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Abstract. As has been shown recently, the identificatiomaftastableshemical conformations leads to

a Perron cluster eigenvalue problem for a reversible Markov operator. Naive discretization of this opera-
tor would suffer from combinatorial explosion. As a first remedy, a pre-identification of essential degrees

of freedom out of the set of torsion angles had been applied up to now. The present paper suggests a dif-
ferent approach based on neural networks: its idea is to discretize the Markov operator via self-organizing
box maps. The thus obtained box decomposition then serves as a prerequisite for the subsequent Perron
cluster analysis. Moreover, this approach also permits exploitation of additional structure within embed-
ded simulations. As it turns out, the new method is fully automatic and efficient also in the treatment of
biomolecules. This is exemplified by numerical results.

Keywords. Biochemical conformations, cluster analysis, molecular dynamics, Hybrid Monte-
Carlo methods, Markov operator, Perron cluster analysis, Self-Organizing Maps

Introduction

The analysis of biomolecular structure and function is one of the real challenges of scientific
computing nowadays. The key concept to charactestizecturehas become the characteriza-
tion in terms ofgeometrical conformation®ften just called conformations in literature. The
present paper advocates tfiaiction the most interesting aspect of biomolecules, should be
rather characterized by what has been catterlastable conformationgny type of confor-
mations consists of sets of possible molecular states. In geometrical conformations such sets
are defined via the geometric similarity of different states. In metastable conformations such
sets are defined via the high probability of the molecule to stay in such a set, once it is in such
a set. From the point of view of dynamical systems the totality of all possible states is called
invariant set As an extension of that termaJmost invariant setsurn out to be equivalent to
metastable conformations in molecular systems.

In [3] a first attempt had been made to identify metastable conformations on the basis
of the so-called Perron-Frobenius operator. That approach, though principally opening the
door to the new concept of conformation dynamics, had been more or less restricted to toy
molecules. Since then the Perron-Frobenius operator in phase space has been replaced by a
different Markov operatof” in position space [21,22]. This new operator has much nicer the-
oretical properties. Its numerical evaluation is done via Hybrid Monte-Carlo (HMC) methods;
like classical Monte-Carlo, HMC also suffers from possitsbppingin local potential wells.

In order to overcome this unwanted effect, an adaptive temperature version has been worked
out [9]. More recently an intelligent adaptation of temperature within the Boltzmann distribu-
tion has led to a hierarchical uncoupling/coupling method to be described in this same volume
(see [10]). Once a moderate numbesf spatial boxes has been determined, the Markov oper-
ator can be dicretized in the form of a stochaskick)-matrix. The identification of metastable
conformations then boils down to the numerical solution of an eigenvalue cluster problem, the
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so called Perron cluster eigenvalue problem. An efficient algorithrRdaon cluster analysis
has been published in [5].

The actual determination of a moderate size of spatial boxes, however, turns out to be a
hard problem in itself. In fact, naive decomposition of position space to discretize the Markov
operatofl’ would lead to a combinatorial explosion of the number of boxes, the unwanted curse
of dimension. As a first remedgssential degrees of freedom (DGR)the spirit of [2] - on
the basis of torsion angles only - led to a treatment of small molecules [22]. Unfortunately, for
larger molecules, this technique appeared to be not robust enough. The topic of the present
paper is to suggest an alternative spatial decomposition technique based on self-organized
neural networks. First attempts have been published in [13]. Here we want to report about
progress beyond that paper.

The present paper is organized as follows. In Section 1 we recall the main computational
issues for the discretization of the above mentioned Markov operator to obtigtlzastic
matrix. These are: (a) a spatial deomposition to obtain a moderate numieboxes, (b)

Hybrid Monte Carlo (HMC) methods for the approximation of the entries of th&)-matrix,

and (c) temperature or, more general, parameter embedding to avoid trapping in the HMC
process. In Section 2 we present our new extension from the point concept of Kohonen'’s self-
organizing maps (SOM) to the set concepseff-organizing box map&OBM). In order to

be able to interpret the results of the neural cluster algorithms, we work out the concept of
discriminating variablesn Section 3. Finally, in Section 4, the algorithm is exemplified as
part of the wholdPerron clusteralgorithm at several molecular systems: First, we give results
for the simple n-pentane molecule, where everything is known and can therefore be compared
in detail with other sources — see [10] also in this volume. Second, we present results for a
potential anti-AIDS drug, an HIV protease inhibitor. Third, we report about the occurrence of
metastable conformations within virtual screening of a molecular database.

1 Discretization of Markov operator

The present section discusses several computational issues in connection with the already men-
tioned Markov operatof” as suggested by [21]. That operator is obtained from the Perron-
Frobenius operator by some momenta averaging based on the Boltzmann distrfigution

given heat bath temperature. It may be interpreted as the transfer operator of an underlying
Markov chain as shown schematically in Figure 1.

