Introduction

The present thesis is concerned with the theory of identical relativistic particles in three-
dimensional space-time which do not obey Bose-Einstein or Fermi-Dirac statistics. Despite
considerable efforts by many theoretical physicists, the quantum theory of such particles is still
poorly understood, and the aim of this thesis is to clarify some of its aspects. In particular we
will address the issue of free relativistic fields associated to such particles. We recall that in
quantum field theories, like e.g. quantum electrodynamics, free fields are usually the starting
point for a discussion of the more realistic dynamics of interacting fields, at least perturbatively.

It was Leinaas and Myrheim who first realized that in two space dimensions there may be
particles other than bosons or fermions [LM77]. Statistics means in the context of quantum
mechanics the effect of exchanging identical particles. In group-theoretic terms it is usually
described by a one-dimensional representations of the permutation group corresponding to
symmetric or antisymmetric wavefunctions respectively, depending on the nature of the particles
which it describes, namely bosons or fermions. Leinaas and Myrheim realized that the arguments
implying this alternative were not cogent in two space dimensions, and proposed a new statistics
where the relevant group is the so-called braid group.

Let us briefly sketch their arguments leading to this conclusion. In quantum mechanics one
assumes that a state of n identical particles can be described by labelling the particles with
indices 1,... ,n and associating a wavefunction % to it. Indistinguishability of the n particles
is then taken into account by requiring that a wavefunction 1, which arises from a different
labelling m(1),... ,7m(n) must yield the same expectation values for observables. Then one can
indeed conclude that 1 must be either symmetric, ¥, = 1, or antisymmetric, ¢, = sgnm - 1.
Leinaas and Myrheim criticized that the introduction of particle indices at the beginning of this
analysis cannot be operationally justified. They took the indistinguishability of the particles
into account already in the classical configuration space: A configuration of n indistinguishable
particles should not be described by an n-tupel of single particle configurations, rather, all
tupels which differ only by a permutation should be identified. This had already been proposed
by Laidlaw and DeWitt [LD71]. From here the analysis of Leinaas and Myrheim consistently
leads to a formulation, where the behaviour of the wavefunctions under the exchange of particles
depends on paths along which the particles are exchanged. In this formulation, a wavefunction
describing e.g. two particles in the plane picks up a phase factor w if these are exchanged in
counter-clockwise direction, and w™! if they are exchanged in clockwise direction. Since these
paths are topologically distinct, w may be different from w™!. In the usual quantum mechanical
discussion there is no dependence on the paths, which implies that here w can only be 1 or —1 :
Thus bosons and fermions appear as a special case in the formalism proposed by Leinaas and
Myrheim, and an arbitrary phase w # %1 indicates that we describe a ‘braiding’ and not only a
permutation. Indeed, in the case of n particles the phases involved establish a one-dimensional
representation of the braid group', and the wavefunctions transform under exchange of particles
(along paths) according to this representation.

The braid group for n particles, being a non-Abelian group of infinite order, is much more
complicated than the permutation group and its irreducible representations are still not fully
classified. There are however, as in the above example, one-dimensional representations, char-
acterized by a phase w. The associated particles are called anyons [Wil82], since ‘any’ phase is

I The braid group is in this context the fundamental group of the n-particle configuration space, supposed
that one excludes the set of points where two or more particles occupy the same configuration. But this can be
justified a posteriori [Wil90].
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possible. If the representation of the braid group is irreducible and not one-dimensional, one
speaks of plektons [FRS92]. It is noteworthy that in three-dimensional space the two paths
considered above are topologically equivalent, which implies that here w can only be 1 or
—1, corresponding to the bosonic or fermionic case. Thus the anyonic braid group statistics
is a generalization which interpolates between Bose and Fermi statistics and may occur in
two space dimensions. Their analysis and the occurrence of braid group statistics also extends
to one space dimension, but this situation will not be considered here. Quantum mechanical
models of anyons have first been discussed by Wilczek [Wil82]. In the sequel a strong interest
of physicists in braid group statistics arose because of its possible relevance for the expla-
nation of up to then poorly understood ‘two-dimensional’ condensed matter phenomena. In
particular, there were several proposals to explain the fractional quantum Hall effect with such
models [Lau83, Hal84, ASW84], as well as with nonrelativistic quantum field theoretic models
exhibiting anyonic quasiparticles [ZHK89, FK91]. Further, arguments have been proposed that
fractional statistics might play a role in high-T. superconductivity [Lau88, Wil90]. Inspired
by the increasing interest in such models, it has been shown by Fredenhagen and by Frohlich
and Marchetti [Fre89, FM89] that also in the framework of algebraic quantum field theory the
possibility of braid group statistics arises in d = 2 + 1, if the relevant charge is not localizable
in bounded spacetime regions, but only in regions which extend to infinity in some spacelike
direction?.

