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Abstract. As has been shown recently, the identification ofmetastablechemical conformations leads to
a Perron cluster eigenvalue problem for a reversible Markov operator. Naive discretization of this opera-
tor would suffer from combinatorial explosion. As a first remedy, a pre-identification of essential degrees
of freedom out of the set of torsion angles had been applied up to now. The present paper suggests a dif-
ferent approach based on neural networks: its idea is to discretize the Markov operator via self-organizing
box maps. The thus obtained box decomposition then serves as a prerequisite for the subsequent Perron
cluster analysis. Moreover, this approach also permits exploitation of additional structure within embed-
ded simulations. As it turns out, the new method is fully automatic and efficient also in the treatment of
biomolecules. This is exemplified by numerical results.
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Introduction

The analysis of biomolecular structure and function is one of the real challenges of scientific
computing nowadays. The key concept to characterizestructurehas become the characteriza-
tion in terms ofgeometrical conformations, often just called conformations in literature. The
present paper advocates thatfunction, the most interesting aspect of biomolecules, should be
rather characterized by what has been calledmetastable conformations. Any type of confor-
mations consists of sets of possible molecular states. In geometrical conformations such sets
are defined via the geometric similarity of different states. In metastable conformations such
sets are defined via the high probability of the molecule to stay in such a set, once it is in such
a set. From the point of view of dynamical systems the totality of all possible states is called
invariant set. As an extension of that term,almost invariant setsturn out to be equivalent to
metastable conformations in molecular systems.

In [3] a first attempt had been made to identify metastable conformations on the basis
of the so-called Perron-Frobenius operator. That approach, though principally opening the
door to the new concept of conformation dynamics, had been more or less restricted to toy
molecules. Since then the Perron-Frobenius operator in phase space has been replaced by a
different Markov operatorT in position space [21,22]. This new operator has much nicer the-
oretical properties. Its numerical evaluation is done via Hybrid Monte-Carlo (HMC) methods;
like classical Monte-Carlo, HMC also suffers from possibletrapping in local potential wells.
In order to overcome this unwanted effect, an adaptive temperature version has been worked
out [9]. More recently an intelligent adaptation of temperature within the Boltzmann distribu-
tion has led to a hierarchical uncoupling/coupling method to be described in this same volume
(see [10]). Once a moderate numberk of spatial boxes has been determined, the Markov oper-
ator can be dicretized in the form of a stochastic(k, k)-matrix. The identification of metastable
conformations then boils down to the numerical solution of an eigenvalue cluster problem, the
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so called Perron cluster eigenvalue problem. An efficient algorithm forPerron cluster analysis
has been published in [5].

The actual determination of a moderate size of spatial boxes, however, turns out to be a
hard problem in itself. In fact, naive decomposition of position space to discretize the Markov
operatorT would lead to a combinatorial explosion of the number of boxes, the unwanted curse
of dimension. As a first remedy,essential degrees of freedom (DOF)in the spirit of [2] - on
the basis of torsion angles only - led to a treatment of small molecules [22]. Unfortunately, for
larger molecules, this technique appeared to be not robust enough. The topic of the present
paper is to suggest an alternative spatial decomposition technique based on self-organized
neural networks. First attempts have been published in [13]. Here we want to report about
progress beyond that paper.

The present paper is organized as follows. In Section 1 we recall the main computational
issues for the discretization of the above mentioned Markov operator to obtain astochastic
matrix. These are: (a) a spatial deomposition to obtain a moderate numberk of boxes, (b)
Hybrid Monte Carlo (HMC) methods for the approximation of the entries of the(k, k)-matrix,
and (c) temperature or, more general, parameter embedding to avoid trapping in the HMC
process. In Section 2 we present our new extension from the point concept of Kohonen’s self-
organizing maps (SOM) to the set concept ofself-organizing box maps(SOBM). In order to
be able to interpret the results of the neural cluster algorithms, we work out the concept of
discriminating variablesin Section 3. Finally, in Section 4, the algorithm is exemplified as
part of the wholePerron clusteralgorithm at several molecular systems: First, we give results
for the simple n-pentane molecule, where everything is known and can therefore be compared
in detail with other sources – see [10] also in this volume. Second, we present results for a
potential anti-AIDS drug, an HIV protease inhibitor. Third, we report about the occurrence of
metastable conformations within virtual screening of a molecular database.

1 Discretization of Markov operator

The present section discusses several computational issues in connection with the already men-
tioned Markov operatorT as suggested by [21]. That operator is obtained from the Perron-
Frobenius operator by some momenta averaging based on the Boltzmann distributionf0 for
given heat bath temperature. It may be interpreted as the transfer operator of an underlying
Markov chain as shown schematically in Figure 1.

Fig. 1.Markov chain associated with Markov operatorT .

Hybrid Monte-Carlo (HMC) methods.This Markov chain can be realized in the following
3-step process [9]:

– random choice of momenta from a Gaussian distribution,
– deterministic propagation of the molecular system by the flowΦτV with potentialV and

overshorttime τ ,
– acceptance or rejection of new configurations by an appropriate transition kernelK of the

underlying Markov process [8] e.g. Metropolis-Hastings.
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Spatial decomposition.The evaluation of the operatorT requires a spatial decomposition as
a prerequisite. LetΘ be a covering of the position spaceΩ with k pairwise disjoint partitions
Θs. LetΓ (Θ1), ..., Γ (Θk) denote associated fibers in phase spaceΓ = Ω ×R3N , whereN is
the number of atoms in the molecule. For the corresponding characteristic functions we write
χΓ (Θs). On this basis the transfer operator can be discretized to yield thetransition matrixS
with entries

Ssl =

∫
Γ (Θs)

χΓ (Θl)(Φ
τ
V x)f0(x)dx∫

Γ (Θs)
f0(x)

. (1)

Each entrySsl is the probability of a transition from subspaceΘs toΘl during timeτ .
Let us now restrictΩ to be the space spanned byq torsion angles. Without loss of generality

we assume that each angle ranges within[−π, π]. For an introduction to the analysis of cyclic
data see [11]. ByPρ we denote the probability distribution onΩ which is uniquely determined
by the probability density functionρ := f0 associated with the Markov OperatorT .

