CHAPTER 1
Plektons in Algebraic QFT

1.1. The Field Bundle

We further develop some of the concepts of local quantum physics mentioned in the intro-
duction.

Universal Algebra and Localized Endomorphisms. An elegant way to discuss the
composition and also the statistics of sectors in this setting is to embed the family A(I) ek into
an abstract C*-algebra, the universal algebra A, associated to A(I)rex , such that the repre-
sentations {7} extend to endomorphisms of that algebra. This construction has been proposed
by Fredenhagen in [Fre90a]. A, is characterized by the following conditions:

1. There are unital embeddings if : A(I) — A, such that for all I,J € K
iJ|A(I) =i ifrcJ

2. For every family of representations {w} which is consistent in the sense of (0.6) there is
a unique representation 7 of Ay in H, such that w 0! =x! for all I € K.

The particular representation 7y resulting from the defining (identical) representation, mgoif =

id 4(1) , will from now on be called the vacuum representation of A, . It has the peculiar property,
that it is in general not faithful, due to the existence of global intertwiners (see below).

To each representation {7} of the family A(I); localized in S an endomorphism g of A,
can be associated which satisfies 7 = g o g, where = is the extension of {7} to A.,.

We sketch the construction of g following [FRS92)]. In view of the characterizing
properties of A,, it suffices to construct a consistent family of homomorphisms
ol 1 A(I) = A, satisfying 7! = my o ¢!. These will determine g via o/ = g o i .
Given I € K, we choose a spacelike cone S; € I’ and a region Iy; containing both
S and S;. (Such a region exists, e.g. take Iyp; := S5, where S, is a spacelike cone

in 8N S].) Then there is a unitary U € A(Ip;) such that
ACH]OT[‘S1 =1d.A(S;) (11)

Namely, U := Vg, Vs, with Vs and Vs, as in equation (0.10), satisfies equation
(1.1). This equation implies, remembering that ©5 = id g5y and Iy; C S’ NS,
that AdU | 4(r;,) = ida(ry,)- Hence U € A(lo1) by Haag duality. Now we define
o' := Ad (i"*(U*)) 04!, and convince ourselves that this definition is independent
of the choice of S1, Iy; and U.

Endomorphisms of the universal algebra arising that way will be called localized in S, and the
set of such endomorphisms will be denoted by A(S). A characterization of this set without
reference to the family A(I)r can be found in [FGR96].

The notion of superselection sectors translates into the present setup as follows. Let {7} and
{7} be two representations of the family A(I) ek in Ho, both localized in S, and let g, 8 € A(S)
be the corresponding endomorphisms of A,. Then {7} and {7} are equivalent if and only if
and § are inner equivalent, i.e. if there is a unitary element U € A, of the universal algebra
such that ¢ = AdU o g (see [Fre93]). Consequently, we call the inner equivalence class of p its
sector and denote it by [g].
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Poincaré Covariance of Endomorphisms. The vacuum representation Uy of PI on Ho
determines uniquely a representation a® of Pi by automorphisms of .4, which is implemented
by U, i.e.

AdUy(g) omg =mpo0a? forallge Pl. (1.2)

g

Let ¢ be an endomorphism of 4, corresponding to the representation {n} of A(I)rcx and let
U, := U, be the unitary representation of Pi satisfying equation (0.7). Then U, implements
a® in the representation mgo of Ay:

AdUg(g)Oﬂ'oQ:ﬂ'oQOOég for all g € PI. (1.3)

Equations (1.2) and (1.3) imply
Ad(Uo(9)U,(57 ")) omeg =mooadopo ag_l for all g € ]31_ . (1.4)
The right hand side of this equation is a representation of .4, localized in g-S, hence we can
conclude as after equation (1.1): if § is in a small enough neighbourhood of the identity such
that SU g-S C I, for some I, € K, then Haag duality implies that Uy(g9)U, (") € A(I,). In

this case we define

YA = 3" (Volg)U,(G™) (1.5)
and Y,(g) = Y,(9)*. The map § — Y, (g) has the cocycle property Y;(g2g1) =

)
aSZ (YQ* (gl))Yg*(g2), which allows to extend it continuously to arbitrary elements g € Pl.

It lifts equation (1.4) from B(Ho) to A, :
AdY;(§)og=alogoal, forallje P]. (1.6)

Also, it can be used to implement «q in the product representation 7y o @201 by a representation
Ugso, of Pl, defined as follows:

Ugao: (9) := (m002) (Y, (9)) U (9) - (1.7)
That U,,,, has the claimed property (1.3), can be seen by using equation (1.4).