O

Fig. 1. Markov chain associated with Markov operafor

Hybrid Monte-Carlo (HMC) methodsThis Markov chain can be realized in the following
3-step process [9]:

— random choice of momenta from a Gaussian distribution,

— deterministic propagation of the molecular system by the figwwith potentiall” and
overshorttime r,

— acceptance or rejection of new configurations by an appropriate transition kéofehe
underlying Markov process [8] e.g. Metropolis-Hastings.
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Spatial decompositionThe evaluation of the operat@r requires a spatial decomposition as

a prerequisite. Le® be a covering of the position spatewith k& pairwise disjoint partitions
O,.LetI'(0,), ..., I'(6}) denote associated fibers in phase spaee 2 x R3Y, whereN is

the number of atoms in the molecule. For the corresponding characteristic functions we write
Xr(e.)- On this basis the transfer operator can be discretized to yieltighsition matrix.S

with entries

fr(@s)XI’(@z)(@(/J?)fO(JC)dQC
Ssl =
fp(@‘s)fo(l")

Each entryS,; is the probability of a transition from subspa®@e to @, during timer.

Let us now restrict? to be the space spanneddtprsion anglesWithout loss of generality
we assume that each angle ranges within, 7]. For an introduction to the analysis of cyclic
data see [11]. By°, we denote the probability distribution dawhich is uniquely determined
by the probability density functiop := f, associated with the Markov Operatbr

@)

Definition 1. We call® := {6, ..., 0} aVoronoi tessellatiorf {2 with partitionsOs, if
k

Je.=02 and 6,n0,=0 forallp,se{l,....k}.

s=1
The quality of the discretization of the operatbrdepends on how well the corresponding
Voronoi tessellation approximates the topologyf@fwith respect toP,. One possibility to
measure the approximation quality is given by
Definition 2. Let © be a Voronoi tessellation a? with & partitions. Then we call

k
o)=Y [ distle,p)p(e)oly)dady 2)
s=17T,Yy€EO;

thedecomposition erroof © with respect tg, wheredist : 2 x 2 — Ry is a suitable distance
measure o2, e.g., the distance on tlgedimensional unit circle:

q

dist(z,y) = Z(sin(xi) —sin(y;))? + (cos(z;) — cos(y;))? 3)
i=1

for x,y € {2, wherez; andy; denote the values of thih torsion angle.

It is obvious that from a theoretical point of view one is interested in the computation of a
Voronoi tessellation so that the corresponding decomposition error is minimized with respect
to some preassigned numlieof partitions. In passing we note that this is a well-known prob-
lem also in fields like signal processing [15] and general cluster analysis [6,7]. In most practical
applications such an optimal tessellation is usually not sufficient, because the corresponding
rules how to decide whether a configuratiore (2 is inside a partitior©; or not, are compu-
tationally too complex. Obviously such rules are much simpler, if we require thad ffere
merelyboxesin (2.

Definition 3. We call a subseB C {2 aboxin (2, if there exist intervald (I;,7;) C R for
= 1,...,q, with B = ,?=1 I(lz,f'z) = (I(Zl,’l"l), Ce ,I(lq,rq)). Forl; < r; we allow
I(li7’f’i) = [li,’l’i], I(ll,’l’l) :]li77’i], I(l“’l’l) = [li77'7;[ and[(li,’l’i) :NZ,TZ[ If I, > r; we de-
fine thatl(1;, r;) represents the complementary intervadr, 7]\ I(r;, ;). We seBOX({?2) :=
{B|Bboxin 2}.
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Uniform box-decompositionFori =1,...,qwe choosan; € N* and real values; 1,...,
bim,; such that-m < by ,, < ... <b;m <7 Thenthe mterval.i” = [bi j, b j41] fOrj =
1,...,m; —landl;,,, = [-« 7r]\]bz 1, bi,m,] @re pairwise disjoint and build a covering of
[—m, 7]. We can easily compute= []7_, m; boxesO, by simple combination of one interval
after the other per each torsion angle. It is then easy to checthat,., := {©1,...,6k}
builds a Voronoi tessellation ¢®. Therefore we calb iz, @ uniform k-box-decomposition
of £2. Obviously there are two main problems involved:

First, to optimize®, nitorm With respect taP,, i.e., to minimize the decomposition error
according to Eq. (2), one has to determine optimal boundayies. . , b; ,,, for each variable.
This would lead to an NP-hard combinatorial problem.

Second, remember that the transition matrix corresponding to opéFai®rof dimen-
sion k x k; then, with increasing, the numberk grows exponentially for a uniform box-
decomposition, even if we only allow two intervals per variable, i.e., if wensgt= 2 for
i =1,...,q. For example, a relative small molecule with only 20 torsion angles would thus
lead tok > 10°.

Approximate box-decompositiorin order to avoid the curse of dimension, it seems to be a
reasonable idea to fix the parameteat a suitable level and to compute a Voronoi tessellation

of 2 with k partitions@; € BOX(£2) and minimal decomposition error. However, the actual
realization of such an “optimal” box decomposition is very expensive. Moreover, practical
experience shows that the decomposition error usually is very bad compared with the error
for arbitrary partitions. We therefore suggest to fix the paramietdiut to relax the above
definition of box-decomposition:

Definition 4. We call ©,4) an approximatek-box-decompositiomf (2 with respect top,
whenever© := {04, ...,0;} is a Voronoi tessellation of? with a nearly optimal decompo-
sition error according to Eq. (2) and is a set ofk boxesA, ..., A, € BOX({2), such that
overlapp (A) ~ 0 and0 < overlayp (6, 4) < 1.

