CHAPTER 4
Anyons

In this chapter we are concerned only with Abelian sectors, i.e. sectors which arise from
automorphisms of the observable algebra. The set of such sectors has the structure of an Abelian
group. Recall that there a composition law [g1] - [92] := [0102] which is Abelian due to the
statistics operators £(g1, g2; N) intertwining g; 92 with g201, and that an Abelian sector has an
inverse [y]~! = [y1].

We will consider a finitely generated subgroup I' of the set of sectors which satisfies a
certain condition, Assumption 2 below. Then there is a choice of representatives of the sectors
in I" which is closed under the group operations of individual composition and inversion, and
establishes a monomorphism from I' into A(Sp) by the assignment I' 5 x — v, € A(Sp) i.e.
satisfies 7, Vy' = Yy and y1 = id.

This circumstance allows one to construct [Reh90] a (charged) field algebra F, from the
observable algebra A, and the selected set of sectors I', acting in a ‘physical Hilbert space’
@, cr Hx, in the same manner as the field bundle in Chapter 1. One can now translate the
assumed properties of the observable algebra, and of the selected set of sectors, into properties
of the field algebra. The advantage of this change of pictures lies in the construction of models,
where the primary objects are usually charged (unobservable) fields, whereas the observables are
the derived objects (consider e.g. the free charged field). We will make use of this in chapter 5.

It turns out that an adapted version of the P; CT operator defined in Chapter 1.4 is directly
related to the modular conjugation of the field algebra associated to the wedge region W;. Thus
the assumed modular covariance! of the observable algebra A, lifts to the field algebra F,.
This extends a result of D. Guido and R. Longo [GL95] and of B. Kuckert [Kuc95] for Bose
and Fermi fields to the anyonic case. As a consequence, we can derive the strong version of the
spin statistics connection, also extending results of the abovementioned articles. Similarly, the
geometric significance of the modular operator lifts from the observable to the field algebra.

The consideration of automorphisms of the observable algebra only leads to a simple struc-
ture of the intertwiner spaces Fﬁ",l and of the representation ¢ of the braid group acting in them.
In fact, it is determined by the set of statistics phases of the elementary charges (generators
of the group of sectors). Consequently, the reference Hilbert space H of scattering states for
anyons is known explicitely and so is the representation of Isi on it, and the P;CT operator
is known up to the S-matrix. Taking the modular covariance of the field algebra into account,
this means in particular that the modular objects for the field algebras associated to all wedge
regions are explicitely given, up to the S-matrix. This opens up new possibilities for the con-
struction of models of anyons. In particular, it will be a basis to discuss the issue of free fields
in chapter 5.

4.1. Field Algebra for Anyons

The aim of this section is to describe anyons not in terms of observables and a selected
set of representations, but in the more traditional field theoretic picture which goes back to
Wick, Wightman and Wigner [WWW52]: One has a physical Hilbert space H which encodes
all normal states exhausting all relevant sectors I'. Vectors corresponding to states in a given
sector x € I' are said to carry charge x. They correspond to pure states and span a subspace H,
of H which is therefore called coherent subspace or, with a slight abuse of language, “charged
sector”. Vectors carrying different charges can show no interference and are hence orthogonal.

Isee Assumption 1, equation 1.62
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48 4. ANYONS

Thus ‘H decomposes into the direct sum of charged sectors:

H=EPH,- (4.1)
x€l’

H,_1 is the vacuum sector and contains the vacuum vector (1. There is a field algebra of
operators generating all charged sectors from the vacuum (2. Field operators mapping 2 into
H, with x # 1 are said to carrm charge x and are unobservable. The observables are operators
built up from the fields in such a waw such that thew leave each charged sector invariant,
i.e. thew carrw no charge. Thew can be obtained, together with the set of their inequivalent
representations, from the field algebra bw a spmmetry principle: There is a compact Abelian
gauge group G acting in H. Its character group é, i.e. the group of its irreducible (hence one
dimensional) unitarg representations, coincides with the set T' of sectors, and equation (4.1) is
the corresponding decomposition. The field operators carrwing charge x are preciselm the ones
which transform under G according to the representation . In particular, the observables are
characterized as the gauge invariant elements. Everm unitar field operator ¥, carrming charge
x ! implements an irreducible representation of the observable algebra by

A O AT 1y . (4.2)

Different field operators lead to inequivalent representations if and onlgw if thew carry different
charges x. Further, the field algebra has a localization structure, and localized fields ¥, lead
to representations satisfuing the Buchholz-Fredenhagen criterion (0.10).

We make this ‘Wick-Wightman -Wigner picture’ for anwons precise in the following defini-
tion of a field algebra. Then we state our explicite assumptions on the set T' of selected sectors
and arrive at the main result of this section, Proposition 4.3, namelw that given an observable
algebra A and a suitable set T’ of sectors there is a field algebra F with gauge group G = T’
whose observables coincide with .4, and that it is unique within a certain notion of equivalence.
Thus there is a one-to-one correspondence

Algebraic QFT ‘“WWW-picture’

The rest of this section will then be devoted to the construction of F from A and T (subsec-
tion 4.1.2) and to the proof of its uniqueness (subsection 4.1.3). Most of the material in this
section is an adaption of the results in [DHR69a] to the angonic case.

4.1.1. Wick-Wightman-Wigner Picture for Anyons.

DEFINITION 4.1. Let G be a compact Abelian group. An anyonic field algebra with gauge
group G is a family F = F(I) icg of von Neumann algebras F (I) operating in a Hilbert space
‘H such that the following holds.

‘H carries a unitarw representation V of G which contains all inequivalent irreducible rep-
resentations, i.e. all characters x € G. Tt also carries a continuous unitarw representation U of
the universal covering group 151 of the Poincaré group, which commutes with the action of G,
so that

H=P H, Vi)=EP x®)1 and U=EP Uy, (4.3)

x€G xe@ x€G

where the first direct sum denotes the decomposition of H with respect to V(G). The rep-
resentation U satisfies the spectrum condition specP C V, and has an invariant unit vector
Q € H,_1 which is unique up to a phase. U, _1 is a vacuum representation of Pl. Further, the
following properties are satisfied.

0. Inner spmmetrp: F(I) is mapped onto itself under the action of the global gauge group
G. The subalgebra FE(I) := F(I) N V(G)' of invariant elements will be interpreted as
the observable subalgebra of F(I).

1. Tsotong: F(I) € F(J) if I C .J in the sense of (1.22).

2. Localitp relative to the observables:

FEJ) c FAY i JcI'. (4.4)
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3. Poincaré covariance: AdU(§) F(I) = F(g-I) for all § € 131.
4. Reeh - Schlieder property: The vacuum vector € is cyclic and seperating for each F (f ).
5. Trreducibility: ;g F(I)' = C1 .

REMARK. i) If F(I) = F((0,2x)-I), the field algebra describes bosons or fermions instead
of genuine anyons.

ii) That Q is cyclic for each F(I) is a consequence of the other assumptions (Reeh-Schlieder
theorem). Then one can show that it is also seperating for F(I), i.e. cyclic for F(I)', if one
assumes commutation relations for spacelike seperated fields. But the anyonic commutation
relations (see equation (4.27) below) do not look very natural, so we want to derive them from
a simple additional assumption (better, convention, see 2 of Proposition 4.3) rather than assume
them.

iii) Two field algebras F and F with gauge group G and acting in ‘H and #, respectively,
will be called unitarily equivalent, if there is a unitary W : # — M which intertwines the
representations of G and implements an isomorphism AdW from each F(I) onto F(I).

4.1.1.1. Charge Carrying Fields and Spectral Projectors. There is a unique normalized Haar
measure on G, which we denote by dA(¢t). By definition, it satisfies A(G) = 1 and A(tM) = A(M)
for any measurable subset M of G and all ¢t € G. It can be used to write the projector P, onto
the subspace H, as

P = /G ) XDV (1),

where the integral is understood in the strong operator topology. We will say that an operator
in ‘H carries charge x, or is an irreducible tensor which transforms according to yx, if it maps
H, into Hyy for all x' € G, or equivalently, if V(¢t)FV(t)* = x(t) F for all t € G. These
operators can be characterized as the image of the spectral projectors E,,, defined as follows:

E, :B(H)—>B(H), Fr / dA(t) x(t) V) FV (b)* . (4.5)
G

The integral is understood in the weak operator topology. It satisfies E, o E,» = dy 5 Ey, is
continuous in the ultraweak topology [DHR69b, Lemma 3.1] and leaves each local field algebra
F(I) invariant. Further, the linear span of irreducible tensors in F(I) is weakly dense in F(I):

F(I)= (D EFD) ™. (4.6)

A proof can be found, e.g. in [DR72, Remark 1 after Prop.2.2)].
4.1.1.2. Qbservable Subalgebra and Decomposition into Sectors. We denote by F¢ the
family (F9(I));.z of observable subalgebras or, if the context allows no doubt, their union

Urer ]—'G(f ). 2 The latter leaves each subspace H, invariant, and hence for each x € G, a
subrepresentation of F¢ is defined by
T (A) = Aly, ,A€FY.