Definition 1. We callΘ := {Θ1, . . . , Θk} aVoronoi tessellationof Ω with partitionsΘs, if

k⋃
s=1

Θs = Ω and Θp ∩Θs = ∅ for all p, s ∈ {1, . . . , k}.

The quality of the discretization of the operatorT depends on how well the corresponding
Voronoi tessellation approximates the topology ofΩ with respect toPρ. One possibility to
measure the approximation quality is given by

Definition 2. LetΘ be a Voronoi tessellation ofΩ with k partitions. Then we call

ϑ[Θ] :=
k∑
s=1

∫
x,y∈Θs

dist(x, y)ρ(x)ρ(y)dxdy (2)

thedecomposition errorofΘ with respect toρ, wheredist : Ω×Ω → R0 is a suitable distance
measure onΩ, e.g., the distance on theq-dimensional unit circle:

dist(x, y) =

√√√√ q∑
i=1

(sin(xi)− sin(yi))2 + (cos(xi)− cos(yi))2 (3)

for x, y ∈ Ω, wherexi andyi denote the values of theith torsion angle.

It is obvious that from a theoretical point of view one is interested in the computation of a
Voronoi tessellation so that the corresponding decomposition error is minimized with respect
to some preassigned numberk of partitions. In passing we note that this is a well-known prob-
lem also in fields like signal processing [15] and general cluster analysis [6,7]. In most practical
applications such an optimal tessellation is usually not sufficient, because the corresponding
rules how to decide whether a configurationx ∈ Ω is inside a partitionΘs or not, are compu-
tationally too complex. Obviously such rules are much simpler, if we require that theΘs are
merelyboxesin Ω.

Definition 3. We call a subsetB ⊂ Ω a box in Ω, if there exist intervalsI(li, ri) ⊂ R for
i = 1, . . . , q, with B =

⊗q
i=1 I(li, ri) := (I(l1, r1), . . . , I(lq, rq)). For li ≤ ri we allow

I(li, ri) = [li, ri], I(li, ri) =]li, ri], I(li, ri) = [li, ri[ andI(li, ri) =]li, ri[. If li > ri we de-
fine thatI(li, ri) represents the complementary interval[−π, π]\I(ri, li). We setBOX(Ω) :=
{B |B box inΩ}.
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Uniform box-decomposition.For i = 1, . . . , q we choosemi ∈ N+ and real valuesbi,1, . . . ,
bi,mi such that−π ≤ b1,mi ≤ . . . ≤ bi,mi ≤ π. Then the intervalsIi,j := [bi,j , bi,j+1] for j =
1, . . . ,mi − 1 andIi,mi := [−π, π]\]bi,1, bi,mi ] are pairwise disjoint and build a covering of
[−π, π]. We can easily computek =

∏q
i=1mi boxesΘs by simple combination of one interval

after the other per each torsion angle. It is then easy to check thatΘuniform := {Θ1, . . . , Θk}
builds a Voronoi tessellation ofΩ. Therefore we callΘuniform a uniform k-box-decomposition
of Ω. Obviously there are two main problems involved:

First, to optimizeΘuniform with respect toPρ, i.e., to minimize the decomposition error
according to Eq. (2), one has to determine optimal boundariesbi,1, . . . , bi,mi for each variable.
This would lead to an NP-hard combinatorial problem.

Second, remember that the transition matrix corresponding to operatorT is of dimen-
sion k × k; then, with increasingq, the numberk grows exponentially for a uniform box-
decomposition, even if we only allow two intervals per variable, i.e., if we setmi := 2 for
i = 1, . . . , q. For example, a relative small molecule with only 20 torsion angles would thus
lead tok > 106.

Approximate box-decomposition.In order to avoid the curse of dimension, it seems to be a
reasonable idea to fix the parameterk at a suitable level and to compute a Voronoi tessellation
of Ω with k partitionsΘs ∈ BOX(Ω) and minimal decomposition error. However, the actual
realization of such an “optimal” box decomposition is very expensive. Moreover, practical
experience shows that the decomposition error usually is very bad compared with the error
for arbitrary partitions. We therefore suggest to fix the parameterk, but to relax the above
definition of box-decomposition:

Definition 4. We call (Θ,∆) an approximatek-box-decompositionof Ω with respect toρ,
wheneverΘ := {Θ1, . . . , Θk} is a Voronoi tessellation ofΩ with a nearly optimal decompo-
sition error according to Eq. (2) and∆ is a set ofk boxes∆1, . . . ,∆k ∈ BOX(Ω), such that
overlapPρ(∆) ≈ 0 and0 < overlayPρ(Θ,∆) ≤ 1.

Herein we use the termsoverlapandoverlayin the following way:

Definition 5. Let M := {M1, . . . ,Mk} be a set ofk subsets ofΩ with Pρ(Ms) > 0 for
s = 1, . . . , k. LetΘ be a Voronoi tessellation ofΩ with k partitionsΘs. Then the overlay of
Θ andM with respect toPρ is given by

overlayPρ(Θ,M) :=
k∑
s=1

Pρ(Ms ∩Θs), (4)

whereas the overlap ofM with respect toPρ is defined by

overlapPρ(M) :=
k∑
s=1

Pρ(Ms ∩
⋃
p6=sMp)

Pρ(
⋃k
p=1Mp)

. (5)

For an interpretation, the valueoverlayPρ(Θ,∆) indicates the covering quality for a given
Θ. If overlayPρ(Θ,∆) = 1 then we call (Θ,∆) a fully coveringk-box-decomposition. Note
that, if additionallyΘ has an optimal decomposition error with respect toρ, ∆ is an optimal
box-decomposition in the above strict sense. Suppose now that (Θ,∆) is an approximatek-box
decomposition ofΩ, than the following simple rules describe the Voronoi partitionsΘs:

IF ∀ i = 1, . . . , q xi ∈ ∆si := [lsi , rsi ] THEN x ∈ Θs.
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It is obvious that these description rules are not complete. For a good covering, i.e., one with
overlayPρ(Θ,∆) ≈ 1, this might be no problem. But otherwise one has to define additional
rules such as how to deal with the configurationsx ∈ Ω that can not be assigned via∆.

