CHAPTER 5

Can there be Free Fields for Anyons?

What is a “free field”? — In 3 + 1 dimensions this question has a quite definite answer:
It is the free Fock space field, which associates to a given particle type a quantum field (see
equation (5.2) below). For anyons in 2 + 1 dimensions, in contrast, free fields satisfying the
requirements from relativistic quantum field theory have not been constructed yet!. In fact,
the original yet unreached aim of the present thesis was to construct such a model. Instead, we
were able to show that such a model cannot exist for anyons without giving up certain ideas
one has about “free fields”.

Let’s recall what the free field is in 3 + 1 dimensions. An elementary particle, alone in
the world, should be quantum mechanically described by an irreducible ray representation of
the Poincaré group. This idea is due to E.P. Wigner, who also largely solved the mathematical
problem of classifying these [Wig39], i.e. of deducing what particle types may occur — a highlight
in the interplay between mathematics and phsics. Yet, the corresponding single particle theories
did not seem to support a satisfactory localization concept?, and also do not offer a principle
to incorporate interaction in an unambiguous way, or even to take account of annihilation
and creation of particles encountered in high energy physics. These issues have been solved
by the so-called second quantization, where the single particle wave function is replaced by an
operator valued local quantum field acting in the bosonic or fermionic Fock space over the one
particle space. It satisfies the Wightman axioms and describes a system of arbitrarily many
noninteracting identical particles.

In 2 + 1 dimensions, however, the situation is far from being so satisfying. As we have seen
in Section 1.3, in d = 2 + 1 the classification of elementary particles may be carried through as
well, the massive particles being labelled by their mass m > 0 and spin s € R, which labels the
representation of the universal covering R of the rotation subgroup SO(2). But a straightforward
definition of a second quantized field as in equation (5.2) fails for anyons (i.e. particles with non
semiinteger spin) on account of two apparent complications: The Hilbert space H does not have
a canonical Fock space structure, and there are no so-called u- and v-spinors, whichind =341
serve to make the free fields transform under a finite dimensional (non-unitary) representation
of the Lorentz group, see equation (5.1).

In fact, a large part of the time this Ph.D. thesis took the author has been used up in
the unsuccessful attempt to overcome these two difficulties and construct a direct substitute
of the free Fock space field. A (non-canonical) Fock space structure may be imposed on H
by a trivialization of the vector bundle in terms of which the anyonic Hilbert space is de-
scribed [Mun92, MS95]. The problem of the u- and v- spinors may be either avoided by the
use of the modular localization concept to be introduced below, or settled by using an infinite
dimensional representation of the universal covering group of the Lorentz group, which is in
d = 2 + 1 the universal covering of SL(2, R)®.

After constructive attempts at a direct substitute of the free Fock space field have failed,
a more general characterization of a “free field” was desireable. We advocate the viewpoint

ID.R.Grigore has constructed free fields in d = 2 + 1 for any spin [Gri94] in a bosonic Hilbert space, but
in contradiction to the weak spin statistics connection mentioned in the introduction [Fre89, FM89], all of these
fields have bosonic statistics. Presumably, this is due to the fields having infinitely many components.

2see, however, the remarks at the beginning of Section 5.2 on (modular) localization in Hilbert space.

3This route has been proposed by R. Schrader and the author in [MS95], where the ribbon braid group
is considered instead of the braid group and the so-called principal series representation of SL/(\ZjR) plays the
role of the abovementioned representation D. — D. R. Grigore has used a similar solution in the mentioned
article [Gri94]
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that the essential feature of a free field is that it establishes a “second quantization functor”
assigning to each single particle space #(™*) a field algebra, which is thus altogether with
its localization concept (namely, the net structure, microcausality and Poincaré covariance)
completely determined by the single particle space. Note that this implies that already on the
single particle level there is a notion of localization — this is the concept of modular localization,
which we introduce in Section 5.2. To be specific, we assume that the local algebras of a free
theory are generated by basic fields which create only single particle states out of the vacuum
(Section 5.1). But under slightly stronger assumptions, we can establish two no-go results: In
Section 5.2 we assume that the basic fields are determined by the single particle vectors which
they create from the vacuum, thus incorporating the idea that the field algebra is fixed by the
single particle space and its localization concept. We show that in the case of non-zero spin this
assumption, together with a certain intersection property of the field algebra (equation (5.12))
which is usually satisfied if the field algebras are generated by local quantum fields, is in conflict
with the assumption of modular covariance. This is achieved by using our results on the explicit
form of the Tomita operator for wedge regions in Section 4.3 and Appendix A.3. The conflict
is due to the representation of the Wigner rotation and is peculiar to 2 + 1 dimensions. In
Section 5.3 we show that the basic fields must violate a certain mild regularity condition,
reminiscent of the Wightman axioms. Otherwise we can establish, via a theorem a la Jost-
Schroer, commutation relations of the fields which are not compatible with anyonic statistics.
The basic idea which has lead the author to this no-go theorem is due to B. Schroer, and the
result has been published in [Mun98].