These representations are irreducible and pairwise inequivalent. To see this, we note that for
all I the observable algebra F(I) coincides with E, _1 (F(I)). We exploit the continuity of F
and the irreducibility of F to conclude

Fy = (U Bra))" = B ((U 7)) = B (B(H) = V(G
Iek Iek
hence
(F9) =V =@ Cly, . (4.7)
XEG
This shows that the representations m, are irreducible and pairwise inequivalent. It can be

shown in analogy to [DHR69b, Thm. 6.1] that they satisfy the Buchholz-Fredenhagen criterion
with respect to the vacuum representation m, _q. This implies that they all have the same

2We will see shortly that FG(I) in fact only depends on I, not on I.
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kernel and are therefore faithful representations. As a consequence, AdU(0,27) acts as the
identity on FY(I), since it does so in the vacuum representation 1. Hence FEG(I) coincides
with F&((0,2x)-I) and is thus is independent of the path, i.e. only depends on the endpoint
I. We will denote it by F%(I). The family (F“(I))rex is indeed an observable algebra in the
sense of our earlier definition on page 4, save for the property of Haag duality. But now the
following result holds.

LEMMA 4.2. Let Haag duality hold for FC¢ in the wacuum representation Ty, i€
71(FOI)) = 71(FEI')). Then F satisfies G-invariant Haag duality, i.e.

FI'nv(G) = FEI") . (4.8)

PrOOF. We adapt the proof of [DR90, Lemma 3.8]. The inclusion “>” follows from relative
locality (4.4). To show the other inclusion “C”, let F' € F(I)) N V(G)'. Then since F(I)' N
V(@) c FE(I)' nV(Q),

!
FlH,_1 € m (FE)),
which coincides with 74 (F¢(I")) by assumption. Since 74 is faithful, this proves the claim. O

4.1.1.3. Equivalence with the AQFT Picture. In the spirit of algebraic quantum field theory,
the physical content of the theory should be fixed by the observable algebra F¢ in the vacuum
representation m,_1 and the set G of representations in consideration. The question arises
if these data allow to reconstruct and to a certain extent to fix the field algebra. This has
been answered affirmatively for theories with permutation group statistics by Doplicher, Haag
and Roberts: in [DHR69a] for the Abelian case, and in [DR90] for the non-Abelian case. In the
following we partly transfer these results to the anyonic case and show that for a given observable
algebra A with a given subset I' of sectors a unique field algebra with gauge group G = I’ and
observable algebra F¢ = A can be constructed, provided I satisfies certain restrictions.

We first state our assumptions on the set of sectors. The first restriction is that we will
consider a subgroup T of sectors which is generated by a finite set

Ta ={xa)---» X} (4.9)

of independent® covariant and localizable sectors. They will be called “elementary charges”.
Note that then all sectors in T' are covariant and localizable. Also recall that T is the direct
sum of cyclic groups Z.,; (where n; is the order of x(;)) and copies of Z, and G = I is the direct
sum of cyclic groups Z,, and copies of U(1). The second restriction is given by the following
condition, to which the elementary charges are subject.

ASSUMPTION 2. For every elementary charge x € I satisfying x™ = 1 for some n € N
there is a representative 7 of y, localized in Sy, such that y™ = id.

The statistics phase w, of a sector x with x" = 1 satisfies w} = +1. K.-H. Rehren has
pointed out in [Reh90] that x has a representative y with v" = id if and only if w} = 1. Further,
in this case v may be chosen to be localized in any given spacelike cone. We choose R causally
disjoint spacelike cones So ; C So, and for every sector x(;) € I'er we pick a representative vy,
in accordance with the above assumption, which is localized in Sp ;. Then, being localized in
causally disjoint regions, these representatives commute pairwise, and we can choose a system
of representatives (v, )yer which is closed under individual multiplication and isomorphic to T’
by the assignment I' € x — 7, € A(Sp), i.e.

TxVx =Txx and  yq =id. (4.10)
Namely, we set
k k

For any pair of spacelike seperated paths I,J we introduce a unitary ‘twist operator’ Z (1: , j)
in H. A similar operator playing the same role in the formulation of anyonic commutation

3i.e., from X?ll) .- 'X?}% =1 follows Xécll) =...= X?}% =1.
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relations has been written down by B. Schroer in [Sch94] for the case I' = Z,. We denote the
statistics phase of the i-th elementary sector x(; by w;, i.e.

wi 1 = m& (Vx> Yxiy 30) Hi=1,... , R. (4.12)
Then the twist operator is defined by

Z(I,J): ZH ZYEENHD p o where N == N(I, J) (4.13)
x€Tl i=1

and k; are the coefficients of x, i.e. x =] ij). The definition depends on a choice of the square
root for every w;, but the following results do not.

PROPOSITION 4.3. Given an observable algebra A = (A(I))rex and a finitely generated
subgroup T of its simple sectors satisfying Assumption 2, there is a field algebra F with gauge
group G =T, unique up to unitary equivalence, such that:

1. The observable subalgebra FC of F is the isomorphic image of A under a faithful repre-
sentation 7, which contains all sectors x € I' exactly once.
2. Spacelike separated fields carrying elementary different charges commute.*

Further, this field algebra satisfies twisted Haag duality: Let I, I' be classes of paths in K ending
at I and its causal complement I', respectively. Then

Z(I, I F(I) z(I,1* = FI) . (4.14)
Finally, F has the intersection property
= ﬂ FW) foralll ek . (4.15)
WwoIl

The remainder of this section is devoted to a proof of this proposition. The existence
statement is contained in Proposition 4.9 of the next subsection, and uniqueness is shown in
Proposition 4.13 of subsection 4.1.3.

4.1.2. Construction of the Field Algebra. We construct the field algebra in such a way
that some results of Chapter 1 on the field bundle may be taken over. The subset v(T') x A,
of the field bundle can be completed to a C* algebra F,, which in the end is the universal
algebra of the family F to be constructed. In mathematics the construction of F, is known as
the crossed product of T' with A, via the action v : T' — AutA,.

Let F2 be defined as the linear space

= @ Ay (algebraic sum) . (4.16)
x€er

By definition, elements are functions from T into A,, denoted as B = (B,)yer, with only
finitely many components B, nonzero. Addition and multiplication with scalars are defined
componentwise. Continuing the notation introduced in chapter 1, we define functions with
support in one point X by (X,B)y := 3 B, and may write (By)xer = >, cr(X;Bx). A
product is defined on F? by distributively extending the following analogue of equation (1.11):

(X, B)(x, B) := (xX, 7« (B)B) -

It is associative due to the homomorphism property (4.10) of the assignment x +— =,, thus
turning F0 into an algebra. In fact, it is a *-algebra, with the adjoint being defined by antilinear
extension of

(6B = (x e H(BY) -

We introduce a C*-norm on F? following a monograph by H. Baumgirtel [Bau95], to which
we also refer for the proofs. In a first step, one defines a norm on F? by ||(By)yer|lz =

4This is a convention which replaces that of normal commutation relations for Bose- and Fermi fields.
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12 er By B, ||2. Multiplication in F° is continuous with respect to this norm [Bau95], and
hence one can define another norm on F2 by

BX
[|B|| := sup I 2 < o0,

xery |1X]2

which indeed is a C*-norm [Bau95]. Now we define the universal field algebra F, as the C*-
algebra obtained by completion of F? with respect to this norm. A localization concept on J,
based on paths I € K, can be defined in analogy to the field bundle in Chapter 1: An element
(x, B) of Fy is said to be localized in a path I = [(So, I1,... ,I,)] if there is a chain of charge
transporters Uy, . .. , U, for v, along I such that U, --- Uy B € A,(I,). Stated differently, (x, B)
is localized in T if it is of the form (x, Us 7A) where A € A, (I) and U, f is the product of charge
transporters as above.

LEMMA AND DEFINITION 4.4. i) The subset FO(I) C FO of localized fields defined by

FUI) := @ {6 U A | A€ Aul) U, j=Un---Ur as above } (4.17)
x€er

is in fact a *—s~ubalgebm of F2. The C*-algebra obtained by its norm closure in F, will be
denoted by F,(I). ) ) )

it) Let (xi,Bi) € Fu(l), i = 1,2, where I and I> are causally disjoint paths in K with
relative winding number N := N(I1,I5). Then

(Xla Bl)(X27 BQ) = €(7X157X2 7N) : (X25 B2)(X17 Bl) . (418)
Here, € = (YyoYx1 [€17x17x2)° @8 understood to act in Fy as € - (x1x2,B) := (x2x1,B).