As already mentioned, despite considerable efforts the quantum theory of particles with
braid group statistics is still poorly understood, and the aim of this thesis is to clarify some of
its aspects. Apart from giving guidelines for the construction of models, such structural analysis
may also help to recognize in which physical phenomena plektons could play a role, and to
predict new phenomena which may be described in terms of plektons or anyons. The analysis will
be performed in the framework of algebraic quantum field theory and employ its well-developped
technical arsenal. In this theory one has clearly stated and physically motivated assumptions
resting strongly on the principle of locality, which are expected to be met by reasonable models.
It has turned out successful in analyzing the general strucure of quantum field theories, e.g. it has
given reasons for the particle-antiparticle symmetry and for the connection of spin and statistics.
Within this set-up, which offers a conceptionally clear-cut notion of exchange statistics, many
investigations on plektons have been performed, achieving a number of model-independent
results. Thus, a ‘weak’ spin-statistics connection has been established: In two space dimensions
the spin is not quantized, and models whose spin is not integer or half integer necessarily have
to obey braid group statistics [FM89, Fre89]. Also, the associated (Haag-Ruelle) scattering
theory is understood [FM91, FGR96]. Unfortunately, none of the hitherto proposed explicit
models of relativistic anyons in (continuous) three dimensional spacetime [Sem88, Swa90, JW90,
BCS93, CP96] is physically completely satisfying, in particular from the viewpoint of algebraic
quantum field theory. But a relativistic model satisfying these axioms is highly desirable, not
at least because non-relativistic quantum theory should be obtainable as the limiting case of
an underlying relativistic theory. It seems particularly desirable to have, as a starting point
for further models, a ‘free field’ of relativistic anyons, having suitable localization properties.
In fact, it has been shown that such fields cannot be pointlike localized, rather they must
be localized around ‘semi-infinite strings’, which extend from space-time points to spacelike
infinity. The difficulties associated with the construction of local free fields become apparent on
the level of the plektonic Hilbert space [FGR96, FM91, MS95], which is also introduced in this
thesis. Recall that in the case of spin % particles, one has to go over from a spin (or ‘Wigner’)
to a spinor (or ‘covariant’) basis in the momentum space formulation of the one particle theory,
in order to obtain anticommuting local spinor fields. But in the case of unquantized spin, one
has no satisfactory corresponding procedure. The construction of free anyonic fields was in fact
the original aim of this thesis.

However, it turned out that no such model, in a quite general sense, can exist. This is
one of our main results (Theorem 5.3). In order to provide firm ground on which further
constructive attempts shall be performed, the main part of the thesis is devoted to establishing

2which is in fact the typical situation for massive particles [BF82].
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a number of model-independent results for plektons and, most of all, anyons in the framework
of algebraic quantum field theory. Most notably among the results are a version of the PCT
theorem adapted to the three dimensional situation with braid group statistics (Proposition 1.13
and Theorem 4.14) and a spin-statistics theorem for anyons (Theorem 4.15). We recall that the
famous PCT theorem in local quantum physics states that (in four dimensions) the combined
transformation of the total space-time inversion (PT) and charge conjugation (C) is an anti-
unitarily implemented symmetry in every model of quantum field theory [Jos57]. A large part
of the thesis is concerned with the Hilbert space of scattering states for plektons and anyons.
Referring to this space, explicit formulae are given for the ray representation of the Poincaré
group (Propositions 3.4 and 4.20), for the PCT operator (Propositions 3.7 and 4.20) and for
the Tomita operators of the anyonic field algebra associated to wedge regions, modulo the S-
matrix (Lemma 4.21 and Proposition 4.22). The family of Tomita-operators of the local field
algebras encodes some amount of information about the latter, in paricular it carries over
the localization concept to the Hilbert space. Thus our construction of the ‘incoming’ Tomita-
operators for wedge regions should be helpful for further model-building. Before a more detailed
overview of the results can be given, a brief introduction into some of the concepts of algebraic
quantum field theory is in order, which will also indicate how plektons arise in this framework.

Algebraic Quantum Field Theory and Plektons

The development of algebraic quantum field theory [Haa59, HK64] was motivated by the
wish to have a mathematically well-defined and consistent frame capable of describing the
phenomena of elementary particle physics, which is based entirely on observable quantities, and
which incorporates the principle of locality into its foundation.

The notion of ‘observable’ used here is connected with restrictions to the quantum mechan-
ical superposition principle, so-called superselection rules, whose existence in quantum field
theory has been pointed out by Wick, Wightman and Wigner in [WWW52]. For example, in
quantum electrodynamics operators corresponding to observable quantities must have vanish-
ing matrix elements between state vectors carrying different electrical charges. Otherwise, the
relative phase between states with different charges would be measurable — which is not the
case: no one has ever prepared a coherent superposition of such states. A second example is the
so-called univalency superselection rule. A 360° rotation must act as the identity on observables.
Hence they must have vanishing matrix elements between a vector with integer and one with
half integer spin. Conventionally, quantum field theory is formulated in terms of quantum fields
which are in general unobservable, like e.g. the Dirac field which is not observable according to
both of the mentioned superselection rules. The use of unobservable objects is naturally con-
nected with some amount of arbitrariness, which has to be fixed by physically poorly motivated
conventions: e.g., normal commutation relations can be altered by a Klein transformation with
no consequences on the observable level. From an operational point of view it is desirable and
should be possible to eliminate the unobservable fields from the description and base the theory
on observable quantities only.

The principle of ‘locality’ in this context asserts that measurements are performed in finite
regions of spacetime, and that measurements performed in space-like separated regions should
be compatible, i.e. they should not influence each other.