Field Bundle. The semantic relevance of a vector in Hilbert space is that it defines a
state in the sense of expectation values on the algebra of observables. Since we have arranged
all relevant representations mg o g of the observable algebra to act on the same Hilbert space
Ho, the representation has to be specified along with the vector in order to determine a state

A <1/)57TOQ(A)¢>5 Ae Au ) (18)
and we are led to consider pairs
H = A(So) xHo D Hp:= {Q} X Ho - (19)

We consider here a fixed spacelike cone Sy to reduce the redundancy. On every fibre #, a scalar
product is declared by that of Ho. The field bundle is defined by

F = A(Sp) x A . (1.10)

We recall that a field algebra has not yet been established in the case of nontrivial and non-
Abelian braid group statistics. The field bundle is a simple substitute, which mimicks the
essential feature of charged fields as operations on the set of states, capable of creating charged
states (o,%) from the vacuum (id, ). The structure is rich enough to carry a localization
concept and to discuss Haag-Ruelle scattering theory. Its elements are called generalized field
operators. A multiplication in F is defined by

(02, B2) (01, B1) := (0102, 01(B2) B1) , (1.11)

and the norm of a generalized field operator by ||(¢, B)|| := || B||- Finally, F acts in H in a way
which is consistent with the multiplication by

(02, B) - (01,%) := (0102, ™0 © 01(B) ¥). (1.12)
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Intertwiners. An element T' € A, satisfying
0(A)T =Tp(A) forall Ae A, (1.13)

is called an intertwiner with source p and range ¢ (or from ¢ to §), and the set of such
intertwiners will be denoted by Int(g|e), or by Int(g|e)(So) if they are in addition required to
be in A4,(Sg). We will denote the source and range of an intertwiner T' € Int(g|o) together with
T in the form T := (9|T'|o). Intertwiners act on H and F via

(2ITe) (¢, ¢) := (&, m0(T)) and  (2|T]e) (¢, B) := (&, TB), (1.14)
respectively. The adjoint of an intertwiner and the composition of two intertwiners with match-
ing source and range will be written as

@ITle)* = (o|T*|6) and (1.15)

(02|T2l0) o (0|T1le1) = (e2|T2Tilen), (1.16)

respectively. Further, if T; € Int(g;|0:),7 = 1,2, one easily verifies that g2(71)T2 = T202(T1) is
an intertwiner from g20; to 9201 which will be denoted

(02|T2l02) x (01]T1]o1) = (0201|T202(T1)|0201)- (1.17)

Note that the last observation implies that the composition of endomorphisms respects the
division into equivalence classes, justifying the definition of charge composition as in equa-
tion (0.11). The two products o and X are associative and satisfy the following identities, which
will be useful in the sequel:

(Ty x Ty)* = T xT} (1.18)
T2B2 - T1B1 = (Tl X Tz) - B2B1 . (119)
(T1 o Sl) X (T2 o Sz) = (Tl X Tg) o (Sl X Sz) , (120)

whenever the left hand side is defined. In intermediate steps of calculations we will frequently
use the notations (g, B) and (4, |T|e) and the definitions and identities (1.11) to (1.19) also for
endomorphisms localized in other regions than Sp.

Localization of the ‘Fields’. The localization concept for F should satisfy the require-
ment that the fields are relatively local w.r.t. the observables: if (g, B) is localized in T € K,
it should commute with (id, A) for all A € A,(I'). But this condition is not sufficient to im-
ply commutation relations between spacelike seperated fields. As a way out, we first observe
that in the vacuum representation g, relative locality is equivalent to the following condition: If
U € B(Ho) is a unitary intertwiner such that AdU om0 g is localized in I, then Umg(B) € A(I).
From this, commutation relations can be derived in mg. In order to lift them (and the local-
ization concept) from B(Ho) to Ay, one has to lift U € B(Hp) to Ay. If I U Sp are contained
in some J € K, then U € A(J) by Haag duality, and one might replace U by i’/ (U) € Au(J)
in the above condition. But the resulting localization condition depends on the choice of J.
Hence, similar to the situation of multivalued analytic functions, one is led to either introduce
a “cut”, i.e. here, to exclude a fixed spacelike direction from the set of allowed localization
regions [BF82], or to consider the generalized field operators as living on paths in K. Such a
localization concept has been introduced by Fredenhagen, Gaberdiel and Riiger in [FGR96].
We recall (from page 6) that a path in K is a finite sequence of regions I, € K,k = 0,... ,n
with Iy = Sg, where either I,_y C I or Ix_1 D I}, for k =1,... ,n. The path is said to end at
I,. For each k there is a unitary Uy € Ay (Ix_1 U I;) such that Ad(Uy ---Uy) o g is localized in
Ij.. Then (g, B) is called localized in the path (Ip,...,L,) if U,--- Ui B € Au(In).

To see that this definition is independent of the choice of the intertwiners Uy, let Ul, . ,[L
be another such choice. Then [71 Uy ! is an intertwiner between two representations localized in
I, hence its image under 7 is in A(I1) by Haag duality. Since ﬁlUl_ ! jtself is local, namely €
Au(IoUI1), we can invert 7y and get U3 U € Ay (I3). Tterating this argument we conclude V' :=
Un---OhU U7t € Au(I,). Hence, U, --- Uy B=V U, ---Uy Bis in Ay(I,) if U, ---U B
is.