Herein we use the terntwerlapandoverlayin the following way:

Definition 5. Let M := {M,,..., M} be a set ofc subsets of? with P,(M,) > 0 for
s=1,...,k. Let©® be a Voronoi tessellation aP with k& partitions©,. Then the overlay of
© and M with respect taP, is given by

k
overlay p (6, M) ZP Ms N 6y), 4)

s=1

whereas the overlap dff with respect taP, is defined by

My Upzs M, ).
Py(Upzy M)
For an interpretation, the valueverlay » (©, A) indicates the covering quality for a given
o. If overlay p. (©,A) = 1 then we call ©,A) a fully coveringk-box-decomposition. Note
that, if addmonally@ has an optimal decomposition error with respecptal is an optimal

box-decomposition in the above strict sense. Suppose now@ha) (s an approximaté-box
decomposition of?2, than the following simple rules describe the Voronoi partitiéhs

IF Vi=1,...,q z; €A, :=[ls,,rs;] THEN z € O,.

k
overlapp (M) := Z Bl (5)
s=1
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It is obvious that these description rules are not complete. For a good covering, i.e., one with
overlayp (6, A) ~ 1, this might be no problem. But otherwise one has to define additional
rules such as how to deal with the configuratiens {2 that can not be assigned &

Instead of boxes, one might also think of approximating the Voronoi partitions by using
more complex geometrical objects. But the price to be paid for a possibly better approximation
quality is a more complex description.

Parameter embeddingMetastability goes intimately with the undesirable effectrapping

within any Monte-Carlo simulation. In order to avoid such an occurrence, one may embed the
given problem into a family of problems with flo#{;* in terms of an embedding parameter

s € [0,1] such that, at = 0, only a few metastable subsets need to be identified, whereas
ats = 1 a rich structure of conformations might arise. Two types of embedding are in quite
common usetemperature embeddirandpotential embeddindJpon examining the equations

of motion, one immediately sees that, in the context of HMC, temperature embedding can be
realized by the following flow:

2

oy = 03,7, ©)

which requires a scaling of both the potential and the time step of propagation [21].

Any kind of embedding stimulates the idea of a hierarchical algorithm consisting of the
following steps:

1. simulate the molecular system for a specific parameter (say, high temperature), which
causes the flow to overcome specific energy barriers,

2. identify metastable subsets,

3. increase the parameter (say, lower the temperature), but restrict the simulation to one of
the metastable subsets. Go to 1.

This algorithm will generate a hierarchy of subsets that can be sampled independently at
each level. The restriction of an HMC-simulation to a given metastable sGbsedjuires only
a slight modification of the Markov kernd{ to K; [8,10]. The additional rule is that any con-
figuration outside the subsé} will be rejected. Detailed balance still holds for this modified
Markov kernel, so thaf(; is still reversible [8]. Since”; is metastable, only a few rejections
will be expected with respect to the new rule. Moreover, trapping should thus be avoided, since
energy barriers towards all other metastable subsets can be ignored. A further exploitation of
this embedding structure is given in [10], where an uncoupling/coupling technique has been
suggested and worked out.

A schematic diagram of such a hierarchy is given in Figure 2. As can been seen there, each
cluster needs to be described by appropriate boundaries. To save computer time over the whole
simulation, one is interested in simple descriptions in terms of a minimal necessary set of
variables. Reduction of variables is a typical task for statistical methods, like e.g. discriminant
analysis. As already mentioned in the Introduction, however, we describe the configurational
space in terms of cyclic torsion angles. As conventional discriminant analysis is usually not
ready to work for cyclic data, we will introduce the new conceptlistriminating variables
in Section 3 and suggest a heuristical algorithm for their automatic determination.
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O

Fig. 2. Hierarchical scheme of clustering combined with parameter embedding. The numbers denote
metastable conformations at different levels of the hierarchical embedding scheme.

2 From Self-Organizing Maps to Box Maps

In the following we will work out details of our recently developed Self-Organizing Box Maps
(SOBM) algorithm [12], an extension of the traditional SOM algorithm. The SOBM algorithm
permits to compute approximakebox decompositions af2.

2.1 Point concept: Self-Organizing Maps

The computation of a Voronoi tessellation so that the corresponding decomposition error ac-
cording to Eq. (2) is minimized for given parameters often too expensive. Therefore one
often only tries to find a codebodk := {W,,..., Wy} C £2 such that the distances between

the configurations from the sampling and their nearest codebook Vd¢t@re minimized,

i.e., such that thdistortion value

k

W] =" / dist(x, W) p(z)dz 7)
s—1 7/ TE€EOW,
is minimized, where
Ow, = {z € 2|dist(z, W,) = _rrllin dist(x, W) }. (8)

3

If we can assure a unique assignment of each vecter? in Eq. (8), then obviouslpy, :=
{Ow,,...,Ow,} is a Voronoi tessellation of? with a nearly minimal decomposition error.

