CHAPTER 3
Poincaré Covariance of the Scattering States

In this chapter we show that the representation U of 151 is fixed on the space of scattering
states H* exactly to the degree the intertwiner spaces Fén) are known (which in turn are
fixed by the statistics operators and the fusion rules) and that the P,CT operator U () is fixed
up to the S-matrix, and we display the explicit representation of P, in # into which they
are translated by the Mgller operators. Again we will discuss the outgoing and incoming cases
simultaneously, notationally distinguished by the signs 4+ and —. Thus, all equations of the form
z(+) = y(2), or z(£) = y(F), are meant as two equations, condensed into one. The symbol
V will again be used to denote a Cartesian product of mutually disjoint compact subsets Vj, of
the unit mass shell H;

3.1. Ray Representation of the Poincaré Group

LEMMA 3.1. Let g and o be localized covariant endomorphisms of A, with finite statistics.
Then every intertwiner T € Int(c|g) from o to o also intertwines the respective representations
of the universal covering of the Poincaré group in the sense that

U (§) 70(T) = mo(T) Uy(§)  for all § € P . (3.1)

PrOOF. We recall the proof from [DHR74, Lemma2.2]. In a first step, let o = id. The linear
space Int(mg o o|mg) of intertwiners from 7y to 7y o o carries the by now familiar scalar product
(S,T)1 := S*T € (mo|mg) = CI . Since o is assumed to have finite statistics, it contains only
finitely many irreducible subrepresentations [DHR71] and hence the above Hilbert space is finite
dimensional. Now consider for § € 151 the operator

Uq(§)mo(T)Uo(g9) ™" - (3.2)

It is easily seen to be also an intertwiner from 7y to mgoo, which in addition has the same norm as
mo(T'). Hence equation (3.2) defines a unitary representation of 151 in Int(mgoo|mp). Since thisis a
finite dimensional Hilbert space, the representation must be trivial. This implies equation (3.1)
for the case p = id. For the general case, we use the above result and the implementation
properties (1.3) of U, and U,, to see that 7o(T") U,(§) coincides with U, (§) mo(T") on vectors of
the form (mg0)(A)V 2, where V' € Int(mg 0 g|mg) and A € A,. Since Hq is spanned by vectors of
this form, this proves equation (3.1). O

The following Lemma has been stated as equation (3.7) in [FGR96].
LEMMA 3.2. Let £ € X, and let 1, € HS) (Vi.). Then for all j € P}
U@) Tt x -+ X ¢1(0,0, &, %) =T (Ua, (§)9n) X -+ X Uay (§I¥1) (0,,5°§, %) . (3.3)

ProOF. It suffices to consider (ax,9x) of the special form By (fy,t) €2, with By, € F(I)
and fi as in equation (2.7), and with [I] = £. Then the left hand side of equation (3.3) reads,
due to the above Lemma and the remark after equation (1.23),

T lim a(§)(Ba(fa,t) -+-a(@) (Bi(f1,1) @ (34)
Now a short calculation shows that
a(3)(B(f,1)) = ((§)B)(g«f,t) where (g.f)(z) := f(g " -x) . (3.5)

Since a(§)B, € F(§-I;) and further a(§)(Bi(fi,t)Q = (ar, Ua, (§)r) € HE (g - Vi),
equation (2.8) asserts that the expression (3.4) coincides with the right hand side of equa-
tion (3.3). O
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42 3. POINCARE COVARIANCE OF THE SCATTERING STATES

There is a canonical representation of 151 in H:

DEFINITION 3.3. Let U be the representation of Pi on H given by
(0@ ¥) @ =expi} {maz: @+ 50,205 Mmar@)} Yoa@ @) (36)
< k=1

for all ¢ € Lg("ﬁl; F§"))

§-q denotes the canonical action of 151 in "fIl, as explained in the Appendix. Note that
the above definition coincides for n = 1 with the earlier definition (2.31).

} NPROPO~SITION 3.4. Both Mpller operators W+ and W~ intertwine the above representation
U (Pl) in H with the representation U (Pl) of equation (2.28) in HO ™. More precisely, for all
- pt

ge P, :

WHU(@G) (WH)* =T(G) forallge Pl and

. . (3.7)
W-U@) (W™)*=U(g) foralge Pl .
Consequently, the S-matriz S := (WT)* W~ commutes with U(PJ_):
U(g)S=SU(G) foralgeP. (3.8)

PROOF. We prove the equation simultaneously for W+ and W~ and suppress the respective
superscripts + and — again. Let ¢ = T, X - - - x 1 (0, 0, &, £), with (ay, ) € 7{&1,3 (Vk). Then

