
Chapter 2

The Hausdorff metric

2.1 Definition

The Hausdorff metric actually measures the distance between non empty point
sets of some metric space. Let X be a metric space and δX its metric. For a point
x ∈ X and a non empty set A ⊆ X let us first define the distance of x to A by

δH(x, A) := inf
a∈A

δX(x, a).

Then the Hausdorff distance between A and B is defined for any non empty
sets A, B ⊆ X as

δH(A, B) := max(δasym(A, B), δasym(B, A)), where
δasym(A, B) := sup

a∈A
δH(a, B)

denotes the so called asymmetric Hausdorff distance from A to B.

2.2 Drawbacks

As mentioned before the Hausdorff metric measures the distance between point
sets of some metric space. Thus for example if we want to measure the distance
between curves given by some parameterization we have to discard this parame-
terization first and consider only the image sets of the given curves. This may be,
however, confusing, as the following picture demonstrates.
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Intuitively we would say that these two curves shown above are completely differ-
ent. But since both curves cover more or less the same area their corresponding
image point sets have a relatively small Hausdorff distance.



2.3 Simplicial complexes

In order to describe the problems arising with respect to the Hausdorff as well as
to the Fréchet metric (which will be discussed in the next chapter) in a unified
framework we will use the concept of a simplicial complex. A simplicial com-
plex A is defined to be a collection of simplices such that

1. every face of A is ∈ A and
2. every non empty intersection of any two simplices of A is a face of each of

them.

The underlying space of a complex A is defined to be the union of the
simplices in A, hence denoted as ∪A. Now we can describe for example polygons,
unions of polyhedra, piecewise affine curves, piecewise affine triangulated surfaces
and analogues in higher dimensions in a natural way by simplicial complexes. That
is if we want to treat those objects as point sets (which is basically what we will
do in this chapter) we consider them as the underlying space of some simplicial
complex.

Note that insisting the input of an algorithm to be a simplicial complex in-
stead of a set of simplices may hide an exponential factor in the input size where
exponential is meant to be exponential in the dimension of the simplices. This
is because a simplex of dimension j has exactly 2j − 1 sub simplices (namely the
simplices spanned by every non empty set of the corners of the given simplex).
Thus a simplicial complex containing simplices of dimension 6 d may have a size
which is ∼ 2d times the size of a set of simplices describing the same underlying
space.

2.4 Algorithms

We assume the objects to be described by a finite data structure. In fact we
assume them to be simplicial complexes. So the problem is the following.

problem (h)

We are given two non empty simplicial complexes A and B consisting of n
and m simplices in IRk, respectively. All simplices are of dimension 6 d.
The task is to calculate δH(∪A,∪B).

In this chapter we will show that there is an algorithm for that problem with a
running time which is polynomial in k, n, m for any given fixed d. Assuming that
n and m are asymptotically equal we will get the following run times

Solving problem (h)
Algorithm run time

brute force O(nd+3 + k3n2)
lower envelope method O(nd+2+ε + k3n2) randomized expected



It should be mentioned that the problem is easier for some special cases.
d = 0.
There is an obvious algorithm which does the job in O(n2) time. But for k 6 2

we can do it in O(n log n) time the following way. Given sets A, B of at most n
points in the plane we first calculate the Voronoi diagram of B, then we build a
point location data structure. Then we calculate for any point a ∈ A the Voronoi
cell of a and the distance to the corresponding site. If we take the maximum of
these distances we finally get δasym(A, B). Then calculating δH(A, B) is as easy as
this is.

d = 1.
For k 6 2 there is a O(n log n) time algorithm given in section 2 of [ABB91].
d > 2.
No special improvement is known.

2.5 Framework

Instead of calculating δH(∪A,∪B) directly we consider the following subproblem,
namely

problem (h2)

We are given a simplex T and a non empty simplicial complex A consisting
of n simplices in IRk, respectively. All simplices are of dimension 6 d. The
task is to calculate δasym(T,∪A).