Instead of boxes, one might also think of approximating the Voronoi partitions by using
more complex geometrical objects. But the price to be paid for a possibly better approximation
quality is a more complex description.

Parameter embedding.Metastability goes intimately with the undesirable effect oftrapping
within any Monte-Carlo simulation. In order to avoid such an occurrence, one may embed the
given problem into a family of problems with flowΦτ,sV in terms of an embedding parameter
s ∈ [0, 1] such that, ats = 0, only a few metastable subsets need to be identified, whereas
at s = 1 a rich structure of conformations might arise. Two types of embedding are in quite
common use:temperature embeddingandpotential embedding. Upon examining the equations
of motion, one immediately sees that, in the context of HMC, temperature embedding can be
realized by the following flow:

Φτ,sV = Φs
−2τ
sV , (6)

which requires a scaling of both the potential and the time step of propagation [21].

Any kind of embedding stimulates the idea of a hierarchical algorithm consisting of the
following steps:

1. simulate the molecular system for a specific parameter (say, high temperature), which
causes the flow to overcome specific energy barriers,

2. identify metastable subsets,

3. increase the parameter (say, lower the temperature), but restrict the simulation to one of
the metastable subsets. Go to 1.

This algorithm will generate a hierarchy of subsets that can be sampled independently at
each level. The restriction of an HMC-simulation to a given metastable subsetCl requires only
a slight modification of the Markov kernelK toKl [8,10]. The additional rule is that any con-
figuration outside the subsetCl will be rejected. Detailed balance still holds for this modified
Markov kernel, so thatKl is still reversible [8]. SinceCl is metastable, only a few rejections
will be expected with respect to the new rule. Moreover, trapping should thus be avoided, since
energy barriers towards all other metastable subsets can be ignored. A further exploitation of
this embedding structure is given in [10], where an uncoupling/coupling technique has been
suggested and worked out.

A schematic diagram of such a hierarchy is given in Figure 2. As can been seen there, each
cluster needs to be described by appropriate boundaries. To save computer time over the whole
simulation, one is interested in simple descriptions in terms of a minimal necessary set of
variables. Reduction of variables is a typical task for statistical methods, like e.g. discriminant
analysis. As already mentioned in the Introduction, however, we describe the configurational
space in terms of cyclic torsion angles. As conventional discriminant analysis is usually not
ready to work for cyclic data, we will introduce the new concept ofdiscriminating variables
in Section 3 and suggest a heuristical algorithm for their automatic determination.
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Fig. 2. Hierarchical scheme of clustering combined with parameter embedding. The numbers denote
metastable conformations at different levels of the hierarchical embedding scheme.

2 From Self-Organizing Maps to Box Maps

In the following we will work out details of our recently developed Self-Organizing Box Maps
(SOBM) algorithm [12], an extension of the traditional SOM algorithm. The SOBM algorithm
permits to compute approximatek-box decompositions ofΩ.

2.1 Point concept: Self-Organizing Maps

The computation of a Voronoi tessellation so that the corresponding decomposition error ac-
cording to Eq. (2) is minimized for given parameterk is often too expensive. Therefore one
often only tries to find a codebookW := {W1, . . . ,Wk} ⊂ Ω such that the distances between
the configurations from the sampling and their nearest codebook vectorWs are minimized,
i.e., such that thedistortion value

ϑ̂[W ] :=
k∑
s=1

∫
x∈ΘWs

dist(x,Ws)ρ(x)dx (7)

is minimized, where

ΘWp
:= {x ∈ Ω |dist(x,Wp) = min

s=1,...,k
dist(x,Ws)}. (8)

If we can assure a unique assignment of each vectorx ∈ Ω in Eq. (8), then obviouslyΘW :=
{ΘW1 , . . . , ΘWk

} is a Voronoi tessellation ofΩ with a nearly minimal decomposition error.
But even the exact optimization of Eq. (7) is often too expensive: rather one has to use one

of several heuristic algorithms that compute an approximate solution [20,17,1]. One powerful
method is KOHONEN’ S Self-Organizing Maps (SOM) algorithm. Although it has been shown
[18] that the codebook vectors produced by the basic SOM algorithm in general do not exactly
coincide with the optimum of Eq. (7) the algorithm usually produces fast and good solutions
even for high-dimensionalΩ. It can be easily adapted to the case of cyclic data and has the
feature of topology approximation. Further the decomposition results are rather robust under
small changes of the numberk.

We first give a short general description of the SOM algorithm—for an exhaustive presen-
tation see [19]—before we focus on the adaptations that are necessary to use it with cyclic
data. Forq torsion angle variables, each map is formed by aq-dimensional input-layer that is
fully connected with the usually two-dimensional Kohonen layer, which is a neuraln×m grid
G with rectangular or hexagonal topology andk = nm grid neurons. The coordinate tuple
of each neurons on the grid is denoted byzs ∈ G and each neurons is uniquely related to
a q-dimensional codebook vectorWs. After a suitable initialization of the codebook vectors,
the SOM is trained inL time steps by a repeated presentation of vectors of theq-dimensional
input spaceΩ according to a probability distributionPρ. For each presented input vector the
SOM computes the so called winner neuron and its neighboring neurons on the grid and adapts
the related codebook vectors, such that the distance to the input vector is reduced. To achieve
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convergence, the rate of the distance reductionα : {0, . . . , L} → [0, 1] — called learning rate
— and the width of the neighborhood of the winner neuron, the so called neighborhood radius
functionγ : {0, . . . , L} → R+

0 , shrink to zero with time.
By construction it is obvious that after a suitable number of training steps the codebook

vectors that are related to neighboring neurons on the grid, are neighboring in the input space
according to the chosen distance function. Therefore the codebook vectors not only determine
— via Eq. (8) — a Voronoi tessellation ofΩ, but also approximate the topology of the input
space via the neighborhood structure of the grid.