(WU(z,9)%) (@) = (W T (Ua, (z,§)tn) X -+ X (Ua, (2, 3)1) (0,0, §-&, %)) (5-@)
= (0111 (waﬁ)lﬁl Qs - Bs 0(1" (mag)iﬁn) (9-9) (U | T ea (‘ﬁg-V,g-&(g'EI)aﬂ'_l) |a77)

due to equation (3.3) and the definition (2.66) of the Mgller operators. Here we have written
Wa, Wi =: ¢, and used W,oUy(§) = Un(§)Wa, see equation (2.31). On the other hand,

(U, )W) (5-6) = expi Y {Mar® - @i + 80, 2T Mar 1)} (W)(@)
k=1

=exp1 Z {makx “qk + Sa, Q(§, maka)} (@Zl Rs *++ Qs &n) (q) (U| Tea (@V,E(a)aﬂ_l) |a7T)
k=1

= (Ual (mag)lﬁl Qs+ Qs [ja" (:c,g)&n) (gq) (0'| TEQ (@V’g((]),ﬂ'_l) |a7'r) .
Here we have used again (2.31). It remains to show
Ggv,5¢(G-@) = Pve(Q) - (3.9)

We choose a decomposition § = §,, --- g1 with paths aj in Ll representing g such that for
k=1,...,m

ap(t) ge—1---91°V N gg—1---91-V # 0 forall t €[0,1].
Then by equation (2.55),
Pg-v,5-¢(3:@) = bgvgm_1--9:v(GE Gm—1---91-&) - - bgvav(§1-&, &) Pv,e(@) - (3.10)

All of the b’s on the right hand side are of the form byynv (§-€,£), where in the homotopy class
of § there is a path « satisfying «([0,1])-V NV # 0. By continuity, they must be trivial. Hence
equation (3.9) holds and the proof is complete. O
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3.2. Representation of the P; CT-Transformation

From now on we assume our collection A of pairwise inequivalent representations' chosen
such that for each o € A, the modular conjugate representation & is also contained in A. If in
particular o is self-conjugate, o = &, we thus demand that it in fact coincides with its modular
conjugate. As we know from Proposition 1.11, the conjugate of each of our single particle
representations g, € AD 2 g also a single particle representation . Hence our assumption
implies that A™) is stable under modular conjugation: It contains together with each g, also
the modular conjugate 9., which we denote by gs, thus defining a map a — & of the labels
satisfying a = a.

If T is an Intertwiner from p to o, then «
denote by

0

;(T) is an intertwiner from g to ¢ which we will

a3 (0/Tlo) = (6la2(T)le) - (3.11)

As a map on H = A(Sy) x Ho this intertwiner coincides with U(j) o T o U(j), where U(5)
has been defined in equation (1.76). Now let o € A(Sp) be irreducible and let V, be its global
self-intertwiner3. Then the global self-intertwiner of g is given by

Vp =a3(Vy) . (3.12)

To see this, let (g, B) € F(I). Then (o, a3(B)) = o; (g, B) is in F(j - I) by equation (1.81),
and equation (1.36) implies that (o, V" aJ(B)) is in F((0, —2n) - j - I). Hence, again by equa-
tion (1.81), (8,a3(Vy) B) = a5 (0,V,; a%(B)) is in F(j - (0,—2m) - j - I), which in view of the
group relation (1.66) coincides with F((0,27) - I'). This proves the claim.

REMARK. The action of j on K, defined after equation (1.81), carries over to equivalence
classes of tupels from Definition 2.1, and the resulting action maps Xy, onto X", and vice
versa. This can be seen by a discussion similar to that around equation (2.18): Let £ be the
equivalence class of (fl, .. ,fn), and V=V; x --- x V,,. I + tV}, are mutually spacelike if and
only if j - I — t(—j - Vi) are. Hence £ € X7 if and only if j - £ € X_; .

LEMMA 3.5. U(j) maps H" onto H'™ and vice versa. Explicitely, let £ € X3 and 9, €
7-[511,3 (Vi). Then j - € is in X",y and U(j) 4, is in Hgk)(—j - Vi), and

UG Tthn % - x 1 (0, 0,€, %) = oG (T) (Uo(§)9bn) % - x Uo(i)¥n) (3,@,5-€F) . (3.13)

PROOF. We proceed in analogy with the proof of Lemma 3.2: Let (ak,¥r) = Br(fr,t) Q,
with By € F(I}) and fi as in equation (2.7), and with [I] = £. Then the left hand side of

equation (3.13) reads, exploiting U(j) TB = a;(T) a;(B) U(j), see equation (1.80),

o;(T) Tim _o; (Bn(fn,t)) o (Bl(fl,t)) Q. (3.14)
A short calculation shows that
;(B(f,1)) = (;B)(f7,~t) where  (f7)(p) := f(—j-p) - (3.15)

Now a;By is in F(j-I;) by equation (1.81) and a; (B (fk,t))$2 coincides with (ax, Uo(j)x),

which is contained in H,(ilk) (=7 - Vi) due to equation (1.70). Hence, according to the discussion
around equation (2.8), the expression (3.14) coincides with the right hand side of equation (3.13).
O