Assumptions. The formalism of algebraic quantum field theory (AQFT in the following)
takes these requirements into account as follows. Associated to every bounded spacetime region
O there is a von Neumann algebra A(0), encoding the observables measurable within O. A von
Neumann algebra is, up to isomorphism, an algebra of bounded operators acting on some Hilbert
space, which is stable under taking adjoints and is closed in the weak (or equivalently, in the
strong) topology. By the use of bounded operators instead of the unbounded quantum fields of
conventional quantum field theory and also of the Wightman framework, the domain problems
of the unbounded operators are avoided, whose physical significance is questionable. This step
is justified because one can reconstruct an unbounded operator by the algebra of bounded
functions of it, all of which mathematically represent one and the same measurement device,
only with different scales. This point of view has been advocated already by I. E. Segal [Seg47].
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The algebras A(Q) are in the origial framework of AQFT assumed to be abstract von Neumann
algebras, but in our context it is a fortiori justified to consider them as given in the vacuum
representation, i.e. as concrete operator algebras acting in a Hilbert space Hy. The basic idea
of AQFT is that the assignment

0 = AO)

encodes all relevant information of the theory, and the axioms of AQFT refer to this assignment.
It is assumed to be inclusion preserving

A(O1) C A(O3) if Oy C Oy (Isotony) , (0.1)
and to satisfy microcausality:
A(01) C A(Os) if O C Oy (Locality) . (0.2)

Here A(O)' denotes the commutant of A(O) in B(Ho), and (' is the causal complement of O in
Minkowski space, i.e. the set of all point which are spacelike to all points in O. The family of von
Neumann algebras is assumed to be Poincaré covariant, i.e. Hq carries a strongly continuous
unitary representation Uy of the Poincaré group Pi such that

AdUy(g) : A(O) = Ag-0O) for all g € P (0.3)
A = Us(g) AUs(g)™" .

These three assumptions incorporate the principle of locality. Positivity of the energy (or sta-
bility) is implemented by the assumption that the energy-momentum operators, defined as the
3 generators of the representation z — Up(z) of space-time translations, satisfy the spectrum
condition, i.e. their joint spectrum is contained in the closed forward light cone. Further, the
existence of a unique, up to a phase, normalized vector is assumed which is invariant under
translations — the vacuum vector 2. Correspondingly, we will call Hg the vacuum Hilbert space.
In our context only theories without massless particles will be considered, and hence we require
the spectrum condition in the more restrictive form

specPy C {0}U{peR® /p? >0, po > 0}. (0.4)

Here specPy denotes the joint spectrum of the energy-momentum operators. The (defining)
vacuum representation of the net of observables is assumed to be cyclic:

ZA(O) Q  is densein Ho,
o

and irreducible:®

(JA©) =cu1 .

The last property is a completeness requirement, since by virtue of it every bounded operator
in Hy can be approximated by local observables. For an unbounded region G of Minkowski
space we denote by A(G) the von Neumann algebra generated by all local algebras A(Q) with
O C G, ie. AGQ) = (UocgA(0))". We will be particularly interested in spacelike cones. A
spacelike cone is an open cone in Minkowski space M which extends to infinity in some spacelike
direction. More precisely, it is a convex region of the form

S =a+ Ux>0AO ,

where a € M is the apex of the region and O is the intersection of a forward and a backward
lightcone:

(9=m+V+ﬂy+V_

for some z,y € M spacelike to the origin. We denote by K the class of spacelike cones S and
their causal complements S’. In our context, the discussion will proceed in terms of the family

3in fact, irreducibility is a consequence of cyclicity, the spectrum condition and uniqueness of the vacuum.
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A(I)rex of observable algebras assigned to these regions. This family is assumed to satisfy a
considerable strengthening of the microcausality (0.2) called Haag duality:

A = A(I)' forall T €K . (0.5)

As pointed out at the beginning of this section, in the conventional formulation of quantum
field theory, superselection rules appear in the form of coherent subspaces (in our examples
characterized by the electrical charge and univalency, respectively), between which observables
cannot effect transitions. In the context of AQFT, superselection rules arise as inequivalent
representations of the observable algebra. By such a a representation we mean a family {r} =
{nT}rex of normal representations ! : A(I) — B(H) in a Hilbert space H, which is consistent
in the sense that one has isotony of these representations in the form

o =n" HICJ. (0.6)

Two representations {7} and {7} are said to be equivalent, if there is a unitary V : Hz — Hn
such that 7! = AdV o #! for all I € K. In this context, a (superselection) sector means an
equivalence class [r] of irreducible representations, and charges are characteristic properties
distinguishing the sectors. Mathematically, there will in general be a host of inequivalent rep-
resentations, and one needs criteria to single out the physically interesting ones. A minimal
requirement is that the representations allow to implement the space-time translations by a
strongly continuous group of unitaries, and that the corresponding generators satisfy the spec-
trum condition, so that the dynamics can be implemented and is stable. Here, we will only be
concerned with covariant representations {7} which by definition allow to implement the uni-
versal covering group PJI of the Poincaré group*. More precisely, there is a strongly continuous
unitary representation U, of 151 acting on Hg such that

AdU(§) on" = 79" 0 AdUy(g) for all e P, T € K. (0.7)

Here § — g denotes the canonical covering homomorphism as explained in the Appendix. Note
that if {7} is irreducible, a 27-rotation must be represented by a multiple of unity, which only
depends on the sector [r] :

Ux(2r) =: e?mislm] (0.8)