In the following we describe the initialization of the codebook vectors, the definition of
the winner neuron together with its grid neighborhood and the specification of the codebook
adaptation rule for cyclic input data.

Initialization. We suggest to choose the initial valuesW1(0), . . . ,Wk(0) as approximately
Pρ-distributed random vectors withWs(0) ∈ Ω for s = 1, . . . , k.

Winner neuron and grid neighborhood.Let x = (x1, . . . , xq) ∈ Ω be an arbitrary input
vector andW1, . . . ,Wk ∈ Ω the actual codebook vectors of the SOM. Then we call neuron
p ∈ {1, . . . , k} thewinner neuronfor inputx, if

dist(x,Wp) = min
s∈{1,...,k}

dist(x,Ws) . (9)

Note that Eq. (9) is equivalent tox ∈ ΘWp
, if ΘWp

is defined according to Eq. (8). In the
case of more than one neuron, which match Eq. (9), various strategies are used to assure
uniqueness. Sometimes the winner is chosen randomly, but usually the one with the lowest
index is taken as the actual winner.
To determine the neighboring neurons of the winner neuron, one has to specify a grid
distance functionη : G × G × R+ → [0, 1]. Usually one uses either the bubble grid
distance

ηbubble(zs, zp, γ) :=


0 if

∥∥zs − zp∥∥2
≤ γ

1 else,

or the Gaussian grid distance

ηgaussian(zs, zp, γ) := 1− exp

(
−
∥∥zs − zp∥∥2

2

2γ2

)
whereγ denotes the actual neighborhood radius and

∥∥∥∥
2

the two-dimensional Euclidean
distance. A neurons belongs to the neighborhood of winner neuronp if η(zs, zp, γ) < 1.
If we chooseηgaussian, then the neighborhood of each neuron coversall grid neurons.

Codebook adaptation rules.Let neuronp be the winner neuron for inputx(t) = (x1(t),
. . . , xq(t)) ∈ Ω at timet ∈ {0, . . . , L − 1} andW1(t), . . . ,Wk(t) ∈ Ω the actual code-
book vectors. Further letα(t) andγ(t) be two time-dependent linear or log-linear func-
tions, respectively, decreasing to zero, withα(0) ≤ 1 andγ(0) ≤ min{n,m}

2 . Usuallyγ(t)
is called theneighborhood-radiusfunction, respectively.
Then, new codebook vectors are computed as:

Ws(t+ 1) := Ws(t) + α(t) neigh(zs, zp, t) (x(t)−Ws(t)), s = 1, . . . , k. (10)
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with neigh(zs, zp, t) := 1− η(zs, zp, γ(t)).

Cyclic boundary transformation (CBT) rules.When dealing with cyclic data, the input
vector or the old codebook cector, respectively, may need to be transformed first, before
the new codebook vector can be computed according to Eq. (10):

(i) IF Wsi(t) ≥ 0 AND xi(t) < 0 AND abs(Wsi(t)) + abs(xi(t)) > π
THEN xi(t) := xi(t) + 2π.

(ii) IF Wsi(t) < 0 AND xi(t) ≥ 0 AND abs(Wsi(t)) + abs(xi(t)) > π
THEN Wsi(t) := Wsi(t) + 2π,

with abs(xi) :=
√
x2
i for i = 1, . . . , q. Note that after the new codebook vector has been

computed, eventually it must also be transformed such that each componentWsi(t+ 1) is
inside the interval[−π, π].

2.2 Set concept: Self-Organizing Box Maps

The basic idea of the Self-Organizing Box Maps (SOBM) algorithm is to computecodebook
boxesŴs := (Ŵs1 , . . . , Ŵsq ) ∈ BOX(Ω) with Ŵsi := [lsi , rsi ] instead of codebook vectors
Ws = (Ws1 , . . . ,Wsq ) ∈ Ω. This is done is such a way that each codebook box is a good box
approximation of its implicitly defined Voronoi partition̂Θs := ΘŴs

with respect toρ.

Definition 6. LetB be a box inΩ andA an arbitrary non-void subset ofΩ. ThenB is called
abox approximationof A with respect toρ, if Pρ(B \A) + Pρ(A \B)� 1.

Obviously, this change of concept induces changes of the SOM algorithm, which we arrange
here:

Initialization.LetW1(0), . . . ,Wk(0) be different initial values for the codebook vectors of
the traditional SOM, e.g., approximatelyPρ-distributed random vectors withWs(0) ∈ Ω
for s = 1, . . . , k. For our extended algorithm, we chooseŴs(0) :=

⊗q
i=1[lsi(0), rsi(0)]

with lsi(0) = Wsi(0) andrsi(0) = Wsi(0) + ε ≤ π in terms of a small positive valueε,
the initial width of the interval, such that̂Ws ∩ Ŵp = ∅ for all s, p ∈ {1, . . . , k}.