5.1. What is a “Free Field”?

We briefly review the definition of free Fock space fields in 3 4+ 1 dimensions. The physically
relevant irreducible ray representations of the Poincaré group (hence particle types) are labelled
by the mass parameter m > 0 and the spin (respectively helicity for m = 0) s € {0,3,1,...}
which determines a unitary irreducible representation V; of the rotation subgroup SU(2) in
C?5+1 (respectively the twofold covering of SO(2)). So-called u- and v-spinors intertwine V;
with a (non-unitary) finite dimensional representation* D of the covering group SL(2,C) of the
Lorentz group in the sense that

u(p) Vo(R(A,p)) = D(A)u(A~1-p) forall A€ SL(2,C), p € Hp, , (5.1)

where R(A,p) € SU(2) is the Wigner rotation, and v(p) is defined by v(p) := u(p) Vs(0o2). Then
the (neutral) free Fock space field for the particle type (m, s), transforming according to D, is
the operator valued distribution in the bosonic or fermionic Fock space over the one particle
space H(™#) defined by

2s+1

®,(z) = (2m) 2 /H dp(p) D (e*"”'wuuk(p) ar(p) + €*v,i (p) aZ(p)) ,v=1,...,L. (52)
m k=1

The u- and v-spinors are responsible that the covariance properties of the creation and annihila-
tion operators a*(p), a(p) are carried over from p-space to z-space by the Fourier transformation.
The net (F(O))o of von Neumann algebras generated by the smeared Fock space fields via

F(0) = {expi(@(f) + 2(1)") | F € S(©:C") ) (53)

contains the physically relevant information and does not depend on the representation
D(SL(2,C)) used in the definition of the free Fock space field, i.e. it is completely deter-
mined by the particle type (m,s). In fact, (5.3) may be reformulated without taking recourse
to the u- and v-spinors and the representation D. Recall that for every single particle vector
the so-called Segal-operator ¢(v) is a self-adjoint operator in Fock space which creates ¥ out
of the vacuum, i.e. p(¢b) 2 = ¢, and is uniquely determined by % on a certain core indepen-
dent of 1°. Now ®(f) + ®(f)* may be rewritten as ¢( f ) where f is the single particle vector
f =o' -E,.f+u*-E,f. Here E,, f denotes the restriction of the Fourier transform of f to the

4In fact, for given s there are several representations D possible.
5see [RS75]
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mass hyperboloid, and we have used matrix notation. Further, the set of single particle vectors
f arising from functions f with support in a given space time region O may be characterized
without taking recourse to Fourier transformation, namely via modular localization, which we
introduce in Section 5.2. Denoting this set by K (O), we thus have rewritten 7 () as the algebra
generated by the Segal operators ¢(1) with ¢ € K(O).

Summing up, the free field construction (5.2) establishes a “second quantization functor”,
assigning to each single particle state space H(™*%) a local net (F(O))o of field algebras. We
advocate the viewpoint that this is the essential feature of a free field, and are led to the
following definition.

DEFINITION 5.1. A field algebra F = (}'(IN))I-E,E is called a free field algebra, if each F(I)

is generated by a star stable linear set ®(I) of closed operators in #H (the free fields localized in

I ) creating only one particle states out of the vacuum:

eQeHD  forall p € (), (5.4)
and the set of these one particle states is dense in H®).

To appreciate this definition, recall that in 3 + 1 dimensions the Jost-Schroer theorem®

asserts that if the free fields are assumed to be Wightman fields, the above condition already
characterizes them as the free Fock space fields (5.2). (In fact, this line of argumentation leads
for anyons to our no-go result in Section 5.3.)

