
Chapter 5

A related problem

5.1 Introduction

Each planar graph has an embedding in the plane with line segments as edges. But
it seems to be interesting to ask whether this is possible under various constraints.
In [EW90] this is studied for the case where we restrict the length of each edge to
be a fixed value. On the other hand we can assign each vertex a set of points in
the plane and ask whether it is possible to embed the graph with line segments
as edges with the additional constraint that each vertex must lie in its point set.
Here we show that we can achieve NP-hardness if the point sets are closed disks.

From now we only consider oriented planar triangulated graphs. For each
triangle in the graph an orientation consists of an enumeration of its vertices
modulo an even permutation. We only consider positively oriented embeddings.
These have the additional property that all the vertices of a triangle are positive
oriented (i.e. are in counter clockwise order when embedded). The results hold
for the non oriented case as well because oriented instances can be converted into
non oriented instances by forcing all embeddings to be oriented by adding one big
triangle around the disks assigning each vertex of this triangle a disk of radii zero
and connecting the outer vertices of the graph with the triangle in some obvious
way.

Thus let us redefine the problem as follows and refer to it as

constrained embedding

We are given a labeled triangulated oriented planar graph, each vertex of
which is assigned to a closed disk in the plane given by a center point of
rational coordinates and a rational radius. Decide whether it is possible
to embed the graph positively oriented in the plane with line segments as
edges such that each vertex lies in its disk.

In this chapter we will see that constrained embedding is NP-hard. We can
even restrict the graphs to be tri connected, see subsection 5.2.8. Note that this
chapter is actually an extended (i.e. the full) version of [God95].



5.2 The Reduction

In order to prove that constrained embedding is NP-hard we reduce grid3sat to it.
Unless you already have done it, read 3.5 on page 21–25 first.

Let I be an instance of grid3sat. Let us try to construct an instance J of
constrained embedding which is solvable if and only if the formula described by
I is satisfiable. It is mainly a question of finding a triangulated oriented planar
graph which can be embedded under certain constraints if and only if the formula
in I is satisfiable. Obviously we should search for a correspondence between an
embedding of the graph and a truth assignment for the variables in the formula.

5.2.1 Notions

We will indicate instances of constrained embedding by drawing some graph, and
this drawing also defines the orientation of the graph. We will also have to define
the labels of the vertices of the graph, which will be subsequently called the orbits
of the vertices.

The orbit of a vertex is a disk anyway. If the radius of the disk of is zero we
say that the vertex is fixed . Vertices are fixed unless stated otherwise. In most
cases the drawn embedding will be a correct embedding.

5.2.2 Honeycombs

Let us consider first a single variable. A variable can have exactly two states. Let
us try to give an oriented graph which can be embedded under certain constraints
in only two different ways. Consider the following oriented graph.

A

B

C

D

E

F

A′

B′

C ′

D′

E ′

F ′

Let us consider now embeddings for which the positions of A, ..., F are fixed
and the positions of A′, ..., F ′ have to lie in a circle Z centered at the center of the
circumcircle of the hexagon A...F and only a little bigger than this circumcircle.
What does this mean for instance for A′?



A

F

A′

Because of the oriented triangle A′AF the vertex A′ has to lie in the half-space
above the line AF . Aside from this the vertex A′ has to lie in its circle, namely
Z. Thus A′ has to lie in the circular segment defined to be the intersection of
this half-space and this disk (see figure above). We will refer to this as fact (1).
The other vertices B′, ..., F ′ also have to lie in certain circular segments. Since the
vertices A′ and B′ are connected they have to be visible to each other in a correct
embedding. To achieve this either A′ or B′ has to lie within the shaded region
shown below. We will refer to this as fact (2).

A

B

C

D

E

F

A′

B′

C ′

D′

E ′

F ′

Proof of fact (2). Assume A′ and B′ would lie both below A. Then by fact
(1) B′ has to be left of A and A′ has to be to the right of A. By fact (1)
and since Z is comparatively small A′ and B′ has to be above D. Then A′

and B′ can not see each other, because the hexagon A...F would lie in between. �

In the following we want to say that a point lies close to A if it is in this
region. Around the vertices B, ..., F there are similar regions. Together with the
region for A these regions will be disjoint if Z sufficiently small. In the following
we assume Z to be nearly of the same size as the circumcircle of A...F . So near
that there will be no noticeable difference in the drawings. Then we do have
disjoint regions. By fact (2) in each region at least one of the vertices A′, ..., F ′

has to lie. Since there are six points and six disjoint regions each point has to lie
in exactly one region.