As proposed in [FRS92], we call two paths in K homotopic, if they end at the same region
I € K and result from each other by a finite number of operations of the following type:
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1. insertion of a region I, between I;_1 and I, &, if the resulting sequence is still a path
ending at I, and

2. omission of one of the regions I}, if the resulting sequence is still a path ending at I.
By an argument analogous to the above one it is easily seen that the property of (g, B) of being
localized in a path (Io,... ,I,) is stable under such operations and hence depends only on the
homotopy class of the path. We will denote the homotopy class of a path ending at I by I, and
the set of these classes by K. Further, the set of generalized field operators localized in I will
be denoted by

F).
We say that [ and J € K are causally disjoint, if they end at regions I and J which are causally

disjoint. Homotopy of paths in X can be equivalently characterized by homotopy of paths in
the set of spacelike directions,

H,:={peR®/p*=-1}, (1.21)
as follows. We fix a point r¢ in H; corresponding to Sy, i.e. ro € H; NSy — a(Sp), where a(Sp)
denotes the apex of So. Let v be a path in H; and (lo,...,I,) a path in K. We say that ~
corresponds to (Io,...,1I,) if it starts from ro and has the decomposition v = 7, * - -+ x 7,
where 7 is a path in I — a(li). (In particular, v ends in I, — a(l,).) We will also say that
the homotopy class 7 € E of y corresponds to the homotopy class I € K of (Io, ... ,I,). One
easily verifies:

COROLLARY 1.1. Let~y and %4 be paths in H; corresponding to two paths in K which end at
the same region I € K. Then the paths in K are homotopic if and only if 4 x v~ is homotopic
to a path in I — a(I).

The equivalence class of paths 4 satisfying this last condition with rwespect to v will be
denoted by [v]7. In view of the Corollary, we can identify I with the tupel (I,[y]r). We write

(Z, ) € (4, [31) (1.22)
if I ¢ Jand [¥]r = [¥]r.

Poincaré Covariance of the Field Bundle. Consider the representation U of ]31 inH
defined by

U(9)(e, %) := (0, Ue(9)¥) (1.23)
and the action a in the field bundle F given by
az(0,B) = (0,Y,(3) 03(B)) | (1.24)
where Y,(g) is the cocycle defined in equation (1.5). U implements « in the sense that
U@) (e,B)-U@G )¢ = (ag(e,B)) -9 forallyp €. (1.25)

Further, 151 has a natural action §: I — §-1I on K : Let I be the class of (Io,---,1I,). We

choose a decomposition g = gy - - - g1 with representants ay € gr and regions Jj, € K such that
fork=1,...,N

ak(t)gk,l .- -g1-So Ugk—1-- -g1-So C Jg for all t € [0, 1] . (1.26)
Then § - I is the class of the path
(S0, J1,91-S0, J2,9291-So0, - - -, IN,9°S0,9-I1,--. ,9-In) . (1.27)

It can easily be shown to be independent of the representants~of I and g. In terms of tpe
definition after the last corollary, this action reads as follows. Let I = (I,[Y]r), and § = [a] € PJTr

with a(l) =g € Pl. Then
§-T:=(g9-Lwler), with v4(t) := a(t) - (1) . (1.28)
LeEMMA 1.2. The field bundle is covariant under the action o of 15_’1: :

a@: FA) - F@G-1I). (1.29)
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PrROOF. Let (o,U*A) € F(I), ie. A is in Ay(I) and U = U,---Ui, where
(Uy,...,Uy,) is a chain of charge transporters for ¢ along (ly,...,I,). By equation (1.6)

Y, (G -+ §1) Yo(Ge—1 -+~ §1) is an intertwiner from af .., oeoal, . 1 toay

which is in A, (J}) due to condition (1.26). Therefore

(]l 7Yg*(g1) ’ 1 (AR Yg*(g) YQ(gN—l o gl) ’ ag(U1)7 s 7048(Un))
is a chain of charge transporters for ¢ along the path (1.27), and hence

a(9) (0, U"A) = (0, Yy (§) g (U™ 4))
= (0,Y,(91)" Yo(G291) -+ Yo(gn—1--§1)" Yo(9) ag(Uy) -+ a5 (UY) 05 (A) )

is in F(g-I). O

9k glogo

0
Xgr-g1)=1

1.2. Statistics of Plektonic ‘Fields’

We want to calculate the commutation relations of spacelike seperated fields. Let I; € K
and I, € K be causally disjoint, i.e. ending at causally disjoint regions I, I, € K. Let further
B = (or,Bx) € F(I),k = 1,2. Then there are unitary intertwiners U; and U, such that
for k¥ = 1,2 the endomorphism gy := AdUj, o g is localized in I and Dy := UpBr € Au(Ik)-
Writing! Dy = (9%, Dx) and using identity (1.19), we calculate

B:B, = UiD; -U;D; = (U; x U7)-D;D; = (U3 x Uj) - D;D;4
= (U; X UI)(Ul X Uz) - B2B1 . (130)
In the third equation we have exploited the causal disjointness of the respective localization

regions I, of g and Dy, to get g201 = 6102, and further D1 Dy = DyD;. Comparing the first
and last expression in equation (1.30) we conclude that the unitary intertwiner

(01,0011, 1) == (U3 x U)o (Uy x Uy) € Int(o201]0102) (1.31)

from g7 02 to 0201 is? , as indicated, independent of the choice of U; and U, and of the paths
representing I, and I,. To examine its dependence on I, and .[2, we attach to each of them one
further region J; € K and Js, respectively, such that J, is causally disjoint from J; and such
that for both £ = 1 and 2 either Jy C I} or Ji D I. We denote the resulting homotopy classes
of paths by Ji and Js, respectively. Then for k = 1 and 2, Uk has to be replaced by UkUk,
where Uy, € Au(Ix U Ji) is a unitary intertwiner such that AdUk o ¢ is localized in Jy, and we
get

e(o1,00; J1,12) = (ULU3 x UXU*) o (U, Uy x U,Uy)
= (U3 xUDo (U5 x U)o (U xUy)o (Uy x Uy)
= e(o, 030, 1) . (1.32)
In the last equa:cion we havg remeAmbered the fact that I; U Jp is causa11y~dis~joint frgm !2 UJs to
conclude that U; x Uy = Uy x Uy .Finite iterations of the operation (I, z) — (J1, J2) define
an equivalence relation ~ on the set of pairs Ky :={(Ii,1), I C I} }. By equation (1.32), the

intertwiner € depends on the pair (Il,Ig) only via its equivalence class, which we denote by
NI, I,):