PROOF. i) First note that FO(I) is in fact a vector space, because (x, U*A) + (x,V*B) =
(x,U*(A+UV*B)) and A+ UV*B is in A,(I) since UV* is, according to an argument given
on page 14. Next we show that this subspace is stable under multiplication. Let (x, U*A) and
(x,U*A) be in FO(I). (The general case follows by distributivity.) Given the chains Uy, ..., U,
and Uy,...,U, of charge transporters along I for 7vx and vy, respectively, we obtain a chain
of transporters for vz, by Vi := Ux X Uy = Uy, - - - Uyy (Up)Us - - - Uz _,. Now the product can
be written as (x, U*A) (x,U*A) = (xx, V*B) with V := V,,---V; and B := (AdU o ;)(A)A €
Au(I), hence lies in FO(I). To see that FO(I) is *-stable, we first note that a chain of charge
transporters Uy, ... ,U, along I for vx yields a chain Vi,...,V, for 'y;l by

Vi := (Ad(Uk_l cee Ul) o ’yX)_I(U;:) = ’y;l(Ul* s U;:Uk_l cee Ul) .
Now the adjoint reads (x, U*4)* = (x ', V*B) with V =V,,---V; and B = (AdUo~,) "' (4*) €
Ay (I), and hence is in FO(I).

ii) The commutation relations (4.18) can be calculated in complete analogy to Lemma 1.4
of Chapter 1. O

Next we realize the C*-algebras F,(I) as von Neumann algebras F(I) acting on a physical
Hilbert space H. We define H as the direct sum over all relevant sectors of copies of Ho:

H:= @ Hy, Hy :==Ho (Hilbert sum) . (4.19)
xer

By definition, this space consists of functions from I' into Hg, denoted as ¢ = (¢ )yer, which
have finite norm with respect to the scalar product

(¢, 8') = (dxs D)o (4.20)
x€l
where { , )o denotes the scalar product in Hg. The subspaces H,, of H consist of functions with
support in one point {x}, denoted (x, ¢) and defined by (x, @)z := dy,3 ¢- In particular, we set
Q := (1,9Q). The representations V and U of the gauge group G and of 131_ are defined as in
equation (4.3), where now U, is understood to be the representation U, which implements ]51
in moyy.

5For the definition, see equation (1.31).
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We define a representation 7, of the C* algebra F, in H by

mu((x; B)) (X; 9) == (Xx, 7% (B)9) - (4.21)

(It is in fact the GNS representation of the state w((x, B)) := (Q,movy(B) Q)¢.) The family
F:=F() ek of von Neumann algebras

F() := (e Fo(D)" (4.22)

will be called the field algebra for A, T' and . We have to show that F actually satisfies all
requirements of Definition 4.1 for a field algebra and in addition the claims of Proposition 4.3. We
first convert the commutation relations into a concise form as a relation in the field algebra F in
terms of the local algebras F (f ) and their commutants, which will be called ‘twisted locality’, see
equation (4.27) below. This form is convenient for a derivation of the Reeh-Schlieder property
for the algebras F (f ), and can be sharpened to twisted Haag duality, which will be used in
the derivation of the PyCT and spin-statistics theorems in Section 4.2. To this end, we first
calculate the statistics intertwiners in the vacuum representation from the statistics phases w;
of the elementary charges X (;), which have been defined in equation (4.12). Since our system of
representatives v, is chosen such that all of them commute, the statistics operator of any two
of them, e(v,,v%;N), intertwines +,v¢ with itself, hence must be a multiple of unity in the
vacuum representation, which we denote by £o(N; x, X), i.e.

go(N;x, %) 1 :=moe(yx, 753 V) - (4.23)

As the next Lemma, shows, these numbers indeed only depend on the equivalence classes x of
the automorphisms -y,

LeEMMA AND DEFINITION 4.5. The map

eo(N): T'xI'—=U(1),

. . (4.24)
(x;X) = 0(IN5 x5 X)
is a symmetric bilinear form. It satisfies £o(N; X, X) = €0(0;x, )2V and is explicitely given
by
R ~ N
~ kik; (2N+1 . i A i
eo(N;xx) = [Jwi ™M if x =TI xfy and x =] x¢ - (4.25)
=1

For the proof we need a lemma:

LEMMA 4.6. Let 01,02 and o be localized endomorphisms of the observable algebra. Then

e(0102,0;N) =¢(o1,0;N) o1(e(e2,0;5N)) = (e01,05N) X 1 5,) 0 (1, x €(02,0;N)) and
(0, 01025 N) = 01(e(0,02;N)) €(0,01; N) = (1, X (0,023 N)) 0 ((0;015N) X 1 4,)
PROOF. We prove the first of the equations. Let I, J be paths in K with relative winding
number NNV. Let further for i = 1,2 U; = Ui(") - Ui(l) be the product of elements of a chain of
charge transporters along I for g;, and U = U(™) ... U™ be the product of elements of a chain
of charge transporters along .J for o. Then U; x Uy = (Ul(") X UQ(”)) 0---0 (Ul(l) X Uz(l)) is the

product of the elements of a chain of charge transporters along I for p; go. By definition (1.31)
of the statistics operator,

€(0102,0;N) = (U* x Uy x Uy) o (Uy x Uz x U)
=U*x U xUy)o (U xU xUs) o (Uf xU* xU3)o (U x Uz x U)
= (U x U)o (Ui xU)) x14,) o (14 x ((U* xUs)o (U2 x U)))
= E(Qlaa;N)X]lQQ)o(]lgl X5(9270;N))'
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PRrROOF OF LEMMA 4.5. We show first equation (4.25) for the case N = 0. In this case
the statistics operators are local intertwiners, hence 7y can be inverted on them and we can
conclude from equation (4.23) that

£(Vx> %3 0) = €0(05 X5 X) 1 4, -

Therefore the equations of Lemma 4.6 in the present context take the form

£0(0; X1X2,X) = €0(0; X1, x) €0(0; X2, x) and

€0(0; x> x1x2) = €0(0; X, x1) €0(0; X, x2) for all x,x1,x2 €T,
respectively, rendering £¢(0) bilinear. Next we note that

€0(0; X(s), X(i)) =wi by definition (4.12), and
and since 7y, and 7y,,, are localized in causally disjoint regions. Using the last two equations
and bilinearity we get the explicit formula (4.25) for N = 0. This in turn shows that £¢(0) is
symmetric. The general dependence of the statistics operators on N is given by equation (1.38),
which reads in the vacuum representation
m0e (Vx> Vs 3 N) = 08 (Y 7.3 0) - Mo a (Vo)™

The last factor can be calculated by applying 7o to equation (1.48) and exploiting the symmetry
of 9(0) :

7r0’7X(V’Y>z) = WOe(’VX:’Yf( ;0)2 . (4'26)
Inserting this into the above equation, we get £9(IV; x, X) = €0(0; x, X)?V*!. But this proves
also equation (4.25) for N # 0. O

LEMMA 4.7. The commutation relations (4.18) in the representation m, are equivalent to
a ‘twisted locality’ in the form

Z(il,jg) f(jg) Z(fl,fQ)* C f(il)l fO’I‘ all fl,fg with I1 C Ié . (427)

PROOF. We rewrite Z(I;,[5) = > xer eo(N;x, x)2 P,, where N = N(I;, I). First note
that every operator in H carrying charge x, i.e. satisfying F' P, = P,y F', also satisfies
FZ(h,L) =Y eN;xx L xx )2 P F, N=N(,L).
x€l’
Now let F; = 7y ((xi, Bi)) € F(I;), and let Z := Z(I;, I,). Applying the last equation twice and
using the properties of bilinearity and symmetry of £o(N) stated in the last Lemma, we get

eoloxi oxxi')® 1

Fy ZFZ* = MM A ) p R Py = — — P, F\F
EX:EO(XX11X21;XX11X21)% ¥ zX:Eo(le,xf)%&o(xxll,ml) *
and

0(X; X)? 1

VAL 0—)1<’X 1 1PXF2F1:Z 1 _—1\L 1 P FF,

< €olxxz Hxxz )2  colxz X2 )Zeo6xz )

where we have omitted the dependence on the winding number N. These two expressions
coincide if and only if

eo(V; _1, -
FlFQIZ 0( XXI X2 )PX F1F2=60(N;X1,X2)F2F1,

—~ co(N;x: x5 ")

i.e. iff equation (4.18) holds for (x1,B1) and (x2,B2) in the representation m,. This shows in
particular that (4.27) implies the commutation relations (4.18) in m,. On the other hand, the
relation [Fy, ZF>Z*] = 0 extends by distributivity from field operators F; of the special form
as above, F; = m,((xi, B:)), to arbitrary field operators in 7, (F°(I;)), and by continuity to all
of F(I;). Hence the relations (4.18) imply (4.27). O

LEMMA 4.8. Twisted locality (4.27) can be sharpened to twisted Haag duality, i.e. to equa-
tion (4.14).
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PrOOF. We can essentlally adapt the proof of the corresponding statement in [DR90, Thm.
5.4]. Let I I' be paths in K ending at I and its causal complement I', respectively, and denote
Z = Z(I,I"). Let F be an operator in Z* F(I)' Z carrying charge . Let further ¥* be a unitary
in F(I') carrying the same charge, whose existence we have established before equation (4.30).
Then, since F(I') C Z* F(I)' Z by twisted locality, F = ¥* A for some A € Z* F(I)' Z NV (G)'.
But this algebra coincides with F(I)’ N V(G)' and by Haag duality (4.8) with F&(I'). Hence
Fis in F(I"). O

Next we give a characterization of F(I) in terms of a representation 7 of A, and certain charge
carrying unitary field operators. The observable algebra A, acts in H via the representation

= @ Yy -
x€r

Further, the ‘shift’ operator
Tyo=m((xh1): (o) = (Rx9) (4.28)

is a unitary element of F(Sp) which implements the automorphism v, of A, in the representa-
tion 7 of A,, i.e.