By

δH(∪A,∪B) = max(max
A∈A

δasym(A,∪B), max
B∈B

δasym(B,∪A))

we can solve problem (h) in time nt(m)+mt(n) assuming we have a running time
of t(n) for problem (h2). Consequently we will give algorithms for the problem
(h2) with the following running times.

Solving problem (h2)
Algorithm run time

brute force O(nd+2 + k3n)
lower envelope method O(nd+1+ε + k3n) randomized expected

We refer to T in the following as the test simplex . For each simplex S ∈ A
let AS now denote the affine span of S. Furthermore let US denote the linear
subspace which is orthogonal to AS. Next we define DS := S + US.

Then each element x ∈ DS has a unique representation as a + u with a ∈ S
and u ∈ US. Then δH(x, S) = ||u|| holds. Keeping that in mind let dS : DS → IR+

0

be defined by dS(x) := δH(x, S) for all x ∈ DS. For the sake of simplicity define
A(x) := {S ∈ A : x ∈ DS} for all x ∈ IRk.* We claim now that the following
equality is true for all x ∈ IRk.

*A(x) is a simplicial complex, by the way, but we never use this fact.



δH(x,∪A) = min
S∈A(x)

dS(x) (?)

Proof. Let x ∈ IRk be arbitrary. Then we have to show

• ∃S ∈ A(x) : dS(x) = δH(x,∪A)
Proof. First there is certainly a simplex S ∈ A with δH(x, S) = δH(x,∪A).
We choose now such a simplex with minimal dimension. First we show
x ∈ DS. We make the following case distinction:

• S is zero dimensional. Then there is DS = IRk and nothing to show.
• S is not zero dimensional.

Let a be the point of S closest to x. Now it is impossible that a is on the
boundary of S since otherwise there would be a face S ′ of S on which
a would be situated and then by δH(x, S) 6 δH(x, S ′) 6 ||x − a|| =
δH(x, S) it would also be δH(x, S ′) = δH(x, S) = δH(x,∪A) although
S ′ ∈ A since S ∈ A and by the fact that A is a simplicial complex.*

This would contradict to the minimality of the dimension of S. Thus
a 6∈ ∂S. Then the line segment xa has to be perpendicular to S and
that means x ∈ DS.

By x ∈ DS follows immediately dS(x) = δH(x, S) = δH(x,∪A). Likewise
follows S ∈ A(x) since S ∈ A.

• ∀S ∈ A(x) : dS(x) > δH(x,∪A)
Proof. By S ∈ A we have S ⊆ ∪A thus dS(x) = δH(x, S) > δH(x,∪A).

Finally we define ηS : IRk → IR+
0 by ηS(x) := (δH(x, AS))2. Then ηS is a quadratic

form and by (?) the distance we are searching for in problem (h2) equals to√
max
x∈T

min
S∈A(x)

ηS(x).

2.6 Brute force

First we describe an algorithm for problem (h2) for which it is barely conceivable
to find a more stupid one. But even that algorithm is polynomial in n for given,
fixed k. And we will learn something about the structure of the problem by
discussing it. In the next subsection we will show why it works. In subsection
2.6.2 we will see, how to turn this into an algorithm which is also polynomial in
k. Thus in the following we will first assume that k is a constant.

DS is a polyhedron for each S ∈ A which can be described as the intersection
of at most d + 1 half-spaces of IRk. We will call the hyperplanes limiting the
half-spaces in the following the DS defining hyperplanes . Let the affine span
of the test simplex —we will call it test space in the following— be exactly j-
dimensional. The test simplex can be described now as the intersection of exactly

*This is the only place in this chapter where we use that A is a simplicial complex.



j + 1 half-spaces and k − j hyperplanes. Let H denote the set of the DS defining
hyperplanes in addition to the hyperplanes limiting the half-spaces defining the test
simplex within the test space. Then we have |H| 6 n(d + 1) + k + 1 ∈ O(n).