Winner neuron.We suppose that the problem specificq-dimensional distance function
dist(x, y) with x, y ∈ Ω can be written as a function ofq one-dimensional distance mea-
suresdi(xi, yi), which means thatdist(x, y) := f(d1(x1, y1), . . . , dq(xq, yq)). Note that
many popular distance measures, as e.g., the Euclidean distance, just exhibit this feature.
In the case of our suggested distance measure (see Eq. (3)) we have:

f(d1, . . . , dq) := (
q∑
i=1

di)1/2

with di(xi, yi) := (sin(xi)− sin(yi))2 + (cos(xi)− cos(yi))2.

Obviously we need a distance measure DIST, that permits to compute the distance between
an input vectorx ∈ Ω and codebook boxeŝWs ∈ BOX(Ω). For that purpose, we suggest

DIST(x, Ŵs) := f(d̂1(x1, Ŵs1), . . . , d̂q(xq, Ŵsq ))
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with

d̂i(xi, Ŵsi) :=

 0 if xi ∈ Ŵsi

min{di(xi, lsi), di(xi, rsi)} else.

Then the winner neuronp has to match a condition analogous to Eq. (9):

DIST(x, Ŵp) = min
s∈{1,...,k}

DIST(x, Ŵs) . (11)

Obviously we can use Eq. (11) to define for each codebook boxŴs the corresponding
Voronoi partitionΘ̂s := ΘŴs

analogously to Eq. (8).

Codebook adaptation rules.In analogy to the SOM algorithm, the SOBM algorithm has
to adapt the codebookboxes. This will be done by the following rules:

lsi(t+ 1) := lsi(t)
+ g(lsi(t), rsi(t), xi(t)) α(t) neigh(zs, zp, t) (xi(t)− lsi(t))
−α(t) c(lsi(t), rsi(t))

rsi(t+ 1) := rsi(t)
+ g(−rsi(t),−lsi(t),−xi(t)) α(t) neigh(zs, zp, t) (xi(t)− rsi(t))
+α(t) c(lsi(t), rsi(t))

with a linear functiong : [−π, π]3 → [0, 1] described in the Appendix and a special
function c : R2 → R independent of the inputx(t) ( see [12] for a justification of the
functionsg andc). As shown in [12], the choice

c(a, b) :=
1
6
ι[a, b], (12)

whereι([a, b]) is the width of the interval[a, b], guarantees that̂Ws(L) is a nearly optimal
box approximation of̂Θs(L) if we choose timeL large enough.
For cyclic input data we again have to consider CBT-rules, see the Appendix for details.
There will be a problem, if the width of the interval[lsi(t), rsi(t)] is nearly2π. Then
one observes sometimes the artifact that left and right boundaries interchange, so that the
interval becomes “too small”. In this case the adaptation step has to be skipped and the
interval automatically reduces to[−2π + ε, 2π − ε] as the new value of̂Wsi(t+ 1).

One easily checks, that if the SOBM algorithm is successful, i.e., if the computed final
codebook boxeŝWs are good box approximations of the corresponding Voronoi partitionsΘ̂s,
then (Θ̂ , Ŵ ) := (Θ̂1, . . . , Θ̂k , Ŵ1, . . . , Ŵk) is a good approximatek-box-decomposition.

3 Discriminating variables

As usual in data mining problems, the high-variableal configuration spaceΩ here is also very
sparse with respect toρ, i.e., the subsetΩρ := {ω ∈ Ω | ρ(ω) > 0} is much smaller thanΩ.
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Therefore often only very few variables are necessary to separate the given Voronoi partitions
Θs with respect toρ, i.e., to separate the setsΘs,ρ := {ω ∈ Θs | ρ(ω) > 0}. In this section
we give a formal definition of discriminating variables with respect to a given Voronoi tessel-
lation. Afterwards we show how an approximate box-decomposition can be used to compute a
heuristic solution automatically.

Definition 7. Let a1, . . . , aq denote theq variables (i.e., torsion angles) spanningΩ and let
I ⊂ {1, . . . , q} any index subset. Then we defineA(I) := {ai | i ∈ I} as the corresponding
variable subset andIc := {1, . . . , q} \ I as the complement of I. ByΩ(I) we denote the|I|-
dimensional subspace ofΩ spanned by the variablesai ∈ A(I). FurtherPρ(I) andρ(I) denote
the projections ofPρ andρ onΩ(I). For any setM := {M1, . . . ,Mk} with Ms ∈ Ω, we
setM(I) := {M1(I), . . . ,Mk(I)} whereMs(I) denotes the projection ofMs onΩ(I) for
s = 1, . . . , k.

Definition 8. Suppose we have a Voronoi tessellationΘ := {Θ1, . . . , Θk} of Ω and a subset
of indicesI ⊂ {1, . . . , q}.
(a) We call the variable setA(Ic) redundantfor (Ω, ρ,Θ), if Θρ(I) := {Θ1,ρ(I), . . . , Θk,ρ(I)}
is a Voronoi tessellation ofΩρ(I).
(b) We call the variable setA(Ic) maximally redundantfor (Ω, ρ,Θ), if there exists no subset
J ⊂ {1, . . . , q} such thatA(Jc) is redundant for(Ω, ρ,Θ) and|J | > |I|.
(c) We call variableai of Ω aunivariate discriminating variableof (Ω, ρ,Θ), if A({i}) is not
redundant for(Ω, ρ,Θ).
(d) We call the variablesai ∈ A(I) multivariate discriminating variablesof (Ω, ρ,Θ), if
A(Ic) is maximally redundant for(Ω, ρ,Θ).

Obviously our task is to find a maximally redundant variable setA(Ic) for Ω, so that we
can describe and separate the given Voronoi partitions by rules based only on the correspond-
ing multivariate discriminating variables.