T (4)) = Tyr(A) T . (4.29)
Let Uy, ... ,U, be a chain of charge transporters for v, along a path Ie }a and let Ux,f =
Uyn---Ui. Then ¥} 7r(U* 7) =mu((x,U")) is in F(I). Furthermore, Lemma 4.4 implies that
@\Il* Ur ) a(Au(l))) ©  (weak closure) . (4.30)
x€r
As a consequence,
B(F(D) = U, n(U? ) n(Au(D)) - (4.31)

PROPOSITION 4.9. F is a field algebra with gauge group G in the sense of Definition 4.1
and satisfies the claims of Proposition 4.3.

PROOF. Property 1 of Definition 4.1 (isotony) can be seen from equation (4.30) if one
recalls that a chain of charge transporters along I is also a chain along J if I C J. Property 2
is a special case of twisted locality (4.27). Property 3 (Covariance) can be seen as follows.
Analogously to the discussion of the reduced field bundle, see equation (1.24) in Chapter 1, one
verifies that

az(x, B) := (X, Y, (9) aS(B)) (4.32)

defines a representation of ]51 in AutF,, which is implemented by U in the representation 7 ,
i.e.

AdU(g)omy =myo0ay forall ge Pl . (4.33)
The discussion after equation (1.29) in Chapter 1 also shows that F, is covariant under a, i.e.
a; : Fu(l) = Fu(g-1) . (4.34)

Hence AdU(§) F(I) = AdU(§) (my Fu(D))" = (muaz Fu(I))" C (mu Fu(g-1))" = F(g-1), as
required. Cyclicity of the vacuum Q for F(I) follows from equation (4.30) and the fact that Q
is cyclic for A(I). Let J be a path in K ending spacelike to I. Then equation (4.27) implies
that F(I)'Q2 contains Z F (J ) 2, where Z is a unitary operator. Hence  is cyclic for F(I)’ and
therefore seperating for F(I). Property 5 (irreducibility of F) follows from the irreducibility
of A and the existence of unitary field operators \Il;,x_1 in F(Sp) connecting any two charged
sectors H,, Hy. Property 1 of Proposition 4.3 follows from

FUI) = n(Au(D)) ,

which is in turn an immediate consequence of equation (4.31). Twisted Haag duality has been
shown in Lemma 4.8. Finally, the intersection property (4.15) follows by simple set theoretic
considerations. O
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4.1.3. Uniqueness of the Field Algebra. Let F be a field algebra with gauge group
G satisfying 1 and 2 of Proposition 4.3 and which acts on a Hilbert space H= @xer ﬁx- We
will reveal its structure up to the point where it is clear that it is equivalent to the above field
algebra F. We denote by 7 both the representation of the family A in # and its lift to the
universal algebra A,. For every x € I" and every localized automorphism « of A, in the class
of x we have by assumption a unitary intertwiner from moy to 7, := 7“r|7:lx which maps Hg
isometrically onto 7:[X. In particular we fix a unitary intertwiner U] from mo to #,_1, which we
choose such that & = U7 .

The crucial point in the proof of uniqueness is to show that for each x € I" and I € K
there are unitary field operators in F (I) creating states wg oy with charge x and localization
region I from the vacuum. The following Lemma and the main part of its proof are analogous
to [DHR69b, Thm.6.2] and [DR72, Prop.2.1].

LEMMA 4.10. Let I € K,x € T and let v be an automorphism of A, in the equivalence
class x, localized in I. Let further U* : Ho — H,, be a unitary intertwiner from myy to 7, C 7.
Then for any path I € K ending at I there is a unique field operator ‘I!’(‘H~ € ]—'(f) satisfying

lI!"[‘]jQ: UrQ. (4.35)
It is unitary, carries charge x and implements v in the representation  :
7(v(4)) = ¥, ;7(A4) \Il’(‘jj forall Ae A, . (4.36)
PRrROOF. For short we set U* := \I’*U, I If it exists, it must satisfy
VFQ=FU*Q forall Fe F(I) . (4.37)

Since Q is cyclic for F (f ) this defines already an operator. Hence we take the above equation
as the definition of the operator ¥*. It is densely defined, because 2 is also cyclic for F(I)'.

A~

We show that it is isometric. To this end, note that for any B € B(H) , P, BP, = P, E{(B)P;.
Hence
||IFU*Q|*> = ||[FPU*Q||”> = (Q,UP,F*FP,U*Q)o = (Q,UP,E, (F*F)P,U*Q)o
= (Q, U1 F*FUIQ)o = ||F Q7
where we have used that, by Haag duality (4.8), Ey (F*F) = #(A) for some A which is in Ay (I")
and hence satisfies
Un(A)U* = moy(A) = mo(A) = Uy (A)U] .
Thus ¥* is isometric and consequently fixed by equation (4.37). * carries charge x, because
it maps Q into H, and is in F(I), hence the equation V(¢)T*V (£)* Q = x(¢)¥* Q extends to
all of H by the Reeh-Schlieder property. To show equation (4.36), consider the isometric map
F(y(A))Q = 7(AU*Q, A€ A,.
It coincides with ¥* on the dense set 7(Au(I')) 2 = U A(I') Q and hence on all of 7:[><=1’
which means
T*7(y(A))Q=7(A)T*Q, AcA,.

This implies that * 7 (y(A)) = #(4) T* if A € A(O) for some O, since then there is some
J D OUI and Q is cyclic for F(J)'. By norm continuity, this equation extends to all A € A,,.
It remains to show that ¥* is onto. Let U be an intertwiner from myy~! to fiy-1, and let ¥* be

the corresponding operator in F(I) intertwining oy ~! with #. Then ®*¥* is in #(A)' = (FF)’
which coincides with @ C1 4, by equation (4.7). But it is also in F¢(I) whose restriction to
any ﬂxl is faithful. Hence ¥*¥* is a multiple of unity, showing that ¥* has a right inverse. [J

LEMMA 4.11. Let (y)yer be the collection of automorphisms of A, defined in equa-
tion (4.11). Then there is a collection of unitary intertwiners Uy : Ho — Hy from moyy to
7y such that

WUy, =Uyi,,  forallx,x' €T, (4.38)
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where li!; is the unique unitary field operator in .7:'(50) satisfying li!x* Q = Uz Q and imple-
menting 7,. The collection (‘i’x)xer has the homomorphism properties \i'1 =1 and

b, 0, =0, foralx,x erl. (4.39)

PRroOF. The proof partly parallels that of [DHR69a, Thm.5.1]. Let (U, )y er be any collec-
tion of unitary intertwiners from 7oy, to @, and ¥} the corresponding field operators. Then

Wy =b(x,x') ¥y, forallx,x' €T, (4.40)

where b(x, x') is in FE(S,) and satisfies, due to equations (4.36) and (4.10), Adb(x, x') o7t = 7
on A,. Hence b(x, x') is in ()’ which coincides with ®; C1 71, Py equation (4.7). Since it
is also in F%(Sp), whose restriction to any ﬁx is faithful, it is a multiple of unity. Then (4.40)
and associativity imply the cocycle condition

b0 x") b0, X") = bOx', X") b06 X'X") - (4.41)
Since we have chosen the automorphisms v, corresponding to the elementary charges localized
in the smaller cones Sp; C Sp, we can argue as after equation (4.37) to conclude that \ili‘ﬂ is
actually in the smaller algebra F (So,i), so any two of them must commute by property 2 of
Proposition 4.3. Hence b(x:, x;) = b(x;,x:)- But then the cocycle condition implies b(x, x') =
b(x', x) for all x, x' € T. This can be seen by induction: Let b(xi; - - - Xi..» X&) = b(Xk> Xiy =+ X, )-
Then

Xi1 " Xin s Xin1 ! (Xka Xin+1) b(Xh * Xins XkXin+1)

b(Xh * Xy s Xk) = )_ b
Xir """ Xin Xin+1)_1 b(Xh * X Xk) b(Xh ©t 0 Xin Xk Xin+1)

Xix """ Xin» Xing1) OO0k Xir =~ Xin ) BOXGE X1 =+ X » Xin 1)

Xk > Xiz *** Xin+1) -

This shows that b(x, xx) = b(x, x) for all x € . The general case is shown analogously. But

being a symmetric cocycle, b must be a “coboundary”, i.e. there is a map ¢ from T into the

group of complex numbers of modulus 1 such that

b(x, X') = e(x) clxx') ™ e(x)-
1} proof can be found e.g. in [DHR69a, Lemma A.1.2]. If we replace each Uy, by ¢(x)c(1)~'U, and
U correspondingly, still denoted by the the old symbols, the collection satisfies equation (4.39)
instead of (4.40). Now \il;‘( U3 2 = Uy, Q follows from the defining equations (4.35) for li!;‘(, and