We now consider the arrangement induced by H within the test space. That is
we subdivide the space into finitely many equivalence classes of points which are
on or on the same side of the same hyperplanes of H. Thus equivalence classes
are polyhedra of various dimensions.

We now choose an equivalence class C which is contained in T with minimal
dimension with the additional property that it contains a point c with δH(c,∪A) =
δasym(T,∪A). Let X be the affine span of C and X ′ be the associated linear
subspace. If we apply Lemma 9–10 which will be stated and proven at pages 11–
16* we will see that there is a point e ∈ X, a set M ⊆ A(e) and a neighborhood
U of e —the term neighborhood means here and in the following a neighborhood
in the topological space X— such that

1. all ηS(e) with S ∈ M coincide,
2. e is the only point with this property within U ,
3. the projections of the gradients of ηS at e onto X ′ for S ∈ M establish an

affine base of X ′,
4. M ⊆ A(e),
5. e ∈ T and
6. δH(e,∪A) = δasym(T,∪A).

With this insight we search systematically for all affine subspaces X spanned
by equivalence classes of the subdivision, for all M ⊆ A and for all e ∈ X with the
properties 1, 3, 4 and 5 and we take the maximum value of all δH(e,∪A) obtained
so far.

We perform the identification of the possible affine subspaces X in the simplest
conceivable way. That is for each i ∈ {0, ..., j} we intersect the test space with j−i
hyperplanes of H and we check whether we get —as we may expect in general—
an i-dimensional affine subspace, which we use for X in that case. That are at
most nj−i possibilities for any i and we investigate each of them. Let i denote in
the following the dimension of X, as before.

For the identification of the possible M ⊆ A we make use of the property 3
which asserts that M consist of exactly i + 1 elements. Then we get at most ni+1

candidates for M and we investigate all of them.

Thus the property 1 can be expressed by i+1 quadratic equations of the form
ηS(e) = ξ. The fact e ∈ X leads to k− i additional linear equations. Furthermore
the property 3 can be expressed by the fact that an appropriate determinant of an
i× i-matrix of affine forms of e does not vanish. Let us call this determinant ∆(e).
By introducing an additional variable this can also be written as an equation.**

*To be precise we have to make a case distinction. Either C is zero dimensional and then we
have nearly nothing to prove or C is in the terminology of subsection 2.6.1 a relevant cell and
then we are indeed able to apply Lemma 9–10.

**That is by ∆(e) 6= 0 ⇔ ∃ξ2 : ξ2∆(e) = 1.



Altogether we get a system of k + 2 algebraic equations of a degree of at most i
in k + 2 variables.*

Lemma 10 asserts that the properties 1 and 3 imply the existence of a neighbor-
hood U with the property 2. Thus it is clear that they are only zero dimensional
solutions of the system (and therefore there are only finitely many of them (see
[CLO92] for an introduction into dimensionality theorems of algebraic varieties))
and that we can determine them (see [Can87], chapter 3, algorithm 3.2 on page
56) within a time which is bounded by a function in k and that their number is
bounded in the same way, say by c(k).

If we do this for all i ∈ {0, ..., j} then we get (j +1) ·nj−i ·ni+1 ·c(k) candidates
for e for which we have to check whether e ∈ T and for which if this is the case
we calculate δH(e,∪A). This can be done for each e in linear time. Altogether
we calculate at most O(nj+1) many distances in time O(nj+2). Note that j 6 d
holds. We only have to take the maximum over these distances.

This completes the description of the brute force algorithm. So, if you want
to see now how it can be improved, you may skip the proofs and continue reading
at page 16.

*they are e ∈ IRk and ξ, ξ2 ∈ IR.



2.6.1 Zero dimensionality lemma

For each x ∈ IRk we define η(x) := min
S∈A(x)

ηS(x). Furthermore ε :=
√

max
x∈T

η(x).

We were supposed to determine this ε.

