
Chapter 4

The connection between the
Hausdorff and the Fréchet metric

Although the Fréchet metric and the Hausdorff metric do not coincide in general,
there is an important special case, namely the case of convex bodies.

First we have to explain how to interpret a convex body A ∈ IRd as a parame-
terized object as we need it for the Fréchet metric. This is not as difficult as you
might think. We assume first and in the following that A is of dimension d that
means that it has a non empty interior. We concentrate ourself on the boundary
of A. This boundary is homeomorphic to the d− 1 dimensional unit sphere Sd−1

and, of course, there are in principle two ways to map Sd−1 homeomorphic onto
A, namely orientation preserving or not. In the following whenever we talk about
the boundary of A we assume that there is also given an orientation preserving
homeomorphism from Sd−1 to A which will be subsequently called a natural pa-
rameterization of ∂A, since all natural parameterizations are derivable from each
other by an orientation preserving reparametrization. Then we have the following

Theorem. Let A, B ⊆ IRd two convex sets with a non empty interior and d > 2.
Then δF (∂A, ∂B) = δH(∂A, ∂B) = δH(A, B).

The remaining part of this chapter is the proof of this Theorem. The proof
we give here is actually not written by us. It can be found in [ABGW90]. Unfor-
tunately the theorem for which the proof is only makes a statement about d = 2
and it is necessary to re-read the proof in order to see that the same ideas apply
to higher dimensions as well. We take this as an opportunity to give the same
proof in a slightly different terminology.

Proof of Theorem. Obviously we have δF (∂A, ∂B) > δH(∂A, ∂B) > δH(A, B).
It remains to show δF (∂A, ∂B) 6 δH(A, B).

To see this we consider first the convex hull of A ∪ B, let us call this hull C.
Let ε := δH(A, B).
Claim 1. δH(A, C), δH(B, C) 6 ε.

Proof. For symmetry reasons we only prove δH(A, C) 6 ε. Since A ⊆ C we
only have to prove that δH(A, c) 6 ε for any c ∈ C. In the case c ∈ A there is
nothing to show and in the case c ∈ B this follows from δH(A, B) 6 ε. Otherwise
we have c 6∈ A, B. In this case there are a ∈ A and b ∈ B such that c is on the



line segment between a and b.* By δH(A, B) 6 ε and b ∈ B there is an a′ ∈ A
with δ(a′, b) 6 ε. Now we consider the triangle aa′b. The side a′b is of length
6 ε thus for reasons which have nothing to do with higher dimensional geometry
the distance from any point on the side ab to the side aa′ is 6 ε as well. Now c
is on the side ab thus there is a point a′′ on the side aa′ which δ(c, a′′) 6 ε. By
convexity follows a′′ ∈ A. Thus δH(A, c) 6 ε. �

We assume A, B to have smooth boundaries. The result for arbitrary bodies
follows by continuity arguments. So for each point a ∈ ∂A there exists a unique
ray emanating from a which is normal to ∂A. Let nA(a) be the intersection point
of r and ∂C. Clearly, a is the point of A closest to nA(a), so δ(a, nA(a)) 6 ε
holds for all a ∈ ∂A. Altogether nA : ∂A → ∂C is an orientation preserving
homeomorphism. Likewise we can construct a mapping nB : ∂B → ∂C.

It remained to show that δF (∂A, ∂B) 6 ε holds. We assume A and B to be
given in natural parameterizations thus let f : Sd−1 → ∂A be a natural parame-
terization of ∂A and g : Sd−1 → ∂B be one of ∂B.

Now let σ := g−1 ◦ n−1
B ◦ nA ◦ f . Then σ : Sd−1 → Sd−1 is an orientation

preserving homeomorphism and it remains to show the following

Claim 2. δ(f(x), g(σ(x))) 6 ε holds for all x ∈ Sd−1.

Proof. Let therefore x ∈ Sd−1. Then a := f(x) as well as b := g(σ(x)). Then we
have to show δ(a, b) 6 ε.

Now let c := nA(a). Then c = nB(b) holds as well, by the way. Thus a
is the point of A closest to c as well as b is the one of B. By Claim 1 we get
δ(a, c), δ(b, c) 6 ε. In the case c ∈ A we have c = a and there is nothing to show.
Likewise if c ∈ B. Otherwise we have c 6∈ A, B. Then a, b, c are distinct points in
IRd and there is a unique plane going though these points, let us call it the base
plane. In this plane we get the situation shown in the picture below.
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*By definition c has to be an affine combination of elements of A∪B. By c 6∈ A, B there has
to be elements from A as well as B with non empty coefficients in the affine combination. Then
we can rewrite this as as an affine combination of two other affine combinations, namely one of
points only of A and one only of points of B. These two combinations give us the a, b we search
for.

In other words, the fact that any point c ∈ C can be written as a convex combination of two
points out of A ∪B is purely since A and B are convex.



Let Ha be the hyperplane tangential to a and Hb the one for b. Then A lies
completely to the left of Ha and B lies completely to the right of Hb. There will
be a unique line L trough c in the base plane touching A and B. Let a′ ∈ L ∩ A
and b′ ∈ L ∩ B. Since a′ and B lie on different sides of Hb the distance of a′ to
Hb is not greater than the distance of a′ to B which is 6 ε by a′ ∈ A. Likewise
the distance of b′ to Ha is 6 ε. Now let La, Lb be the corresponding intersections
of Ha, Hb with the base plane. Since Ha, Hb are perpendicular to the base plane,
we also get that the distance of a′ to Lb is 6 ε as well as the distance of b′ to
La. Now we are able to forget that we are dealing with IRd since the remaining
argumentation in this proof only deals with the base plane.

For any point x ∈ L let d(x) := δH(x, La) + δH(x, Lb). Now let a′′ ∈ La ∩ L
and b′′ ∈ Lb ∩ L. Then the distance of a′′ to Lb may be less than the distance
from a′ to Lb but not greater. Thus δH(a′′, Lb) 6 ε. Since δH(a′′, La) = 0 we get
d(a′′) 6 ε. Likewise we get d(b′′) 6 ε. Since d is affine between a′′ and b′′ the point
d(c) is a convex combination of d(a′′) and d(b′′) which are both 6 ε. It follows

δ(a, b) 6 δ(a, c) + δ(c, b) = d(c) 6 ε.
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