Due to fact (1) for each point only two regions come into question. The fol-
lowing table shows these possibilities.



close to
A B C D E F

Position of A′ * *
B′ * *
C ′ * *
D′ * *
E ′ * *
F ′ * *

The reader can verify that in principle there are only two possibilities: either
A′ is close to A, B′ is close to B etc. as indicated in the drawings above, or A′

is close to F , B′ is close to A, etc. We can imagine that A′, ..., F ′ form an outer
hexagon which can be in two situations differing by a rotation of 60 degrees. The
situation twisted in clockwise orientation we denote −-situation and the other
one +-situation .

+-situation −-situation

A

B

C

D

E

F

A′

B′

C ′

D′

E ′

F ′ A

F

E

D

C

B

B′

A′

F ′

E ′

D′

C ′

We are not able to simulate the behavior of a variable in the sense that there
exist exactly two embeddings which correspond to the two truth assignments of
the variable but we are able to do it in an approximate sense such that there are
two distinguishable classes of embeddings.

In the following we will indicate these key parts of the variables only by the
outer hexagon and talk only about embeddings of the outer vertices and pretend
that there exists indeed only two embeddings, namely the − and +-situation.

These key parts of the variables will occur on many places and will be used
for different purposes. Therefore we want to give them a name, let us call such a
labeled graph consisting of the vertices A, ..., F, A′, ..., F ′ a honeycomb.

5.2.3 Negations

The following example shows how to combine two honeycombs such that one of
them is in +-situation if the other one is in −-situation and vice versa. All vertices
not belonging to the honeycombs are assumed to be fixed.



Here the left one is in +-situation
and the right one is in −-situation.

C+ F−Y

X
Z

... and this is the reverse case.

C− F+

Y
X

Z

To see why C+F+ is not embeddable note that in this case X and Y would
not see each other. To see why C−F− is not embeddable note that in this case X
and Z would not see each other.

5.2.4 Chains

Using the negations we can build long chains of coupled honeycombs. These chains
will be subsequently called chains for short.

Later on all parts of our construction will be encapsulated in the sense that
the boundary of the construction will consist of fixed vertices and edges in between.
The following picture shows a part of an encapsulated chain. Again, any vertex
not belonging to the honeycombs is fixed.

case +−+

++ −

case −+−

+ −−

The following pictures indicate how chains end blindly, if necessary. Again,
any vertex not belonging to the honeycombs is fixed.

case +−+

++ −

case −+−

+ −−

Similar to what we have done in subsection 3.6.3 on page 28 notice that in this
construction of a chain there is a little bit tolerance. There was no need to draw
it precisely to establish the argument. Thus we are able to stretch, shift or bend
chains almost arbitrarily provided that they are long enough.



5.2.5 Branches

The following example shows how to combine three honeycombs such that they
all have to be situated in the same way (i.e. either all in −-situation or all in
+-situation). Again, any vertex not belonging to the honeycombs is fixed.

Here is the +-situation.

A+

B+

C+

And here is the −-situation.

A−
B−

C−

The other combinations are indeed not embeddable. To see this first note
that otherwise we find a pair (X, Y ) of letters out of {(A, B), (B, C), (C, A)},
where the honeycomb X is in +-situation and the honeycomb Y is in −-situation.
For symmetry reasons we only have to consider the case A+B−. Then the line
segment between A+ and B− would collide with the central fixed triangle in the
construction.

The following pictures show how to connect such a branch with chains thereby
encapsulating the construction. Again, any vertex not belonging to the honey-
combs is fixed.

case +

+

+

+ +

+

+

−

−

−

case −

+

+

+

−

−
− −

−

−



5.2.6 Clauses

Consider the following construction.

A−
B+

C+

α β

γ

Z

A−B+C+

The three hexagons are honeycombs and all other vertices are fixed with one
exception namely Z which orbit is a disk large enough to contain the whole picture.

The crucial fact is that the complementary embedding (A+B−C−) is not pos-
sible no matter where Z is situated. This is because of the triangles α, β and γ.
Consider for example α. If the honeycomb A were in the +-situation the vertex
Z would have to be in the half-space Hα (see below).

Analogously one can observe that if B were in −-situation the vertex Z would
have to lie in the half-space Hβ because of β. If then C were in −-situation the
vertex Z would have to lie in the half-space Hγ, too. But Hα ∩Hβ ∩Hγ is empty.