(o1, 001, 1) =t e(o1, 00; N(I1, 1)) . (1.33)

As anticipated by the notation, the set of classes Ko /~ is isomorphic to Z, since the equivalence
class of a pair (I, I5) is characterized by its relative winding number, which is defined as follows.

DEFINITION 1.3. Let I, = (I, [v]r.), k = 1,2.

i) We write I; < I if I; C I} and f'n do < f,m df, where 6 is the angle function in a fixed
Lorentz frame. Clearly, the last relation is independent of the frame and of the representants
Ve € ['yk]lk

lywith the announced abuse of notation — note that Dy, is not in F(I}).
?Note that the set of equivalence classes of localized morphisms, which has the structure of a semigroup by
equation (0.11), is an Abelian semigroup due to the existence of such intertwiners.
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ii) Let Iy C I. The relative winding number of I} w.rt. I, in symbols N(fl,fg), is the
unique integer N € Z satisfying

(0,2aN)-I, < I, < (0,2n(N 4+1))- I, . (1.34)

Now we define the statistics operator (o1, 02) by equation (1.31) for some pair (I, ) € Ko
with winding number N(I;,15) =0, i.e.

e(01,02) = €(01,02;0) . (1.35)

The case of arbitrary winding number N can be reduced to the case N = 0 by the use of global
self-intertwiners. A global self-intertwiner of o € A(Sp) is an intertwiner V, from ¢ to itself
satisfying

mo(V,) =1 and (o,V,B) € F((0,2x) - I) if (¢, B) € F(I). (1.36)

V, is uniquely characterized by these conditions if p is irreducible. It can be constructed as
follows. Let V € B(Ho) be a unitary such that the representation AdV o mg o ¢ is localized
in some cone S; C S), and let J;,J_ € K be two regions containing So U Sy such that
(So,J—,S51) < (So,J4+,S1) in the sense of Definition 1.3. Then V, := i/+(V*)i/- (V) satisfies
the requirements (1.36).

LEMMA 1.4. Let By = (ok, Bi) € F(Iy), k=1,2, where I}, € K are causally disjoint, and
let N := N(I1,15). Then

B1B2 = E(Ql,QQ;N) B2B1 with (137)

(o, 05N) = (V¥ x1)e(o1,00) (1 x V). (1.38)

PROOF. Let Jp := (0,2aN) - Ir. Then VB, =: Dy is in € F(J), and N(I1, ) = 0.
Hence B1Dy = €(g1, 02) D2B1, and equation (1.37) follows from identity (1.19). O
This formula allows to calculate commutation relations of more than two generalized field op-
erators: It implies that, given n localized endomorphisms g = (g1,... , 0n), n mutually causally
disjoint paths I = (I1,...,I,) in K, and permutations m, 7' € S,, there is a unitary intertwiner

o1
product of n generalized field operators By, € F(I}) according to

€, q(n',m) from gr—1(1) -+ @n—1(n) tO O(x'm)=1(1) - * * O(n'm)~1(n) Changing the order of factors in a

B(ﬂ—lﬂ-)—l(n) st B(ﬂ-lﬂ—)—l(l) = ég"i'(’]rl, ’/T) Bﬂ-—l(n) R Bﬂ-—l(l) . (1-39)
Associativity of the group product in S,, then implies that the family of operators &€ = & of
must obey é(n'"'n',7) = é(n",7'w) 0o &(x’, ) . Also, é(n",#) and &(n’,7) can be composed only
if # = w'w. In other words, the map (n',7) — &(n',7) establishes a homomorphism from
the permutation groupoid §n, defined below, into the groupoid of unitary intertwiners. The

homomorphism & o Can best be described by decomposing it into two parts: The localization

regions I = (Iy,... ,I,) determine a homomorphism 5 from S, into the groupoid of coloured
cylinder braids B, (C) (see Definition 1.5), and the endomorphisms g = (g1, ... ,0,) determine
a homomorphism e, from B,(C) into Int(g1,... ,0n), and

Epi=€e°W¥i- (1.40)

The groupoids B,(C) and S, are defined as follows.

DEFINITION 1.5. i) The groupoid of coloured cylinder braids EH(C) consists of cylinder
braids whose strands carry colours {aq, ... ,a,}. Two coloured braids can be composed only if
the colours of the strands to be connected coincide. More precisely, By, (C) is Bn(C) x S, as a
set. A product of two elements (b',7") and (b, 7) is declared only if 7' = v(b)w, where v is the

natural homomorphism B, (C) = S,, in which case it is defined by

', v(b)m)(b, ) := (b'b, ) . (1.41)
The permutation 7 of a coloured braid (b, 7) will be viewed as a map associating to each colour
ay the position (k) € {1,... ,n} of a strand carrying the colour ay. Le., the colour of the k**

strand is a,-1 (). Graphically, we represent (b, 7) like the braid b (as done on page 8 for b = ),
with the k** strand labelled by 7~ (k).
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ii) The permutation groupoid S, is defined analogously, with B,(C) replaced by S, :
(r', 7o) (m,0) = (x'w,0).