For notational conveniance, we will consider in this chapter only one elementary charge
Xe generating the group T of sectors, i.e. ' = {x%|q € Z }. We denote by s the spin of xe,
by w = exp 2mis its statistics phase, and by m its mass. The set I'!) of single particle sectors
contains . and x;! and may or may not contain other sectors.

5.2. Free Fields and Modular Localization

We first introduce the concept of modular localization in Hilbert space, which is not tight
to the free field case (see, e.g. [Sch97]).

Modular Localization in Hilbert Space. Localization of observables is one of the fun-
damental concepts of algebraic quantum field theory. We have seen that it entails a notion
of localization also for the (unobservable) field algebra. For states, however, the notion of lo-
calization has turned out less appropriate. Newton and Wigner have proposed a definition of
localization for single particle state vectors of massive elementary particles [NW94], but this
concept of localization of a particle is meaningful only for accuracies above the order of a comp-
ton wave length. Yet, as mentioned in the introduction to this chapter, the localization concept
of of the field algebra — to be specific: the ‘net’ structure, microcausality and Poincaré covari-
ance — can be carried over to the Hilbert space H on which the field algebra acts. The idea is
to consider states in F(I) Q as localized in I (relative to the vacuum ), and find a topology
such that the closure of this set in 7 may be viewed as the subspace of vectors localized in I. Tt
must be finer than the norm topology, which destroys all information about localization, since
by the Reeh-Schlieder property F(I) € is norm-dense in H for any I. The suitable topology is
the graph norm topology of the Tomita-operator for F(I) and Q. (The closure is then just the
domain of the Tomita-operator.) We will work out this concept in the present subsection and
end up with a family of closed subspaces of H which reflect the defining properties of a field
algebra, see Definition 4.1. Thereby this family encodes in particular a notion of localization,
which we call modular localization in H. The relevant properties are listed in Proposition 5.3.

The Tomita-operator for F(I) and € will be denoted by S(I). It is an unbounded antilinear
operator satisfying S(I)? = 1. By virtue of the latter property, any vector in the domain of S(I)
may be uniquely written as 1) = ¢4 +¢_ with S(I) 14 = £4, namely 1y := 1 (¢ £ S(D)p).

We denote by K (I) the eigenspace to +1:
K(I)={¢€domSI)|ST)¢p=¢}.
6This theorem is due to B. Schroer [Sch58] and has been elaborated by R. Jost [Jos61] and further by

K. Pohlmeyer [Poh69]. For a didactic account, see [SW64, Thm. 4-15]. O. Steinmann has extended it to string-
localized fields satisfying modified Wightman assumptions and Bose or Fermi statistics [Ste82].
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It is a real linear subspace of H, which carries the norm induced by the norm on A and is closed
in the corresponding topology.” Since S(T) is antilinear, multiplication with the imaginary unit
1 maps its eigenspace to +1 onto the eigenspace to —1 and vice versa, and hence the above
discussion implies that

K(I)+iK(I) =domS(I) and K(I)niK(I)={0}. (5.5)
Due to these properties, the operator S(I) can be recovered from K (I) by setting
S(I) (Y +i¢) == —i¢p forall i, ¢ € K(I),

and is thus completely determined by the real space K (I). For any subset M of H we define
the symplectic complement M' of M as the set of vectors ¢ € H satisfying Im(¢, ¢) = 0 for all
¢ € M. It is a closed real linear space [LRT78].

LEMMA 5.2. K(I) and its symplectic complement may be directly obtained from F(I)
through the relations

K =rFIyr*Q~ and (5.6)
K@) =FdD))y*Q . (5.7)

Here the closures are understood in the norm topology, and F (f )52 denotes the set of self adjoint
elements in F(I).

PROOF. A vector ¢ is in K (I) if and only if it is in the domain of S(I) and S(I) ¢ = ¢,
i.e. if and only if there is a sequence of operators B,, in F(I) such that both B, Q and B} Q
converge to ¢. Setting A,, := %(Bn + B}), this is equivalent to the existence of a sequence A,

of self adjoint operators in F (1: ) such that A, € converges to ¢. This shows the first equation.
Now let ¢ € K(I)'. Then for all ¢, ¢, € K(I)

(P, b1 +ide) = (p1 —ida, ¥) = (SUT)(p1 +iga), V).