W% - Therefore equation (4.38) holds on A(Sp) §2, and hence on Ho due to the Reeh-Schlieder
property. O

LEMMA 4.12. Let I € IE, let Uy, ... ,U, be a chain of charge transporters for -y, along I,
and let ij =U,---U;. Then

B (F(D) = ¥ #(U? ) #(Au(D)) - (4.42)

Proor. Since lil; is a unitary carrying charge x, it is sufficient to show that
\Il;fr(U;I) e F(I),

which we do by induction. Let (Iy, ... ,I,), be a path in the class I, and let I be the class of
(Io,--- ,It). Let further Ji be the “larger” one of I;, and fk+1, ie. Jy = I if I, D Iiy1 and
Ji = Iy if Ix C Iry1. We denote ¥ := ¥% #(Uy -+ Uy). Suppose ¥ is in F(I;). Then ¥, |,
being equal to ¥; #(U; ), is in F(Ji) since #(Up,y) is in FG (I UIiy1). On the other hand ,
by equation (4.36) and the intertwiner property of UY,
1 =U #(Uy ---Up ) Q.

The product of unitaries on the right hand side is an intertwiner from m 0 Ad(Ug41 - - - U1) 0 vy,
which is localized in Ij41, to 7y. Then by virtue of Lemma 4.10, there is a unitary ¥* € f(fk+1)
which coincides with ¥, ; on €. But ¥* and ¥}, are both in F(Ji) and therefore coincide due
to the Reeh-Schlieder property. Hence ¥y, is in F(Ip41) and the induction is complete. O
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At this point we can exhibit a unitary equivalence from F to F: Let W* be the direct sum of
unitaries Uy of Lemma 4.11, i.e. the unitary operator given by

W @PHe SH, (o) ULs.
X

PROPOSITION 4.13. AdW establishes a unitary equivalence from F to F.

PROOF. Using equation (4.38) one verifies that W ¥, W* = ¥, and the intertwiner prop-
erties of the Uy imply W #(A) W* = 7w(A). In view of equations (4.42) and (4.31), AdW is
therefore an isomorphism from @, . Ex F(I) onto D, er ExF (). Since these algebras are

weakly dense in F(I) and F(I) respectively, see equation (4.6), AdW extends to a unitary
equivalence from F(I) to F(I). O

4.2. Algebraic P,CT and Spin-Statistics Theorems

From now on we again require Assumption 1, namely that the modular conjugations of the
observable algebras associated to wedge regions have geometric significance (see page 23). We
show that this property extends to the field algebra leading to a PyCT theorem (Theorem 4.14),
and that a spin-statistics theorem follows from this fact (Theorem 4.15). These results have been
obtained for the case of non-Abelian permutation group statistics by D. Guido and R. Longo®
for compactly localized charges in 4 dimensions [GL95], and by B. Kuckert for charges with
localization in spacelike cones in 3 dimensions [Kuc95]. Here they are generalized for the first
time to the case of Abelian braid group statistics in 3 dimensions. Also, an expression of
the P;CT operator of the field algebra is given in terms of the modular conjugation of the
observable algebra without taking recourse to the modular conjugation of the field algebra
(Proposition 4.16).

It is known [Dav95] that for Bose and Fermi fields, and hence in our context at least for the
observable algebra, the geometric significance of the modular conjugations associated to wedge
regions is equivalent to the geometric significance of the modular operators associated to them,
see Lemma 4.18. We show in Proposition 4.19, that also the latter property extends from the
observable algebra to the anyonic field algebra. Hence, both modular conjugations and modular
operators of the field algebras associated to wedge regions can be expressed in terms of the
representation of the Poincaré group, and this will allow us to calculate them on the space of
scattering states in the next section.” Let

Wy
be the homotopy class of the path (Sp,Wi) in K, and let S(W;) be the Tomita operator
for F(Wy) and Q with polar decomposition S(Wy) = J A3z. Again we call J the modular
conjugation and A the modular operator for F(W;) and €.

THEOREM 4.14 (P;CT - Theorem). Let the observable algebra satisfy Assumption 1 (mod-
ular covariance). Then the modular conjugation J for F(W1) and Q can be written as
J=2Z(Wy,7-W1)0,, (4.43)

where O1 is an antilinear PyCT operator which extends the representation U (131) to a repre-
sentation of 15+ under which the field algebra is still covariant:

0. =1, ©,U(§) 6. =U(3j) for allje Pl , and (4.44)

0, FI)O, =F(G-I) forallek. (4.45)

Further, ©1 leaves 2 invariant and maps H, into H,-1, so that it can be written ©1 (x, ¢) =:
(x™',01, ¢). It implements a? as follows:

AdOy , ooy, = mw;l oal (4.46)

i -
All these properties, except equation (4.45), are also satisfied by J.
8 Actually, Guido and TLongo have assumed only that the net of observables is covariant under the modular

groups associated to wedge regions.
7as mentioned before, the modular conjugations can be calculated only up to the S-matrix.
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Note that the relative winding number N (Wi, j-W1) equals —1, hence Z(W4,j-W1) is given
by

Wla] Wl ZEO 7X7 %P .
x€l’

PROOF. The proof is partly an adaption of B. Kuckert’s proof of Theorem 3.4 in [Kuc95].
We show first that J maps #, into H,-1, or equivalently, that

JP =P, J, (4.47)

where Px denotes the projector onto H,. Let V; := 37 . x(t) Py be the representation of the
gauge group G in H. For all t € G, V; leaves the vacuum vector €2 invariant, and AdV; leaves
the field algebra F (Wl) invariant. Consequently, V; commutes with the modular conjugation J
(and also with the modular unitaries A*, which we will use later). Writing P, = [, dA(t)x(t)V;
and using the antilinearity of J, this implies equation (4.47). To show equation (4.46), we first
consider the restriction of the Tomita operator S(WW;) to the vacuum sector Hy—1- As we
have seen above, S(W;) leaves Hq invariant. Since F(W;) Q is the intersection of Hq with
F(W1) Q, which is a core for S(W;), FE(W;) Q is a core for S(W1)|Hlnd0m(5). On this core,
S(W,) is easily seen to coincide with U So(W,) Uy, where U is the unitary intertwiner from
mo to 7,1, mapping ¢ to (1,4), and Sy(W1) is the Tomita operator of A(W1), as defined in
equation (1.61). But U; F&(W;) Q = A(W;) Q, which is a core for So(W;), and hence

S(WIN’Hlﬂdom(S) = Uik SO(WI) U .
By uniqueness of the polar decomposition, this implies that J |H1 = U7y Jy U;. Consequently,
Jr(A)JQ =U; mo(c (A)) Ui Q=n(a%(A)Q.

J

If A e Ay(Wy), then J n(A) J is in F(Wy)' by the Tomita-Takesaki theorem, and so is m(a9(A))

because the fields are local relative to the observables. Since € is cyclic for F(W;), we thus
conclude from the above equation

Tr(A)J = m(al(A)) (4.48)

for all A € A,(W1). Borchers Theorem [Bor92] asserts that the representation of the translation
subgroup transforms covariant under J, i.e. JU(z,1)J = U(j-z,1) . This fact extends equa-
tion (4.48) to all A € |J,cgs Au(z + W1). The same equation holds for ©; replacing .J, because
Z (Wl,j-Wl) commutes with gauge invariant operators. This means that the claim (4.46) holds
on (U, cgs Au(z + W1). Now let R, be an intertwiner from 7, = a9 o, 0 af to 75" Then the
right hand side of equation (4.46) can be rewritten as Ad(mo(Ry)Jo) © mo7y,- Remembering that
Yx maps A, (z + W1) onto itself, the equation then implies that Ad©®; , = Ad(m(Ry)Jo) on
U.ers A(z + W1) and hence, by irreducibility, on B(Ho). Thus equation (4.46) holds on A,.
The representation property (4.44) is equivalent to U,-1(§) = 01, Uy(j§j) ©1 Xl and follows
from equation (4.46) by the same argument we have used after equation (1.68). It remains
to show equation (4.45), namely that Ad©®; acts geometrically. Combining the twisted Haag
duality (4.14) with the Tomita Takesaki theorem yields

J}-(WI)J = Z(Wlaj'wl)f(.;'wl)Z(Wlaj'wl)* )

which is the desired relation for the case I = W . Since every W € K ending at a wedge region
is of the form W = §-W; for some § € 1—7’1, we can exploit the representation property (4.44) to
conclude that equation (4.45) holds for all such paths W. If T ends at a spacelike cone Sy, the
equation still holds due to the intersection property (4.15) of the field algebra. If I ends at the
causal complement of a spacelike cone, | = S’ we use twisted Haag duality and get

0, F(8) 0, =0, Z(5",8) F(8) (5", 8)* 0, = Z(5',5)* (0, F(8) ©,) Z(5", 5)
=2(5-5,5-8) F(- S) 2(G-8,5-8) = F(5-8") .

