communica-
tion with other agents and to share and distribute solutions. There exists a 
dependency between the  problem to solve and which metaheuristic to use. To use 
PSO as metaheuristic, e.g., the problem must be a numerical optimization problem 
(usually in high dimensional spaces). 

The reasoning component (“Next” in Figure 1) describes the connection be-
tween the agent behaviour and the metaheuristics. The behaviour of an agent is 
flexible and exchangeable. Only one simple interface has to be implemented to 
create new agent behaviours. Every behaviour contains several dynamic adaptation 
strategies for the optimization process and selects one of the provided strategies 
out of the strategy catalogue for the specific metaheuristic. These strategies are 
exchangeable during the optimization based on the offered flexibility of an agent 
structure and can change the parameter settings of the optimization. The behav-
iour observes the optimization and holds the current best solution at every time 
step. This solution can be compared with other solutions from other agents or 
other metaheuristics. Depending on the performance of the solution the selected 
strategy can decide to inject this solution to another metaheuristic during runtime 
or to change the parameters. The agent can start and stop the optimization process 
at every time step. With this feature every aspect of the optimization presets can be 
changed and adjusted w.r.t. new information, e.g., about the environment.  
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Figure 1: Abstract architecture of the agent 

 
Depending on the problem every agent can choose between different metaheuris-
tics and change the used metaheuristics during runtime (dynamic combination). 
More than one metaheuristic can be computed in parallel. The different metaheu-
ristics can exchange and adapt solution of another metaheuristic within one agent 
as well. This dynamic combination of solutions of different metaheuristics provide 
a basis to solve problems with more than one type of metaheuristic. The agent 
starts the computation of the metaheuristic and observes the computation. The 
Observer provides data of the optimization process and a solution at every time step 
so anytime the agent could get any information about the process. This provided 
solution is comparable to solutions from other metaheuristics, if more than one is 
used, because every solution is stored as a metaheuristic independent Entity. This 
Entity interface gives the agent the ability to use different types of metaheuristics 
and to use hybrid optimization by exchanging the best solution between metaheu-
ristics. Due to the communication abilities of agents, solutions can be exchanged 
between agents allowing cooperation within the multi-agent system. As shown in 
Figure 2, a metaheuristic contains a parameter set and a strategy. The Strategy holds 
a parameter set or an algorithm to adapt the parameters during the optimization 
process, i.e., applicable parameters of different metaheuristics can be handled here. 
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If the agent gets new information about the problem, e.g., that the optimization 
has to end soon, it could inject this information into the actual strategy or set a 
new strategy with the intention to get a better final result of the optimization.  
 

 
Figure 2: Interface of a metaheuristic 

3.2 Starting an Optimization Process 

One problem is which start parameters the metaheuristic should use. The easiest 
way is to set all start parameters to standard values from literature of the 
corresponding metaheuristic (in Particle Swarm Optimization: w= 0.768, c1 = 
1.4962, c2= 1.4962 (Clerc and Kennedy 2002)). This is a standard way to initialize 
metaheuristics. In our framework every metaheuristic gets the strategy from the 
agent. It is possible to add a parameter optimizer which analyzes the fitness functi-
on and sets promising start parameters before the optimization process starts. This 
feature is configurable by the agent.  

3.3 The Optimization Process 

First every metaheuristic is initialized with a configuration set by the agent. The 
strategy is set and the fitness function is given by the agent. There are three op-
tions to start and run the optimization process. The agent can start the optimiza-
tion normally and wait until it interrupts the process or the solution meets a termi-
nation criterion. The second option is to start the optimization only for one epoch. 
The agent can arbitrarily repeat this computation. The last option is to compute 
the optimization stepwise. The metaheuristic only computes the next fitness value 
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and then stops. Every time the agent stops the computation of the optimization, 
the metaheuristic is in a “waiting loop” where the actual state of the optimization is 
stored. In this state the agent can change and configure every aspect mentioned 
above. During the optimization process the strategy observes the fitness landscape 
and adapts the parameters accordingly. After every step or epoch of the optimiza-
tion the metaheuristic yields the current best solution.  