Hence® 4 is in the domain of S(I)* and S(I)*1) = . Conversely, if 1) satisfies the latter
condition, it is clearly in K (I)'. Hence K (I)' is the eigenspace of S(I)* to the eigenvalue +1.
By virtue of Tomita-Takesaki theory, S(I)* is just the Tomita-operator for F(I)" and Q. Hence
the second equation may be proved with the same argumentation as the first one. O

PROPOSITION 5.3. The family (K(I))j g satisfies the following properties, which corre-
spond to those of Definition 4.1:

1. Isotony: K(I) c K(J) if I C J. in the sense of (1.22).
2. Twisted Haag duality: Let I,I' be classes of paths in K ending at I and its causal
complement I', respectively. Then

Z(I, K" = K(I) . (5.8)
3. Poincaré covariance: For all I € IE,
U@G) K(I) = K(g-I) for all g€ P! and
0, K(I) = K(G-I).
4. Property of being standard: K (I) + iK (I) is dense in H, and K(I) NiK (I) = {0}.

PROOF. Properties 1 and 3 follow directly from the corresponding properties of F (1: ) via
equation (5.6). To prove property 2, we also exploit equation (5.6) to rewrite the left hand
side of equation (5.8) as (Z(I,1') F(I') Z(I,I')*)** ", which by twisted Haag duality (4.14)

coincides with (F(I)')** Q , and hence by equation (5.7) of the last Lemma with the right hand
side of equation (5.8). Property 4 follows from equation (5.5). O

"Note that the restriction of the scalar product to the vector space K (I) is not real valued and hence does
not turn it into real Hilbert space.
8Note that the adjoint of an antilinear operator S is characterized by (S*v, ¢) = (S¢, ) for all ¢ € domS.
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Characterization of Free Fields via Modular Localization. In a free theory we
expect the properties of the last Proposition to be satisfied already on the one particle level,
i.e. for H replaced by H") and K (I) replaced by

KW = KI)nHD |

which we then consider as the space of one particle vectors localized in I. Further we wish
the free fields to establish a ‘second quantization functor’ which assigns to each such local one
particle space K (I)(V) the local field algebra F(I) :

Y F 5.9
localization: K (I)(") } — { localization: F(I) (59)

Such a theory will be called a modular free field algebra (Definition 5.4). This picture is only
slightly more restrictive than the earlier Definition 5.1 of a free field algebra: It follows from
Definition 5.1 under the additional assumption that the set ®(I)2, assumed to be dense in
HM | is already a core for the restriction of S(I) to H(") (Lemma 5.5).

DEFINITION 5.4. A field algebra F = (F(I));.f is called a modular free field algebra, if for
every I € K the following holds. S(I) leaves H(1) invariant, i.e. S(I) (K™ ndomS(I)) c HD,
and F(I) is generated by a star stable linear set ®(I) of closed operators in H creating only

one particle states out of the vacuum, and for every ¢ € K (f )(1) there is a closed symmetric
operator ¢(v) € ®(I) which satsfies p(1) Q = 9.

LEMMA 5.5. Let F be a free field algebra in the sense of Definition 5.1 and let ®(I) Q be a
core for S(I)|H®ndomsS(f) for each I € K. Then F is a modular free field algebra. Conversely,
let F be modular free. Then it is a free field algebra, and further the properties 1 to 4 of

Proposition 5.3 hold on the one particle level, i.e. for H replaced by HY) and K(I~) replaced by
KD,

PROOF. Let F be a free field algebra with F (I) generated by ®(I). Since S (I) is a closed
operator, one easily verifies that S(I) is well defined on ¢ €2 for every ¢ € ®(I), and that

ST eQ=¢p*Q. (5.10)

Hence S(I) (<I>(f) Q) ¢ HW. Using again that S(I) is closed and that ®(I) Q is assumed to be
a core, one concludes that Py q) S(f) C S(f) Py, ie. that S(f) leaves HV) invariant. Note
that for every ¢ € K(I) there is a closed symmetric operator ¢(¢) affiliated with F(I) and
satisfying ¢(¢) Q = 1, namely the closure of the operator