In the following we refer to IRk as the base space. Now, we are given an affine
subspace of the base space, referred to as cell space and denoted with X. All
topological terms in this subsection refer to the topology restricted to X. Let the
linear subspace associated to the cell space be referred to as the cell direction
space and denoted with X 0. We refer to the unit sphere in the cell direction space
as cell sphere. If f is a real valued differentiable function on the base space then
let the projection of the gradient of f onto the cell direction space be referred to
as the cell gradient .

For e ∈ X and M ⊆ A define L(M) := {x ∈ X : |{ηS(x) : S ∈ M}| = 1}.
Furthermore let G(e, M) denote the set of the cell gradients of ηS at e for all
S ∈ M . We describe e as being regular relating to M , if and only if e ∈ L(M)
and G(e, M) establishes an affine base of the cell direction space.

A set C ⊆ X is said to be a cell , if and only if it is compact and the set A(c)
is the same for all c ∈ C. We say C to be relevant , if and only if there is a c ∈ C
with η(x) = ε2, but no c with this property on the boundary of the cell.

Lemma 9. If C ⊆ X is a relevant cell then there is a e ∈ C with η(e) = ε2 and
a M ⊆ A(e) such that e is regular relating to M .

Lemma 10. If e ∈ X is regular relating to a M ⊆ A then there is a neighborhood
U of e with U ∩ L(M) = {e}.

The remaining part of this subsection is the proof for Lemma 9–10.

ηS is a quadratic form on the base space for each S ∈ A. For each e of the base
space let αS;e be the affine approximation* of ηS at the center of expansion e.

Lemma 1. For all e, x of the base space and each S ∈ A it holds αS,e(x) 6
ηS(x) 6 αS,e(x) + ||x− e||2.
Proof. In the following let e denote the point of AS closest to e and x the one
closest to x. These points are (since AS is an affine subspace) uniquely defined.
Furthermore we define ∂e := e− e as well as ∂x := x− x.

Now the vectors ∂e, ∂x are perpendicular to AS and thus perpendicular to x−e
as well. Let now β(x) := 〈2x− e− e, ∂e〉. Then we have at first

β(x) = 〈2x− e− e, ∂e〉
= 〈2x− 2x− e + e + 2x− 2e, ∂e〉
= 〈2∂x − ∂e + 2x− 2e, ∂e〉
= 2〈∂x, ∂e〉 − 〈∂e, ∂e〉+ 2〈x− e, ∂e〉
= 2〈∂x, ∂e〉 − 〈∂e, ∂e〉 since ∂e⊥x− e.

*meant to be the Taylor series up to degree 1



It follows

ηS(x) = ||∂x||2
= β(x) + ||∂x||2 − β(x)
= β(x) + 〈∂x, ∂x〉 − 2〈∂x, ∂e〉+ 〈∂e, ∂e〉
= β(x) + 〈∂x− ∂e, ∂x− ∂e〉
= β(x) + ||∂x− ∂e||2.

Thus we have ηS > β as well as ηS(e) = β(e) and therefore ηS osculates β at e
from above and since β is furthermore affine we can state with good reasons that
β is the affine approximation of ηS at the center of expansion e. Consequently
we have β = αS,e. Thereby we have proven the first inequality of our lemma.
Additionally we have

ηS(x) = β(x) + ||∂x− ∂e||2
6 β(x) + ||∂x− ∂e||2 + ||x− e||2
= β(x) + ||(∂x− ∂e) + (x− e)||2 by ∂x− ∂e⊥ x− e
= β(x) + ||x− x− e + e + x− e||2
= β(x) + ||x− e||2.