But even the exact optimization of Eq. (7) is often too expensive: rather one has to use one
of several heuristic algorithms that compute an approximate solution [20,17,1]. One powerful
method is KOHONEN' s Self-Organizing Maps (SOM) algorithm. Although it has been shown
[18] that the codebook vectors produced by the basic SOM algorithm in general do not exactly
coincide with the optimum of Eq. (7) the algorithm usually produces fast and good solutions
even for high-dimensional. It can be easily adapted to the case of cyclic data and has the
feature of topology approximation. Further the decomposition results are rather robust under
small changes of the numbkr

We first give a short general description of the SOM algorithm—for an exhaustive presen-
tation see [19]—before we focus on the adaptations that are necessary to use it with cyclic
data. Forg torsion angle variables, each map is formed hydimensional input-layer that is
fully connected with the usually two-dimensional Kohonen layer, which is a neurah grid
G with rectangular or hexagonal topology ahd= nm grid neurons. The coordinate tuple
of each neuroms on the grid is denoted by, € G and each neuros is uniguely related to
a g-dimensional codebook vectdV,. After a suitable initialization of the codebook vectors,
the SOM is trained irl. time steps by a repeated presentation of vectors of-tienensional
input spacef? according to a probability distributioR,. For each presented input vector the
SOM computes the so called winner neuron and its neighboring neurons on the grid and adapts
the related codebook vectors, such that the distance to the input vector is reduced. To achieve
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convergence, the rate of the distance reduction{0, ..., L} — [0, 1] — called learning rate
— and the width of the neighborhood of the winner neuron, the so called neighborhood radius
functiony : {0,..., L} — R, shrink to zero with time.

By construction it is obvious that after a suitable number of training steps the codebook
vectors that are related to neighboring neurons on the grid, are neighboring in the input space
according to the chosen distance function. Therefore the codebook vectors not only determine
— via Eq. (8) — a Voronoi tessellation ¢?, but also approximate the topology of the input
space via the neighborhood structure of the grid.

In the following we describe the initialization of the codebook vectors, the definition of
the winner neuron together with its grid neighborhood and the specification of the codebook
adaptation rule for cyclic input data.

Initialization. We suggest to choose the initial valués (0), . . ., W (0) as approximately
P,-distributed random vectors wiflv;(0) € 2fors =1,..., k.

Winner neuron and grid neighborhootlet z = (x1,...,z,) € (2 be an arbitrary input
vectorand/1/, ..., W, € {2the actual codebook vectors of the SOM. Then we call neuron
p € {1,...,k} thewinner neurorfor input z, if

dist(z, W,,) = SE{ml,i.l'r.l’k} dist(z, W) . 9)
Note that Eq. (9) is equivalent to € Oy, if Oy, is defined according to Eq. (8). In the
case of more than one neuron, which match Eq. (9), various strategies are used to assure
unigueness. Sometimes the winner is chosen randomly, but usually the one with the lowest
index is taken as the actual winner.
To determine the neighboring neurons of the winner neuron, one has to specify a grid
distance functiom : G x G x R™ — 0, 1]. Usually one uses either the bubble grid
distance

0if st — sz2 <~

Mbubble (Zs, Zpy y) =
1 else,

or the Gaussian grid distance

2
ngaussian(zs, Zp,’y) =1—exp <_%>

where~y denotes the actual neighborhood radius Mg the two-dimensional Euclidean
distance. A neuros belongs to the neighborhood of winner neugoifi (2, z,,7) < 1.
If we choose)gqussian, then the neighborhood of each neuron coatirgrid neurons.

Codebook adaptation ruleket neuronp be the winner neuron for input(t) = (x1(t),

L xq(t) € 2 attimet € {0,...,L — 1} andWi(t),..., Wy(t) € £2 the actual code-
book vectors. Further let(¢) and~(¢) be two time-dependent linear or log-linear func-
tions, respectively, decreasing to zero, witf) < 1 and~(0) < w Usually~(t)
is called theneighborhood-radiugunction, respectively.

Then, new codebook vectors are computed as:

Wo(t+ 1) := Wi(t) + at) neigh(zs, 2p, t) (x(t) — Ws(t)), s=1,...,k.  (10)
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with neigh(zg, zp, t) :== 1 — n(zs, zp, Y(t)).

Cyclic boundary transformation (CBT) ruleg/hen dealing with cyclic data, the input
vector or the old codebook cector, respectively, may need to be transformed first, before
the new codebook vector can be computed according to Eq. (10):

(i) IF W, (¢) >0 AND z;(t) < 0 AND abs(Ws, (t)) + abs(z;(t)) > 7
THEN z;(¢t) := x;(t) + 27.

(i) IF Wy, (t) <0 AND z;(t) > 0 AND abs(Ws,(t)) + abs(z;(t)) > =
THEN W,, (t) := Wi, (t) + 2,

with abs(z;) := /27 fori = 1,...,¢. Note that after the new codebook vector has been
computed, eventually it must also be transformed such that each comptnént- 1) is
inside the interval—m, 7.

2.2 Set concept: Self-Organizing Box Maps

The basic idea of the Self-Organizing Box Maps (SOBM) algorithm is to comprdebook
boxesWy := (Ws,, ..., W,) € BOX(£2) with W, := [I,,,rs,] instead of codebook vectors
Ws = (Ws,,...,Ws,) € £2. This is done is such a way that each codebook box is a good box
approximation of its implicitly defined Voronoi partitiof, := Oy, with respect t.

Definition 6. Let B be a box inf2 and A an arbitrary non-void subset ¢f. ThenB is called
abox approximatiorof A with respect t, if P,(B\ A) + P,(A\ B) < 1.