LEMMA AND DEFINITION 1.6. Let 01, .. ,0n € A(So). There is a groupoid homomorphism
g from Byn(C) into the groupoid of unitary intertwiners such that
€o(bym) € Int( 0 (bym)-1(1) * * " Q(u(bym)~1(n) | Cx=1(1) " @x=1(n) ) (1.42)
which is uniquely characterized by
1. gp(2,m) =1 Ot (1) Crm1 (m)

2. Eg(tkﬂr) = 19"_1(1)...9"_1(’0_1) X e(gﬂ'_l(k)JQﬂ_l(k+l)) X 191\-—1(k+2)"'9ﬂ-—1(n)
3. EQ(Cl,’/T) =V

It also satisfies

x 1

Qr—1(1) Orn—1(2)"""Cr—1(n) *

gplck,m) =1 r11) a1y X Verrg X Vermtgosn)Caigm) - (1.43)

Here ¢ := tp_1---tic1ty -+ - tg_1. Note that from the definition follows immediately the
identity

€o(b,m) = €p.n-1(b, 1) . (1.44)

PROOF. € = g, can be extended from the generators to arbitrary braids by the requirement
to be a homomorphism iff the relations of the generators are respected:

e(tr, nme(ti,m) = e(ti, em)e(ts,m) if [i—k|>2, (1.45)

e(tr, Thp1TeT)E (tkp1, Tkm)E(tk, ™) =  €(thp1, TkThtr17)E bk Thp1T)E (g1, ) (1.46)
e(er,m)e(tr,nm)e(cr, nm)e(t, ) = e(t1,nm)e(c,nm)e(ts,m)e(cr,m) . (1.47)
Equation (1.45) is just a special case of the intertwiner identity (T; x1)o (1 x T3) = T; x T»

= (1 xT3)o (T x1). Equation (1.46) follows from associativity of the product B;B2Bg, if we
choose B localized in fj eKwithly << < (0,27) - I3, and apply Lemma 1.4 repeatedly.
To verify equation (1.47), let Jy, Jo € K with N(Jy,J>) = —1, and let D; = (§;, D;) € F(J;), i =
1,2. Then N(Jo,J;) = 0 and Lemma 1.4 implies

D>D; = &(02,01) D1Ds, since N(J», J1) =0,
= €(02,01) (Vg X 14,) €(01,82) (15, X Vé;l) DsD;, since N(Ji, o) = —1.
Hence
€(02,01) (Vg, X 14,) €(01,02) = (15, X V,), (1.48)

which we exploit in the first and last equations of the sequence

(Vo X 15,) €(02,01) (Vg, X 15,) €(01,02)

= (Vo X 1g,) (Lo, X V) = (14 X Vi) (Viy X 15,)

=€(82,01) (Vg x 15,) €(21,02) (Vi x15,)-

Putting 9; = @x—1(k—2+i), We see that this implies equation (1.47). Successive application of

Equation (1.48) leads to Equation (1.43). O

LEMMA AND DEFINITION 1.7. Let I = (fl,.;. ,fn)~where I, € K are mutually causally
disjoint. There is a groupoid homomorphism @i : S, — B, (C) uniquely characterized by

oi(Th, ) = (c;NtkcchH,w) , where N = N(fﬂ—l(k),f,,—l(k+1)) . (1.49)

Here we used the notation cp = ty_1---ticiti---tr—1. In the geometric representation® of

B,(C), namely as the fundamental group of

(B2 \ {0})*™\ An) / Sn

with base point ((1,0),... ,(n,O)) - Sy, the image of (p,m) under g5 is given as follows. Let
7 € H; correspond to I for k = 1,... ,n. Fizing a timelike unit vector e, we project the

3see Appendix A.1 for more details.
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spacelike directions Rt 1y, onto the spacelike hyperplane e* and identify them with points on the
unit circle S* C R2. Let vy be paths in S from ry to vy representing ¥y, after this identification.
Then ¢i(p,m) = (b,m), where b is the homotopy class of the Sy-orbit of the path (Bi,...,53,)
in (R%\ {0})*™\ A,, which is defined by

Bi = (p(z)a’)/;—ll(,)) * (7’ Hp(i)ﬂrﬂ'_l(i)) * (7:5777—1(1')) . (150)
Here we have identified R2 \ {0} with RY x St such that (z,0) is identified with (|z|,r¢).

Note, that ¢;(p,7) can be written in the form

Qoi(pa 7() = (Qpiﬂ——l(p)aw) ) (151)

where ¢j__:(p) is the braid b which is geometrically described in the Definition. Further, this
braid is mapped to p under the natural homomorphism v from B,, onto S,.