�

We define A(e, M) := {x ∈ X : |{αS,e(x) : S ∈ M}| = 1} for each e ∈ X and any
M ⊆ A. Since αS,e and ηS do coincide at e (see Lemma 1) we immediately get
the following
Observation 2. e ∈ A(e, M) ⇔ e ∈ L(M)

Lemma 3. Let e ∈ X and M ⊆ A with A(e, M) = {e}. Then there is a
neighborhood U of e with U ∩ L(M) = {e}.
Proof. Let ∆ denote the diameter of a set of reals, i.e. the difference between the
greatest and the smallest element of the set. Consider now f(x) := ∆({αS,e(x) :
S ∈ M}). Then we have A(e, M) = {x ∈ X : f(x) = 0}. Consider now W :=
{x ∈ X : ||x− e|| = 1}. Then W is compact, f is continuous (since M is a finite
set) and there is an element x ∈ W with a minimal value of f(x). Let x be such
an element and µ := f(x) just this value.

Assume now it would be µ = 0. Then it would be x ∈ A(e, M) = {e} and
therefore x = e. This would contradict x ∈ W . Thus we have µ 6= 0. Since f is
never negative anyway we get µ > 0.

Now we define U := {x ∈ X : ||x− e|| < µ}. By µ > 0 it is U an open
neighborhood of e. It remains to show U ∩L(M) = {e}. First we conclude e ∈ U
since U is a neighborhood of e and e ∈ L(M) by e ∈ A(e, M) and Observation 2.
Altogether we get e ∈ U ∩L(M). It remains to show u = e for all u ∈ U ∩L(M).

Assume now it would be u 6= e. Then we could find a w ∈ W with u = e +
||u−e||(w−e). Since f is actually the maximum of finitely many differences there
would be S, T ∈ M with αS,e(w) = αT,e(w) + f(w). For the sake of simplicity we
define furthermore β := αS,e and γ := αT,e. Then it would be β(w) = γ(w)+f(w)



and as for the rest, since by e ∈ A(e, M) we have f(e) = 0, it would also be
β(e) = γ(e). We would get

ηS(u)
> β(u) by Lemma 1, first part
= β(e) + ||u− e||(β(w)− β(e)) since β would be affine and since u = e + ||u− e||(w − e)
= γ(e) + ||u− e||(γ(w) + f(w)− γ(e)) since β(w) = γ(w) + f(w) and β(e) = γ(e)
= γ(e) + ||u− e||(γ(w)− γ(e)) + ||u− e||f(w)
= γ(u) + ||u− e||f(w) since γ would be affine and since u = e + ||u− e||(w − e)
> γ(u) + ||u− e||2 since ||u− e|| > 0 and f(w) > µ > ||u− e||
> ηT (u), by Lemma 1, second part

which would imply ηT (u) 6= ηS(u). By S, T ∈ M this would be a contradiction to
u ∈ L(M). �

Let e ∈ X and M ⊆ A be arbitrary. If the affine span of G(e, M) is the whole cell
direction space* then we say that M is complete for e.
Lemma 4. Assume e ∈ X and that M ⊆ A is not empty with e ∈ L(M). Then
A(e, M) = {e} is true exactly if M is complete for e.

Proof. Let therefore e ∈ X be arbitrary and M ⊆ A be non empty with e ∈
L(M). Let us fix in the following one of the certainly existing elements out of M
and let us denote it with R like the word “reference”. To this define % := ηR(e),
furthermore Y := X × IR as well as Y ′ := X ′ × IR. For an arbitrary S ∈ M we
now define

βS(x) := αS,e(x + e)− % ∀x ∈ X ′

HS := {(x, βS(x)) : x ∈ X ′}
dS := DηS(e)
nS := (dS,−1),

where D should denote the cell gradient operator.** Then HS is a hyperplane in
Y ′ through 0 perpendicular to nS ∈ Y ′, hence HS = {y ∈ Y ′ : y⊥nS}.***

x ∈ A(e, M) ⇔ ∃ν : (x− e, ν) ∈ ⋂
S∈M HS

A(e, M) = {e} ⇔ ⋂
S∈M HS = {0}

⇔*4 〈{nS : S ∈ M}〉 = Y ′

⇔ affine span of {dS : S ∈ M} = X ′

�

*which is basically the same as if we would say that the linear span of the set {(x,−1) :
x ∈ G(e)} is the whole Cartesian product of the cell direction space with IR. But we discuss the
meaning of this product space later on.

