
Chapter 3

The Fréchet Metric

3.1 Motivation

As already mentioned in section 2.2 on page 5, the Hausdorff metric lacks in using
the additional information which comes with the parameterization of the given
objects, provided that there is a parameterization. In this chapter, however, we
assume the geometric objects to be given by some parameterization.

If we study those objects like curves it turns out that a different metric called
Fréchet metric is more appropriate. It was first described in [Fré06]. Especially
in the calculus of variations this is the standard metric considered, see [Ewi85]
for example. The Fréchet metric is also sometimes simply more usefull than the
Hausdorff metric especially in solving problems in pattern recognition as you might
see in [WN94].

The Fréchet metric is also the only metric for curves for which there is an
algorithm which simplifies a piecewise affine curve by searching for a piecewise
affine curve with the least possible number of pieces within a neighborhood of
the original curve where neighborhood is defined with respect to that metric (see
[GHMS93]). This may be surprising but we think it reflects only fact that a
global optimum with respect to, say the Hausdorff metric would be as difficult as
it does not make sense because, as mentioned before, the Hausdorff metric does
not necessarily expresses what we want. Hence existing approximation software
makes some compromise between local and global features. Thus it is not easy to
describe what they do in terms of a metric.

So let us try to give it more formal definitions.

3.2 Definitions

Let (X, δX) be a fixed metric space and d ∈ IN a fixed constant. This will be the
intrinsic dimension of the geometric objects we consider.

The geometric objects we will consider in this chapter —let us call them ob-
jects for short— are continuous mappings f : A → X where A ⊆ IRd is home-
omorphic to [0, 1]d. Sometimes more complicated domains are considered which



need not to be mutually homeomorphic. But this should not be the main problem
here.

We would like to introduce the abbreviation σ : A
�→ B for the fact that

σ : A → B is an orientation preserving homeomorphism.

Usually objects f : A → X and g : B → X are identified if there is a σ : A
∼→ B

with f = g ◦ σ. In this case we say f is achieved from g by a (orientation
preserving) reparametrization. It is easy to compare functions with the same
domain just by evaluating the pointwise minimum. Unfortunately the result of
this comparison depends heavily on the parameterization. Thus the idea behind
the definition of the Fréchet metric is to choose parameterizations among all valid
reparametrizations of an object which match best.

For two objects f : A → X and g : B → X the Fréchet distance is defined
by

δF (f, g) := inf
σ:A

∼→B
sup
x∈A

δX

(
f(x), g(σ(x))

)
or +∞ if no such σ exists, which would be only the case if we allowed the domains
of our objects to be more general. This distance function is a pseudo metric*.

Note: Defining f ∼ g :⇔ δF (f, g) = 0 and considering the equivalence classes

f/∼ := {f̃ : f̃ ∼ f} as the real objects makes δF (f/∼, g/∼) := δF (f, g) to a metric
on these “real objects”. • For d = 1 these equivalence classes are called oriented
Fréchet curves and •• for d = 2 they are called oriented Fréchet surfaces .

From the algorithmic point of view these objects are too general. Therefore
we want to define an object f : A → X to be simplicial if and only if A is the
underlying space of a finite simplicial complex of dimension d and f is affine on
each simplex of this complex. See section 2.3 on page 6 for a definition of these
terms. Then the size of the object is the complexity of the complex, i.e. the
number of simplices in it. • For d = 1 this means that A should be subdivided
into finitely many subintervals and that f should be affine on each subinterval.
This means that f should describe a polygonal chain. •• For d = 2 this means
that A should be triangulated into finitely many triangles and that f should be
affine on each triangle.

A simplicial object f : A → X can be described by a finite structure describing
the simplicial complex and by the values of f on the finitely many corners of the
simplices in the complex. For example for d = 2 it suffices to specify the structure
of the oriented triangulation of A and to specify what f does on the corners of
the triangles.

Furthermore, and for the sake of simplicity, let us assume that X is a finite
dimensional euclidian vector space like IR3 or so. Finally let us assume that all
corners of the simplices we consider as input for our algorithms have rational
coordinates.

*That means δF (f, f) = 0
δF (f, g) = δF (g, f)
δF (f, h) 6 δF (f, g) + δF (g, h) ∀f, g, h.

See [Ewi85] for the proofs. But it is not really complicated.



Now we can address the two problems considered in this context:

� Given simplicial objects f and g of size n and m. What is δF (f, g)? This is
called the computation of the distance.
� Given simplicial objects f and g of size n and m. Given furthermore a real ε.
Does δF (f, g) 6 ε hold? This easier problem is called the decision problem for
the distance.

3.3 Previous work

For d = 1 the decision problem can be solved in O(nm) time and the distance
can be computed in O(nm log nm) time [AG95]. For d > 1 nothing was known.
The algorithms for d = 1 made essentially use of the linear ordering in IR1. The
lack of ordering in higher dimensions seems to make it difficult to apply the same
ideas here.

3.4 The main theorem

The decision problem for the Fréchet metric for simplicial objects with
intrinsic dimension d > 2 is NP-hard even if X = IR2 and one object
describes a single fixed triangle.

3.5 Background

Cook [Coo71] proved the NP-completeness of 3SAT by directly showing that every
problem in NP can be reduced in polynomial time onto 3SAT. With this first NP-
complete problem other problems could be proved to be NP-complete simply by
reducing known NP-complete problems to them.

3.5.1 Definitions

� A boolean formula is said to be in conjunctive normal form if and only if
it is a conjunction of disjunctions of literals. A literal is a variable or a negated
variable. The disjunctions are also called clauses .
� A boolean formula is said to be in 3-conjunctive normal form if and only if
it is in conjunctive normal form and every clause consists of exactly three literals,
where we allow one variable to appear more than once in a clause.
� A boolean formula is said to be in 3,4-conjunctive normal form if and only
if it is in 3-conjunctive normal form and every variable occurs at most four times,
where repeated occurrences of one variable in one clause are counted repeatedly.
� A boolean formula ϕ in conjunctive normal form is said to be planar if and
only if the bipartite graph Bϕ is planar, where the vertices of Bϕ are the variables
and clauses of ϕ and the edges are exactly the pairs (v, c) for which v is a variable
occurring in the clause c. This definition differs slightly from the one given in



[Lic82], but it is sufficient to know that a planar formula in the sense of [Lic82] is
planar in the definition above, too.
� Let yellow submarine-SAT denote now the problem of deciding whether a given
boolean formula is satisfiable, which is in submarine-conjunctive normal form and
furthermore is yellow. Of course, these words yellow and submarine are only
placeholders to illustrate this way of speaking.

3.5.2 Known reductions

In [Tov84] it was shown that 3,4-SAT is NP-complete. The idea used to show
one variable has to occur no more than four times is indeed very simple; we
can replace each variable x occurring k times by x0, ..., xk−1 and add the clauses
(xi ∨ ¬xi+1modk). If we write (xi ∨ ¬xi+1modk) as (xi ∨ xi ∨ ¬xi+1modk) this gives a
clause consisting of exactly three literals and every xi occurs exactly four times.*

The only reason to mention this is to notice that this process keeps the planarity
of the formula.

In [Lic82] is shown that planar 3-SAT is NP-complete. With the idea in [Tov84]
it can be shown that planar 3,4-SAT is also NP-complete. A careful reading of
the construction in [Lic82] used to show planar 3-SAT to be NP-complete makes
it clear that for a given formula of length n in 3,4-conjunctive normal form not
only an equivalent instance of planar 3,4-SAT consisting of some formula ϕ can be
computed in in n polynomial time, but also an embedding of Bϕ can be computed
in a very simple way.

To understand this we briefly repeat the construction in [Lic82]. First all
variables are placed on a horizontal line and all clauses are placed on a vertical
line. Then the connections are made in an obvious manner. Take for example the
formula (v ∨ ¬x ∨ z) ∧ (v ∨ ¬w ∨ ¬y) ∧ (v ∨ ¬w ∨ x). Then the straight forward
embedding is shown below.

v

v ∨ ¬x ∨ z

v ∨ ¬w ∨ ¬y

v ∨ ¬w ∨ x

w x y z

*This is a dirty trick. Strictly speaking in [Tov84] is actually shown how to avoid multiple
occurrences of one variable within one clause. But this is not important for our proof.