Obviously, this change of concept induces changes of the SOM algorithm, which we arrange
here:

Initialization. Let 177 (0), .. ., W (0) be different initial values for the codebook vectors of
the traditional SOM, e.qg., approximatef}-distributed random vectors wit;(0) € 2
for s = 1,..., k. For our extended algorithm, we chods& (0) := ®?_, [l., (0), 7, (0)]
with [, (0) = W, (0) andr,, (0) = Wy, (0) 4+ € < 7 in terms of a small positive value

the initial width of the interval, such that’, N Wp ={foralls,pe{1,...,k}.

Winner neuronWe suppose that the problem specijicimensional distance function
dist(z, y) with z,y € {2 can be written as a function gfone-dimensional distance mea-
suresd;(z;, y;), which means thadist(z, y) := f(di(z1,91),...,dq(xq,Y,)). Note that

many popular distance measures, as e.g., the Euclidean distance, just exhibit this feature.
In the case of our suggested distance measure (see Eq. (3)) we have:

q

fldi,...,dg) = (Z di)1/2
with  d;(i,y;) == (sin(w;) — sin(yi))* + (cos(x;) — cos(ys))*.

Obviously we need a distance measure DIST, that permits to compute the distance between
an input vectot: € 2 and codebook boxdd’, € BOX({2). For that purpose, we suggest

DIST(z, Wy) := f(di(x1, W), - ., dg(4, Ws,))
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with
o 0 if z; € W,
dl(mesZ) =
min{d;(x;,ls,), di(x;,75,)}  else.
Then the winner neurop has to match a condition analogous to Eq. (9):
DIST(z, W,) = min " DIST (z, Wy) . (11)

Obviously we can use Eg. (11) to define for each codebookibgxhe corresponding
Voronoi partition®; := Oy, analogously to Eq. (8).

Codebook adaptation ruletn analogy to the SOM algorithm, the SOBM algorithm has
to adapt the codebodsoxes This will be done by the following rules:

b, (t+1) := s, (t)
+g(ls, (t),7s; (t), 2:(t)) a(t) neigh(zs, zp, t) (zi(t) — Is, ()
- O[(t) C(lsi (t)v Ts; (t))

+9(=7s; (1), =1s, (1), —24(t)) a(t) neigh(zs, 2p,t) (w:(t) — 75, (1))
+a(t) c(ls, (t),7s,(t))
with a linear functiong : [—=,7]®> — [0,1] described in the Appendix and a special

functionc : R? — R independent of the input(t) ( see [12] for a justification of the
functionsg andc). As shown in [12], the choice

c(a,b) == = t]a,b], (12)

S| =

where.([a, b]) is the width of the intervala, b], guarantees that’, (L) is a nearly optimal

box approximation 0B, (L) if we choose timel, large enough.

For cyclic input data we again have to consider CBT-rules, see the Appendix for details.
There will be a problem, if the width of the intervll, (¢),r,(¢)] is nearly2r. Then

one observes sometimes the artifact that left and right boundaries interchange, so that the
interval becomes “too small”. In this case the adaptation step has to be skipped and the
interval automatically reduces te-2r + ¢, 2 — €] as the new value i, (¢ + 1).

One easily checks, that if the SOBM algorithm is successful, i.e., if the computed final
codebook boxed, are good box approximations of the corresponding Voronoi partitins
then © , W) := (O1,...,0,, Wi,...,W,) is a good approximate-box-decomposition.

3 Discriminating variables

As usual in data mining problems, the high-variableal configuration sfauere is also very
sparse with respect tg i.e., the subse®, := {w € 2| p(w) > 0} is much smaller thar.
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Therefore often only very few variables are necessary to separate the given Voronoi partitions
O, with respect t, i.e., to separate the sefs , ;= {w € O, | p(w) > 0}. In this section

we give a formal definition of discriminating variables with respect to a given Voronoi tessel-
lation. Afterwards we show how an approximate box-decomposition can be used to compute a
heuristic solution automatically.

Definition 7. Letaq,...,a, denote they variables (i.e., torsion angles) spannifrgand let
I c {1,...,q} any index subset. Then we defidgl) := {a; |7 € I} as the corresponding
variable subset anff := {1,...,q} \ I as the complement of |. B§2(I) we denote the!|-
dimensional subspace of spanned by the variables € A(I). FurtherP, ;) andp(I) denote
the projections ofP, andp on 2(I). For any setM := {M,..., M} with M, € 2, we
setM(I) := {My(I),..., M (I)} whereM;(I) denotes the projection d¥/; on £2(I) for
s=1,...,k.

Definition 8. Suppose we have a Voronoi tessellat®n= {©,,...,0;} of £2 and a subset
of indices! C {1,...,q}.

(a) We call the variable set(1¢) redundantfor (12, p,0), if O,y := {O1 51}, - - -+ Ok p(1) }

is a Voronoi tessellation o2, ;.

(b) We call the variable sed(7¢) maximally redundanfor ({2, p, ©), if there exists no subset
J C {1,...,q} such thatd(J°) is redundant fof (2, p, ©) and|J| > |I|.

(c) We call variable:; of £2 aunivariate discriminating variablef ({2, p, ©), if A({:}) is not
redundant foK (2, p, ©).

(d) We call the variables, € A(I) multivariate discriminating variablesf (12, p, ©), if
A(I°) is maximally redundant fof(2, p, ©).

Obviously our task is to find a maximally redundant variableAgt®) for (2, so that we
can describe and separate the given Voronoi partitions by rules based only on the correspond-
ing multivariate discriminating variables.