**It is DηS(e) = 2(e− e), where e denotes the point of S closest to e, by the way.
***To see this let x ∈ X ′ and z ∈ IR be arbitrary. Then we have

(x, z)⊥nS ⇔ 〈(x, z), (dS ,−1)〉 = 0 ⇔ 〈x, dS〉+ 〈z,−1〉 = 0 ⇔ 〈x, dS〉 = z.
*4Actually this is an exercise in linear algebra. Since it is not obvious anyway, we want

to verify this for short. “⇒”: If 〈{nS : S ∈ M}〉 6= Y ′ then there would be a v ∈ Y ′ \ {0}
with v⊥nS ∀S ∈ M . Thus we would get v ∈ ⋂

S∈M HS \ {0}. “⇐”: If there would be a
v ∈ ⋂

S∈M HS \ {0} then v⊥nS ∀S ∈ M and by v 6= 0 we would get v 6∈ 〈{nS : S ∈ M}〉.



Proof of Lemma 10. Let e ∈ X be regular relating to M ⊆ A. Then it is
e ∈ L(M) and M complete for e. By Lemma 4 follows A(e, M) = {e}. By Lemma
3 there is indeed a neighborhood U of e with U ∩ L(M) = {e}. � Lemma 10

Proof of Lemma 9. Well then let C ⊆ X be a relevant cell. We had to show that
there is an e ∈ C with η(e) = ε2 and a M ⊆ A(e) such that e is regular relating
to M .

For each c ∈ C let the set of the sites of c, denoted as S(c), defined as
the set of all S ∈ A(c) with ηS(c) = η(c). This set is never empty, since η is
defined everywhere. Next, by definition of η follows immediately η(c) 6 ηS(c) for
all S ∈ A(c).

For each e ∈ X we define A(e) := {x ∈ X : αS,e(x) = η(e) ∀S ∈ S(e)}. Then
by the way A(e) is an affine subspace of X with e ∈ A(e). For each c in the interior
of the C we choose U(c) to be an open ball centered at c and small enough such
that for all u in the closure of U(c) firstly u ∈ C holds and secondly every site of
u is a site of c as well.

Let us define E := {x ∈ C : η(x) = ε2}. Then E is like C compact. Then the
fact that C is a relevant cell can be reformulated as the fact that E is not empty
and has no point on the boundary of C. Finally we have η(c) 6 ε2 for all c ∈ T .
From this we immediately get the following

Observation 5. Let c ∈ C. By η(c) > ε2 follows c ∈ E.

Lemma 6. Let e ∈ E with the property that A(e) is not zero dimensional.
Then there is a null set N(e) of the cell sphere* with the property that an optimal
element of E can not be inside of U(e), where optimal is meant with respect to
an objective function which is defined as the scalar product with some vector out
of the cell sphere which is not contained in N(e).

Proof. Let e ∈ E and A(e) be not zero dimensional. Then let N(e) be the set
of all vectors of the cell sphere which are perpendicular to A(e). We can do this
since A(e) is not zero dimensional. For the same reason N(e) is a null set.

Well then we consider an objective function v defined by v(x) := 〈v, x〉 for all
x ∈ X where v is an arbitrary vector out of the cell sphere which is not contained
in N(e). Consequently we will refer to v(x) as the value of x. Next x is said to
be in M optimal if and only if x ∈ M and v(z) 6 v(x) holds for all z ∈ M .

Let e+ be in E optimal. Then we have to show e+ 6∈ U(e).

Let V denote the closure of U(e) and W denote its boundary.