Now we define an implementation U (7) of j on the reference Hilbert space #, and show in
Propostion 3.7 how the Mgller operators relate U(j) and U(j). First we define a conjugation C
on the Hilbert space of intertwiners F' = @a’n Fé") by additive extension of

C: F")-oFE"
(@|T|a) = cay - Ca, (6|a2(T)|d) . (3.16)
Lfor the definition of the set A, see page 33

2for the definition of the set A(1), see equation (2.24)
3see equation (1.36).
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Here c,, are the complex numbers of unit modulus from equation (1.75), and & denotes
(@1,...,ay), if @ = (a1,...,a,). Note that C is indeed antilinear, isometric and satis-
fies C2 = 1. Then we define a conjugation operator on the reference Hilbert space H =
Don L2("H,, F{™) by additive extension of

UG) :  L:("Hy,F™) - L2("H,,F{™)
UG ) (@) =C-9p(—j-q) . (3.17)

The action of j in "Hy by § — (—7)-q is explained in Appendix A.1. Note that U(j)+ is again
equivariant due to the relation

(=3)-@b)=(-j-a)(-j-b). (3.18)

Also ﬁ(}) is easily seen to be a conjugation operator. Now we show that it indeed implements
VE

LEMMA 3.6. U(j) extends U(P_T_) to a representation of Py in .

PRrROOF. We have to show that
OHU@TG) )o@ = (U(G3)) $)o,al@) -

This follows from the single particle case equation (1.73) and the fact that (=1)-G-(=9)-q =
(797)-q- O

PROPOSITION 3.7. U(j) is related to U(j) by
W-UG) (WH*=U(G) and
UGy =00 510
WrU@G) W™ =U() .

Consequently, the P,CT-operator U(j) intertwines the S-matriz S = (W+)* W~ with its ad-
joint:

U(G)ys=s*U() . (3.20)
The proof of this proposition will make use of the following Lemma:

LEMMA 3.8. For all (b,7) € B,(C),

~

;5 (Egy-0n (b,7)) = €515, (3 (D), ) (3:21)
where ] is the automorphism of B, defined by
Jty) =t and ()=t (3.22)

Note that j leaves the subgroup N invariant, which has been defined in equation (2.42).
In terms of the action of j on ™H; defined in Appendix A.1, one easily sees that j(b) coincides
with —j - b.

PROOF. To see that j determines an automorphism of B,, we check that it respects the
group relations, and hence can be extended to B, as a homomorphism. It is bijective since
it satisfies j2 = id. Since also a; and €, := €,,...,, are homomorphisms, we have to prove
equation (3.21) only for b in the set of generators. Also, since €,(b, ) = €.,-1(b, 1), we may
take m = 1. We first calculate a;(e(0k, 0k+1)). Let U, Ury1 be intertwiners such that AdUjop; €
A(L) for I = k, k+1, where I; € K are paths with N (I, [r41) = 0. According to equation (1.31),
e(ok, or+1) = (Ujyy x Ug) o (Ug x Upqy). Hence

a;(e(0k; 0r+1)) = (@ (Uky1) x a;(Ug)) o (a(Uk) x aj(Ugt1))- (3.23)

The endomorphism Ad(a;(U;))og; equals ajoAdUog oa; and is therefore localized in j-I;. Thus
by definition (1.31), the right hand side of equation (3.23) equals to &(8k, Bk+1; J-k, JIp11)- Since
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N(.;fkajfk+l) = —N(Ix, I4+1)—1 = —1, this intertwiner equals (Vy,,, X14,) €(8k, 8k+1) (1 5,

ng +1) by virtue of equation (1.38). This result implies

a;j(eo(th,1)) = 15,.50_, X (€(0Ok, 0k+1) X L g0z
15020 X (Vo X 15,) €0k, 0r41) (1 5, X ng+1) 150i05n
=ep(ck, k) 0 €5(tk, 1) 0 ez,(c,:il, 1) = eé(cktkckﬂ, 1) = e@(t,;l, 1).
Similarly, equation (3.12) leads to a;(€o(ck, 1)) = @;j(Vy,) X 1450, = €a(c ', 1)). This com-
pletes the proof of the Lemma. O

PROOF OF PROPOSITION 3.7. We proceed in analogy with the proof of Lemma 3.4. Let
P =Tp XX (0,, &, +), with ¥, € 7-[&1,3 (Vk), and T € Int(o|ga; - - - 0a, )- Then by virtue
of equation (3.13) and the definition (2.66) of the Mgller operators, we get