Unfortunately the above definition cannot be directly realized. Besides the fact that it is
very expensive to verify wheth& , 1 is a Voronoi tessellation or not, especially in practical
applications one has usually to accept slight overlaps between the parétigns, if one
wants to reduce the number of variables at all. Therefore we give a softer definition which
depends on a parametee [0, 1], called sensitivity factor:

Definition 9. Let M := {M,,..., M} be a set of subsets ¢ with P,(M,) > 0 for each
s € {1,...,k}andI C {1,...,q}. Then we call the variable set(I¢) §-redundantfor
(£2,p, M), if overlapp (M (I)) <= overlapp, (M) + 6. A maximallys-redundantvariable
subset is defined analogously.

Suppose now we have an approximat®ox-decompositiond,A) of {2 with respect
to p. Let the variable set\(1¢) be §-redundant for({2, p, A) for a smallé. Since we have
overlapp (A) ~ 0, we have alsoverlapp (A(I)) = 0. If we use the following definition

Definition 10. Let I C {1,...,q} be any index subset andl(I) be a set ok boxesA(l);,
..., A(D) € BOX(£2(I)). Without loss of generality we suppose thHat {1, ..., 5} with
j < qandthat? C @7_,[li,ri]. We call A(I), := A(I)s x i—j1(li; ] theextensiorof
A(I)sto 2. SetA(I) := {A(I)1,..., A(I)y}.
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One easily checks th@&erlappp(ﬁ(l)) ~ 0 and therefore®,A(I)) is an approximate
k-box-decomposition of2? with respect top. Since the valueverlay » (O, A(I)) depends
on the chosen sensitivity factér we have to adjust, such that the approximation quality
of (6,A(1)) is optimal. Then we can describe the Voronoi partitiéghsbased only on the
variables that are necessary for a suitable discrimination:

IF Viel z; €A, THEN z € O,.

Note thatA(I),, = A, fori € I. The computation of a maximatredundant variable set
A(I°) for (£2, p, A) has combinatorial complexity. Therefore we suggest to use the following
heuristic for a giver:

Computep(i) := Overlappp({i})(ﬂ({i})) foreachi € {1,...,q}.
SetD :={1,...,q}andl :={1,...,q}.
WHILE D # () DO
Choose € D with minimal valuep(z).
SetD := D\ {i} andl := I\ {i}.
IF A(I°) is noté-redundant for2 with respect toAd THEN I := T U {i}.
WEND

Note thatp(4) is large for univariate discriminating variables The optimal sensitivity
factor § has to be determined in an iterative process — to be described now. For simulation
efficiency and quality evaluation reasons we want to compute simple rules that describe and
separate the clusteriq@’, . . ., C; } of £2. As we have seen above this can be easily achieved
by using the box concept. Therefore we need to define some box-clustering:

Definition 11. LetC := {C1,...,C\} be a dynamical clustering ¢? based on the Voronoi
tessellation® := {6y,...,0}, with C; = Uper O, and p.w. disjoint index setg, C

{1,...,k} fors = 1,..., k. Further letA := {A,,... A} be a set of boxes if? such that
eachA, € BOX(£2) is a box approximation ob,. SetC# = U,e, Ap- Then we call

C4 .= {Cp,...,CA} the correspondingox clusteringwith respect toA.

An algorithm to compute a dynamical clustering together with simple descriptions based
on a suitable corresponding box-clustering will consist of the following steps:

1. Compute an approximatebox-decomposition®,A) of (2.
2. Compute a dynamical clusteriigbased on the Voronoi tessellatiéh
3. Compute descriptions based on the corresponding box-clustéfing

The approximation quality of the box-clustering is given cbgerlaypp (C,C?) and de-
pends obviously on the valua@erlaypp (0, A). Practical experience shows that with increas-
ing ¢ the approximation quality usually becomes worser. As a simple solution to reduce the
number of variables and so to improve the approximation quality, one can think about using
only the discriminating variables a? and to compute” := C(I) based on®(I),A(I)),
whereA(I¢) is a maximab-redundant variable set fér2, p, A). Unfortunately, with largeg
one has to choose a largdo reduce the number of variables sufficiently. But then the value
overlapp . (A(I)) is usually not longer approximatelyand thereforeverlapp (CAM)
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is also no longer approximately But then the computed descriptions do not separate the clus-
ters very well. Therefore we suggest an iterative process to compute an optimad vl
thatoverlay p  (C, C2(") is maximized, whileverlap,  (C41)) is still approximately:

Compute an approximatebox-decompositiond,A) of (2.
Choose a small sensifity factér> 0.0001, e.g.,0 := max{p(i) |i =1,...,q}/2.
WHILE § > 0.0001 DO
Compute a maximal-redundant variable set(1¢) for (£2, p, A).
Compute a dynamical clusterirf@based on the Voronoi tessellatiéH{l).
Computeop(1) := overlapp (C2M)Y andoy (1) := overlayp (C,cAM),
IF op(I) < 0.1 THEN
Setd :=§ — 4/10.
ELSE
Setdyq := d andd := § + §/20.
WHILE §14 <> 6 DO
Setop,q := op(I) andoy ;4 := oy (I).
Compute a maximal-redundant variable set(1¢) for (2, p, A).
Compute a dynamical clusteririg based on the Voronoi tessellatiéhl).
Computeop(I) := overlappp(”(CA(l)) andoy(I) := overlayp . (C,cAm),
IF (op(I) < min{op,4 + 0.03,0.1}) AND (oy(I) < oy,q) THEN
Setdyq := d andd := § + §/20.
ELSE
Setd := do1q-
IFEND
WEND
Compute a maximal-redundant variable set(I¢) for ({2, p, A).
Compute a dynamical clusterir@g based on the Voronoi tessellatioi{l).
Compute descriptions based on the corresponding box-clusterifg.
Setd :=0
IFEND
WEND