The real number s[r], determined modulo one, is called the spin of the sector [x]. Of particu-
lar interest in our context are massive single particle representations, which by definition are
irreducible and covariant, with the corresponding energy momentum spectrum containing an
isolated mass shell H,, := {p € R? / p> = m?,py > 0} as its lower boundary:

H,, C specP, C H,U{peR/p>> M? py>0} for some M >m>0. (0.9)

Buchholz and Fredenhagen have shown in [BF82], that every massive single particle represen-
tation is localizable in spacelike cones relative to some vacuum representation 7y (which they
construct for a given massive single particle representation). In our context it is appropriate
to identify my with the defining representation on #g, and to require this property from all
considered representations {7}. In precise terms, this means that for every spacelike cone S
there is a unitary Vs : Ho — H. such that

75 (A) = Vs AVG  forall A e A(S') . (0.10)

Some Known Results. Having set up the frame and introduced criteria to select rep-
resentations corresponding to physically realistic situations, let us briefly review the relevant
properties of the corresponding charges, which can be derived in this frame. The salient results
concern the following three items, into which we will enter subsequently in some detail.

(1) Charge composition and -conjugation,

(2) Exchange statistics of identical charges (and particles, in view of (3))

(3) Multiparticle states.

4Relevent are in fact the unitary ray representations of the Poincaré group, but these are in one-to-one
correspondence with the unitary representations of P_I. This has been shown by Wigner and Bargmann for four
dimensions, and also holds in three dimensions.
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Ad (1): Charge composition. The family of local von Neumann algebras A(I) can be em-
bedded into an abstract C*-algebra A, in such a way that all local relations are preserved, and
every representation {m} of the family of local observable algebras uniquely lifts to a representa-
tion of A,. In particular, the defining representation on Hy gives rise to a representation of A,
which we now call the vacuum representation and denote by mg. As an immediate consequence
of Haag duality (0.5) and the Buchholz-Fredenhagen criterion (0.10), any representation 7 of
Ay arising as above is unitarily equivalent to a representation on Hy of the form

mT=ETmgoQ,

where g is a localized endomorphism of A,. By definition, this means that p is an algebra-
homomorphism of A, into itself which preserves adjoints and (as a consequence) the norm, and
which is

e localized in some region Iy € K, i.e.

Q(A) =A fOI‘ all A S Au(I(l)) )

and

o transportable to other regions along paths in K. By a path in K we mean a finite
sequence (Io,...,I,) of regions in K such that either Iy_; C I} or Iy_q D I for k =
1,...,n. Projected onto some spacelike (two dimensional) hypersurface, the situation
looks geometrically as follows:

Then for each k there is a unitary Uy € A, (I;_1 U I}) such that gy := Ad(Uy---Uy)op
is localized in I. We say that p,, arises by ‘transporting g from I to I,, along the path’
I =(I,...,I,), and that (U,...,U,) is a ‘chain of charge transporters’ for ¢ along
that path.

Being an injective endomorphism of an infinite dimensional Banach space, such a g needs not
be surjective and hence an automorphism. In case it actually is an automorphism, we say that
the sector of g is an Abelian sector. As we shall see soon, this is the case exactly for anyons.

A state of the system corresponds to a continuous positive normalized functional on the
universal algebra. Having arranged all relevant representations mgg to act on the same Hilbert
space Ho, a vector 1 € Hy determines a (pure) vector state in the sense of expectation values
only after specifying an (irreducible) representation in which the observables are meant to act
on H()s:

A <¢77TOQ(A)w>7 Ae Au -

The set of such vector states falls, according to the equivalence classes of representations, into
disjoint connected components® which are also called sectors, or folia.

Going over from representations m to endomorphisms g is the crucial step towards the defi-
nition of a charge composition. Namely, the composition g1 g2 := g1 0 92 of two endomorphisms
localized in I is again an endomorphism localized in I, and the sector of the representation

5(., -) denotes the scalar product in Ho.
6in the associated norm topology
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o102 only depends on the sectors of mg01 and mge2. This allows one to define a composition
of sectors via

[mo01] - [mo02] := [mo102] - (0.11)

A result which can be obtained in this framework is that every sector has a conjugate sector,
which means that the composition of the sector with its conjugate contains the (equivalence class
of the) vacuum representation as a subrepresentation. There is a symmetry between charges and
anticharges and between particles and antiparticles: The spins of a sector and of its conjugate
sector coincide, and if 7 is a massive single particle representation, then the conjugate sector
contains the same particles.

Ad (2): Statistics. There is an intrinsic notion of statistics in this frame, which describes the
effect of exchanging identical localized charges. To give an idea, we consider an endomorphism
o of A, which is localized in a spacelike cone I. Let I; and I» be two causally disjoint spacelike
cones, and let g; and g2 be endomorphisms which arise by transporting ¢ from I to I; and
I, respectively. The paths along which they are transported are required to be such that g, is
transported in a counter-clockwise direction with respect to g2, and such that they stay causally
disjoint after having left I :

Being localized in causally disjoint regions, g1 and g2 commute. Hence their composition g1 g2,
which has two disjoint localization regions, may be transported back, giving rise to g2, in two
ways — according to wether p; is considered the first or the second factor. One calculates

0102 = Ad(Vi0(W2)) o @®

(0.12)
0201 = Ad(Va0(W1)) 0 0%,

where V; and V5 are products of the charge transporters which have effected the transport of
o from I to I; and I, along the respective paths. Hence, the effect of transporting the two
identical charges into disjoint regions, exchanging and transporting back reads