So far there is obviously no problem in computing the embedding. But of
course, there will be crossings between the edges. These crossings are eliminated
step by step by substituting each crossing by a certain planar subgraph which will
introduce some new variables and clauses (just at the place where the crossing
was) such that the new formula is satisfiable if and only if the old formula is
satisfiable. This construction can be done in quadratic time.

We can furthermore* assume that Bϕ is embedded on a m×m-grid where the
vertices are non adjacent grid points and the edges are grid point disjoint paths
on the grid lines and m is linear in n.

3.5.3 Straight forward extensions

Altogether the following problem —let us call it grid3sat— is also NP-complete.
We are given a m × m-grid, in which some non adjacent grid points are distin-
guished as clauses and some as variables. The variables are connected with the
clauses by vertex disjoint paths on the grid. We associate a sign with every path
indicating whether the corresponding variable is negated in the corresponding
clause or not. The question is, whether the formula described in this funny way
is satisfiable or not.

The reductions of grid3sat to some other problems will be computationally
trivial. Take for example the following instance of grid3sat.
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The filled circles indicate variables, the empty ones indicate clauses. The
formula described by the drawing above is

(x ∨ ¬y ∨ ¬y) ∧ (¬x ∨ z ∨ z) ∧ (y ∨ y ∨ z).

All the reductions we will consider later on from grid3sat to some other problem
begin as follows. First the grid is subdivided into quadratic pieces centered at the
grid points subsequently called components .

*This is not mentioned in [Lic82] but should be clear.
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In order to reduce the number of different components we assume each com-
ponent containing a variable (subsequently called variable component) to have
exactly four exits.* Furthermore we draw the signs on the paths directly on the
variables.
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Thus we have 26 different possible components. These are 24 = 16 different
variable components,
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6 different so called connection components ,

*This will not cause any problems since there are no adjacent variables.



and 4 different so called clause components .

d d d d

In the reductions we will have some problem specific constructions for each of
the different possible components. The reductions will be computationally trivial
since we only have to insert these constructions everywhere the components appear
on the grid.

Historical note. Having tried to disprove the main problem in this chapter, i.e.
having tried to give a polynomial time algorithm for the decision problem for the
Fréchet metric we have tried first to solve a problem which seemed to be easier.
But even that turned out to be NP-hard. See chapter 5 on page 61 for details.
This was the reason for us to try to prove the decision problem to be NP-hard.

3.6 The selection problem

In this section we discuss a more or less artificial problem we would like to call the
selection problem. We will show this problem to be NP-hard. In the next sections
we will reduce the decision problem for the Fréchet metric to the selection problem.

Remark. In this and the following sections of this chapter we will intro-
duce a bunch of ridiculous funny looking numeric constants such as 0.000000016,
0.0000009, 0.000000049, 0.00000052, 0.0054, 0.99999999, 1.09 or 3.0000001. These
constants seemed to be randomly chosen and therefore somehow arbitrary. In fact
this is not true.

There is some clearance in choosing those numbers. That means the proofs
would probably still work even if we would choose numbers which differ from
the ones given here a little bit. So much is true. But We have the impression
that there is only very little clearance in some of these numbers. Especially the
constant 3.0000001 which you will encounter in section 3.11 seems to look as if it
would have to be an arbitrary number > 3. It is not known whether the statement
which is proven in that section is true for all numbers > 3 but it is clear that the
proof would not work for arbitrary numbers. So what we basically did is to try to
find a reasonable large value for it for which the proof works. The fact that this
value is so close to 3 only reflects the tightness in the constructions.

3.6.1 Problem definition

A symbol placement is a quintuple (x, y, c, s, n) where x, y, c, s denote rational
numbers with c2 + s2 = 1 and n ∈ {2, 3}.

To each symbol placement we associate a symbol which is a hexagon* in the
euclidian plane for which some vertices are distinguished to be yellow , some are
not. Here is the symbol for the symbol placement (0, 0, 1, 0, 3).

*considered as a convex body, not as a boundary of a convex body



Symbol figure Symbol coordinates

z0

z1

z2

s0

s1

s2

z0=( -.5450000, .9439677)
z1=( -.5450000,-.9439677)
z2=(1.0900000, 0)
s0=( .3989677,-.6910323)
s1=( .3989677, .6910323)
s2=( -.7979354, 0)

The pink region around the hexagon indicates the ν
2

neighborhood of the
hexagon, where ν := 0.2.

We will explain the geometry behind these fancy coordinates in subsection 3.6.2
on page 27. For the moment they are just the coordinates used in the subsequent
drawings.* In a symbol placement (x, y, c, s, n) the entries x, y represent a trans-
lation and the entries c, s represent a rotation of the points above.** A point (p, q)
for a symbol placement (0, 0, 1, 0, n) corresponds to a point (x+pc−qs, y+ps+qc)
for the symbol placement (x, y, c, s, n).

There are two types of symbols. A symmetric one, associated with a symbol
placement of the form (x, y, c, s, 3) and an asymmetric one, associated with a sym-
bol placement of the form (x, y, c, s, 2). The asymmetric version for (0, 0, 1, 0, 2)
will be visualized as follows

z0

z1

z2

s0

s1

s2

The only difference is the coloring of the symbol. In the symmetric symbol
the vertices z0, z1, z2 are said to be yellow and in the asymmetric symbol only the
vertices z0, z1 are said to be yellow. So the last number of the quintuple is actually
a notation for the number of yellow vertices of the symbol.

Further definitions. For any µ > 0 and two symbol edges (s, z) and (s′, z′)
which are in general symbol edges from two different symbols we say that (s, z)
and (s′, z′) are µ-close if and only if z and z′ are both yellow and furthermore
||s− s′||, ||z − z′|| 6 µ holds.

*These drawings are made by hand coded postscript. Thus the geometric calculations needed
for the drawings are basically done by the postscript interpreter with the only exception that the
coordinates printed here and elsewhere explicitly came from a separate file and are calculated
by a short GNU bc program.

**Since c and s have to be rational, not all rotations are allowed. But this is far less restrictive
as one can think. In [CDR92] you may also read how you can calculate approximations for
arbitrary angles fast.



An ensemble is a set of symbol placements such that for any two symbols
(S, S ′) the following conditions hold:

1. They do not intersect.

2. If there exist x ∈ S and x′ ∈ S ′ with ||x − y|| < ν then there exist edges
(sj, zi) of S and (s′j′, z

′
i′) of S ′ which are µ-close to each other where here

and in the following we will define µ := 0.0000009. In the following we will
say in this case that zi and z′i′ are close to each other.

A selection of an ensemble is a subset of the yellow vertices of the symbols.
A selection is said to be complete if and only if for every symbol at least one of
its yellow vertices is in the selection. A selection is said to be feasible if and only
if no two of its vertices are close to each other.

The selection problem is the following problem. Instance: Ensemble of n
Symbols. Question: Does there exists a complete and feasible selection?

3.6.2 The geometry of the symbol

To understand the properties of the given coordinates for the symbols it is nec-
essary to distinguish between the following notions of the symbol: the “ideal”
symbol, the “real” symbol and the “scaled” symbol.

The ideal symbol for the symbol placement (x, y, c, s, n) is a hexagon with
endpoints idealz0,

ideals2,
idealz1,

ideals0,
idealz2,

ideals1 in counterclockwise direction and
uniquely defined by following properties.

• All edges of the hexagon are of the same length.
• ideals0,

ideals1,
ideals2 as well as idealz0,

idealz1,
idealz2 form each a regular triangle

with barycentre at (x, y) which will be subsequently called the center of the
symbol as well.
• The angles at idealz0,

idealz1,
idealz2 are right.

• To be more precise we demand that z2 = (x + 1.09c, y + 1.09s).