4 Numerical Results

The above SOBM algorithm is now exemplified within the whole conformation analysis al-
gorithm for molecular systems. All molecules, for which HMC results are presented, were
parametrized by the MMFF force field [16]. As noted in (6), the sampling of a thermody-
namic distribution at various temperatures within a temperature embedding can be realized by
a correlated scaling of time steps and potential [21].

Apart from pentane, the Hybrid Monte Carlo (HMC) simulations were performed with
time stepsr = 2.24 femtoseconds (fs) or = 1.83fs. Each new configuration is generated
by a propagation of the system ovkrtime steps. Each simulation consistssahdependent
Markov chains. Every second configuration is stored. Convergence of the HMC-simulation is
reached, as soon as the Gelman and Rubin quotient [14] is sufficiently close to thé.\&fue
leastn = 20000 configurations turned out to be necessary for each simulation run.

Although the computation of the approximate box-decomposition can be done automati-
cally, one has to fix some parameters. Obviously the resolution parainetéhe most im-
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portant one, because the quality of the decomposition depends severely on it. Fortunately, both
the SOM and the SOBM-algorithm are quite robust against small changessofthat the
following iterative strategy may be successful:

1. Choose a small value= k.

2. Compute an approximate box-decompositionkfaising a hybrid algorithm: First com-
putek codebook vectors with the SOM algorithm. Then use the codebook vectors to initialize
the k codebook boxes of the SOBM and adapt these boxes sufficiently fine.

3. Test whether the number of codebook boxes is large enough to guarantee an acceptable
fine decomposition of2. Heuristically, we regard to be large enough, if more than% of
the final boxedV, (L) contain no vector: € £2 with p(z) > 0.

4. If the number of codebook boxes is too small, incrdaaad go to step 2.

The use of the above combined SOM and SOBM algorithm speeds up the decomposition
process, because the adaptation of boxes needs at least twice as much computing time as the
adaptation of points. Throughout our numerical experiments we have set the following param-
eters:

SOM algorithm First performmax{n, 5000} ordering steps withw(0) := 0.9, n :=
Ngaussian @Ndy(0) choosen to be half the radius of the selected map size, then perform
max{n, 15000} convergence steps with(0) := 0.1, 7 := Npupbie @ndy(0) := 1.

SOBM algorithm Use computed SOM codebook vectors as initialization of SOBM code-
book boxes, then performax{5n, 50000} convergence steps with(0) := 0.1,  := Dyupbie
andvy(0) := 1.

4.1 Box-decomposition for n-pentane molecule

In what follows, we show the results of our new SOBM algorithm for the simple n-pentane
molecule. We have analyzed the configurational space with respect to the two central tor-
sion angles defined by carbon quadrupels. The HMC simulation was performed at temperature
T = 800 K and with simulation time step = 2.83fs. Based on the computed box decompo-
sition, our cluster algorithm identifies five possible metastable conformations (for more details
about the n-pentane and its dynamical behaviour see [10]). Figure 3 shows the final codebook

O

Fig. 3. Box-decomposition of n-pentanekinal boxes from SOBM algorithm for theidentified clusters
(overlay=86.3%, overlap=0.3%). Compare Fig. 4.

O

Fig. 4. Clustering of n-pentane: Metastable conformations based on box-decomposition. Compare
Fig. 3.

boxes computed by the SOBM algorithm for each identified cluster. Obviously the overlap
between boxes of different clusters is small. To measure the quality of our approximate box-
decomposition, we have to check the overlay betwee®%Hmxes and the implicitly defined
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Voronoi tessellation. In Figure 4 Voronoi partitions for each identified metastable conformation
are visualized with respect to the sampling probability densi# comparison with Figure 3

shows that the covering is satisfactory and indeed the computed ovedéys¥. But even

for such a large overlay one observes rather big “holes”, i.e., uncovered areas of the Voronoi
partitions. This occurrence may cause problems during the temperature embedding process; if
one only uses the simple box description rules it is possible that too many configurations are re-
jected, which implies that the Markov chain converges poorly. Figure 3 nicely shows the topol-
ogy approximation feature of the SOBM algorithm: areas of the input space are discretized
with different resolutions, i.e. by a different number of boxes. The greater the distributational
variation of the sampling configurations, the finer is the resolution.

4.2 HIV-protease inhibitor

0O

Fig. 5. Two conformations of HIV-protease inhibitor: Average configurations for two out of six iden-
tified metastable conformations at temperature |&vet 1000 K.

The inhibitor VX-478 of the enzyme HIV-protease consistg®atoms. Each configuration
can be roughly reconstructed By torsion angles and corresponding equilibrium bonds and
angles. In order to illustrate the Perron cluster analysis, we present here the results of two
levels out of a hierarchical simulation protocol corresponding to a temperature embedding - see
Table 1), where eigenvalue spectra, coupling-matrices, overlays and numbers of discriminating
dihedrals are arranged.