PROOF. The geometric description of ¢j(m,0) by equation (1.50) together with equa-
tion (1.51) clearly yields a groupoid homomorphism. So we only have to check that it coincides
with equation (1.49) on the generators (i, 7), k = 1,... ,n. After relabelling, it is sufficient to
take 7 = 1. For N(Ij, It1+1) = 0, both equations (1.50) and (1.49) lead to @5 (7%, 1) = (tx,1). If
NI, Try1) = N #0, let f,’c“ :=(0,27N) - I.41. Then Vi1 = Ve41 - ¢, where ¢ denotes the
generator of m; (S, rg), which encircles S once in clockwise direction. Let further (8, ... ,3n)
be the strands defining (71, 1) according to equation (1.50), and (B1,... , B 1,.-- ,Bn) those
defining ¢ 7, N 1) (Tk,1). They are related by

Brrr = (ke ™) % By * (k+1,cN),

which implies

o1(r,1) = (&) @i gy i (T 1) (R4, 1) (1.52)

But ‘p(fl,...,f,;+1,...,fn)(7k7 1) = (t, 1), since N(INk,IN,’cH) = 0. Hence, equation (1.52) implies the
claimed equation (1.49). O

Now we can describe the commutation relations of a multiple product of generalized fields in
terms of the intertwiner g, o ¢y :

THEOREM 1.8. Let for k= 1,... ,n, By, = (o, Bx) € F(I}), where I, € K are mutually

causally disjoint. Let 0 == (p1,...,0n) and I := (Iy,...,I,). Then for all ©',m € S, the
following commutation relations hold:

B(,,r:,,r)—1(n) .- -B(,,r/ﬂ.)—1(1) = (EQ o (p'I-) (71",7'() Bﬂ—l(n) .- -B,r—1(1) . (1.53)

PRrOOF. As emphasized after equation (1.39), a family e(7’, 7) of intertwiners in terms of
which the commutation relations (1.53) are satisfied, must be a groupoid homomorphism. Hence
it suffices to check equation (1.53) on the generators (7', 7) = (7, 7) for k =1,... ,n — 1. For
these, the claim follows from Lemma 1.4, which now reads

B1 B2 = e,_,(cl_Ntlc{V, 1) B2 B1 ,N = N(il,jQ) .
O

Finally. we introduce the a concept which is important in the classification of the representations
of the braid group arising in local quantum physics.

DEFINITION 1.9. Let o € A(Sp). A left inverse of g is positive linear endomorphism ¢, of
the universal algebra, which leaves A, (Sy) invariant and satisfies

$o(1)=1 and
$o(0(A)Bo(C)) = A¢,(B)C  for all A,B,C € A, . (1.54)



22 1. PLEKTONS IN ALGEBRAIC QFT

Note that in particular ¢, o p = id, justifying the name. If p is an irreducible massive single
particle representation, then it has a unique left inverse, see e.g. [Haa92]. We shall have occasion
to exploit the following observation. If T' is a local self-intertwiner of g, then equation (1.54)
and the intertwiner propery imply that ¢,(T") commutes with all elements in A,, and is hence
a multiple of unity.

One gets a numerical invariant of an irreducible sector [g] describing its statistics, the
statistics parameter A, by applying ¢, to the statistics operator €, := £(p, 0) :

)\[9]1 = ¢g(59) .

Its phase wy,] in the polar decomposition is called the statistics phase. If g is in particular an
automorphism, the statistics operator ¢, must be a multiple of unity because it commutes with
0?(Au), and the statistics phase is then the corresponding factor. We will only consider sectors
with finite statistics, i.e. with Ajy # 0.

1.3. Single Particle Space of Plektons

We are interested in representations ¢ of A, which describe massive one particle states,
and in addition allow for the construction of multiparticle states via Haag-Ruelle scattering
theory. Mathematically, this may be accomplished by requiring ¢ to be a massive single particle
representation, i.e. it is irreducible and covariant, with the corresponding energy momentum
spectrum containing an isolated mass shell H,, as its lower boundary, see equation (0.9). The
subspace of Hg corresponding to the H,, part of the spectrum will be denoted by Hg,l) and
considered as the space of single particle state vectors with mass m in the sector g :

HY = {y € Ho|spp, ¢ C Hp } ={p € Ho | Pp =m’ % } . (1.55)

Following Wigner’s analysis of irreducible ray representations of the Poincaré group, elements
of HE,I) can be identified with functions on H,, with values in a “little Hilbert space” V', square
integrable with respect to the Lorentz invariant measure dy on H,,,. In view of the representation
U Q|HS_,1), the role of H,, is that it is an orbit of ﬂl in momentum space R®, and the role of V is
that it carries a representation D of the “little group”, i.e. the subgroup of f/i which leaves a
fixed point pg € H,, invariant. Choosing the point py = (m,0,0), the little group is easily seen
to coincide with the universal covering group of the rotation subgroup, i.e. with R. Wigner’s
analysis asserts that there is a unitary

Wy : HY = L2 (Hp, dp; V) (1.56)
which intertwines Ug|’HE,1) with the following representation U of 151 in L2(Hp, 3 V) :

(U,(z,5) %) (p) = e™P D(QG,p)) ¥(g ' -p) forallje Pl . (1.57)

Here, Q(g, p) is the element of the little group called Wigner rotation, see equation (A.18) in the
Appendix. We assume D to be a finite sum of irreducible, hence one dimensional, representations
of the little group R, each characterized by a real parameter s;:

g
V=C', Dw) =EPe1. (1.58)
=1

UQ|HE,1) then decomposes into g irreducible representations of f’i, each corresponding to one
particle type carrying the charge quantum numbers of p. Physically, m is interpreted as the
mass of the particles, and s;,...,s, as their spins. Note that the spins may differ only by
integers, since U, (27) must be a multiple exp 2mis[g] of unity due to the irreducibility of g, see
equation (0.8):

si=s8lpfmod1l, I=1,...,9.
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1.4. Charge Conjugation and P;CT -Theorem