From the definition follows that a disk of radius 1.09 centered at (x, y) touches
z0, z1, z2 on its boundary and contains s0, s1, s2 in its interior. Furthermore the
distance of the center of a symbol to any of its edges is the same as to any line
going though its edges and is equal to 1.091

2

√
2.

o z2

p

Proof. Let p be the point on the line
z2s1 nearest to o. Then \pz2o is right.
Since \z2s0s1 is right the angle \z2op is
= 1

4
π as well as \oz2p. Thus we have

δ(o, p) = δ(o, z2)
1
2

√
2 = 1.091

2

√
2. And,

as you might see, p lies actually on the
segment z2s1. �



The real symbol for the symbol placement (0, 0, 1, 0, n) is what we actually
have seen so far and it is basically the same as the corresponding ideal symbol
with the exception that the coordinates of the points are rounded to the nearest
decimal description with 7 digits after the decimal point. This means that the real
coordinates are rational and differ from the ideal coordinates by at most 1

2
· 10−7

which leads to a distortion of at most % := 1
2

√
2 · 10−7 < 10−7.

The scaled symbol is the ideal symbol scaled around its barycentre by a
factor of 1 + α where α := 3 · 10−7.
Claim. Let S, S ′ be scaled symbols. Let I be an isometric mapping which
distorts the points of S ′ by a distance of at most δ := 2 · 10−7 such that S and
I(S ′) have exactly one edge e in common. Furthermore this edge e of S has to be

δ-close to e′ := I−1(e) considered as an edge of S ′. Let S̃, S̃ ′ be the corresponding
real symbols as well as ẽ and ẽ′ the corresponding edges on them. Then (a) the

convex hulls of S̃, S̃ ′ do not intersect and (b) ẽ and ẽ′ are µ-close together.

Proof.
(a)

Let S, S
′
denote the convex hulls of the corresponding ideal symbols. Then we

have δH(S, I(S
′
)) = 1.09α

√
2 hence δH(S, S

′
) > 1.09α

√
2− δ = 2.624... · 10−7.

Assume now that the convex hulls of S̃ and S̃ ′ would intersect. That means
that there must be an intersection point, let us call it p. By δH(p, S), δH(p, S

′
) 6 %

it would hold δH(S, S
′
) 6 2% =

√
2 · 10−7 < 2.624... · 10−7.

(b)
Let p denote a vertex of e and let p′ denote the corresponding vertex of e′.

Analogously let p̃, p̃′ the corresponding vertices of ẽ, ẽ′. Then it remains to show
that ||p̃− p̃′|| 6 µ holds.

Finally let p, p′ denote the corresponding vertices of the ideal symbols. Since
on ideal symbols every vertex is at most 1.09 far apart from its center the distance
between the corresponding vertices of the ideal and the scaled symbol is 6 1.09α.
Now we have ||p̃−p̃′|| 6 ||p̃−p||+||p−p||+||p−p′||+||p′−p′||+||p′−p̃|| 6 %+1.09α+
δ + 1.09α + % = 2% + 2.18α + δ = (

√
2 + 7.54)10−7 = 8.954... · 10−7 6 9 · 10−7 = µ.

�

3.6.3 The selection problem is NP-hard

We reduce grid3sat to the selection problem. Let us remember. We are given an
instance of grid3sat. We want to construct an appropriate instance of the selection
problem. In order to do this we first scale the given grid such that the distance
between two grid points is 180 000 000. Then we build each component with a
finite number of symbol placements by a plan which is fixed for each of the 26
component types. Not really. We have to use two different versions for each of the
6 different connection components. This is because there is an implicit direction
in each path (i.e. from the variable towards the clause) which we have to take into
account when actually building these components. Therefore we actually use a
stock of 32 different components.



Let us first look to the most simple form of a connection component. In the
following picture we will show one which is directed from the left to the right.

0 1 2 3 4 5 6

If not stated otherwise all symbols mentioned here are asymmetric ones. The
symbols shown in this and the following pictures in this subsection are meant to
be scaled symbols with edges matching exactly. In order to get a proper ensemble
we have to use symbol placements describing real symbols. Due to the fact that
we have to use rational numbers to describe these symbol placements there will be
some quantization error. Thus for each symbol S we choose a symbol placement
such that there is an isometric mapping I which maps S onto the scaled symbol
described by the symbol placement such that all points in the 42-neighborhood
of S are mapped onto points which are 1

4
δ-close to the original points. The set

of symbol placements we get that way will be an ensemble (use claim (*) for a
proof).

In the chain there is a pattern consisting of two symbols repeating itself. Each
pattern increases the length of a value which is clearly < 3. Thus we can achieve
any desired length > 3 within an error of 6 1.5. For a chain of a length of
approximately 90 000 000 we have to use more than 30 000 000 repeated patterns
containing more than 60 000 000 symbols in total. If we have such a chain of
symbols g0, ..., gn−1 with n > 60 000 000 and we are given a vector ~v with ||~v|| 6 6
then we are able to translate the symbol gi by i

n
~v and the corresponding ensemble

obtained in the way described above still remains to be an ensemble. For a proof
note that two adjacent symbols are shifted against each other by 1

n
~v and that

|| 1
n
~v|| 6 6

n
6 10−7 = 1

2
δ and use claim (*).

Now we want to characterize the possible selections of an ensemble for such a
chain. Imagine these selections as chains of dominoes. Each domino corresponds
to a symbol. A domino is said to be fallen to the left if and only if the leftmost
yellow vertex of the symbol is chosen to be in the selection. To be fallen to the
right is defined in an analogous manner. If the selection is complete every domino
is fallen. The selection to be feasible means that dominoes are fallen in a way
dominoes usually fall, that is not towards each other. Altogether in a feasible and
complete selection all dominoes are fallen either all in the same direction or from
a certain point all outwards.

Now we are ready to discuss the variable component. Take for example this
one.

t

−
−+ −



The following picture shows the central part of the appropriate component.

-1-2-3-4-5-6

It consists mainly of an inner cycle and four chains which are all oriented
outwards. The chains are long enough to able to be shifted in the way described
above in order to make them fit to the other components.

The variable component works as follows. In some sense we can understand
the inner cycle in the same way we understood a chain of symbols, namely as a
chain of dominoes. Do you remember? In a complete and feasible selection all
dominoes are fallen either all in the same direction or from a certain point all
outwards. The only difference is that in a cycle the third possibility does not
exist. Thus all dominoes has to be fallen in the same direction and this means
here either all in clockwise direction or all in counter clockwise direction. In the
following we will refer to the first case as “false” and to the latter case as “true”.

In the following pictures those vertices are highlighted for which the selected
vertex is determined by this.



“false”

“true”

And now for the connection components. The straight one we have already
seen. A kinky one would look like the following one.



Finally the clause components contain exactly one symmetric symbol which is
exactly in the center and some chains of asymmetric symbols around, as you may
see in the following picture.

In a complete and feasible selection there has to be exactly one yellow vertex
of the central symmetric symbol in the selection, and this enforces the dominoes
of one of the chains to be fallen outward thereby enforcing a certain state of the
variable connected by this chain. Thus a complete and feasible selection can only
exist if there is a satisfying truth assignment for the given instance of grid3sat.

On the other hand, if there exists a satisfying truth assignment for the given
instance of grid3sat then we are able to select vertices in the inner cycles of the



variable components in a way described above and we are able to select one satis-
fying literal in each clause. If we take the corresponding vertex of the symmetric
symbol into the selection and if we complement the selection in a way that the
dominoes fall towards the central symbol of a clause if they represent a path to a
literal which do not satisfy the clause and towards the inner cycle of the variable
otherwise then this will be a complete and feasible selection.

3.7 Back to the Fréchet metric

Next we prove the decision problem for the Fréchet metric to be NP-hard. We do
this by reducing the problem to the selection problem. This we will do in several
steps. In the following section we discuss the basic tool in the reduction which will
be called the gadget . In section 3.9 we will define the reduction and in sections
3.10 and 3.11 we will explain how the reduction works.

Some oddities in the proof are due to the fact that we want to strengthen the
result afterwards a little bit, see section 3.12 on page 55 for details.

3.8 The gadget

For each symbol placement we define a so called gadget . A gadget consists of a
labeled plane* graph consisting of nine vertices x0, x1, x2, y0, y1, y2, z0, z1, z2. Each
vertex v is assigned to a closed disk v̂3 of radius 3 centered at a point v.