3.4 Implementing a New Metaheuristic 

The framework is able to work with all population-based metaheuristics (like PSO, 
Genetic Algorithms, etc…). In order to implement new metaheuristics only a few 
interfaces have to be implemented. Every solution is an abstract Entity. This Entity 
has only a few methods which describe everything the agent and the metaheuristic 
has to know about the solution to share it with other metaheuristics, i.e. the fitness, 
the actual position in the function landscape and the actual properties (velocity, 
neighbours, etc…). To provide the current position and fitness it is necessary to 
build a decoder and encoder for different types of problems for every metaheuris-
tic if one wants to share the solution between different types of metaheuristics. 
The framework provides a metaheuristic independent standard strategy which uses 
the standard parameter set of the corresponding metaheuristic. Additionally, the 
standard strategy can perform simple modifications, like increasing or decreasing a 
parameter value. Every metaheuristic should provide – independent of the parame-
ter adaptation strategies – a standard parameter set that could be used if no para-
meter sets are given. 

The last step on the way to a new metaheuristic is the Observer. This interface 
only contains five important functions: two functions get the fitness values and the 
collected data about the optimization process. This is only important for the statis-
tics at the end of the run. Two functions are for the classifiers if the strategy uses a 
learning technique for parameter adaptation. The main function is the analyze 
function which provides the actual state of the optimization. With these functions 
the Observer provides all the data about the optimization for the agent. 

3.5 Using a Classifier 

To analyze the optimization process and to set the right parameters at the right 
time machine learning techniques should be applied. To provide different tech-
niques, this framework allows every observer to use different kinds of machine 
learning techniques like J4.8 tree (an implementation of C4.5) and neuronal networks. 
These classifiers are implemented in the WEKA machine learning toolkit6. To use 
these techniques as classifiers every classifier has to be trained with the data pro-
vided by the observer. Different problems have to be solved to get the training 

                                                      
6 http://www.cs.waikato.ac.nz/ml/weka/ 
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data and to be independent from the fitness landscapes of single problems. If the 
classifier is trained, the observer can use it to get the actual state of the optimiza-
tion and help the strategy to set the right next parameter sets for the metaheuristic. 

3.6 Statistical Visualization 

Every agent holds a statistic class which provides an output format for R-Project7 to 
visualize the optimization run or to perform statistical significance tests (e.g., t-test, 
ANOVA, etc.) to check if an optimization run is better than another. 

4 Application to PSO 

We have implemented the framework as described in the previous section. In or-
der to demonstrate the usability of the framework and the possibilities using the 
framework for research we adapt the Particle Swarm Optimization and test how a 
dynamic switch of the parameters influences the optimization process. For dyna-
mic adaptation of the PSO, we introduce a number of swarm properties that can 
be used for selecting an adequate parameter set. The basic idea is to learn an adap-
tation strategy by identifying good parameter sets w. r. t. the swarm properties at a 
current time step in the optimization process. 

4.1 Integrating a Metaheuristic 

To describe how we designed a PSO with our framework we simply show how the 
design of the metaheuristic is structured. The interface Metaheuristic is implemented 
by the class Swarm which holds the whole swarm. To compute the swarm a few 
functions have to be implemented which either compute a whole generation or 
simply one particle after another. Every particle is implemented as an Entity. The 
strategy catalogue contains different strategies with fixed strong parameter sets. 
One additional strategy includes a classifier which is trained by examples with 
results of previous PSO runs with different parameters. The classifier selects the 
parameter set to be used based on a number of swarm properties and thus 
implements an adaptive strategy for PSO. The properties which describe the 
swarm and the optimization process are described in the Observer. The first three 
properties address the velocity of the particle (see Figure 3). The observer 
computes the average speed (see Fig 3.a) of the particles during the epoch, as well 
as the highest and lowest speed of the swarm (see Fig 3.b). Other properties are 
the direction of the swarm and the particles. Is the swarm focussing or spreading 
and to which direction does the average direction of the velocities of every particle 

                                                      
7 http://www.r-project.org/ 
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point (see Fig 3.c). Focussing means that the swarm is moving towards a minimum 
and slowing the speed down. 

The last properties are about the positions of the particles. The observer com-
putes the average distance to the best point of the swarm (see Figure 4.a), the larg-
est distance between two particles (see Fig 4.b) in the swarm, and the convex hull 
of all particles (see Fig 4.c). 

 

 
Figure 3: Velocity properties 

 
To avoid the problems of different functions, the fitness is not taken into account 
as a property as different problems can have different scales of the fitness 
landscape. 
 