A representation 7y g of the observable algebra is said to be conjugate to 7o, if the product
Te0p contains the vacuum representation. It is unique up to equivalence. If p describes one
particle states, then g is meant to describe the corresponding antiparticles.* Physically, one
can think of antiparticle states arising by creating a chargeless particle-antiparticle state from
the vacuum, and then shifting the particle “behind the moon”. Mathematically, this idea can
be made rigorous as a constructive definition for g, using chains of charge transporters for p.
Here, we will use instead a different representative g of the conjugate sector which is defined
via modular theory.

“Modular” Charge Conjugation. Let W, be the wedge in M3 defined by
Wy = {z, |2°| < z'}, (1.59)
and j be the reflexion at the vertex line of Wi, i.e. the proper Poincaré transformation given
by
j (z° 0 —zt 2?). (1.60)
Let further So(W1) be the Tomita operator of the von Neumann algebra A(W1), i.e. the closed
antilinear operator characterized by

So(W1) AQ = A*Q for all A € A(W1). (1.61)

551717'7:2) = (—ZL’

It has a unique polar decomposition So(W1) = Jy Aé, where Jy is an antilinear isometry
satisfying JZ = 1 and Ag is a positive operator (see, e.g. [BR87]). Jp is called the modular
conjugation and Ag the modular operator of A(W1), and the pair is called the modular objects
of A(W1). As an input for the further analysis we assume that the modular conjugation has a
direct geometric significance, which has been shown by Bisognano and Wichmann to hold for
Wightmann fields [BW75]:

AssuMPTION 1 (Modular Covariance of the Observables). The vacuum representation Uy
of PI extends to a representation of Py by the definition
Uo(4) == o , (1.62)
such that AdUy(j) : A) — A(j - I).
Then also the representation o of PJTr by automorphisms of A, extends to a representation
of P, satisfying in particular
AdUp(j)omg = mgo ag and (1.63)
ol A(I) = Au(G ). (1.64)
From now on we assume that Sy is invariant under j, which is compatible with our earlier

requirement that Sp be invariant under time reflection. In fact, we will later choose Sy to be
centered along the positive xs-axis.

DEFINITION AND LEMMA 1.10. Let ¢ € A(Sp) with finite statistics, i.e. A,) # 0. Then the
endomorphism

g:=0ajogoal) (1.65)
is also localized in Sy, and it is a conjugate of p, i.e. mgpe D mo. Further, it is irreducible if p is.
¢ will be called the modular conjugate of g. A left inverse of g is given by
¢z =ajog,00f,
where ¢, is a left inverse of p.
PRrOOF. This is shown in the article [GL92] of D. Guido and R. Longo. O
This choice of a conjugate representation has the advantage that one can easily derive the

well-known results concerning the particle-antiparticle symmetry, and enjoys the property that
0 =9 and go =0d.

4That it actually does, is the content of Proposition 1.11.
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Particle-Antiparticle Symmetry. We recall that 15+ can be obtained from Pi by ad-
joining an element j satisfying the relations
77=1 and j (z,(v,w)) j = (jz,(7,—w)) - (1.66)
Under the homomorphism A : P, — P, it projects to the proper Poincaré transformation
A(7) =: j of M? from equation (1.60). The representation of PI_ defined by

Ug(3) = Uo(j) U, (333) Uo(5) (1.67)
implements ao(ﬁl) in the representation mgg, i.e. satisfies
AdU4(§) o mo8 =m0 © ag . (1.68)

Further, the representation Uj is fixed by this property if g is irreducible. To see this, let U
be another representation satisfying (1.68). Then § — U(§)~1U;(g) is a representation of Pi

in m90(Ay)" = C1, which must be trivial. Also, relation (1.67) carries over to products ;oo
of endomorphisms, if U,, ,, is related to U,, and U,, by formula (1.7). This is shown by first
deriving the formula Y3(§) = ag(Yg (797)) from equation (1.67).

PROPOSITION 1.11 (Particle-Antiparticle Symmetry). i) If oo is an irreducible represen-
tation of Ay, then the spin phases and the statistics parameters of of [g] and [g] coincide:

s[o] = sl mod 1 and Az = A -

In addition, the statistics operators are related by e; = o (g,) ™"

ii) Let o be a massive single particle representation of A, with finite degeneracies, see
equation (1.58). Then the conjugate representation g contains particles with the same mass,
spins and degeneracies:

Uglyy = Ve lyyoo - (1.69)

REMARK. The last statement (1.69) still holds if P} has several eigenvalues and Hg,l) is
defined as the span of the eigenvectors of Pg.