There are two types of gadgets, namely symmetric gadgets and asymmet-
ric gadgets . A symmetric gadget is a gadget for a symbol placement of the form
(x, y, c, s, 3) whereas an asymmetric gadget is a gadget for a symbol placement of
the form (x, y, c, s, 2).

The points x0, x1, x2, y0, y1, y2, z0, z1, z2 as well as x0, x1, x2, y0, y1, y2, z0, z1, z2

for a symbol placement (x, y, c, s, n) are defined in quite in the same way as men-
tioned in subsection 3.6.1 on page 25, namely calculated from the points for the
symbol placement (0, 0, 1, 0, n). Thus we are discussing only the symbol place-
ments (0, 0, 1, 0, 2) and (0, 0, 1, 0, 3).

The following two pictures show the graph and the labeling for the symbol
placement (0, 0, 1, 0, 3).

*that means planar and embedded in the plane



Gadget graph ... labeling

x0
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x2

y0

y1

y2

z0

z1
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x̂3
0
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x̂3
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ẑ3
0 ...ẑ
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This picture shows the gadget
graph and the symbol for the
same symbol placement.

Note that this picture is drawn
in a much smaller scale then the
left picture. The small hexagon
in the center is the same symbol
than in the left picture.

The situation for the symbol placement (0, 0, 0, 0, 2) is quite the same. The
only difference is the positioning of the disks and the differences are too small to
draw them correctly. The precise coordinates are given below.

for the and for the
symbol placement symbol placement
(0, 0, 1, 0, 2) (0, 0, 1, 0, 3)

x0=( .1090000,−.1887935)
x1=( .1090000, .1887935)
x2=(−.2180000, 0)
y0=( .2180000,−.3775871)
y1=( .2180000, .3775871)
y2=(−.4360000, 0)
z0=(−.5450000, .9439677)
z1=(−.5450000,−.9439677)
z2=( 1.0900000, 0)

x0=(−1.3680804,−3.7587700) x0=(−1.3680805,−3.7587704)
x1=(−2.5711501, 3.0641774) x1=(−2.5711504, 3.0641777)
x2=( 3.9392315, .6945928) x2=( 3.9392309, −.6945927)
y0=(−2.5711501,−3.0641774) y0=(−2.5711504,−3.0641777)
y1=(−1.3680804, 3.7587700) y1=(−1.3680805, 3.7587704)
y2=( 3.9392315, −.6945928) y2=( 3.9392309, −.6945927)

z0=(0,0)
z1=(0,0)
z2=(0,0)



The points z0, z1, z2 are exactly the same points as in the symbol for the
symbol placement. The points x0, x1, x2, y0, y1, y2 lie somewhere inside the tri-
angle z0z1z2. The points z0, z1, z2 lie exactly at (0, 0). The exact positioning of
x0, x1, x2, y0, y1, y2 is a little bit tricky and needs further explanation.

First of all these points are very close to so called ideal points
x′0, x

′
1, x

′
2, y

′
0, y

′
1, y

′
2. The distance to these points is always 6 0.00000052 no mat-

ter whether we consider the symmetric of the symmetric gadget. Later this will
be referred to as fact (a). Thus we would not notice any difference in the
drawings. The ideal points are much easier to describe by using polar coordi-
nates. The points all have a distance of 4 to the origin and the polar angles are
25
18

π, 13
18

π, 10
18

π, 23
18

π, 11
18

π,− 1
18

π. Thus the triangles x′0, x
′
1, x

′
2 as well as y′0, y

′
1, y

′
2 are

regular. Next we need to define so called witness points x′′0, x
′′
1, x

′′
2, y

′′
0 , y

′′
1 , y

′′
2 which

have the same polar angles but are exactly 0.99999999 far apart from the origin.
For convenience let i+ := i+1 mod3 and i− := i−1 mod 3 for any i ∈ {0, 1, 2}.

Furthermore let ? represents either the letter x or y. For any η let ?̂η
i be the closed

disk centered at ?i with radius η. Next letˆ̂?η
i denote the convex hull of ?̂η

i+ ∪ ?̂η
i−.

Finally let ˆ̂?̂η
i := ?̂η

i ∩̂ ?̂η
i . Then we have fact (b) stating that the diameter of ˆ̂?̂η

i

is 6 0.0054 for any η 6 3.0000001. Then we claim that there are only two cases.
case (i) ?′′i ∈ int(ˆ̂?̂3

i )
case (ii) ˆ̂?̂η

i = {} holds even for η = 3.0000001.
Now we claim that for the symmetric gadget case (i) holds for any ?0, ?1, ?2

and for the asymmetric gadget case (i) holds for any ?0, ?1 and case (ii) holds
for any ?2. You can verify these facts by doing some easy calculations on the
numbers given above, but this would be a little bit annoying since there are so
many numbers. Instead we wrote a program designed for the GNU bc interpreter
which does the job.* In order to discuss the question how a disk ?̂η

i intersects
ˆ̂?η

i we introduce a parameter β which is defined as the distance of ?i to the line
through ?i− and ?i+. Assuming that the disks are located nearly in the way shown
in the following picture (which will be the case since fact (a)) the diameter of the
intersection (drawn yellow) will be = d.

*By the way as already pointed out in footnote 1 on page 26 we have also used a certain
GNU bc program to calculate all the coordinates printed in this text.



η

η β − η

1
2
d

?i+

?i−

?i

ˆ̂?̂η
i

1
4
d2 + (β − η)2 = η2

1
4
d2 + β2 − 2βη + η2 = η2

1
4
d2 = 2βη − β2

= β(2η − β)
d2 = 4β(2η − β)

In order to check fact (b) the program has to verify fact (a) which will be done
at lines 89–91 and it has to verify that 4β(2η − β) 6 0.00542 holds which will be
done at lines 43–45 and 60–62.

program
1 /* this program is for the GNU bc version 1.03 (versions 1.04–1.05 do not work)
2 invoked with “bc -l” because we need the
3 math library for trigonometric functions
4 a() is arc tan
5 s() is sine
6 c() is cosine. */
7

8 scale=20 /* scale determines the precision in terms
9 of number of digits after the decimal point */
10

11 define polar(v[],phi,radius) {
12 v[0]=radius*c(phi*a(1)/45)
13 v[1]=radius*s(phi*a(1)/45)
14 }
15

16 ipointradius=0.99999999
17 zz=polar(iy2[],-10,4) /* y′2 */
18 zz=polar(ix2[], 10,4) /* x′2 */
19 zz=polar(iy1[],110,4) /* y′1 */
20 zz=polar(ix1[],130,4) /* x′1 */
21 zz=polar(iy0[],230,4) /* y′0 */
22 zz=polar(ix0[],250,4) /* x′0 */



23 zz=polar(wy2[],-10,ipointradius) /* y′′2 */
24 zz=polar(wx2[], 10,ipointradius) /* x′′2 */
25 zz=polar(wy1[],110,ipointradius) /* y′′1 */
26 zz=polar(wx1[],130,ipointradius) /* x′′1 */
27 zz=polar(wy0[],230,ipointradius) /* y′′0 */
28 zz=polar(wx0[],250,ipointradius) /* x′′0 */
29

30 scale=90 /* ok we’ve done the trigonometry,
31 from now we will be as exact as possible. */
32

33 beta=5.999999
34 diameter=0.0054
35 eta=3.0000001
36 distortion=0.00000052
37

38 define sqr(x) {
39 return (x*x)
40 }
41

42 if (sqr(diameter)<4*beta*(2*eta-beta)) {
43 "diameter alert" /* for fact (b) */
44 }
45

46 define sub(ba[],b[],a[]) {
47 ba[0]=b[0]-a[0]
48 ba[1]=b[1]-a[1]
49 return (sqr(ba[0])+sqr(ba[1]))
50 }
51

52 define sidewise(a[],b[],c[]) {
53 auto ba[],ca[],v,w
54 zz=sub(ca[],c[],a[])
55 w=sub(ba[],b[],a[]) /* w := ||b− a||2 */
56 v=sqr(ca[0]*ba[1]-ca[1]*ba[0])
57 /*

√
v
w is the distance of the point

58 c to the line through a and b */
59 if (v<w*sqr(beta)) {
60 "diameter alert" /* for fact (b) */
61 }
62 if (v>w*sqr(2*eta)) {
63 "safely not touching" /* for case (ii) */
64 }
65 }
66