F'Qw F'y  forall F' € F(I) . (5.11)

Since these operators are affiliated with F(I), we may add all ¢(¢)) with ¢ € K(I)®) to the
set ®(I) which generates the algebra F(I) without enlarging the latter. This shows that F
is modular free. Conversely, let F be modular free. Then it is clearly also free. Using that
by assumption H® N domS(I) coincides with the dense set Py,a) domS(I), one easily verifies
that the properties 1 to 4 of Proposition 5.3 still hold if one replaces # by H(") and K (I) by
KM, O

‘No-Go’ for Modular Free and Modular Covariant Non-Scalar Fields. We assume
that F is a modular free field algebra satisfying modular covariance, i.e. the modular objects
have the geometric significance as in Theorem 4.14 and Proposition 4.19. We require that in

addition for every ¢ € K(I) the closed symmetric operator ¢ satisfying ¢ € = 1 (which by
Definition 5.4 is contained in ®(I)) is uniquely determined by 1. This could be implemented
either as in the case of the Segal operator: one has a common core and a common prescription
1 — (1) for all ¢ and all I. One could also require ¢ to be determined by the conditions that
it creates ¢ from the vacuum and that it is affiliated with F(I), where I is the localization
region of 1. Being affiliated with F(I), ¢ must satisfy the prescription (5.11), and then ¢ is
uniquely determined (in the latter sense) by ¢ if and only if it is the closure of the operator

(5.11), i.e. if and only if F(I)' Q is a core for . But 1 is also localized in any J which contains
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I, and hence, if ¢ is to be fixed by 1 in the above sense, already the smaller set F(J)' € must
be a core for ¢.

In either case, we may denote ¢ it by (1), and we demand in particular that ¢ does not
carry any y-independent information about the localization region.

AsSUMPTION 3. Let ¢ € K(I). Then there is a closed symmetric operator ¢(3) affiliated
with F(I) satisfying ¢ () @ = 1 and which is uniquely determined by ¢ in the abovementioned
sense.

We further assume the field algebra to satisfy the following intersection property:

ASSUMPTION 4. F satisfies the following intersection property: Let I; N I, # (§ in the sense
of definition (1.22). Then
FLnk)=F@L)NF). (5.12)

Note that this assumption is independent of all axioms and assumptions made so far. But
it may be viewed to encode that the algebra is generated by a local quantum field. In the case
of a modular free field algebra satisfying Assumption 3 one can then conclude that the same
intersection property holds for the real one particle spaces:

LEMMA 5.6. Let F be a modular free field algebra satzsfymg Assumptwns 3 and 4, and let
Il, .72 € K be such that their union I1 U .72 is contained in some I € K. Then
K(L n L)Y = K(I)M nK(L)Y . (5.13)
Note that for any field algebra satisfying the intersection property (5.12) one has, due to
the Reeh-Schlieder property,
.7:(IN1 n fg)saﬂ = f(fl)san n ]_'(172)5119 .
But this implies, via equation (5.6), only the inclusion “C” of the claimed equation and not
“D”, because in general
(f(fl)saﬂ N f(fg)saﬂ)_ g FL)=Q nF(I)=Q
Proor. Toshow “27,let ¢ € K(~I~1)(1) NK (I;)V). Then by Definition 5.4 there are symmet-
ric operators ¢;(¢) affiliated with 7(I;) (i=1,2) and satistying ¢1 £ = ¢ = p, . Assumption 3
demands that @1 = w2 = p(¢). Due to Assumption 4, ¢(1) is affiliated with F(I; N I3). By the
same argument leading to equation (5.10), one concludes that
S(hink)y =S8N L) p(Y) R =) 2= py) 2,
hence ¢ € K(I; N Ir)™. O
Now we will show that if the field algebra satisfies modular covariance, our explicit results on
the Tomita-operator for wedge regions in Proposition 4.22 imply that equation (5.13) is in fact
violated in the case of non-zero spin. We only discuss the case s > 0. In order not to burden

notation, we restrict to one massive single particle sector x satisfying x2 = 1. Let w € (—m,0),
and let

K,:={u-E.f|f€S(Win0,w)W)},

where u is the function on the mass shell defined in equation (4.80), and Sg(M) denotes the
space of real valued Schwartz functions with support in the spacetime region M, and E,, f is
the restriction of the Fourier transform of f to the mass shell. Then by Proposition 4.22,