PRrOOF. i) The first statement follows immediately from equation (1.67) and antilinearity
of Up(5). To show the statement about €, let V' be a charge transporter for g from S to some
cone S C S} along a path I with N(Sp,I) = 0. Then ag(V) transports g from Sy to 5.5 along
the path jT which has N (S, jI) = —1. Hence, according to equation (1.31), we have

€,(0) = V*o(V) and
ea(=1) = aj(V)* a(e3(V)) = o} (V= o(V))
and the claim follows from e;(—1) = ;.
ii) Equation (1.67) implies, remembering that Uy(j) is antilinear, that for all f € S(M?)
Uo(j) f(Pg) = f(P,) Uo(j) , where fI(p):= f(=j-p). (1.70)
This in turn implies that
spp, ¥ = —jspp, Uo(j)y forall ¢ € Hy . (1.71)

Recalling that the energy momentum spectrum is Lorentz invariant, this shows that spec P; =
spec P, and in particular that p is a massive single particle representation with the same mass

m as g, and that Uy(j) is an antiunitary map from HE,I) onto Hg) and vice versa. We define an
antilinear operator .J on 7—[21) = L?(H,,du; C9) by

(J)i(p) := i(=jp) - (1.72)
Jis a conjugation which extends U, o to a representation of 15+ :
(70u(2,9) 7)), (p) = e3P =i 9Gemin) gy (—)g ™ (—j) p)
= (0D P i AT 4y (o) " p)
= (0@ 9)) ¥), @) - (1.73)
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Here we have used formula (A.20) from the appendix: Q(§, —jp) = —Q(j§j,p). From equa-

tions (1.67) and (1.73) follows that the unitary operator Up(j) Wg_lfWg from ’Hgl) onto ’Hg)

intertwines Uj ‘7—[(1) with UQ|H(1), as claimed. O
e [

From part ii) of the Proposition we know that we can choose the intertwiners W, and W5 from
equation (1.56) such that they intertwine the restrictions of U, and Uj to the respective single
particle spaces with one and the same representation U, = U; on L?(H,,,du; C?).

LEMMA 1.12. Let W, and W; be chosen as above. Then
Wg Uo(j) |H%1) =U,(5) W, , where (1.74)

(T,(5) %) (0) = co¥(—j -p)  for all ¢ € L*(Hp,dp; C7) . (1.75)

Here ¢, is a matriz in U(g). The matrices c, and c; are transposed to each other, c; = cl.

PRrROOF. We have chosen W, and W; such that the operator W, "W, from ?—[E,l) to onto ’Hg)
intertwines U§|"H£—,1) with UQ|7-[£;1), just as the operator Uy(j) Wg_lj W,, as we have seen in the
last proof. Recall that J has been defined in equation (1.72). This implies that W3Us (3)WQ’ 1Jj
is in U,(P!)’, which coincides with 1 ® End(C?). Being unitary, it must be an element ¢, in
U(g). This shows equation (1.75). Let ¢z be defined analogously, with ¢ and g interchanged in
the above argumentation. Then we conclude that

1 =W,Uo(G)? W, = c,d cgd = c,57,
which shows that c; = c}. O

P, CT -Operator. Uy(j) induces an operator U(5) in # which we may interpret as a PCT
operator. Let

U@) (e,4) == (8,Uo(j)y) for all (0,9)) € H and (1.76)
a; (0, B) :== (0, a?(B)) for all (o, B) € F . (1.77)
Let further j act in K as follows. If T be the homotopy class of a path (I = So,...,In) in K,

then we define j - I as the homotopy class of the path (j-Io,... ,j - I,). By this definition, the
action of ]31 on K declared in equation (1.28) is extended to an action of Py.

PROPOSITION 1.13 (P CT -Theorem). U(j) and a; extend the actions U and o of 15_|T_ on
H and the field bundle F, respectively® to actions of 15+ in the sense that they satisfy

UGOU@UG)(e,9) = U(jgi) e, v) and (1.78)
azaga; (0, B) = az;5(0, B) - (1.79)
U(j) implements @; in the sense that
UG)B-U@G) % =a;(B) . (1.80)
In addition, o; acts geometrically on the field bundle F :
a; : F(I) - F(j-1). (1.81)

ProoF. Equations (1.78) and (1.79) follow immediately from equation (1.67). To prove
equation (1.81), let I be as above and (o, B) € F(I). We have to exhibit a sequence of inter-
twiners Ux € Au(j - Ix U j - Itxp1),k = 0,...,m — 1, such that Ad(Ux---U1) 0op € A(j - I.)
and Uy, - - Uy @9(B) € Au(j - Im). Let Uy be a choice of intertwiners by virtue of which (o, B)
is localized in the path (Io,...,I,), i.e. in particular g := Ad(Uy---Uy) 0 9 € A(I}). Now
let Uy, := o) (Ux). This intertwiner does the job due to equation (1.64), and to the fact that
adogroald € A(j- Ii) since g € A(I). O

To summarize, U(j) can be interpreted as a PyCT operator: It is an antilinear representor of
the geometrical transformation j,° mapping H, onto the conjugate ‘sector’ Hj, effecting the

5see equation (1.23) and (1.24)
6The subscript ‘1’ indicates, following Bernd Kuckert [Kuc95], that the spatial reflection is performed only
at the l-axis.
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particle-antiparticle symmetry stated in Proposition 1.11, and implementing the geometrical
action aj : F (I) = F(j-I) . In chapter 3 we will also show that it has the familiar commutation
relation with the S-matrix: U(j) S = S~ U(j) . Finally in the case of anyons, where one has a
genuine field algebra, replacing the field bundle, U(j) is essentially the modular conjugation of
the field algebra associated to Wi, see Proposition 4.16.