67 define inside(a[],b[],c[],i[]) { /* for case (i) */
68 auto ic[],ia[],ba[],v,w
69 /* the numeric constant 10−15 here and
70 elsewhere will mask rounding errors */



71 if (sub(ic[],i[],c[])+10^-15>=9) {
72 return (0) /* witness may not be inside circle */
73 }
74 zz=sub(ia[],i[],a[])
75 w=sub(ba[],b[],a[]) /* w := ||b− a||2 */
76 v=sqr(ia[0]*ba[1]-ia[1]*ba[0])
77 /*

√
v
w is the distance of the point

78 i to the line through a and b */
79 if (v+10^-15<w*9) {
80 "witness is safely inside intersection"
81 }
82 }
83

84 define check(a[],b[],c[],i[],e[]) {
85 auto z[]
86 zz=sidewise(a[],b[],c[])
87 zz=inside(a[],b[],c[],i[])
88 if (sub(z[],c[],e[])+10^-15>sqr(distortion)) {
89 " alert, to much distortion" /* for fact (a) */
90 }
91 print "\n"
92 }
93

94 define cartesic(v[],x,y) {
95 v[0]=x
96 v[1]=y
97 }
98

99 /* asymmetric case */
100 zz=cartesic(ax0[],-1.3680804,-3.7587700) /* x0 */
101 zz=cartesic(ax1[],-2.5711501, 3.0641774) /* x1 */
102 zz=cartesic(ax2[], 3.9392315, .6945928) /* x2 */
103 zz=cartesic(ay0[],-2.5711501,-3.0641774) /* y0 */
104 zz=cartesic(ay1[],-1.3680804, 3.7587700) /* y1 */
105 zz=cartesic(ay2[], 3.9392315, -.6945928) /* y2 */
106 /* symmetric case */
107 zz=cartesic(sx0[],-1.3680805,-3.7587704) /* x0 */
108 zz=cartesic(sx1[],-2.5711504, 3.0641777) /* x1 */
109 zz=cartesic(sx2[], 3.9392309, .6945927) /* x2 */
110 zz=cartesic(sy0[],-2.5711504,-3.0641777) /* y0 */
111 zz=cartesic(sy1[],-1.3680805, 3.7587704) /* y1 */
112 zz=cartesic(sy2[], 3.9392309, -.6945927) /* y2 */
113

114 print "asymmetric case\n";
115 " x0 "; zz=check(ax1[],ax2[],ax0[],wx0[],ix0[])
116 " x1 "; zz=check(ax2[],ax0[],ax1[],wx1[],ix1[])
117 " x2 "; zz=check(ax0[],ax1[],ax2[],wx2[],ix2[])
118 " y0 "; zz=check(ay1[],ay2[],ay0[],wy0[],iy0[])



119 " y1 "; zz=check(ay2[],ay0[],ay1[],wy1[],iy1[])
120 " y2 "; zz=check(ay0[],ay1[],ay2[],wy2[],iy2[])
121 print "symmetric case\n";
122 " x0 "; zz=check(sx1[],sx2[],sx0[],wx0[],ix0[])
123 " x1 "; zz=check(sx2[],sx0[],sx1[],wx1[],ix1[])
124 " x2 "; zz=check(sx0[],sx1[],sx2[],wx2[],ix2[])
125 " y0 "; zz=check(sy1[],sy2[],sy0[],wy0[],iy0[])
126 " y1 "; zz=check(sy2[],sy0[],sy1[],wy1[],iy1[])
127 " y2 "; zz=check(sy0[],sy1[],sy2[],wy2[],iy2[])
128

129 quit

output
asymmetric case
x0 witness is safely inside intersection
x1 witness is safely inside intersection
x2 safely not touching
y0 witness is safely inside intersection
y1 witness is safely inside intersection
y2 safely not touching

symmetric case
x0 witness is safely inside intersection
x1 witness is safely inside intersection
x2 witness is safely inside intersection
y0 witness is safely inside intersection
y1 witness is safely inside intersection
y2 witness is safely inside intersection

3.9 The reduction

Now we have all ingredients together needed to calculate an instance of the Fréchet
metric problem from an instance of the selection problem.

First we put a sufficiently large triangle A around all symbols corresponding
to the symbol placements in our ensemble. For each symbol placement in our
ensemble we use the corresponding gadget described above which is a labeled
triangulated plane graph inside of A. The outside of this graph forms a triangle.
All these graphs together with the corners of A constitute a graph which is not
fully triangulated and we triangulate it arbitrarily. Each corner of A we assign a
disk of radius 3 centered at this vertex.

Altogether we get a labeled triangulated plane graph — let us call it G. Each
of its vertices are points inside the triangle A, and the corners of A are vertices,
too. Now we define f : A → IR2 such that f maps each vertex of G to the center
of its assigned disk and such that f is affine on each triangle in G.

Now we define g to be the identity mapping on A and let ε := 3. Thus we have
simplicial objects f, g and an ε > 0 and we are able to ask whether δF (f, g) > ε
holds or not. This is our instance of the decision problem for the Fréchet metric.



Let us consider the decision problem again. Because g is the identity mapping
on A it holds

δF (f, g) = inf
σ:A

∼→A
sup
x∈A

||f(x)− σ(x)||.

Now the question is whether ∀η > 3 ∃σ : A
∼→ A ∀x ∈ A : ||f(x) − σ(x)|| 6 η

holds.
In the following sections we will show that this is the case if and only if the

instance of the selection problem is solvable. To be more precise we will show that

1. If the instance is solvable then ∃σ : A
∼→ A ∀x ∈ A : ||f(x)−σ(x)|| 6 η holds

even for η = 3.

2. If it is not solvable then the same does not hold for η = 3.0000001.

We will show the first statement in the following section and the second state-
ment in section 3.11 on page 48.

3.10 How the gadgets work

In this section we will show that if the instance of the selection problem is solvable
then there exists a σ : A

∼→ A with ∀x ∈ A : δX

(
f(x), σ(x)

)
6 3.

For a vertex x we would like to coin the term disk x for what is denoted by
x̂3 in section 3.8 on page 33 which is the closed disk of radius 3 centered at x. For
an edge xy we would like to coin the term tube xy to be the convex hull of the
disks x and y. These terms we will use in this sense only in this section. In the
next section we will use the same terms in a slightly different manner.

Let therefore A be a selection solving the given instance of the selection prob-
lem. First we will show three different possible ways for such a σ to operate on a
single symmetric gadget.

3.10.1 The three ways

way ?2

The following pictures show the plane graph for a gadget again and the image
of its edges. The dotted circles indicate the labeling of the graph.



x0

x1

x2

y0

y1

y2

z0

z1

z2

plane gadget graph
x̂3

0

x̂3
1

x̂3
2

ŷ3
0

ŷ3
1

ŷ3
2

σ(x1), σ(y1), σ(z0)
σ(x2)σ(z2)σ(y2)

σ(x0), σ(y0), σ(z1)

image of plane gadget graph
under σ

The invisible details of the construction are

σ(x1), σ(y1), σ(z0) ∈ int(x̂3
1 ∩ ŷ3

1)
σ(x0), σ(y0), σ(z1) ∈ int(x̂3

0 ∩ ŷ3
0)

σ(x2) ∈ int(ˆ̂x̂3
2)

σ(y2) ∈ int(ˆ̂ŷ3
2)

This is possible since case (i) on page 35 holds for x2, y2.
The image seems to consist only of 4 lines. This is, however, not the truth.

You have to imagine each line as a bundle of curves which are so close together
that it would not be possible to draw this true to scale. In fact even the whole
green shaded triangle x0x1x2 to the left is squeezed into these thick lines you see
to the right.

In order to see that there is in fact an orientation preserving homeomorphism
which squeeze the lines together in the way described before we would like to show
a drawing of the image which is not true to scale but combinatorial correct.

σ(x0)

σ(x1)

σ(x2)

σ(y0)

σ(y1)

σ(y2)

σ(z0)

σ(z1)

σ(z2)



We say that an edge uv of the plane gadget graph is σ-monotone if and only
if the image under σ is monotone in the direction of the line trough σ(u) and σ(v).