0> = Ade, 0 %, (0.13)

where ¢, is the unitary element of A, (I) given by (Vao(V1))” Vie(Vz). In fact, €, turns out to
be independent of the charge transporters, of the regions I1 and I» and of the paths as long as
the geometric conditions on the paths is satisfied. In addition, €, only depends on the sector
[mo0]. It is called the statistics operator of that sector. If on the other hand g is transported in
a clockwise direction with respect to g5, the same procedure leads to sgl instead of €, in the
above equation. A priori, 6‘;1 may differ from ¢,. In four dimensional space time, in contrast,
there is no toplogical difference between the two prescriptions ‘clockwise’ or ‘counter-clockwise’,
and hence here 529 = 1. We shall now see that the failure of 53 =1, proper to low dimensions,
is the reason for the occurrence of braid group statistics. The braid group B,, of n strands is by

definition generated by ‘elementary braids’ ¢, ... ,t,_1 which satisfy the relations
thter1te =terrteteyr fork=1,... ,n—-2,
) (0.14)
trti =ttt if |k—l|22.

As suggested by the name, an element of this group may be pictured as a braiding of n strands,
the group operation being defined in the obvious way by appending one braid to the other.
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The elementary braids correspond to twisting two neighbouring strands once in a clockwise”

direction:
1 2 3 n 1 2 3 n

Since for n < m the group B, is naturally embedded in B,,, the infinite braid group B, can
be defined as the braid group of an unspecified number of strands.

The statistics operator €, satisfies the relations

€0 0(€0) o = 0(€p) €0 0(g0)

02(59) €9 = &g 92(59) )
and therefore the map t;, — 0*71(g,) is a representation of the braid group B., by unitary
elements in Ay (I). If sf, =1, this is effectively a representation of the permutation group, since
the latter is generated by the transpositions 7 := (kk + 1) which satisfy the relations (0.14)
and the additional relation 77 = 1. In particular the permutation group is the homomorphic
image of the Braid group under the map t; — 7. Thus canonically associated to each sector
isin d = 2 4+ 1 a representation of the braid group, and in d = 3 + 1 a representation of the
permutation group.

This representation is indeed analogous to the action of the permutation group on wave-
functions in quantum mechanics. To indicate the analogy, we return to the situation of equa-
tion (0.13). The two states w; := (2, moei(-)Q) describe a charge [mog] localized in I;, i = 1,2,
i.e. they look like the vacuum state {Q, mo(-)Q) in I]. We consider the state

w12 = <Q7 7709192(')Q>

in the doubly charged sector [mo0?]. It describes two identical charges, one localized in I; and
the other one in I, i.e. it looks like wq in I} and like wy in I;. Since g1 and g» commute, wio
coincides with the (analogously defined) state ws1. That is to say, one cannot tell whether the
first or the second factor of the product ¢?> has been moved to I : identical charges cannot
be labelled on this (observable) level of description. The effect of exchanging the charges in I;
and I becomes apparent if we refer to the vectors corresponding to the state wjs. By virtue
of equations (0.12), the state wi2 = wa is a vector state in the reference representation g 92,
to which two vectors Q15 and 9; are naturally assigned, corresponding to the two possible
labellings:

(2, m00%(+)2) = wiz = way = (a1, Moo ()21 ),

where Q19 := mg (V1 Q(Vg))* Q, and Qs is defined analogously. 215 describes the doubly charged
state in which the first charge has been transported into I3, counterclockwise relative to the
second one. Though yielding one and the same (observable) state w2, these vectors may be
distinct: they are related by

le = 7T0(EQ) le . (015)

Thus ¢, describes the effect of exchanging identical localized charges.

From €, one can obtain a numerical invariant of the sector [myp], the so-called statistics
parameter, whose phase (in the polar decomposition) is called statistics phase and denoted by
wrg)- Clearly, in the case of permutation group statistics (520 = 1), this phase is just a sign —
corresponding to (para-) bosons of fermions. If p is in particular an automorphism (Abelian
sector), the statistics operator £, must be a multiple of unity because it commutes with p?(A,)
by equation (0.13), and the statistics phase is then the factor occurring in €, = wi,) 1. In this

case the representation defined by €, is Abelian, i.e. ¢ describes anyons.

“the relevant convention is given in the appendix.
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There is a ‘weak’ connection of spin and statistics, according to which the statistics phase
coincides with the spin phase exp 2mis[mo] up to a sign [Fre89, FM89]. The sign cannot be
determined without further input (to be assumed below), but note that this connection already
implies that a sector [mpe] has non-trivial braid group statistics if and only if its spin is not
semi-integer, i.e. not in 7.

Ad (3): Particle States. Following Wigner [Wig39], an elementary particle should be quan-
tum mechanically described by an irreducible representation of the universal covering group of
the Poincaré group. In three as well as in four dimensional space-time, the physically relevant
representations — and hence the occurring particle types — are classified by two numerical in-
variants. One is the mass m > 0, and the other one is, in the massive case m > 0, the spin s
which labels an irreducible representation of the universal covering group of rotation subgroup.
Hence in three dimensional space-time s may be any real number, in contrast to four dimensions
where s is an integer or half-integer.