J-
In the third equation we have used Z(jI,jJ) = Z(I,J)*. This completes the proof of equa-
tion (4.45) and hence of the theorem. O
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As a corollary, we get the ‘strong’ version of the spin-statistics theorem. We recall that a
model independent spin statistics theorem for the case of permutation group statistics has
been established in the Wightman framework as early as 1958 [Bur58], and in the algebraic
framework in [Bor65].

THEOREM 4.15 (Spin-Statistics Theorem). Let x € I'. Its statistics phase wy, defined by
(Vx> Vx »0) = wy 1, and its spin phase, defined by U, ((0,27)) = exp(2mis(x)) 1, coincide:

wy = €200 (4.49)

PRrOOF. The proof is a straightforword adaption of the proof of [GL95, Thm.2.11] to the
present setup. Let Z := Z(Wy,j-Wy). Since the relative winding number N (Wi, j-W;) equals
—1, we have by definition of Z and Lemma 4.5

Z2 =3 eo(-Lix,x) Py =D wy' Py
x€er x€rl

On the other hand U((0, —27)) = >_ exp(—2mis(x)) Py, and therefore the claim is equivalent
to

Z? = U((0,—27)). (4.50)
Let © := U((0,%)) ©1U((0,%))*. Due to the representation property (4.44) of Oy, Oy =
) = ©1:U((0,—m)), and we can write
U((0,—7) =0, 05 .

Now let W, := (0, Z) -W1, which is the homotopy class of the path (S, Z-W1). It is invariant
under j, and therefore Ad©;, acting geometrically by equation (4.45), leaves F(W>) invariant.
Hence ©1 commutes with the modular conjugation Jo of F (Wg) The latter is given by Jo =
U((0,%)) JU((0,—%)) which coincides with Z @2 by virtue of equation (4.43) and of U(9)Z =
ZU(g). Using ©1Z* = Z ©,, we thus have

U((O, —271’)) = (@1 @2)2 = ®1Z*J2 ®1Z*J2 = 22 ®1J2®1J2 = Z2 .
O

We now give an expression for the Py CT -operator ©1, respectively for the modular conjugation
J of F(W1), in terms of the modular conjugation Jy of the observable algebra analogous to
equation (1.76).

PROPOSITION 4.16. Let © be an antilinear operator in H which maps H, into H,-1, al-
lowing for the notation © (x, ¢) =: (x ™', 04 ¢).

i) © has all the properties listed for the P,CT operator ©1 in Theorem 4.14 (except the
connection (4.43) with the modular conjugation) if and only if

Ox =mo(Ry) Jo , (4.51)
where Ry is a local intertwiner from 7, to v, 1 and the collection of intertwiners satisfies
R =0a}(RY), (4.52)
Ryi=1 and
Ry =R, xR, . (4.53)

it) A collection of intertwiners satisfying the above requirements is fized up to a collection
(Ax)x of signs which forms a group homomorphism from T' into {£1}. Hence, if © is defined by
equation (4.51), it coincides with the the B, CT operator ©1 up to the unitary V = err Ay Py

Note that due to the homomorphism property, A, = 1 if x™ = 1 for some odd integer n.

PRrOOF. i) We first show the ‘only if’ statement. Let R?( be the unitary operator in Hg
defined by

R?( = @X JO .
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It is an intertwiner from mo7¥, to moyy ', since

Ang 0 moYy = AdO, 0wy, © oz(; = 7707;1 o a? o oz(; = 7707;1 .
In the second equation we have used equation (4.46) of the P;CT -Theorem. By Haag duality,

this implies R € A(Sp), since both 4, and ;! are localized in Sp. Therefore we can define
R, = 71'0_1(R?<) .

Ry =1 follows from the fact that both Jo and ©,_4 leave the vacuum vector () invariant.
Equation (4.52) is equivalent to 1 = RY_, Jo R}, Jo = ©,-10, for all x. But this is equivalent to

©? = 1. Now we show equation (4.53). First note that Ad©(¥%) is in F(So) by equation (4.45)
of Theorem 4.14, and that it carries charge x~!. By equation (4.31), this implies that

0P 0 =T, m(Ay) (4.54)
for some A, € A,(So). But
0T3O (%, 4) = (x ' X, R3-1,(R3-1)"¢) by equ. (4.52), and
oo m(Ay) (X, 8) = (Rx s movg (Ay) ¢) - for all (%,¢) € Hy -

Hence equation (4.54) implies, taking again into account that 7o is injective on the involved

local operators, that Rg-1, R}, = v:(Ay) . Specializing to x = 1 and remembering that

Ry =1 this implies R, = A,, so that we have
Ry-1y = v3(Ry) Ryg-1 = Ry—17,-1(Ry) = (Rg—1 x Ry)

which is equation (4.53). Now we prove the ‘if’ statement. The implementation property (4.46)
follows from the definitions, and implies the representation property (4.44) in the same manner
as in the proof of Theorem 4.14. © Q2 = Q and ©2 = 1 have been treated already in the
‘only if’ part. Equations (4.52,4.53) imply © ¥} © = ¥l m(Ry), which can be seen using
equations (4.55). But this transformation property implies the geometric action (4.45) of Ad®© :
Namely, let Uy,...U, be a chain of charge transporters for -, along some path I, and let
U = U,---Us. Then by equation (4.31), E\(F(I)) = Uin(U*)n(Au(I)). Let A € A,(I).
The transformation property of ¥} under © together with (4.46), which takes here the form
AdO o = 70, implies

O n(U*A)0 = \Il;_ﬂr(RXa? (U*)ad(4)) . (4.56)

J

(4.55)

U along j-I, hence

But of (U1)R% , a}(Us),- .. ,a}(Uy) is a chain of charge transporters for x~
O E\(F(I)© Cc F(5-I).

i7) Being a local intertwiner between two irreducible representations, each R, is fixed up
to a phase: any other intertwiner is of the form R, = A, R, for some complex number A, of
modulus 1. Equation (4.53) being satisfied for both R, and R, implies the homomorphism
property Ayx = AyAg. Also, A{ =1 because both R{ and Ry are equal to 1. Finally, plugging
equation (4.52) into (4.53) yields

1 = R,y-1 = Ry x Ry-1 = R, x of(R%)

for both R, and R,, which implies A\ = 1. O

As a corollary of the preceding proof, we can show that the P;CT -operator ©; implements an
antilinear automorphism a; of the universal field algebra F, as follows. Let

o5 06 B) = (', Ryad(B)) ,
where R, := 7, *(01Jy) as in the above proof.

COROLLARY 4.17. ©1 implements the automorphism a; in the representation my. In addi-
tion, a; acts geometrically in the universal field algebra F:
AdOiom, =7y 0 a; and (4.57)

ozt Fol) = Fu(G-I)  forallTek. (4.58)

J
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Proor. Using equation (4.56), we get
O1mu(x, B)O1 = ©,937(B)0; = ¥} _1m(Ry 0(B)) = mu(x™", Rya (B)) ,

i.e. equation (4.57). To prove equation (4.58), recall that F,(I) is spanned by elements (x, U* A)
with A € A,(I) and U = U, -- - Uy, where Uy, ... ,Uy, is a chain of charge transporters for v,
along I. On such an element a; acts as

006U 4) = (x 1, Ry a(U") a(4))

Now a9(A) is in A, (j-I), and a(U1) RS, a3(Ua), ... , a9(Uy) is a chain of charge transporters

for x ! along j-I, hence a;(x, U* A) € Fo(G-1). O
The geometrical significance not only of the modular conjugations, but also of the modular
operators lifts from the observable algebra to the field algebra. In fact, it is known that these
two properties are equivalent on the level of the observable algebra. One direction is implicit in
the article [GL95] of Guido and Longo, and equivalence has been shown by Davidson in [Dav95].

LEMMA 4.18. Let Jy and Ag be the modular conjugation and the modular operator of the
observable algebra A(W71) associated to the wedge W. The following properties are equivalent.

i) The vacuum represenation Uy of PI_ extends to a representation of Py with Uy(j) = Jo,
under which the observable algebra is covariant:

Jo Uo(g) Jo = Uo(]g]) and AdJo : A(O) — A(]O) . (4.59)
i1) The modular unitaries coincide with the representors of the boosts leaving W1 invariant:

. cosh27t  —sinh27t 0
A = U(Ai(t)) , where \i(t) :== [ —sinh27t  cosh2mxt 0] . (4.60)
0 0 1

ProOOF. We only show how to translate the claim into Theorem 5 of [Dav95]. For any
wedge region W, let Jo(W) and Ag(W) be the modular conjugation and the modular operator
of A(W). i) holds if and only if Uy is the representation generated by the family of modular
conjugations (Jo(W))w. The theorem just mentioned and the last equation in its proof assert
that this is equivalent to Up being the representation generated by the family of modular
operators, i.e. to Ag(W)% = Us(Aw(t)), where A (¢) is the one parameter group of boosts
leaving W invariant. This in turn is equivalent to ii). Note that the implication from ii) to i) is
contained in Propositions 2.4, 2.8 and 2.9 of [GL95]. O

PROPOSITION 4.19. Let the modular operator Aqg of the observable algebra A(Wy) have
the geometric significance of equation (4.60). Then the analogous statement holds for the field
algebra:

A = U (1), (4.61)
where Ay (t) is the unique lift of the one parameter group i (t) to 151.