Unfortunately the above definition cannot be directly realized. Besides the fact that it is
very expensive to verify whetherΘρ(I) is a Voronoi tessellation or not, especially in practical
applications one has usually to accept slight overlaps between the partitionsΘs,ρ(I), if one
wants to reduce the number of variables at all. Therefore we give a softer definition which
depends on a parameterδ ∈ [0, 1], called sensitivity factor:

Definition 9. Let M := {M1, . . . ,Mk} be a set of subsets ofΩ with Pρ(Ms) > 0 for each
s ∈ {1, . . . , k} and I ⊂ {1, . . . , q}. Then we call the variable setA(Ic) δ-redundantfor
(Ω, ρ,M), if overlapPρ(I)(M(I)) <= overlapPρ(M) + δ. A maximallyδ-redundantvariable
subset is defined analogously.

Suppose now we have an approximatek-box-decomposition (Θ,∆) of Ω with respect
to ρ. Let the variable setA(Ic) be δ-redundant for(Ω, ρ,∆) for a smallδ. Since we have
overlapPρ(∆) ≈ 0, we have alsooverlapPρ(I)(∆(I)) ≈ 0. If we use the following definition

Definition 10. Let I ⊂ {1, . . . , q} be any index subset and∆(I) be a set ofk boxes∆(I)1,
. . . , ∆(I)k ∈ BOX(Ω(I)). Without loss of generality we suppose thatI = {1, . . . , j} with
j ≤ q and thatΩ ⊂

⊗q
i=1[li, ri]. We call∆̄(I)s := ∆(I)s ×

⊗q
i=j+1[li, ri] theextensionof

∆(I)s toΩ. Set∆̄(I) := {∆̄(I)1, . . . , ∆̄(I)k}.
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One easily checks thatoverlapPρ(∆̄(I)) ≈ 0 and therefore (Θ,∆̄(I)) is an approximate
k-box-decomposition ofΩ with respect toρ. Since the valueoverlayPρ(Θ, ∆̄(I)) depends
on the chosen sensitivity factorδ, we have to adjustδ, such that the approximation quality
of (Θ,∆̄(I)) is optimal. Then we can describe the Voronoi partitionsΘs based only on the
variables that are necessary for a suitable discrimination:

IF ∀ i ∈ I xi ∈ ∆si THEN x ∈ Θs.

Note that∆̄(I)si = ∆si for i ∈ I. The computation of a maximalδ-redundant variable set
A(Ic) for (Ω, ρ,∆) has combinatorial complexity. Therefore we suggest to use the following
heuristic for a givenδ:

Computeϕ(i) := overlapPρ({i})(∆({i})) for eachi ∈ {1, . . . , q}.
SetD := {1, . . . , q} andI := {1, . . . , q}.
WHILE D 6= ∅ DO

Choosei ∈ D with minimal valueϕ(i).
SetD := D \ {i} andI := I \ {i}.
IF A(Ic) is notδ-redundant forΩ with respect to∆ THEN I := I ∪ {i}.

WEND

Note thatϕ(i) is large for univariate discriminating variablesai. The optimal sensitivity
factor δ has to be determined in an iterative process – to be described now. For simulation
efficiency and quality evaluation reasons we want to compute simple rules that describe and
separate the clustering{C1, . . . , Cκ} of Ω. As we have seen above this can be easily achieved
by using the box concept. Therefore we need to define some box-clustering:

Definition 11. Let C := {C1, . . . , Cκ} be a dynamical clustering ofΩ based on the Voronoi
tessellationΘ := {Θ1, . . . , Θk}, with Cs =

⋃
p∈Js Θp and p.w. disjoint index setsJs ⊂

{1, . . . , k} for s = 1, . . . , κ. Further let∆ := {∆1, . . . ∆k} be a set of boxes inΩ such that
each∆s ∈ BOX(Ω) is a box approximation ofΘs. SetC∆s :=

⋃
p∈Js ∆p. Then we call

C∆ := {C∆1 , . . . , C∆κ } the correspondingbox clusteringwith respect to∆.

An algorithm to compute a dynamical clustering together with simple descriptions based
on a suitable corresponding box-clustering will consist of the following steps:

1. Compute an approximatek-box-decomposition (Θ,∆) of Ω.
2. Compute a dynamical clusteringC based on the Voronoi tessellationΘ.
3. Compute descriptions based on the corresponding box-clusteringC∆.

The approximation quality of the box-clustering is given byoverlayPρ(C,C
∆) and de-

pends obviously on the valueoverlayPρ(Θ,∆). Practical experience shows that with increas-
ing q the approximation quality usually becomes worser. As a simple solution to reduce the
number of variables and so to improve the approximation quality, one can think about using
only the discriminating variables ofΩ and to computeC := C(I) based on (Θ(I),∆(I)),
whereA(Ic) is a maximalδ-redundant variable set for(Ω, ρ,∆). Unfortunately, with largerq
one has to choose a largeδ to reduce the number of variables sufficiently. But then the value
overlapPρ(I)(∆(I)) is usually not longer approximately0 and thereforeoverlapPρ(I)(C

∆(I))
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is also no longer approximately0. But then the computed descriptions do not separate the clus-
ters very well. Therefore we suggest an iterative process to compute an optimal valueδ, such
thatoverlayPρ(I)(C,C

∆(I)) is maximized, whileoverlapPρ(I)(C
∆(I)) is still approximately0:

Compute an approximatek-box-decomposition (Θ,∆) of Ω.
Choose a small sensifity factorδ > 0.0001, e.g.,δ := max{ϕ(i) | i = 1, . . . , q}/2.
WHILE δ > 0.0001 DO

Compute a maximalδ-redundant variable setA(Ic) for (Ω, ρ,∆).
Compute a dynamical clusteringC based on the Voronoi tessellationΘ(I).
Computeop(I) := overlapPρ(I)(C

∆(I)) andoy(I) := overlayPρ(I)(C,C
∆(I)).

IF op(I) < 0.1 THEN
Setδ := δ − δ/10.