If moo is a massive single particle representation (recall equation (0.9)), then the subspace
corresponding to the H,,-part of the spectrum describes elementary particles of mass m in the
sector [mop]. There may be different particle types, distinguished by different spins, but all spins
occuring must coincide with the spin of the sector [mgp] up to an integer. Thus, in view of the
spin statistics connection, if there are fields creating particles whose spin is not semi-integer,
they must obey braid group statistis: Spin-anyons are connected with statistical anyons, and
both phenomena are peculiar to 2 + 1 dimensions.

Starting from massive single particle representations, one can construct multparticle
states by a procedure known as Haag-Ruelle scattering theory. It has been originally formu-
lated [Haab8, Rue62] in the framework of conventional quantum field theory, where one has
unobservable fields creating the charged single particle states, which transform under some
global gauge group and have well-defined spacelike (namely, normal) commutation relations.
For the case of non-trivial (and non-Abelian) braid group statistics, however, the existence of
such a field algebra has not yet been etablished (for results in this direction, see [Reh90, MS90]).
But for some purposes it can be substituted by a simple construct in the algebraic framework
which has been proposed in [DHR71], the so-called field bundle. Using this construction, K. Fre-
denhagen, M. Gaberdiel and S. Riiger adapted the Haag-Ruelle scattering theory to the case of
particles with braid group statistics [FGR96].

The structure of the field bundle is rich enough to carry a localization concept for the
objects which substitute charge carrying fields in this formalism, such that one has definite
space-like commutation relations. In the plektonic case, the localization concept is based on
paths of spacelike cones, and the commutation relations reflect the braid group statistics.

The resulting n-particle scattering vectors depend on the n single particle vectors and, pe-
culiar to the plektonic case, on n paths of spacelike cones originating from the ‘field operators’
which have created the particles. The statistics of charges determines the statistics of these
particle states, which essentially reads as equation (0.15), now Q15 representing a two-particle
state. Since the n-particle state vectors depend on paths, in contrast to the single particle vec-
tors, they cannot be identified with (appropriately symmetrized) tensor products of the single
particle vectors in a canonical way. More seriously, the representation of 131_ on the space of
n-particle states is not isomorphic to an n-fold tensor product of single particle representa-
tions [Fre90b]. A multiparticle Hilbert space carrying an appropriate representation of 151 has
been proposed by R. Schrader and the author [MS95], employing the theory of fibre bundles
and builing on earlier ideas of R. Schrader [Sch89]. In fact, the structure of the Haag-Ruelle
scattering states has been revealed by K. Fredenhagen et.al. [FGR96] and for the anyonic case
by J. Frohlich and P. Marchetti [FM91], and essentially coincides with our construction. We
briefly sketch the structure. The sets (i.e. tupels modulo permutations) of n noncoinciding rel-
ativistic velocities form the points of a manifold which we denote by ™H;. This manifold has
the braid group B, as its fundamental group, and hence its universal covering manifold can be
viewed as a principal fibre bundle with the braid group as structure group. Further, the braid
group acts on a finite dimensional Hilbert space F' via a representation €, which is fixed by
the statistics operators of the considered massive single particle representations and the ‘fusion
rules’ governing the decomposition of products of the latter into irreducible representations.
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Given this representation € of the structure group, there is an associated vector bundle with
fibre F' over the base space ™ H;. Now the Hilbert space of n-particle scattering states is isomor-
phic to the space of square integrable sections in this bundle. The representation of the covering
group of the Poincaré group, whose existence we have required by only considering covariant
representations of Ay, is fixed on the space of scattering states by its restriction to the single
particle vectors and by the representation € of the braid group [FGR96].

Overview of the Results and Structure of the Thesis

The central concern of this thesis is to present a number of model independent properties
of plektons, particularly anyons, in the framework of algebraic quantum field theory.

Our first result concerns the existence of an analogon to the PCT operator in the plektonic
field bundle. An additional input to our analysis is that we assume the observable algebra to
have the Bisognano- Wichann property [BW75]. This means that the Tomita operator® S(W;) :
AQw— A*Q, A e A(Wy), of the observable algeba associated to the wedge region

Wi :={zeM, |z° < z'} (0.16)

has a direct geometrical meaning: Let S(W;) = J A? be the polar decomposition of this oper-
ator. Then the modular operator A can be expressed in terms of the representation Uy of the
Poincaré group, and the modular conjugation J represents antilinearly the reflexion j at the
vertex line of W, (which is the z2-axis) in such a way that Uy is extended to a representation of
the proper Poincaré group P, , and such that AdJ acts geometrically on the observable algebra:

AdJ : AO) = A(O) .

The operator J may be used to associate a particular representant mpg of the conjugate sector
to a given representation mgp of the observable algebra [GL92]. An immediate appllcatlon is
that J also extends the representation Uy, ® Ur,z Of P to a representation of P, , such that
AdJ acts geometrically in the field bundle (Proposition 1 13), which to our knowledge had not
been established yet for plektons in 2 + 1 dimensions. Further, this operator effects directly the
charge-anticharge and particle-antiparticle symmetry (Proposition 1.11), namely that a sector
and its conjugate sector have the same spin and statistics parameter, and the same particle
content (masses, spins and degeneracies of single particle spaces). Thus, J is a rudimentary
analogon of the PCT-operator.