PROOF. We might have proved the claim directly from Theorem 4.14 in analogy to Theorem
5 of [Dav95]. Instead we proceed partly along the lines of the proof of Lemma 3.4 in [GL95].
With the same arguments as in the proof of Theorem 4.14, one can show that A% leaves each
charge sector H, invariant, allowing us to write A* = @, .. AY, and that
AdAﬁ °ToYx = T0Vx © agl(t) = AdU, (M (1)) o moy
on |J,cps Au(x + W1). Since v, leaves each A,(z + W;) invariant, this implies that
e (t) = AT UL (M (1)) (4.62)

is in mo (U, cgs Au(z + W1))" and hence a multiple of unity. We determine how this equation
transforms under a rotation about 7, and first show

Us((0,m) A" Ux((0,m) 7" = AT . (4.63)

To this~ end we observe that the twisted Haag dyality (4.14) implies that~ the Tomit~a operator
of F(W1)" coincides with that of Z F((0,7)-Wy) Z*, where Z = Z(W1,(0,n)-Wy), which
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by covariance is given by ZU((0,7)) S(W1) Uy ((0,7))* Z*. On the other hand, the Tomita-
Takesaki modular theory asserts that the Tomita operator of F(W;)' is given by J A~3. We
thus have

JA™z = ZU((0,7)JAzU,((0,7) "' Z~*

=U(0,7))JZ 2A3U,((0,m)) since J Py = Py J
= JU((0,-7))Z 2 A3 U, ((0, 7)) by Theorem 4.14
= JU((0,7))A2U,((0,7)) " by equation (4.50) .

This implies equation (4.63). Further U((0,7))U (M (t))Uy, ((0,7))~! = U(A(~t)) due to the
group relations, and we conclude that equation (4.62) transforms under a 7-rotation as

AdU((0,m)) (ex (1) = AY Ux(Aa(=1) = ex(~) -

On the other hand, being a multiple of unity, ¢, (¢) is invariant under AdU, ((0,7)), hence
ex(t) = ex (=) .

But U(A;(t)) leaves Q invariant and AdU (A, (¢)) leaves F(W,) invariant, hence U(A;(t)) com-
mutes with A% for all ¢,¢'. Then t — ¢y (t) is a one parameter group, and the last equation
implies ¢, (t) = 1, which is the claim. O

4.3. Scattering States: Covariance and Tomita Operators

Considering only automorphisms of the observable algebra leads to trivial fusion
rules (4.64), which in turn imply that the fibres F(™) of the n-particle Hilbert spaces are simply
isomorphic to (CV)®" where N is the number of single particle representations. Further, the
representation e of the braid group in F(™ is explicitely determined by the statistics phases
of the elementary charges. Consequently the representation U of PT from Chapter 3 on the
reference Hilbert space of scattering states is explicitely given in the anyonic context, because
it depends only on the single particle representations of Pi and the representation ¢ of the braid
group. The same holds then for the representation U of 151 on the space of scattering states,
since it is equivalent to U via the Mgller operators. Similarly, the P;CT -operator is determined
up to the S-matrix. As a consequence, the Tomita operators of the field algebras associated to
wedge regions are essentially known explicitely, up to the S-matrix.

4.3.1. Structure and Poincaré Covariance of the Space of Scattering States. The
construction of scattering states in Chapter 2 is still valid if one substitutes the field bundle
A(Sp) x A, by the universal field algebra F,, the set of pairs A x Ho by the anyonic Hilbert
space H = @ Ho, and the action (o, B) - (¢',9) by the representation m,((x,B)) (x',%). In
the definition of F, and H we specialize to a group I' of sectors which is generated by single
particle representations. In detail, let

r={¢,a=1... N}

be the set of all sectors of irreducible massive single particle representations corresponding to
localizable automorphisms of A4, and satisfying Assumption 2, and let T" be the Abelian group
generated by I'V). Note that T'") is in general not linearly independent, since according to
Proposition 1.11 it contains together with each &, its inverse ;1. We will denote the label of
&1 by @, i.e. a is defined by £, = £;. Now we choose a maximal linear independent subset
of T(M) as the set of ‘elementary charges’ Ty, c.f. equation (4.9). T®) and T' correspond to the
sets A and A C A(Sp), respectively, defined in equation (2.24) and before equation (2.27) in
Chapter 2. In particular, the space of intertwiners from g,, - - - 0a, t0 0 € A now corresponds
to

C1 i X = Xoy -+ Xan, 5
Int (M0 Yy | T0Vxa ~xan ) = { 0) els’é‘ Xog " ° X (4.64)
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We will identify C1 with C. The Hilbert space H®* C H of scattering states, defined by
equation (2.27), can now be written as follows. Let HY” ®"*™™ be the closed linear span of all
scattering states of the form

Un X -+ X 1 (o, &, £), respectively,
and let for & € {1,... , N}*" the charge x(a) of a be defined as

X(@) == Xa; =" Xan -

Then
Hex = @ Hg(ﬂ) ex , where H;n) ex . @ H‘(Xn) ex (ex —out or in) )
n>0 ae{l,.“,N}Xn
xer x(e)=x

Let the reference Hilbert space H, the Mgller operators W+ and the representation U of the
Poincaré group be defined as in Chapters 2 and 3, see equations (2.64), (2.65), (3.6) and (3.17),
respectively. Due to the trivial fusion rules (4.64), they take the following form in the present
context. ® Recall that N = |T'M)| is the number of single particle sectors. We denote the
canonical basis of CV by {es,a = 1,...,n}, and the induced canonical basis of (CV)®" by
{ea =€n, ® - ®eq, }, with the multiindex a = (a1, ... ,@,) running through {1,... , N}*™.
Let € be the representation of the braid group in (CV)®" satisfying for k =1,... ,n

e(th) €a = €0(EapsrrEar) * €gp-t and (4.65)

,
e(cr) ea = €0(€ar = b1 » Ean) "~ €ar (4.66)
where ¢q is the symmetric bilinear form on T" with values in U(1) determined by
eo(X()»X(7)) = (i)’ for all x(),X(j) € Ter -
Let further ") be the subspace of (C)®" defined by

FM:= @ Cea cC (CV)®. (4.67)
ac{l,..., N}*"
x(a)=x
Then
H=PH, where A :=L2("Hy,F{™). (4.68)
€

Note that e leaves each F,g") invariant, since the set of multiindices a with fixed charge x is
permutation invariant. Elements of H will be expanded as ¥ = } .54 ac {,.. . Npxn Ya ® €a-
Further, the representation U of P, on # is given by

(U(2,5)¥) (@) =expi Py _ {MayT - G + 500, UG5 Mo @h)} Pa(§7'+@)  and (4.69)
k=1
(i[(.}) ’LZ)C!(&) = Cqa; """ Ca, @a(—iq) ) a = (071, .. aaﬂ) . (470)

Again, ¢, are the complex numbers of unit modulus from equation (1.75), satisfying c, = c5-
Note that (7(]51) leaves each ’fl;n) invariant, whereas U (j) maps ﬁ&n) onto ”H;"_)l Finally, the

Mgller operators W+ and W~ from #H°u* and"Hi“, respectively, onto H take the following form.
Let ¥ =4, x - x 1 (@, &, +/—) € H{eut/in respectively. Then

(WEp)(@) = (1 ©s - 0 ) (@) -0 (#0,6(@) - ear

where @Q—L,,E(Z]) is the braid (modulo kere) defined in equation (2.55), and 7 is the associated
permutation.

8This will be shown in the proof of the next proposition.
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PROPOSITIpN 4.20. The Mpller operators W+ and W~ are ~ung’tary operators from Hevt
and H™ onto H, respectively. They intertwine the representation U (P_T_) on H with the restric-
tion of the representation U on H to HOUH™, respectively, i.e.

WrU@G) (W) = UG = W U@ (W™)*  foralge Pl . (4.71)
Further, the P,CT -operator ©, maps H°" onto H'™ and vice versa and is related to (7(5) by
W-O,(WH* =U@G) = WHre,(W™)*. (4.72)

PROOF. Let Fé") be defined as the intertwinerspace Fén) in equation (2.35), with o replaced
by o7y, and a, replaced by 7y, . By virtue of the fusion rules (4.64), this space can indeed be
identified with (4.67). The representation € of B,, in F(™ has been defined in equation (2.36):

E(tk) €a = Wosa(tk, 1)_1 : ea’l'k_l = 7Tog(’yﬁmk+1 > Véay )_1 ’ ea'r,c_l = 60(0; £ak+17§ak)_1 : emk—l .