 
Figure 4: Position properties 

4.2 First Experiments with this Framework Using a PSO  

As first experiments we want to learn strategies for parameter adaptation. To solve 
this problem, we use a supervised learning technique to build up a classifier. To 
build the training set for this classifier we need different strategies to collect data 
for the different parameter sets. In Figure 5 we show how we collect and use trai-
ning data to build the classifier. 

As described in Section 3 it is possible to hold more than one metaheuristic 
per agent. In our example we use 20 PSOs with different parameters. As a first 
step we initialize one swarm and copy the particles (entities) to the other swarms, 
i.e.,. every swarm starts at the same position. Then the agent starts the computa-
tion of all metaheuristics for 20 epochs. The agent stops the computation and 
evaluates the latest fitness values from every swarm. The fitness combined with the 
properties of the swarm is provided and stored by the observer of every swarm.. 
After collecting the data the agent compares the data and sets the actual best fit-
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ness as best strategy parameter for the collected properties of the swarm in the 
previous collecting phase. After that all best swarm’s particles are copied to the 
other swarms and replace all particles so that all swarms are identical. Repeating 
this step for a number of rounds lets all collected properties get a best parameter 
set and completes the training set (i.e., swarm properties and the identified parame-
ter set with highest fitness for this situation). 
 

 
Figure 5: Generation of training data for learning an adaptation strategy 

 
These properties combined with the parameters showing the best fitness after 20 
epochs are used as a training set for the classifier. The learned classifier is later 
used for dynamic parameter switching in the adaptation strategy. 

4.3  Applying the Classifier as an Adaptation Strategy 

The learned classifier is used for dynamic parameter switching in a strategy. This 
strategy automatically switches to the learned parameter set depending on the 
observer data of the current situation. Finally we compare this dynamic parameter 
switching PSO to 20 normal PSOs using a standard parameter set and choose after 
termination the best swarm as competitor. The result shows us that more swarms 
switching to the swarm with the best parameter set are more efficient than one 
swarm switching to the best parameter set. This can be explained by the higher 
amount of computational power. If we compare the adaptive strategy to only one 
standard PSO we get the same result depending on the randomization during the 
optimization process. This probably depends on the number of swarms because 
independent of the chosen parameter set a higher number of swarms has a bigger 
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change to reach a better fitness. A next step is to find another strategy and to 
compare the different parameter sets on different fitness functions. 

In order to analyse the potential of different parameter sets, we selected differ-
ent kappa values of the constriction update function (Eberhart and Shi 2000) and ap-
plied them to different functions. The visualization of the mean fitness values over 
time using the statistics class can be seen in Figure 6. Every colour represents a 
different kappa value. The red curve has the best solution in the end but does not 
show fast optimization in the beginning. In contrast, the blue curve has a strong 
draft down but then the swarm focuses too early. As we see with this framework it 
is possible to analyse efficiently the metaheuristic and find new strategies to gain a 
better result with one optimization run.  

 
Figure 6: Different kappa values (average over five different functions) 

 

5 Discussion 

In this work we presented a new approach for analysing and using metaheuristics 
in a more efficient and easier way. The extension to new metaheuristics is simple 
through the few interfaces that have to be implemented. The underlying agent 
structure guarantees flexibility and autonomous computation of metaheuristics in a 
wide field of technology. We are at the beginning of the development of this fra-
mework and some features depend on our own systems in the current status. The 
agents communicates with an own language and have no official agent communi-
cation language. We avoid to use an agent framework like JADE (Bellifemine et al. 
2000) in the first step because we want to build an easy agent structure which can 
be adapted and reused easily on all systems. The first experiments with this frame-
work have been done and demonstrated the flexibility as well as the possibility to 
change parameters dynamically in a metaheuristic. 
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6 Future Work 

The next steps are to make our agent compatible to JADE. This implicates that the 
communication of the agents change to the ACL (Poslad et al. 2000). With this 
change it is possible to build up a multiagent system with an underlying optimized 
JADE structure. Being compliant to ACL allows for interacting with other agents 
following this standard as well. 

Furthermore we want to expand our research on dynamic parameter adapta-
tion during the optimization process to find out whether different parameter sets 
gain a better solution in efficient time as a standard metaheuristic run and if it is 
possible to find the best strategy autonomously for different sets of problems.  
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