Since A(e) was not zero dimensional by assumption and an affine subspace
anyway we have A(e) ∩W 6= {}. Then there is an in A(e) ∩W optimal element,
let us denote it with q. There is certainly a site of q. Let Sq be such a site. Then
q ∈ W ⊆ V and Sq is not only a site of q but also of e. We get

*i.e. a set of measure zero with respect to the Lebesgue measure on the cell sphere



η(q) = ηSq(q) since Sq is a site of q
> αSq ,e(q) by Lemma 1, first part
= η(e) since q ∈ A(e) and Sq ∈ S(e)
= ε2 since e ∈ E.

Hence η(q) > ε2 and q ∈ V ⊆ C and by Observation 5 we have q ∈ E. Since
e+ is in E optimal it follows v(q) 6 v(e+).

By v 6∈ N(e) we have that v is not perpendicular to A(e) thus v(e) < v(q) 6
v(e+) holds and therefore we get e 6= e+. Now we can forget q. This was, by the
way, the only place where we needed v 6∈ N(e).

Assume now it would be e+ ∈ U(e). By e 6= e+ the ray from e going through
e+ would be uniquely defined. Let e′ denote the intersection point of this ray with
W . Since e, e+, e′ are distinct and would appear in this ordering along the ray
it would follow from v(e) < v(e+) that v(e+) < v(e′) holds. Since e+ was in E
optimal we could conclude e′ 6∈ E and by e′ ∈ W ⊆ C with Observation 5 finally
η(e′) < ε2.

Now there would be certainly a site of e′. Let S be such a site. Then it would
be ηS(e′) = η(e′) < ε2. Furthermore it would hold ηS(e+) > η(e+) = ε2 and
finally (since S would be by e′ ∈ V not only a site of e′ but also of e) it would be
ηS(e) = η(e) = ε2. Let us summarize.

ηS(e) = ε2

ηS(e+) > ε2

ηS(e′) < ε2

Since e, e+, e′ would be distinct and would occur in this ordering along some line
and since ηS is a quadratic form it would have ηS, restricted to this line, a local
maximum.* But this can not be because ηS is the square of the distance to an
affine subspace.** �

Lemma 7. There is an e ∈ E, such that A(e) is zero dimensional.

Proof. First we can observe that the U(e) for e ∈ E establish an open covering
of E. Since E is compact there is a finite subcovering U(e1), ..., U(ej) of E.

If Lemma 7 would be false we would be able to apply Lemma 6 to all
e1, ..., ej ∈ E and we could define N := N(e1) ∪ ... ∪ N(ej) which then would be
a null set. Hence there would be a vector v out of the cell sphere with v 6∈ N .
Since E is compact there would be an in E optimal element with respect to an
objective function defined as the scalar product with v. Let e be such an element.

*That is between e and e′, but this is not important for the proof.
**To see that we can use Lemma 1, like the following way: Assume the restricted function

would have a local extremum at ξ. Then the graph of the restricted function would have a
horizontal tangent at ξ. This tangent is a part of the tangential hyperplane of the graph on
the whole function at ξ. By Lemma 1, first part, the graph would lie above the tangential
hyperplane, hence above the tangent. Consequently the restricted function (but not necessarily
the whole function) has to have a local minimum at ξ.



But by Lemma 6 this e could not lie inside of any U(ei). This would contradict
to e ∈ E. �

Lemma 8. We have A(e) = A(e, S(e)) for any e ∈ E.

Proof. “⊆” is trivial. So we only prove “⊇”. Hence let x ∈ A(e, S(e)) be
arbitrary. Now we show {aS,e(x) : S ∈ S(e)} ⊆ {η(e)} from which x ∈ A(e) will
follow. Let therefore S ∈ S(e) be arbitrary. Define furthermore µ := η(e) and
µ′ := αS,e(x). Then we have to show µ′ = µ. Assume not. Let σ the sign of µ′−µ.
By assumption it would be σ(µ′ − µ) = |µ′ − µ| > 0.