A+

B−

C−

Hα
Hβ

Hγ

The following pictures demonstrate that all other combinations are embeddable.

A−
B−

C−
A−B−C−

A−
B−

C+
A−B−C+

A−
B+

C−
A−B+C−



A−
B+

C+
A−B+C+

A+
B−

C+
A+B−C+

A+
B+

C−
A+B+C−

A+
B+

C+
A+B+C+

Thus we have three honeycombs connected so that all combinations of situa-
tions are embeddable except one (namely A+B−C−). This corresponds to a clause
of the form ¬x ∨ y ∨ z. With one additional negation this can be converted into
a clause of the form x ∨ y ∨ z.

The following pictures show the seven valid combinations for an encapsulated
clause with chains attached to it.

A−
B−

C−

A−B−C−

A−
B−

C+

A−B−C+

A−
B+

C−

A−B+C−

A−
B+

C+

A−B+C+

A+

B−

C+

A+B−C+

A+

B+

C−

A+B+C−

A+

B+

C+

A+B+C+



5.2.7 Components revisited

In order to construct the components characterized in subsection 3.5.3 on page
23 we scale the construction such that the honeycombs would be small enough to
allow chains to consist of as many honeycombs as necessary to be flexible enough.
In the following drawings a fat blue stroke indicates such a chain.

variable
components

The two green
triangles indicate
branches (which
we have discussed
in section 5.2.5 on
page 66).

clause
components

The green rectangle
indicates a clause
(which we have dis-
cussed in section
5.2.6 on page 67).

connection
components

The red disk indicates a blind end of a
chain (which we have discussed in 5.2.4
on page 65).

The variable components are made of two branches and we obtain the 16 dif-
ferent types of variable components by stretching the appropriate chains thereby
decreasing the number of negations by one. The connection components are made
of chains only. In each clause component a clause is used as well.

Note that each component has four incomplete chains pointing outwards. It
will be easy to connect them to other incomplete chains just by identifying two
vertices of one incomplete chain with two vertices of the other one and by intro-
ducing nine additional edges (try to connect two incomplete endings in a picture
on page 65 with a pencil to see what we mean).

The reduction works as follows. Given an instance of grid3sat. We substitute
each component by the corresponding construction described above. Then we
connect all incomplete chains with appropriate other incomplete chains wherever
possible. Then there will remain only these incomplete chains which will point
outwards of the whole construction (that is outside of the grid area). We will
introduce additional blind ends and connect them to the remaining incomplete
chains. So far our construction is not fully triangulated. But since all areas which
are still not triangulated are bounded by fixed vertices and edges in between we
can triangulate them arbitrarily without changing the way everything works.

This completes the construction. It remains to show that the formula given
by an instance I of grid3sat is satisfiable if and only if there exists an embedding
solving the instance J of constrained embedding.



Assume that the formula is satisfiable. Then we place all honeycombs in the
branches in the variable elements in −-situation, if the corresponding variable is
assigned to be false and in +-situation otherwise. The situations of the other
honeycombs follow.

Assume conversely there exists an embedding solving the instance J . Then we
look at the honeycombs in the branches in the variable components to get a truth
assignment which fulfills the formula.

5.2.8 Remarks

If you look carefully on the constructions used in the reduction you will notice that
the graph obtained from them will be tri connected. After triangulating it it will be
a tri connected triangulated graph which has, by the way, a combinatorial unique
embedding therefore. This is, however, not very surprising because we never used
the ambiguity between combinatorial different embeddings in our proof (reread
subsection 5.2.2 on page 62 to see what we mean).

Hence we can strengthen our result by stating that constrained embedding
remains NP-hard even if we restrict the graphs to be tri connected. So we actually
have an NP-hardness result for the following problem.

constrained embedding’

We are given a labeled triangulated tri connected oriented planar graph,
each vertex of which is assigned to a closed disk in the plane given by a
center point of rational coordinates and a rational radius. Decide whether
it is possible to embed the graph positively oriented in the plane with line
segments as edges such that each vertex lies in its disk.

5.3 Open problems

It is not known whether constrained embedding is in NP. On the first sight con-
strained embedding is a special case of quadratic programming which is known to
be NP-hard but which is not known to be in NP.

An approach to solve the problem would be to regard it as a quadratic pro-
gramming problem. Thus we have just proved that quadratic programming is
NP-hard. Of course, it is already known that quadratic programming is NP-hard
and the proof is much simpler than the one obtained from what we have done so
far here. Nevertheless it is still not known whether quadratic programming is in
NP, as stated in [GJ79].