A major concern of the thesis is to further clarify the structure of the Hilbert space of
scattering states. The isometric Mgller opertators WT and W~ in the present context are
presented from the ‘physical’ Hilbert spaces of outgoing and incoming scattering states, re-
spectively, onto the abovementioned ‘reference’ Hilbert space of sections in a vector bundle.
They are defined by using concepts which are naturally adapted to the structure of the physical
space of scattering vectors, so that several points become more transparent now. One of them
concerns the S-matrix, which is the map from the space of the incoming to the space of the
outgoing scattering states usually defined by S := (W+)* W~. But this definition presupposes
that both Mgller operators map onto the same reference Hilbert space, or at least that one has
a canonical comparison map between the images of W and of W~. This is achieved by the
Mgller operators presented here (Theorem 2.9). As a further advantage of our Mgller operators,
it now becomes transparent that they indeed translate the ‘physical’ representation of 151 on
the space of scattering states into the canonical representation on the reference Hilbert space
(Proposition 3.4). A new result is that they also relate the ‘PCT-operator’ .J, which turns out
to map outgoing onto incoming scattering states and vice versa (Lemma 3.5), with a canonical
conjugation operator which we define on the reference Hilbert space (Proposition 3.7). Con-
sistently, our S-matrix commutes with Poincaré transformations and is intertwined with its
inverse by the operator J (Propositions 3.4 and 3.7).

In the sequel, we restrict attention to anyons. Selecting a suitable set of Abelian sectors one
can, in contrast to the non-Abelian case, construct a field algebra [Reh90]. Thus the conventional
picture of the algebraic structure of quantum field theory can be set up, with appropriate
modifications: One has charged fields localized in paths of spacelike cones, which transform

8see Section 1.4 for a more precise definition.
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covariantly under a compact (here: Abelian) gauge group and have spacelike commutation
relations governed by the statistics phases. The observable algebra can be regained as the
algebra of gauge invariant operators. In our Proposition 4.3 it is made precise in what sense
this construct is the unique anyonic field algebra associated to a given observable algebra
and set of (suitably chosen) sectors, and shown that it satisfies a ‘twisted’ version of Haag
duality (0.5). A refined version of the operator J, which inherits all its profitable properties
mentioned above, acts geometrically on the field algebra and can hence be interpreted as a
PCT-operator (Theorem 4.14 and Proposition 4.16). In addition it coincides, up to a twist
operator, with the modular conjugation of the field algebra associated to the wedge region®
W1 (Theorem 4.14). Similarly, the modular operator of this field algebra is given in terms of
the representation of 13_1. Thus the Bisognano-Wichmann property of the observable algebra
lifts to the field algebra. This has been shown in the case of permutation group statistics by
D. Guido and R. Longo [GL95] and by B. Kuckert [Kuc95], and is transferred to the anyonic
case here for the first time. The same holds for an important immediate consequence of the
Bisognano-Wichmann property, namely the strong version of the spin-statistics connection: the
statistics phase of a sector and its spin phase coincide — not only up to a sign (Theorem 4.15).

For anyons we have achieved quite explicit formulae for all the abovementioned objects
concerning the space of scattering states: Here, the fusion rules are trivial and hence the repre-
sentation € of the braid group is determined by the set of statistics phases of the massive single
particle representations under consideration. Hence, the Hilbert space of scattering states and
the representation of 13_1 on it are explicitely given, and so is, consequently, the modular operator
of the field algebra associated to the wedge W;.

A new and important result is that also the ‘incoming PCT-operator’, i.e. the product of
the PCT operator with the S-matrix, can be written down (Proposition 4.20). Consequently,
the same holds for the modular conjugation of the field algebra associated to the wedge Wi. In
effect, we have thereby constructed the model-independent ‘incoming Tomita-operator’ of the
anyonic field algebra associated to Wy, i.e. the Tomita operator times the S-matrix. This opens
up new possibilities for the construction of models of anyons — in particular for free anyons,
where one expects a trivial S-matrix.

In 3+ 1 dimensions one has for every particle type a canonical model of relativistic quantum
field theory which describes a system of arbitrarily many noninteracting identical particles, and
also offers a way to discuss interaction: the free field. For anyons in 2+ 1 dimensions, in contrast,
one is not in this profitable situation'?. There are two obvious difficulties: Firstly, the free fields
in d = 3+ 1 are operator valued quantum fields acting in the symmetrized or antisymmetrized
Fock space over the one particle space, whereas the n-particle Hilbert space for anyons does not
have a canonical tensor product structure. Secondly, for nonzero spin the construction of the
free fields in d = 3 + 1 exploits the existence of so-called u- and v-intertwiners, which serve to
implement the covariant transformation properties of the free fields under a finite dimensional
(non-unitary) representation of the universal covering group SL(2,C) of the Lorentz group. In
the 2+ 1-dimensional situation, the universal covering group of the Lorentz group is the universal
covering group of SL(2,R), and no analogon of the u- and v-intertwiners into some finite-
dimensional representation of this group is known. Both difficulties might be circumvented, the
first one by a non-canonical trivialization of the vector bundle in terms of which the anyonic
Hilbert space is described [Mun92, MS95], and the second one by using an infinite dimensional
representation of the universal covering group of SL(2, R)!'. Nonetheless, constructive attempts
at a direct substitute of the free Fock space field have failed. We have finally found reasons for
this failure and will present them in this thesis.

9more precisely, to a specific path ending at Wj.