K, € K(W)® 0 K ((0,w)-W7)" . (5.14)
On the other hand, we have the following result:
PROPOSITION 5.7. Let § be an element of ]51 of the form § = (0,—7%) A1 (') (0,w') with

t' # 0 and w' < 0, where the parameters t' and w' are chosen such that G-Wi contains the
intersection W1 N (0,w)-Wy. Then

K, CK(@GW)M ifs=0, whereas (5.15)
K, ¢ K@GWw)®  ifs>0. (5.16)
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(In fact, we conjecture that for s > 0 the intersection K, N K(§- Wl)(l) is trivial.) Note
that such a choice of g exists: If one takes w close to —m, and ¢’ and w' close to zero, then
Wi N (0,w)- -W, is a spacelike cone of small opening angle in the negative y-direction, and §-W;
is a wedge in approximately the same direction.

PROOF. A proof of the proposition is given on page 85 in Appendix A.3. O

But by virtue of isotony, the space K(Wl N (0, w)-Wl) M) is contained in K(3W1)®, and hence

Proposition 5.7 shows that K, is not contained in K (Wl N (0, w)-Wl) @) i s > 0. Consequently,
in this case

K (W10 (0,w)-W1) " € KO7)® n K ((0,w)-W1) Y,

in contradiction to equation (5.13). We conclude: Let F be a modular free field algebra satisfying
modular covariance and the intersection property (5.12), and let the spin of the generating
elementary charge x. be non-zero. Then the closed symmetric operators, which by Definition 5.4
are affiliated with F(I) and map the vacuum vector into K(I)V), are not uniquely determined
by the single particle states which they create from the vacuum. This shows that under the
stated assumptions, the basic fields ¢ which generate the local algebras cannot be as canonical
objects as the Segal operators used in ‘second quantization’. Viewed differently, we conclude
that the ‘functor’ (5.9) is not injective:

KOO nKWJDHO — FI)nFJ)
# |
K(InJ)® —  F(INnJ) .
This is a surprising result, and it shall be discussed in the near future how the free fields which
have been constructed in d = 3 + 1, e.g. the spin % field, behave in this respect if they are
restricted to 2 + 1 dimensions.

5.3. No-Go via Jost-Schroer Theorem

Here we skip the Assumptions 3 and 4 of the last section. Instead, we strengthen our
definition of a free field algebra into a direction which is reminiscent of the Wightman axioms.
Namely, we assume that for two fields ¢1, @2 with spacelike separated localization regions, the
norm of ¢; U(z) g3 Q@ is polynomially bounded in z (Assumption 5). We then arrive at the
no-go result in two steps: If the asymptotic directions of the localization regions of two fields ¢
and ¢ are spacelike separated, their “twisted commutator” is a c-number function, even if the
localization regions overlap (Proposition 5.10). This is completely analogous to the (first part
of the) well known Jost-Schroer theorem. On the other hand, these commutation relations are
consistent only in the case of permutation group statistics (Lemma 5.11).

AssuMPTION 5 (Regularity condition). Let ¢; € ®(11) and ¢y € ®(12) with I; C I}. Then
U(x) o2 © is in the domain of ¢, for all € R®, and the function

z [l Uz) o2 Q| (5.17)

is polynomially bounded for large z and locally integrable. Further, the free fields carry definite
charges, i.e. for each ¢ € ®(I) there is some x € T'M such that V; o V;* = x(t) - ¢ for all t € R.
In addition, there exist nontrivial free fields in @(I ) carrying the particular charges x = x. and
X=x:"

Note that the regularity condition (5.17) can be violated only if the fields are unbounded
operators.

REMARK. Alternatively, we could have made the following stronger assumption.

ASSUMPTION 5’. Let ¢ € ®(I). Then ¢ is uniquely determined by the single particle vector
¢ Q2 which it creates from the vacuum. Further, the domain of ¢ is invariant under translations,
and for all ¢ € dom ¢ the function

e [leU) 9|l
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is polynomially bounded for large z and locally integrable. Finally, the domain of ¢ contains
the set (L) Q if I C I'.