ELSE
Setδold := δ andδ := δ + δ/20.
WHILE δold <> δ DO

Setopold := op(I) andoyold := oy(I).
Compute a maximalδ-redundant variable setA(Ic) for (Ω, ρ,∆).
Compute a dynamical clusteringC based on the Voronoi tessellationΘ(I).
Computeop(I) := overlapPρ(I)(C

∆(I)) andoy(I) := overlayPρ(I)(C,C
∆(I)).

IF (op(I) < min{opold + 0.03, 0.1}) AND (oy(I) < oyold) THEN
Setδold := δ andδ := δ + δ/20.

ELSE
Setδ := δold.

IFEND
WEND
Compute a maximalδ-redundant variable setA(Ic) for (Ω, ρ,∆).
Compute a dynamical clusteringC based on the Voronoi tessellationΘ(I).
Compute descriptions based on the corresponding box-clusteringC∆(I).
Setδ := 0

IFEND
WEND

4 Numerical Results

The above SOBM algorithm is now exemplified within the whole conformation analysis al-
gorithm for molecular systems. All molecules, for which HMC results are presented, were
parametrized by the MMFF force field [16]. As noted in (6), the sampling of a thermody-
namic distribution at various temperatures within a temperature embedding can be realized by
a correlated scaling of time steps and potential [21].

Apart from pentane, the Hybrid Monte Carlo (HMC) simulations were performed with
time stepsτ = 2.24 femtoseconds (fs) orτ = 1.83fs. Each new configuration is generated
by a propagation of the system over40 time steps. Each simulation consists of5 independent
Markov chains. Every second configuration is stored. Convergence of the HMC-simulation is
reached, as soon as the Gelman and Rubin quotient [14] is sufficiently close to the value1. At
leastn = 20000 configurations turned out to be necessary for each simulation run.

Although the computation of the approximate box-decomposition can be done automati-
cally, one has to fix some parameters. Obviously the resolution parameterk is the most im-



Automatic Identification of Metastable Conformations via Self-Organized Neural Networks 13

portant one, because the quality of the decomposition depends severely on it. Fortunately, both
the SOM and the SOBM-algorithm are quite robust against small changes ofk, so that the
following iterative strategy may be successful:

1. Choose a small valuek = k0.
2. Compute an approximate box-decomposition fork using a hybrid algorithm: First com-

putek codebook vectors with the SOM algorithm. Then use the codebook vectors to initialize
thek codebook boxes of the SOBM and adapt these boxes sufficiently fine.

3. Test whether the number of codebook boxes is large enough to guarantee an acceptable
fine decomposition ofΩ. Heuristically, we regardk to be large enough, if more than10% of
the final boxesŴs(L) contain no vectorx ∈ Ω with ρ(x) > 0.

4. If the number of codebook boxes is too small, increasek and go to step 2.
The use of the above combined SOM and SOBM algorithm speeds up the decomposition

process, because the adaptation of boxes needs at least twice as much computing time as the
adaptation of points. Throughout our numerical experiments we have set the following param-
eters:

SOM algorithm: First performmax{n, 5000} ordering steps withα(0) := 0.9, η :=
ηgaussian and γ(0) choosen to be half the radius of the selected map size, then perform
max{n, 15000} convergence steps withα(0) := 0.1, η := ηbubble andγ(0) := 1.

SOBM algorithm: Use computed SOM codebook vectors as initialization of SOBM code-
book boxes, then performmax{5n, 50000} convergence steps withα(0) := 0.1, η := ηbubble
andγ(0) := 1.

4.1 Box-decomposition for n-pentane molecule

In what follows, we show the results of our new SOBM algorithm for the simple n-pentane
molecule. We have analyzed the configurational space with respect to the two central tor-
sion angles defined by carbon quadrupels. The HMC simulation was performed at temperature
T = 800 K and with simulation time stepτ = 2.83fs. Based on the computed box decompo-
sition, our cluster algorithm identifies five possible metastable conformations (for more details
about the n-pentane and its dynamical behaviour see [10]). Figure 3 shows the final codebook

Fig. 3. Box-decomposition of n-pentane:Final boxes from SOBM algorithm for the5 identified clusters
(overlay=86.3%, overlap=0.3%). Compare Fig. 4.

Fig. 4. Clustering of n-pentane: Metastable conformations based on box-decomposition. Compare
Fig. 3.

boxes computed by the SOBM algorithm for each identified cluster. Obviously the overlap
between boxes of different clusters is small. To measure the quality of our approximate box-
decomposition, we have to check the overlay between the99 boxes and the implicitly defined
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Voronoi tessellation. In Figure 4 Voronoi partitions for each identified metastable conformation
are visualized with respect to the sampling probability densityρ. A comparison with Figure 3
shows that the covering is satisfactory and indeed the computed overlay is86.3%. But even
for such a large overlay one observes rather big “holes”, i.e., uncovered areas of the Voronoi
partitions. This occurrence may cause problems during the temperature embedding process; if
one only uses the simple box description rules it is possible that too many configurations are re-
jected, which implies that the Markov chain converges poorly. Figure 3 nicely shows the topol-
ogy approximation feature of the SOBM algorithm: areas of the input space are discretized
with different resolutions, i.e. by a different number of boxes. The greater the distributational
variation of the sampling configurations, the finer is the resolution.

4.2 HIV-protease inhibitor

Fig. 5. Two conformations of HIV-protease inhibitor: Average configurations for two out of six iden-
tified metastable conformations at temperature levelT = 1000K.

The inhibitor VX-478 of the enzyme HIV-protease consists of70 atoms. Each configuration
can be roughly reconstructed by34 torsion angles and corresponding equilibrium bonds and
angles. In order to illustrate the Perron cluster analysis, we present here the results of two
levels out of a hierarchical simulation protocol corresponding to a temperature embedding - see
Table 1), where eigenvalue spectra, coupling-matrices, overlays and numbers of discriminating
dihedrals are arranged.