[TIK] |spectrumh coupling matrix [ol [%][ndV]
1.000 0.994 0.006
0.967 0.038 0.962
0.870
0.832
1.000 [0.976 0.024 0.000
0.979 |0.008 0.982 0.010
1000 0.967 [0.000 0.036 0.964| 17.2| 24
0.915
0.906
1.000 [0.976 0.022 0.003
0.997 |0.003 0.995 0.002
0.976 |0.000 0.001 0.998| 20.2 |19
0.948
0.945

1500 19.8| 22

Table 1. Hierarchical temperature embedding for HIV-protease inhibitor: overlay (ol), number of
discriminating variables (ndv).
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The cluster analysis at levél = 1000 X decomposes each of the two conformations at
level T = 1500 K into 3 conformations clearly indicated by spectral gaps each. The overlay
value of all simulations was close 20.0%. The overlap value was fixed @0%. The number
of discriminating dihedrals was found in each SOBM analysis to be rougfhlgut of 34.

This number varies because each metastable conformation reflects different energy barriers.
Figure 5 shows average configurations for two out of the six identified conformati@hs=at

1000 K. For comparison the two average configurations are aligned in a plane defined by
three common atoms. As it turns out, the different orientation of the functional groups due
to electrostatic and due to Lennard-Jones interactions seem to be the main reasons for the
observed differences of the conformations.

4.3 \Virtual screening project

Our SOBM algorithm has been successfully used within a Virtual Screening (VS) project. For
illustration, we here have applied the VS 200 small molecules with different number of
atoms k 100) i.e. different variableg of the corresponding configurational spa@e The

aim of the project was to explore any metastable conformations of the given molecules at high
temperature.

Figure 6 shows the number of clusters identified by Perron cluster analysis as a statistic
over all molecules.

We have observed a quite small overlap for nearly all computed box clusterings (top of
Figure 7). For smaller molecules also the overlay of the box clusterings is good (bottom of
Figure 7). The reason for the partially bad overlay for larger molecules is the fact that the
computed-redundant variable sets are relatively “too small”, i.e., the ratio of the number of
discriminating variables vs. the total number of torsion angles is sometimes “too high” for
larger molecules (top of Figure 8). Finally Figure 8 (bottom) shows the average CPU-times for
the computation of the discretizations and clusterings on a SUN Ultra E3000 ordered by the
number of torsion angles of the analyzed molecules.

O

Fig. 6. Virtual Screening of 200 moleculesNumber of identified metastable conformations

o

Fig. 7. VS of 200 moleculesOverlap (top) and overlay (bottom) for molecules with different number of
torsion angles

o

Fig. 8. VS of 200 moleculesTop: ratio of discriminating angles vs.total number of torsion angles. Bot-
tom: CPU-time on SUN Ultra E3000
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Conclusion

The present paper describes in detail, how self-organized neural networks (SOM) can be
utilized and extended (SOBM) to be of crucial importance for the actual computation of
metastable conformations within a Perron cluster analysis. The performance of the algorithm
as given herein is illustrated by biomolecular examples. The present version of our algorithm
appears to be quite efficient in connection with hybrid Monte Carlo methods as worked out in
[10]. Efforts to further increase its reliability and speed are already under investigation.
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Appendix

Function g within Codebook adaptation rules for SOBM. We have to distinguish between nor-
mal and complementary intervals.

Case 1: The intervdlV,, := [l5,,7s,] is an interval withl,, < r,,. Then we define:

1 if ¥ ¢ [a,b] A di(2,a) < di(e,b)
gla,b,v) = b9¢ if ¥ ¢ [a,b] Adi(, a) > di(¥,b)

W else.

with ¢([a, b]) := (b — a).

Case 2: The intervdlV;, is a complementary interval with, > r,. Then we define:

1 g ebaAdi(p,a) < di(ih,b)
b . 0 if ¥ € [b, a} N dl(w,a) > dz(’gb, b)
g(a,b,¢) = % if ) ¢ [ba] ANV >a
oD [;fzf] ) else.

with ¢([a, b]) := 27 + (b — a).

Cyclic interval boundary transformation rules for SOBM. If W, := [I,,, rs,] with Is, > 7,

or if z; is not inside the complementary inter\X&[gi, i.e.,z; € [rs;,ls;], then we have to consider the
earlier defined CBT rules, with, (¢) andr,, (t) instead ofi¥(¢). But if z is inside the complementary
interval W, i.e.,z; ¢ [rs,, ls,], one has to consider sligthly different transformation rules, because one
has to assure that the boundaries are adapted towards the correct direction:

IF g(lsi (t)7 Ts; (t)7 xl(t)) > g(_rsi (t)7 _lsi (t)7 _xi(t)) THEN
Use the CBT rules for the adaptationlof(¢).
IF 2;(t) > 75, (t) THEN
First setz; (t) := x;(t) — 2m, afterwards adapt,, (¢) directly
(i.e., without further transformation).
ELSE
Adaptr,, (¢) directly.
ENDIF
ELSE
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Use the CBT rules for the adaptationsaf (¢).
IF z;(t) < I, (t) THEN
First setx;(t) := z;(t) + 27, afterwards adagt, (¢) directly.
ELSE
Adaptlis, (t) directly.
ENDIF
ENDIF