Our mapping σ will have the following properties. (i) It maps each σ-monotone
edge uv in the following way. Let a be an affine mapping from the oriented line
segment uv to the oriented line segment σ(u)σ(v). For each point p on the line
segment uv we consider the line going through a(p) perpendicular to the line
going through σ(u) and σ(v). Since uv is σ-monotone there will be exactly one
intersection point between this line and σ(uv) and then σ(p) is that point. (ii)
Each edge uv of the plane gadget graph is mapped onto a polygonal chain. (iii)
For each image of a face of the plane gadget graph there is a triangulation using
only the vertices of the simple polygon bounding the image such that σ is affine
on each triangle of this triangulation.

Note that property (i) and (iii) do not contradict. We want to show that
||f(p)− σ(p)|| 6 3 holds for all points p inside of the triangle z0z1z2. By property
(ii) and (iii) we only have to show this for the corners of the polygonal chains
constituting the images of the edges of the plane gadget graph.

By property (i) for each σ-monotone edge uv this is easy since we have only to
check whether σ(u) lies in the disk u and σ(v) lies in the disk v and whether σ(uv)
lies inside the tube uv. Fortunately the σ we consider in what we have entitled
“way ?2” so far has the property that all edges are σ-monotone.

Now it is necessary to investigate the geometry of the mapping in more detail.
The following picture shows the image again together with the disks and the tubes
x2y2, y0y1 and x0x1. The cyan shaded triangle is the intersection of these tubes.
Note that the line segment between and including σ(x2) and σ(y2) lies inside of
the interior of this intersection. Note furthermore that the whole image of the
plane gadget graph under σ is contained in the tubes y0y1 and x0x1.

x̂3
0

x̂3
1

x̂3
2

ŷ3
0

ŷ3
1

ŷ3
2



It remains to show that for each edge uv of the plane gadget graph σ(u) lies
in the disk u and σ(v) lies in the disk v and σ(uv) lies inside the tube uv. You
may verify that step by step for each edge and mark each edge with a pencil you
have checked so far. See appendix on page 73.

way ?1

Again we show the plane graph for a gadget and the image of its edges.

x0

x1

x2

y0

y1

y2

z0

z1

z2

plane gadget graph
x̂3

0

x̂3
1

x̂3
2

ŷ3
0

ŷ3
1

ŷ3
2

σ(x0), σ(y0), σ(z1)

σ(x1)
σ(z0) σ(y1)

σ(x2), σ(y2), σ(z2)

image of plane gadget graph
under σ

The invisible details of the construction are

σ(x0), σ(y0), σ(z1) ∈ int(x̂3
0 ∩ ŷ3

0)
σ(x2), σ(y2), σ(z2) ∈ int(x̂3

2 ∩ ŷ3
2)

σ(x1) ∈ int(ˆ̂x̂3
1)

σ(y1) ∈ int(ˆ̂ŷ3
1)

This is possible since case (i) on page 35 holds for x1, y1.

Note that the line segment between and including σ(x1) and σ(y1) lies inside of
the interior of the intersection of the tubes x1y1, y2y0 and x2x0. Note furthermore
that the whole image of the plane gadget graph under σ is contained in the tubes
y2y0 and x2x0.

Again we show a drawing of the image which is not true to scale but combi-
natorial correct.



σ(x0)

σ(x1)

σ(x2)

σ(y0)

σ(y1)

σ(y2)

σ(z0)

σ(z1)

σ(z2)

Again we want to show that ||f(p) − σ(p)|| 6 3 holds for all points p inside
of the triangle z0z1z2. Again we only have to show this for the corners of the
polygonal chains constituting the images of the edges of the plane gadget graph.

Again for each σ-monotone edge uv this is easy. The σ we consider here in
what we have entitled “way ?1” has the property that all edges except y1z0 are
σ-monotone.

Since y1z0 is not monotone we have some freedom to choose σ and we assume
that all points on the line segment y1z0 which are more far apart from z0 than 10−42

are mapped * into the interior of ˆ̂ŷ3
1. Then it is easy to see that ||f(p)−σ(p)|| 6 3

holds for all points p on the line segment z0y1.
It remains to show that for each edge uv except z0y1 of the plane gadget graph

σ(u) lies in the disk u and σ(v) lies in the disk v and σ(uv) lies inside the tube
uv. See appendix on page 75.

way ?0

Again we show the plane graph for a gadget and the image of its edges.

*We have to introduce an artificial (redundant) corner on the polygonal chain constituting
the image of y1z0 in order to keep the mapping affine on each segment.



x0

x1

x2

y0

y1

y2
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plane gadget graph
x̂3

0

x̂3
1

x̂3
2

ŷ3
0

ŷ3
1

ŷ3
2

σ(x2), σ(y2), σ(z2)

σ(x0)σ(z1)
σ(y0)

σ(x1), σ(y1), σ(z0)

image of plane gadget graph
under σ

The invisible details of the construction are

σ(x1), σ(y1), σ(z0) ∈ int(x̂3
1 ∩ ŷ3

1)
σ(x2), σ(y2), σ(z2) ∈ int(x̂3

2 ∩ ŷ3
2)

σ(x0) ∈ int(ˆ̂x̂3
0)

σ(y0) ∈ int(ˆ̂ŷ3
0)

This is possible since case (i) on page 35 holds for x0, y0.

Note that the line segment between and including σ(x0) and σ(y0) lies inside of
the interior of the intersection of the tubes x0y0, y1y2 and x1x2. Note furthermore
that the whole image of the plane gadget graph under σ is contained in the tubes
y1y2 and x1x2.

Again we show a drawing of the image which is not true to scale but combi-
natorial correct.
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σ(x1)

σ(x2)

σ(y0)

σ(y1)

σ(y2)

σ(z0)

σ(z1)
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Again we want to show that ||f(p) − σ(p)|| 6 3 holds for all points p inside
of the triangle z0z1z2. Again we only have to show this for the corners of the
polygonal chains constituting the images of the edges of the plane gadget graph.

Again for each σ-monotone edge uv this is easy. The σ we consider here in
what we have entitled “way ?0” has the property that all edges except y2z0, y0z1

and z0z1 are σ-monotone.
Since y2z0 and y0z1 are not monotone we have some freedom to choose σ and

we assume that all points on the line segment y2z0 which are more far apart from
z0 than 10−42 are mapped into the interior of ˆ̂ŷ3

2. Analogously we assume that all
points on the line segment y0z1 which are more far apart from z1 than 10−42 are
mapped into the interior of ˆ̂ŷ3

0.
* Then it is easy to see that ||f(p) − σ(p)|| 6 3

holds for all points p on the line segments y2z0 and y0z1.
On the other hand, all points p of the line segment z0z1 are mapped into z3

0

and thus ||f(p)− σ(p)|| 6 3 is trivial.
It remains to show that for each edge uv except y2z0, y0z1 and z0z1 of the

plane gadget graph σ(u) lies in the disk u and σ(v) lies in the disk v and σ(uv)
lies inside the tube uv. See appendix on page 77.

3.10.2 Taking all together

The following picture shows the image of the plane gadget graph under σ as
referred to as way ?2 drawn together true to scale with the symbol.

All three ways shown so far look like a big V with its base near to one of
the yellow vertices of the symbol which will be subsequently referred to as the
exposed vertex . That is z2 for way ?2, z0 for way ?1 and z1 for way ?0. For
the asymmetric gadget the situation is quite the same with the only exception
that way ?2 does not work (because then case (i) on page 35 does not hold for
x2, y2). Thus for any symbol and for any of its yellow vertices it is possible to map
the plane gadget graph of the symbol in a way shown above as a big V with the
exposed vertex on this yellow vertex.

Now we are able to construct the whole σ for the given instance of the selection
problem. Since the instance is solvable there exist a complete and feasible selection
A. For any symbol we map the plane gadget graph of the symbol such that this

*See footnote 1 on page 44



yellow vertex of the symbol which is in A will be the exposed vertex. This is
because A is complete.

Furthermore the images of the plane gadget graphs will not intersect. In order
to see that we draw all three ways simultaneously (which will be shown in the
following picture) and have a look on what happens if two gadgets touch each
other.