T[K] spectrum coupling matrix ol [%] ndv

1500

1.000
0.967
0.870
0.832

0.994 0.006
0.038 0.962

19.8 22

1000

1.000
0.979
0.967
0.915
0.906

0.976 0.024 0.000
0.008 0.982 0.010
0.000 0.036 0.964 17.2 24

1.000
0.997
0.976
0.948
0.945

0.976 0.022 0.003
0.003 0.995 0.002
0.000 0.001 0.998 20.2 19

Table 1. Hierarchical temperature embedding for HIV-protease inhibitor: overlay (ol), number of
discriminating variables (ndv).
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The cluster analysis at levelT = 1000K decomposes each of the two conformations at
level T = 1500K into 3 conformations clearly indicated by spectral gaps each. The overlay
value of all simulations was close to20.0%. The overlap value was fixed at0.0%. The number
of discriminating dihedrals was found in each SOBM analysis to be roughly20 out of 34.
This number varies because each metastable conformation reflects different energy barriers.
Figure 5 shows average configurations for two out of the six identified conformations atT =
1000K. For comparison the two average configurations are aligned in a plane defined by
three common atoms. As it turns out, the different orientation of the functional groups due
to electrostatic and due to Lennard-Jones interactions seem to be the main reasons for the
observed differences of the conformations.

4.3 Virtual screening project

Our SOBM algorithm has been successfully used within a Virtual Screening (VS) project. For
illustration, we here have applied the VS to200 small molecules with different number of
atoms (< 100) i.e. different variablesq of the corresponding configurational spaceΩ. The
aim of the project was to explore any metastable conformations of the given molecules at high
temperature.

Figure 6 shows the number of clusters identified by Perron cluster analysis as a statistic
over all molecules.

We have observed a quite small overlap for nearly all computed box clusterings (top of
Figure 7). For smaller molecules also the overlay of the box clusterings is good (bottom of
Figure 7). The reason for the partially bad overlay for larger molecules is the fact that the
computedδ-redundant variable sets are relatively “too small”, i.e., the ratio of the number of
discriminating variables vs. the total number of torsion angles is sometimes “too high” for
larger molecules (top of Figure 8). Finally Figure 8 (bottom) shows the average CPU-times for
the computation of the discretizations and clusterings on a SUN Ultra E3000 ordered by the
number of torsion angles of the analyzed molecules.

Fig. 6. Virtual Screening of 200 molecules:Number of identified metastable conformations

Fig. 7. VS of 200 molecules:Overlap (top) and overlay (bottom) for molecules with different number of
torsion angles

Fig. 8. VS of 200 molecules:Top: ratio of discriminating angles vs.total number of torsion angles. Bot-
tom: CPU-time on SUN Ultra E3000
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Conclusion

The present paper describes in detail, how self-organized neural networks (SOM) can be
utilized and extended (SOBM) to be of crucial importance for the actual computation of
metastable conformations within a Perron cluster analysis. The performance of the algorithm
as given herein is illustrated by biomolecular examples. The present version of our algorithm
appears to be quite efficient in connection with hybrid Monte Carlo methods as worked out in
[10]. Efforts to further increase its reliability and speed are already under investigation.
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the EUROPEANREGIONAL DEVELOPMENT FUND (ERDF).

References

1. R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high
dimensional data for data mining applications. InProc. ACM SIGMOD Int. Conf. on Management
of Data, pages 94–105, 1998.

2. A. Amadei, A.B.M. Linssen, and H.J.C. Berendsen. Essential dynamics of proteins.Proteins, 17,
1993.

3. P. Deuflhard, M. Dellnitz, O. Junge, and Ch. Schütte. Computation of essential molecular dynamics
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Appendix

Function g within Codebook adaptation rules for SOBM. We have to distinguish between nor-
mal and complementary intervals.

Case 1: The interval̂Wsi := [lsi , rsi ] is an interval withlsi < rsi . Then we define:

g(a, b, ψ) :=


1 if ψ /∈ [a, b] ∧ di(ψ, a) ≤ di(ψ, b)
0 if ψ /∈ [a, b] ∧ di(ψ, a) > di(ψ, b)
b−ψ
ι([a,b])

else.

with ι([a, b]) := (b− a).

Case 2: The interval̂Wsi is a complementary interval withlsi > rsi . Then we define:

g(a, b, ψ) :=


1 if ψ ∈ [b, a] ∧ di(ψ, a) ≤ di(ψ, b)
0 if ψ ∈ [b, a] ∧ di(ψ, a) > di(ψ, b)

2π+(b−ψ)
ι([a,b])

if ψ /∈ [b, a] ∧ ψ ≥ a
b−ψ
ι([a,b])

else.

with ι([a, b]) := 2π + (b− a).

Cyclic interval boundary transformation rules for SOBM. If Ŵsi := [lsi , rsi ] with lsi > rsi
or if xi is not inside the complementary intervalŴsi , i.e.,xi ∈ [rsi , lsi ], then we have to consider the
earlier defined CBT rules, withlsi(t) andrsi(t) instead ofWs(t). But if x is inside the complementary
intervalŴsi , i.e.,xi /∈ [rsi , lsi ], one has to consider sligthly different transformation rules, because one
has to assure that the boundaries are adapted towards the correct direction:

IF g(lsi(t), rsi(t), xi(t)) > g(−rsi(t),−lsi(t),−xi(t)) THEN
Use the CBT rules for the adaptation oflsi(t).
IF xi(t) > rsi(t) THEN

First setxi(t) := xi(t)− 2π, afterwards adaptrsi(t) directly
(i.e., without further transformation).

ELSE
Adaptrsi(t) directly.

ENDIF
ELSE
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Use the CBT rules for the adaptation ofrsi(t).
IF xi(t) < lsi(t) THEN

First setxi(t) := xi(t) + 2π, afterwards adaptlsi(t) directly.
ELSE

Adaptlsi(t) directly.
ENDIF

ENDIF