Now we choose β > 0 small enough such that e′ := e + βσ(x − e) is inside of
U(e). Now there would be certainly a site of e′. Let S ′ be such a site. By e′ ∈ U(e)
it would be S ′ a site of e as well. Since αS′,e would be the affine approximation of
ηS′ at the center of expansion e its value at e would be = ηS′(e) and this would be
= η(e) = µ since S ′ would be a site of e. Altogether it would be αS′,e(e) = µ. By
S, S ′ ∈ S(e) and x ∈ A(e, S(e)) it would be furthermore αS′,e(x) = αS,e(x) = µ′.
We would get

µ < µ + β|µ′ − µ|
= µ + βσ(µ′ − µ)
= αS′,e(e) + βσ(αS′,e(x)− αS′,e(e))
= αS′,e(e

′) since αS′,e would be affine
6 ηS′(e

′) since Lemma 1, first part
= η(e′) since S ′ would be a site of e′

6 ε2 since e′ ∈ U(e) ⊆ C ⊆ T
= η(e) since e ∈ E
= µ

�

Now for the proof of Lemma 9. By Lemma 7
there is a e ∈ E such that A(e) is zero dimensional. Then we have* A(e) = {e}.
By Lemma 8 we have also A(e, S(e)) = A(e) = {e}. By Observation 2 we have
e ∈ L(S(e)) as well. By Lemma 4 we now get that S(e) is complete for e. Now we
choose an affine base M ⊆ S(e). Then we have e ∈ L(S(e)) since e ∈ A(e, S(e))
and L(S(e)) ⊆ L(M) since M ⊆ S(e) and therefore e ∈ L(M). Thus e is regular
relating to M . � Lemma 9

2.6.2 Refinements

Here we will show how to turn the brute force algorithm into an algorithm which is
polynomial in k. Consequently let j denote the dimension of the test simplex T , as
before. Then let its corners are denoted by c0, ..., cj ∈ IRk. Now let Φ be a function

*because αS,e and ηS coincide at e (see Lemma 1).



which maps each (α1, ..., αj) ∈ IRj onto c0 + (c1 − c0)α1 + ... + (cj − c0)αj ∈ IRk.
Especially T := {(α1, ..., αj) : α1, ..., αj > 0; α1 + ... + αj 6 1} will be mapped
bijectively onto T . For each S ∈ A we define now DS := Φ−1[DS] as well as
ηS := ηS ◦ Φ. For each x ∈ IRj we define furthermore A(x) := {S ∈ A : x ∈ DS}.
Then we have

max
x∈T

min
S∈A(x)

ηS(x) = max
x∈T

min
S∈A(x)

ηS(x) = (δasym(T,∪A))2

and we are able to perform the calculations within T ⊆ IRj and with DS,A(x), ηS

quite in the same way as before, particularly since Lemmas 9–10 also apply analo-
gously that way.* Thus all time consuming calculations can be done in IRj provided
that we first determine representations of DS, ηS for all S ∈ A. For each S this
can certainly be done in O(k3) time.** So the preprocessing consumes O(nk3)
time.

2.7 Using the structure of the lower envelope

What we actually have calculated so far is the maximal vertex of the lower envelope
of the functions ηS when restricted to DS∩T . These partial functions are algebraic
and their domains are semialgebraic sets of constant degree. Thus we are able to
apply theorem 7.22 of [SA95]*** which states that we can determine all vertices,
edges and 2-faces of this lower envelope in randomized expected time O(nd+1+ε),*4

hence solving problem (h2) in O(nd+1+ε + k3n) randomized expected time.

*The reformulated Lemmas 9–10 actually follow immediately from the original ones.
**This is a generous upper bound for the time needed by a matrix multiplication, matrix

inversion or orthogonalization procedure. And more than constantly many of those operations
are not necessary.

***That is on page 213, at least on the cited edition.
*4Please note that in the cited book the letter d denotes the dimension of the domain of the

functions plus one. This is because functions are identified with their graphs thereby allowing
them to be defined implicitly. We do not use this generality anyway.