In the following magnification of three touching gadgets you may see that
the embeddings for different gadgets are not disturbing each other provided that
exposed vertices are not touching. This can not be happen since A if feasible.

The mapping of the graph outside the gadgets will not cause further problems,
since each of the outer vertices of the plane gadget graphs (which are vertices of
the hexagons) will be moved only by a small amount and the remaining points
outside will be moved only inside the interior of the ẑ3

....



3.11 How the gadgets do not work

In this section we will show that if the instance of the selection problem is not
solvable then there does not exist a σ : A

∼→ A such that ∀x ∈ A : δX

(
f(x), σ(x)

)
6

3.0000001 holds.
Let η := 3.0000001.
Let us consider again a symmetric gadget more closely. For convenience let

again i+ := i + 1 mod (3) and i− := i − 1 mod (3). Furthermore let z := z0 =
z1 = z2 denote the center of the gadget. Now for each i ∈ {0, 1, 2} let ri be a ray
from z through the midpoint between xi− and yi+ . The following figure should
illustrate this.
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ŷη
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ŷη
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Let qi be that point where ri leaves the triangle A. Let J denote the clockwise
oriented boundary of A. Since r0, r1, r2 are clockwise oriented the curve J can
visit the points q0, q1, q2 in this ordering. For each i ∈ {0, 1, 2} let Ji be the (open)
part on J from qi+ to qi− (exclusively).
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Without the rays r0, r1, r2 the triangle A falls apart in three connected components
V0, V1, V2. Let Vi denote the component touching Ji for each i. The components
V0, V1, V2 are disjoint open subsets of A in the topology of the compact space A
which are path-connected and bordered by Jordan curves.

The proof in the remainder of this section will be indirect. Let us therefore
assume that there exists σ : A

∼→ A such that ∀x ∈ A : δX

(
f(x), σ(x)

)
6 η.

For a vertex x we would like to coin the term disk x to be be a closed disk of
radius η centered at x. For an edge xy we would line to coin the term tube xy to
be the convex hull of the disks x and y. Finally the term curve xy should mean
the image of the edge xy under σ. Obviously the curve xy lies inside of the tube
xy.

Let Ui be the inverse image of Vi under σ. Let Ii the inverse image of Ji. Since
σ : A

∼→ A is orientation preserving the parts I0, I1, I2 will be encountered in this
ordering which means in clockwise ordering.

The disks xi and yi and therefore also the tube xiyi and the curve xiyi lie inside
of Vi. Their inverse image under σ is the edge xiyi and this edge has to lie in Ui

therefore. Here is an example:

x0

x1

x2

y0

y1

y2

A

U0

U1

I0

I1

I2

U2

Let Ci denote the statement that every path from the line segment xiyi to Ii

which lies wholly in Ui has to intersect the line segments xk−xk+ and yk−yk+. As
an example in the drawing above C0, C1 are false whereas C2 is true. Furthermore
let Pi be the statement that every polygonal path does the same.
Lemma. Given an in A open set O ⊆ A and two points s, t ∈ O. If there exists
a path from s to t in O then there exists a polygonal path, too.

Proof. Let γ : [0, 1] → O be a path from s to t. For each point x ∈ [0, 1] it holds
γ(x) ∈ O. Since O is open, there exists an open disk D such that its intersection
with A lies wholly in O. Since D is open and γ is continuous and γ(x) ∈ D
holds, it will be an open interval U(x) around x such that γ[U(x)] ⊆ D holds.
Together with D and A also D ∩ A is convex. Now γ[U(x)] ∈ D ∩ A ⊆ O holds
and therefore the convex hull of γ[U(x)] lies in O. Since [0, 1] is compact there



exist finitely many intervals from {U(x) : x ∈ [0, 1]} which cover [0, 1]. Let those
intervals be sorted by starting points in increasing order denoted with U0, ..., Un.
It will be 0 ∈ U0 and it will exists a m ∈ {0, ..., n} with 1 ∈ Um. For each
i ∈ {0, ..., m − 1} the intervals Ui and Ui+1 will intersect. Let us choose now a
xi+1 ∈ Ui ∩ Ui+1. If we define finally x0 := 0 and xm+1 := 1 then xi, xi+1 ∈ Ui

will hold for all i ∈ {0, ..., m}. Since the convex hull of γ[Ui] lies in O the line
segment γ(xi)γ(xi+1) will lie in O. The polygonal chain γ(x0), ..., γ(xm+1) will do
what we want. �

Claim. C0 ∨ C1 ∨ C2

Proof.

For all i ∈ {0, 1, 2} we have first that Ui is a path-connected open set in which
xi and Ii lies. By the lemma above there exists a polygonal curve αi from xi to a
point x′i on Ii. Let us fix this αi.

In the following we will deal mainly with polygonal curves only, which may
intersect or not. We want to characterize the possible intersections of two dif-
ferent polygonal chains. Let us define an intersection to be a pair of common
sub curves of the corresponding polygonal curves which can not be enlarged. A
crossing will be an intersection such that the curves exchange their sides. This
notion makes only sense for closed curves or in the case that they do not begin
or end within the intersection. Between two closed polygonal curves there can
be only a finite number of intersections and among them only an even number of
crossings.*

Let us consider now the set E of all vertices of all α0, α1, α2. We select
now a point p in the interior of the triangle x0x1x2, which does not lie on one
or more of the finitely many lines running through two points of the finite set
E ∪{x0, x1, x2}. Thus p will not be contained in the curves α0, α1, α2 and the line
segments px0, px1, px2 will contain none of the vertices of those curves. In par-
ticular these line segments will intersect those curves only in finitely many points
and these points will be no vertices on the curves. Thus any intersection between
these line segments and those curves will be a crossing.

For each i let βi now denote the curve which first runs straight from p to xi

and then continues with αi. The part until but included xi we want to call the
start and the remaining part the ending . The starts intersect each other only
in p and the endings are nothing else than α0, α1, α2 and therefore disjoint.

Consider now the intersections of β0, β1, β2 with each other. Except from p all
intersections will be intersections of an ending of a βi with a start of βi− or βi+

and that means that αi crosses the polygonal chain xi−pxi+ . Let σi be the number
of this crossings.

Thus we have σ := σ0 + σ1 + σ2 crossings between β0, β1, β2.

*If we would restrict this to simple curves this would follow directly from jordaens theorem.
In fact we do not assume the curves to be simple but the statement still remains true even in
that case. It may be proven by Jordan theorem again but the proof is more tricky in that case.
On the other hand the statement is weaker since it deals only with polygonal curves and Jordan
theorem is simpler to prove in that case.



Notion For any curve c let crev denote the same curve backwards.
Claim. σ is odd.

Proof.
First we enlarge β0, β1, β2 by adding curves outside of A meeting in a common

endpoint q and intersecting only at q. Since their origins (i.e. the endpoints of
β0, β1, β2) are clockwise ordered they will meet in counter clockwise order. Let
γ0, γ1, γ2 denote the enlarged curves. They all starts from p in counter clockwise
order they all meet in q in counter clockwise order. Except from p and q they all
intersect only pairwise and σ times at all. Here is a picture:

p

q

γ0

γ1

γ2

Now you may already see the claim. For a rigid proof you should split γ0 into
two sides namely a left* one γ+ and a right one γ−. In the following magnification
the left side γ+ is shown highlighted.

p

q

γ+

γ−

γ1

γ2

*That means left when moving along γ0 forward. Since in the picture above γ0 goes mainly
from upside down, this is a little bit confusing.



Since the curves are polygonal we may view γ− and γ+ as two curves which
are very close to γ close enough that the number of intersections between them
and the other curves are equal for both.

Let α denote the curve composed of γ+ and γrev
1 . Let β the one composed of

γ− and γrev
2 . Now α and β will be closed polygonal curves. Thus they have to

cross each other an even number of times. We can divide the crossings between α
and β into

2c00 crossings between γ+ and γ−
c02 crossings between γ+ and γrev

2

c10 crossings between γrev
1 and γ−

c12 crossings between γrev
1 and γrev

2

0 crossings at p
1 crossings at q

where cij denotes the number of crossings between βi and βj for all i 6= j and c00

denotes the number of self intersections of γ0.
The following magnification shows how a self intersection of γ0 generates ex-

actly two crossings between γ+ and γ−.