(W-UG$)=j-@) = (W a3(T) Us(G)n) X -+ x (Uo(§)tn) (5,56, =) ) (—j-@)
= (WayUo (7)1 @5+~ ® Wa, Uo(j)¥n) (—i-a) (] 0§ (T) ea (P, yy 5. (=7-@), ") laxr)
= Cay " Can (,&1 Qs -+ s ¢" ( g €a (SZ:JVJE(_;(])H"-?I) |a77) (324)

Here we have written War =: ¥ and used the intertwining relation on the single particle
level W5zUp(j7) = Ua(j)W,, and the explicit form of U,(j), see equation (1.75). On the other
hand,

OGHWH)(—j-q) = C - WHep(g)
=C- ((Qﬁl ®s -+ s 'J}n)(Q) (U| Tea (¢¢/ §(~),7l”71) |a7r))
= Cay o (1 @5 -+ @ ) (@) (0] Q2(T) 02 (2 (5 ¢ (@), 7)) lair) (3.25)

By virtue of Lemma 3.8, to show that the expression (3.25) coincides with (3.24), it remains to
prove

A~

F(30.@) =07,y 567D (3.26)
We will in this proof omit the notation of ‘kere’. Let gb{r,,g (@) be given by equation (2.59),
with suitable v, V(,) and & € XJr . To compute ¢~ . V.5 g(_‘; -§), we choose 7/ (t) 1= —j -
~(t), (u) = —j -V, and 5(‘/) = _7 §uw) € ijv ) where &) := £ . Then again by
equation (2.59),

(’b:j-VJf(_j 14) =Pjex () b:f'(V’ffﬂV(m—z))(j'g(m—l)’j'g(m—m) o b:j-(Vu)ﬂV(o)) (7-€@)> 7€)

bZ vorve (1-€0),60 ) - (3.27)
3.2

We first observe that for all = € .S,
P3e(m) = J (e () (3.28)

To see this, let N = N (&, fkﬂ)L Then N (jk, j€rs1) = —N —1 due to the group relation (1.66)
and the fact that the action of j inverts the order relation of Definition 1.3. Hence,

+1 N-1 -N
90],5(tk) = ck: thCrpr = Ck tk Cr+1

= j (e Vteerhn) = J(pe(ts))
proving equation (3.28). Now we use this result to show that
b (56:,3:€) =3 (09(6,€)) - (3.30)

In a first step, let ¢ and ¢ differ only in the k th entry. Then so do j-¢ and j-¢, and according
to equation (2.15),

b (7-6:5-€') = Pien1 (M Dpzer (me) = 5 (B3 (6,€)) (3.31)

(3.29)
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due to equation (3.28). This relation carries over to the general case via equation (2.14), which
proves (3.30). Plugging equations (3.28) and (3.30) into equation (3.27), we see that in order
to prove equation (3.26), it remains to show that the last factor in equation (3.27) is trivial.
This is the case if we make a specific choice for & and Sp, compatible with the restriction on
{6" specified in the proof of Lemma 2.8 and the requirement j - Sy = Sp. Namely, we take Sy to

be centered around the positive z2-axis, and & to be the class of (I},... , 1), where
= km Tow
Ik = . ith =1 —=, =) .
0 (O,Ldk) So w1 W B ntl S ( 9 2) (3 32)

(The opening angle of Sy is assumed to be small enough such that these cones do not overlap.)
As chosen before, we have &, = 6-£;. Denoting —j-Vo N Vo =: V and exploiting the cocycle
condition (2.14), the last factor in equation (3.27) is now given by

by (5-65,0-65) = by (Enys€n 1)) - by (€1, &) (3.33)
where &) is the class of (j-13,...,j-I¥,6-1¥%, ... ,0-I7) for k= 0,... ,n. By equation (2.15),
b;f(é-(k)ag(k—l)) = (pE(k)(Wk_laﬂk)wﬁ(Nk—l)(Wh 1) fork=1,. ~ 7~n7 since f(k) and f(k—l) differ only
in the k th entry where £, ,, = 6-I§ is replaced by &}y = j-Ig - From our explicit formula (2.17)
we read off that this braid is trivial if N (&, &(x)) = N(Efy_1):&{xy) foralll=1,... ,k—1.1In
the case at hand, this means if N (GI%, #1t) = N(64%, 71t). As we have seen after equation (3.28),
N(j-1k,5-I%) = —]\[(Ig,]é) — 1, which equals —1 for [ = 1,... ,k — 1 with our choice of I. On
the other hand, §-I} = (0,w}) - So with wl, = 7 +wi, € (3,3n), and j-I} = (0,w}) - So with
wy = —wk € (=%, %). Hence their relative winding number is N(-Ik,j-15) = —1, too. This
completes the proof that the last factor in equation (3.27) is trivial, and hence of the first one
of equations (3.19) of the Proposition. The second equation works analogously, if one exploits
that equation (3.26) is symmetric in the sense that it implies

F(Pv.c@) =9,y 5670