In the second equation we have used Lemma 1.6 and the last equation is the definition (4.23)
of £0(0). But £0(0) is just the bilinear form g¢ defined above, hence we have shown that the
definition of € by equation (4.65) is correct. Equation (4.66) follows from equation (1.43) of
Lemma 1.6 and from equation (4.26). Then the definitions of # and of the Mgller operators
given above coincide with the earlier definitions (2.64) and (2.65). Finally, the definitions of
U(zx,§) and U(7) also coincide with the earlier definitions (3.6) and (3.17).

Now we have identified the above definitions concerning the reference Hilbert space H with
those of Chapters 2 and 3. On the other hand, we have substituted the field bundle with the
universal field algebra, which has all the relevant properties used in the derivation of the results
of those chapters. These properties are in particular: 1. The representation U (131) implements
an action under which the field bundle is covariant, i.e. equations (1.25) and (1.29), which
have to be replaced by equations (4.33) and (4.34). 2. U(j) implements an automorphism o;
under which the field bundle is covariant, i.e. equations (1.80) and (1.81). This corresponds
to ©; implementing an automorphism under which the anyonic field algebra is covariant, i.e.
equations (4.57) and (4.58). Now we may apply Theorem 2.9 of Chapter 2 and Theorems 3.4
and 3.7 of Chapter 3 to prove the claims. O

4.3.2. Tomita Operators for Wedge Regions. Recall that, under the assumption of
modular covariance, by Theorem 4.14 and Proposition 4.19 the Tomita-operator S(W;) of
F(W1) and Q has the polar decomposition

S(W) = JAT | (4.73)
where the antiunitary part J and the positive part A? are determined by
J=Z(Wi,jW1)0; and
A% =U(M(t) forallt € R.
©; maps H°" onto H™ and vice versa according to Proposition 4.20, while A? leaves Homt
and A" invariant since U (151) does so (see equation (3.3) in Lemma 3.2). Consequently, the

Tomita-operator maps H°" into H™ and vice versa. The same holds for the Tomita operator
S(W) for any other wedge region W, since by covariance of the field algebra

SW) =U@SW)U®@G) ™", (4.74)

where § is any element of P, such that W = §-W;j. Recall further that the S-matrix S :=
(W*)* W~ maps H'® isometrically onto H°"*. Hence the operator

Sin(W) := S(W) S

leaves H'® invariant. It will be called the incoming Tomita-operator for F (W) and Q. Tt is
unitarily equivalent to an operator S(W) in H whid} can be explicitely calculated, and which
is defined as follows. Let A be the pendant of A in H :

At .= UM\ (t)) forallteR.
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LEMMA AND DEFINITION 4.21. Let W be a path in K ending at a wedge region, and let g
be any element of PJ_ such that W = g-Wy. Then

S(W) :=U(5) Z(W,jWh) U() A2 U(5)~"
18 inglependent of § and satisfies S (I/T/)2 = 1. Further, this operator is unitarily equivalent to
Sin(W) :
W= Sn(W) (W)* = S(W). (4.75)

PROOF. For short, we denote Z(Wy, jW;) by Z. We first show equation (4.75) for W = Wj.
As we have seen in equation (4.71), the S-matrix commutes with the representation U of f’l.
Hence it also commutes with the modular operator A%, and consequently Sin(Wl) may be
written as

Sim(W1)=2Z0; S Az .

Now equation (4.75) follows for the case W = W, with equations (4.71) and (4.72) of Proposi-
tion 4.20. Since the S-matrix commutes with U (Pi), the covariance property (4.74) also holds

for S;,(W). Hence by the intertwiner relation (4.71) of W,

W~ Siu(W) (W7)* = U@G)S(W)U(@g) ™
for any § with gW; = W. This shows equation (4.75) and independence of §. It is noteworthy
that that the latter property can also be shown directly by the group relations. It remains to
show S(W1)? = 1. From the group relation j A (t) = A;(¢) for all ¢ € R and the fact that

U(j) is antilinear follows U(j) Az = A~2 U(j), which implies the desired relation. O

S(W) can in principle be calulated since all involved operators Z, U (151) and U(j) are ex-
plicitelty given. As we have noted after equation (4.70), S(W) leaves the subspaces 7-L§<") 6971;"_)1

(respectively ﬂi") if x> = 1) of H invariant, hence it is sufficient to consider the restriction
of S(W) to these subspaces. We have found an explicit formula for W = W; using a global
trivialisation which renders L2(™Hy; F) isomorphic to Py L>(H;*"; F) and which exhibits the
restriction of S (Wl) to the n particle space as the second quantization of its restriction to the
single particle space. But the trivialization is adapted to the wedge Wi and it can hardly be
controlled how it behaves under Poincaré transformations. There has been more progress on
the single particle level, to which we will restrict in the sequel. Note that the physical Tomita
operators S (W) leave the single particle space H!) invariant, which can be seen from the polar
decomposition (4.73). Further, on the single particle space the outgoing Mgller operator coin-
cides with the incoming one, namely they are the direct sum W) of the unitaries W, which
identify the single particle spaces #S with L2?(H,y,dp), see equation (2.30). We conclude that
the restriction of the physical Tomita operators S (W) to H are unitarily equivalent to the
restriction of S(W) to H() :

wh s (W) = S for all W, (4.76)

where we have written S(1) := S|#(ndoms. We pick one single particle sector ¢ € TM) with
mass m and spin s. To be specific, we assume £2 # 1, and consider the restriction of S(W) to

H @ HY,. By W) = We © We-1 this Hilbert space is identified with
HY o U, = L (Hp, dp C)

We have replaced the unit mass shell again with Hy,. The representation of P, on this space
will just be denoted by U and is, by equations (4.69) and (4.70), given as

(U(z,§)v) . (p) = e Pe* Y7 4, (g7"p)  and (4.77)
UG )+ () =cpx(—jp), > =1. (4.78)

Note that for different spins s all representations U act in one and the same Hilbert space
L2(H,,;C?), and further the representative of j does not depend on s. The spin only enters
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in the phase factor which represents the Wigner rotation in equation (4.77). According to
Definition 4.21 we have

S(W) = e~im= 0 (j) Az mmazﬂm6%|ﬁ@@n. (4.79)

t=0
Here we have taken account of the fact that the restriction of Z(Wy, jW;) to He ®He-1 is given
by exp(—ims)1, and we have set the complex number ¢ in equation (4.78) to 1. We turn to
the calculation of S(W). It should be noted, that the interesting point is not the calculation
of S(W) for any fized W, but rather how the family of Tomita operators behaves with varying
W. ® Ultimately, one would like to know the intersection of the domains of all S(W) with W
containing a given spacelike cone S. We have found a solution only for the family W = (0, w)-Wl,
with w varying in (—m,0].
Let u be the following function on H,, :

Do — D1 Po—p1+m+ip2>s > 2. o
u(p) := . - , = + p5 +m* . 4.80
)= (BB RIRERIR) e (4.80)

Note that for all p € H,,, the real part of pg — p1 + m =+ ips is strictly positve, hence the
complex number in brackets lies in the cut complex plane C \ Ry . Thus the power to s € R
can be (and will be) defined via the branch of the logarithm with In1 = 0. We introduce
the following notation. Given a continuous function v on the mass shell and an L2-function
¢ € L?>(H,,;C?), we denote by v - ¢ the function p — v(p) - #(p). Further, if f is a Schwartz
function on R3, we denote by E,,f the restriction of its Fourier transform to the mass shell
H,,, and for f eESR)®C, En fqis understood componentwise.

PROPOSITION 4.22. Let w € [0,7). Then S((0,—w)-Wi) is well defined on the set
{u-Enf |feSR)®C withsuppf C R(—w)-Wy },
and for f € S(R(—w)-Wh), the Tomita operator acts as
S((0,—w) W1) u-Enf®er =€ u-E,f®er, respectively . (4.81)

Here, R(w) denotes the rotation corresponding to (0,w) € f/l.

PROOF. The proof is given on page 83 in Appendix A.3. Here it may be remarked that
the action of the modular operator Az é can be calculated by analytic continuation of A% ¢ in
t into the region R — [0, 1], but the factor expisQ(A1(t), p) has branch points in that region,
which can be seen from equation (A.33) in the Appendix. The multiplication operator w is
designed such that it ‘intertwines’ the Tomita-operator S ((O,w)-Wl) for spin s with that for
spin 0 simultaneously for all w in (—m,0], thus reducing the problem to the well known case
s=0. O

It is noteworthy that u - E,, f is in general not in the domain of S(W) if W is a generic wedge
containing Wy N (0,w)-Wi, unless s = 0, see Proposition 5.7.

9In fact, we have found for fixed W the diagonalization Vi + L2 (Hm,dp; ©) — L%(R?,d%y; C?) such that
Vi SOW) Vg w(y1,y2) = e™¥/% 9(—y1,92) -

But the dependence on W is hardly tractable.