Since c02 + c10 + c12 expresses the total number of crossings between β0, β1, β2

this is = σ. Therefore the total number of intersections between α and β calculates
to be 2c00+σ+1. Since this number has to be even anyway and 2c00+1 is obviously
odd σ has to be odd, too.

�

Since σ0 + σ1 + σ2 = σ is odd there must be a k for which σk is odd. Let us fix
this k.

Consider now the following curve composed of αk+, the piece of J from x′k+
to

x′k− and αrev
k− . This curve lies completely outside of Uk. By adding the polygonal

chain γ := xk−pxk+ to the curve we get a closed curve. Let us call this closed
curve Γ. Remember that every polygonal chain lying inside Uk can cross Γ only
at γ.

Let α be now an arbitrary polygonal chain within Uk from a point x on the
line segment xkyk to a point x′ on Ik. Let β now be the closed polygonal chain
which starts at xk with αk then goes inside Ik anyhow from x′k to x′ then with
αrev to x then straight to xk. The closed curves Γ and β can cross only an even
number of times and all crossings between them are those between γ and αk or α.



Since the number of crossings between αk and γ is exactly σk and therefore odd
the number of crossings between α and γ has to be odd, too.

Consider now the triangle xk−pxk+ . The points xk− and xk+ lie inside Uk− and
Uk+ , respectively and thus not in Uk. Therefore α can not meet them. Furthermore
the starting and ending points of α do not lie inside of this triangle. Together with
the number of crossings between α and γ the number of the ones between α and
the line segment xk−xk+ has to be odd, too.

Consider now the quadrangle xk−xk+yk+yk−. The line segments xk+yk+ and
yk−xk− lie inside Uk+ and Uk− , respectively and therefore not in Uk. Therefore α
can not intersect them. Furthermore the starting and ending points of α do not
lie inside the quadrangle. Together with the number of crossings between α and
the line segment xk−xk+ the number of the ones between α and the line segment
yk−yk+ has to be odd, too.

The number of crossings between α and each of the line segments xk−xk+ and
yk−yk+ is odd and therefore not zero in both cases. Therefore α has to intersect
both line segments.

We have only supposed that α was an arbitrary polygonal chain from a point
x on the line segment xkyk to a point x′ on the curve Ik. We have observed that
α has to intersect both line segments. This proves Pk.

Now we assume that Ck would not hold. Then there would exist a path from
a point s on the line segment xkyk to a point t on Ik, which lies entirely in Uk

and which does not intersect both line segments xk−xk+ and yk−yk+ . Let L be
one of these line segments which does not intersect the path. By the lemma on
page 49 above there would exist a polygonal path from s to t which lies entirely
in Uk \ L. This would contradict Pk. �

Claim. If Ck holds then the curve xkyk lies in each of the tubes xkyk, xk−xk+

and yk−yk+ .

Proof. The curve lies in the tube xkyk anyway. For the rest of the proof let p be
an arbitrary point on the curve xkyk. By p ∈ Vk it holds p 6= z. Let therefore r
be the ray starting at p moving straight away from z on the line through z and p.
Let q be the point at which r leaves the triangle A.

The line segment pq will be entirely inside Vk. Its inverse image under σ will
be a path from σ−1(p) to σ−1(q) inside of Ui. Now σ−1(p) lies on the line segment
xkyk and σ−1(q) lies on Ik. Thus the path has to intersect xk−xk+ and yk−yk+.
But that means that the line segment pq intersects the curves xk−xk+ and yk−yk+.
The line segment pq is a part of r and the curves has to lie in the tubes xk−xk+

and yk−yk+ . Therefore r has to intersect these tubes.

Let T be one of these tubes. Since r intersects T there must be a point p′ ∈ T
on r. By construction of r the point p lies between z and every point on r. Thus
p lies between z and p′. By z, p′ ∈ T follows p ∈ T since T is convex.

�

Now we want to say a vertex zk to be exposed if and only if Ck holds. Let A
be the set of all exposed vertices of symbols in our ensemble which was the given



instance of the selection problem.
What we have learned so far in this section is that for η = 3.0000001 there

must be an exposed vertex zk —let us call this fact (?)— and that for such a
k the curve xkyk has to lie inside of the tubes xkyk, xk−xk+ and yk−yk+. The
intersection of these tubes is a small triangle which is shown true to scale in the
following magnification of the symbol of a gadget for k = 2.

The wiggled line indicates how the curve xkyk could look like. Its starting and
ending points has to lie fairly exact at the positions drawn in the picture, anyway.
This is because they have to lie in the intersection of the triangle with the disks
xk and yk, respectively and that these intersections are very small. Additionally
we can deduce that only the yellow vertices of a symbol can be exposed. Thus A
is a selection. By (?) it is complete.

The following picture shows three touching gadgets.

x′′...

y′′...

There is some inaccuracy in these drawings. First note that the edges of the
touching gadgets do not necessary match exactly instead they are only µ-close



where µ = 0.0000009 as defined in page 27. So there is a positioning inaccuracy.
But the inaccuracy is clearly smaller than what is visible on the drawing above.
Second the beginnings and the endings of the wiggled lines are located in the
drawing at some points x′′... and y′′... of the appropriate gadgets whereas the only
thing which is sure is that these points are located in some intersections of a tube
and a circle. These intersections have a diameter of 6 0.0054 by fact (b) on page
35. In order to see that this will not cause any problems in the left gadget circles
of radius 0.0055 are drawn around the points x′′... and y′′....

Now we can see that it is indeed impossible that for two gadgets touching
at a common edge their exposed vertices are simultaneously at the same place,
since otherwise two of the curves drawn as wiggled lines has to intersect in the
red shaded quadrangle which forms the intersection of two triangles. Consider
for example the left gadget and the lower one. The curve in the left one has to
pass the quadrangle upside down and the curve for the lower one has to pass the
quadrangle from left to right.

This makes A feasible. Thus our instance would be solvable. �

3.12 Remarks

As we have seen, the decision problem for the Fréchet metric is NP-hard. Next we
could hope to find a polynomial time algorithm for an δ-approximate version of
the decision problem. That is, we allow the algorithm to answer “I don’t know”
if the value of the distance is within [ε − εδ, ε + εδ]. But what we actually have
proven is that for δ := 0.000000016 the δ-approximate decision problem is NP-
hard, too. To see this, choose ε := 3.00000005. Then εδ < 0.000000049 holds,
hence 3 < ε−εδ and ε+εδ < 3.0000001. By our construction either δF (f, g) 6 3 or
δF (f, g) > 3.0000001 is obtained thus even a δ-approximate algorithm will always
answer correctly to the instance created by our reduction.

3.13 Open problems

1. It is not known, whether the decision problem is in NP. It is not even known
whether the decision problem is decidable even in an approximate sense. In
fact, we have tried to prove the problem to be decidable for quite a long
time, it seems to be an intriguing problem.

Note that the problem to decide whether two four dimensional manifolds
are homeomorphic is undecidable (due to [Mar58], but see [Hak] for a more
readable introduction). Thus if we define δF to be +∞ for objects with
non homeomorphic domain we can say with good reasons that the decision
problem for the Fréchet metric is undecidable for dimension > 4. Nobody
knows what is between.

2. Furthermore one can hope that polynomial algorithms exist if we restrict
the input to describe “simpler” figures.



(a) For boundaries of convex bodies in a natural parameterization this is
easy because here the Fréchet distance equals to the Hausdorff distance
of the bodies.

(b) Simple, i.e. non intersecting surfaces, that mean that the functions must
be injective. For X = IR4 this is NP-hard, too.* For X = IR3 this is
also probably NP-hard, but nothing is known about that.

(c) Surfaces in which the corners are far from each other. Nothing is known
about that.

3. And finally one can hope to find a polynomial δ-approximate algorithm for
some fixed δ. But after the remark mentioned above it is clear that the δ
can not be arbitrarily small.

*Consider the mapping (x, y) 7→ (cx, cy, f1(x), f2(x)) for a very small c, where (x, y) 7→
(f1(x), f2(x)) describes the original (non simple) surface f constructed in our proof.