10D.R..Grigore has constructed free fields in d = 2 + 1 for any spin [Gri94] in a bosonic Hilbert space, but
in contradiction to the weak spin statistics holding in algebraic quantum field theory [Fre89, FM89], all of these
fields have bosonic statistics. Presumably, this is due to the fields having infinitely many components.

' This route has been proposed by R. Schrader and the author in [MS95], where the ribbon braid group
is considered instead of the braid group. Grigore has realized a similar solution of the ‘intertwiner problem’ in
[Grig4].
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In view of the mentioned difficulties we have to specify what we mean by a ‘free field’ for
anyons. The requirement of a trivial S-matrix seems a poor starting point for model building,
since e.g. in 3 + 1 dimensions the class of fields which lead to a trivial S-matrix is quite large,
larger in fact than the Borchers class of the free Fock space field. As the characterizing property
of a free field we consider the fact that the field algebra is completely determined by the single
particle spaces — altogether with its localization structure, which in the anyonic context is
based on paths of spacelike cones. This implies that already on the single particle level there is
a notion of localization. In fact, by the the Tomita operators the localization structure of the
field algebra is carried over to the Hilbert space on which it acts [Sch97]. We require that for free
fields, conversely, the family of ‘local single particle subspaces’ determines the family of local
field algebras. To be specific, we assume that the local algebras of a free theory are generated
by basic ‘fields’*? which create only single particle states out of the vacuum (Definition 5.1).
But under slightly stronger assumptions, we can establish no-go results for free anyons: In
Section 5.2 we assume that the basic fields are determined by the single particle vectors which
they create from the vacuum. Using our results on the explicit form of the Tomita operator for
wedge regions, we show that in the case of non-zero spin this assumption, together with a certain
intersection property of the field algebra, which is usually satisfied if one has local quantum fields
(i.e. distributions), is in conflict with the Bisognano-Wichmann property. This conflict is due to
the representation of the Wigner rotation and is peculiar to 2+ 1 dimensions. In Section 5.3 we
show that the basic fields cannot satisfy the condition that for two spacelike seperated fields ¢;
and s, the norm of the vector @1 U(z) 2 © be polynomially bounded for large x. If they satisfy
this mild regularity condition, we can establish, via a theorem & la Jost-Schroer, commutation
relations of the fields which are not compatible with anyonic statistics [Mun98]. It is noteworthy
that anyonic commutation relations of this kind have appeared in the literature, but the fact
that they are inconsistent has not.

The thesis is organized as follows.

e In Chapter 1 some of the concepts of algebraic quantum field theory mentioned are
introduced in more detail, in particular the correspondence of representations of the
observable algebra to endomorphisms of the universal algebra, and the field bundle
construction. It is pointed out how the commutation relations between spacelike localized
elements of the field bundle are governed by a representation of the braid group. After a
short exposition of the structure of the single particle spaces of plektons, consequences
of the Bisognano-Wichmann property of the observable algebra are elaborated: Namely,
a rudimentary version of the PCT-operator for the field bundle can be defined, which
implements the particle-antiparticle symmetry and acts geometrically on the field bundle.

o Chapters 2 and 3 are concerned with the Hilbert space of scattering states of plektons.
The construction of Haag-Ruelle scattering states in the present framework as devel-
opped in [FGR96] is briefly sketched. We define the Hilbert spaces of outgoing and
incoming scattering vectors containing all particle numbers n > 0 and all sectors which
have n-particle states, and Mgller operators from these into a reference Hilbert space.
It is shown that they translate the representation of the covering group of the Poincaré
group on the respective spaces of scattering states into the canonical representation on
the reference Hilbert space, and that they translate the product of the PCT-operator
with the S-matrix (i.e. the incoming PCT-operator) to a canonical conjugation operator
on the reference Hilbert space.

e In Chapter 4 the anyonic case is treated in more detail. An anyonic field algebra is
constructed from the observable algebra and an appropriately chosen set of Abelian
sectors. An algebraic PCT-theorem and the spin-statistics theorem are derived from the
Bisognano-Wichmann property of the observable algebra. This is accomplished by lifting
the latter property, in a ‘twisted’ version, to the field algebra. Finally, explicit formulae
are given concerning the spaces of scattering states: Namely, for the representation of
the braid group on which the construction of the reference Hilbert space depends, and

12We speak of ‘fields’ although these operators are not assumed to be pointlike localized like Wightman
distributions (not even stringlike as in [Ste82]).
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consequently for the representation of the Poincaré group and for the incoming PCT-
operator. By the Bisognano-Wichmann property, we thus have in particular constructed
the incoming Tomita-operator for anyonic models.

o In Chapter 5 we show that for anyons one cannot expect to have ‘free fields’ with the best
possible localization properties, namely in paths of spacelike cones. Free fields are here
characterized as operators which create only single particle states from the vacuum and
generate the local (i.e. spacelike cone localized) field algebras. A localization concept on
the Hilbert space using the Tomita modular theory is introduced and elaborated, and,
using the results of the last chapter, it is shown that the idea of a free field with all
desired properties, in particular the Bisognano-Wichmann property, can hardly be held
up. Finally we show that free fields for anyons, if they can be localized in smaller regions
than wedge regions, would have to violate the mentioned mild regularity condition which
holds e.g. in Wightman theories.

This work is partly based on a previous joint publication with R. Schrader [MS95]. The no-go
result for free relativistic anyons has been published in [Mun98].