These conditions #mply Assumption 5 in the following sense. By assumption, each ¢ € ®(I)
is the closure of the operator (5.11). On its core F(I)' Q it may be decomposed into the finite
sum ¢ =} @) Px, where ¢, is defined, in analogy to equation (4.5), by

oy F'Q := F'P,pQ forall F' € F(I) .
@y, clearly carries charge x and is affiliated with F(I). Replacing ®(I) by the set of all ¢, with

@ € ®(I), Assumption 5 is satisfied.

We have chosen Assumption 5 so that the free fields ¢ can be decomposed into creation
and annihilation parts at least on vectors of the form ¢’ @ (Lemma 5.8). This will suffice to
establish Proposition 5.10, which is the analogon of the first part of the Jost-Schroer theorem.

For ¢ € ®(I), let ¢(z) := U(z) o U(x)~" be the translated field, which is affiliated with
F(I +x),° and let HX := +H,, be the positive and negative mass shell, respectively.

LEMMA 5.8. Let @1 and 2 be spacelike seperated fields as in Assumption 5. Then the H-
valued function ¢1(x) p2(y) Q is a tempered distribution, whose Fourier transform has support
contained in (H,, U H}) x H}. Let F* and F~ be defined by the corresponding decomposition,
i.e.

01(2) 02 (y) @ = FH(z,y) + F(z,y), with suppF*C HE x HF. (5.18)
Then
F~(z,y) = (2, p1(2) p2(y) Q) 2, (5.19)
and
sppF T (z,y) C H} + H} . (5.20)

Here spptp denotes the spectral support of 1 w.r.t. the energy momentum operators.

PRrROOF. Let f,g € S(R?), the space of Schwartz functions. Due to the temperedness con-
dition in Assumption 5, Riesz’ theorem asserts the existence of a unique vector F'(f,g) € H
satisfying

(6.F(f,g)) = /dﬂfd?/f(l‘)g(y)(¢,901(37)<P2(3/)9> for all ¢ € H,

and whose norm can be estimated by

IE(f9)ll < /dwdy |f(@)g(w)| ll1(z)e2(y)€2] -

By Assumption 5, this shows that the linear map F' : (f,g) — F(f,g) is continuous in both
entries w.r.t. the usual locally convex topology on Schwartz space, i.e. F' is a vector valued
tempered distribution.

To prove the statement on the support of its Fourier transform, let f; be in C§°(R?), i.e. a
smooth function with compact support, and g € S(R?). For all A € F(I; +suppfi)’ one verifies
that

(AQ, F(f1,9)) = (Afi(P)¢i Q, §(P) p2 ).
Since @2 Q and @] 2 are in H ™), the scalar product vanishes if suppg N Hf =0 ,orif fis
of the form f; = (O + m?)f for some function f € C§°(R?). Taking into account the fact that
F(I; + suppf1)' Q is dense in H, we conclude that

F((@+m?)f,g) = O0foral feCs(R?), ge S(R’), and
F(f,g) = Oforall feCs°(R®) and g € S(R®) with suppg N H,\ = 0.
By continuity of F, these two properties extend to all f € S(R?). Now we can proceed as in

the case of Wightman fields [SW64]:

9(and not localized at x)
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The support of the Fourier transform of F' consists of two disjoint sets contained in H, x H.}
and H x H} respectively, thus defining the decomposition (5.18). To analyse the energy
momentum supports, we extend F' via the Schwartz nuclear theorem to a continuous linear
map from S(R® x R®) into H, and note that for all f,g € S(R®) we have e*f F(f®g) =
ﬁ( e (P1tr2) f @ §). By linearity and continuity this yields

WP)F(fog) = F (h(p1 +p)- f® g) for all h € S(R?). (5.21)

From this equation and from the support properties of F we conclude that h(P) F(f,g) = 0
if supph N (HEX + H}) = 0, respectively. This shows that spp F¥(f,g) C HX + H}. Since
H, + H intersects the energy momentum spectrum only in {0}, the vector F~(f,g) must
be a multiple of the vacuum vector 2, the factor being (2, F~(f,g9)) = (Q, F(f,g)). This
shows that F*(z,y) are, like F(z,y), well defined as functions, and have the properties (5.19)
and (5.20). O

Our subsequent arguments will involve spacelike commutation relations of the free (possibly
unbounded) fields ¢. On the vacuum vector they can be derived from those of the field algebra
elements:

LEMMA 5.9. Let I, C Ij, and let p1 € @(fl) and p2 € <I>(f2) be field operators carrying
charges x&' and x3*, respectively. Then

e

01 Q@ = W 2CNTY o) 6 Q. where N := N(I,, L) . (5.22)

PROOF. One approximates the positive part of the polar decomposition of ¢; by operators
in F(I;) and uses equation (4.27) to show

01 Z(I1, 1) 02 = Z(I, 1) 02 Z(1, 1) 1 Q..

This implies equation (5.22) by the arguments used in the proof of Lemma 4.7, if one takes
account of the fact that eo(N; x9*, x%2) = w?2(N+1) by equation (4.25). O

Now we are ready to establish an analogon to the (first part of the) Jost-Schroer theorem:
If in the situation of Lemma 5.9, we translate the localization regions such that they are not
spacelike separated any more, only a multiple of Q is added to the right hand side of the
commutation relation (5.22). More precisely:

PROPOSITION 5.10. Let I C Ij, and let ¢; € <I>(f1) and @y € <I>(f2) be field operators

carrying charges xI* and x22, respectively. Then the fields satisfy the commutation relations

©1(2) 2 @ — wB 2N ) 0 (2) Q = €y .0, (2) QR for all z € R® (5.23)

Here N = N(I1, 1) and cy, o, (%) is the scalar product of the vacuum with the left hand side of
equation (5.23).

Note that these commutation relations extend from € to (,_; , (i + z;)' 2, which is

dense in # if I; and I, have “equal winding numbers”, see equation (5.25).

PROOF. After having established Lemma 5.8, the proof of this proposition is a straightfor-
ward adaption of the proof of theorem 4-15 in [SW64] to the present anyonic case: Let Fff 5 (z,y)
be the component of 1 (z)ps(y) @ whose Fourier transform has support in H;} + H according
to Lemma 5.8, and F;fl (z,y) that of pa(x)p1(y) Q. Let further wiy := w2 N (1,12)+1) | gee
equation (5.22). Lemma 5.8 asserts that

01 (2)p2 & — w12 Y201 (2) Q = €y, 0 () Q@ + Fify(2,0) — wi2 F5 (0, 2). (5.24)

We have to show that the last two terms add up to zero. For all ¢ € H, the distribution
Fy(z) = (¢, Fff 5(z,0) — wi2 F2J7r 1(0,z) ) is the boundary value of an analytic function, since
its Fourier transform has support in the cone V, according to Lemma 5.8 [RS75, Thm. IX.16].
Further, equations (5.24) and (5.22) imply that F, vanishes on the real open set of points
satisfying I1 + C I;. Due to the edge of the wedge theorem, this forces Fy to vanish identically
as a distribution [SW64, Thm. 2-17], and hence as a function. O



5.3. NO-GO VIA JOST-SCHROER THEOREM e

LEMMA 5.11. Assume, some of the commutator functions cy,,,,(x) appearing in equation
(5.23) of Proposition 5.10 do not vanish identically in . Then the commutation relations (5.23)
are consistent only if the statistics phase w is 1 or —1, i.e. only in the case of permutation group
statistics.

REMARK. The additional assumption of the proposition does not seem to be a severe
restriction: if it were violated, we only needed a criterion allowing us to deduce commutation
relations for the field algebra elements from those of the fields (like an energy bound satisfied
by the fields), to conclude that the local observable algebras are commutative — in contradiction
to our general framework given in Chapter 4.

PROOF. We choose two spacelike seperated spacelike cones I1, I € K, two corresponding
paths fl,fg ekst. I <l < (0,2m) -fl, and two fields ¢; € <I>(f1), P2 € <I>(f2) together with
a translation vector z € R® s.t. ¢y, 4, (z) # 0. This presupposes that the charges x?' and x?2
of the fields satisfy x?'7% = 1, since the left hand side of equation (5.23) is in H,, 4,4, while
the right hand side is in 1. We choose ¢; = —1 and ¢» = 1. Next we pick a cone I3 € K
spacelike!® to I; + 2 and I, and such that their union I; + z U I, U I3 is contained in some
I, € K. Now we choose I3 € K ending at I3 with L<L<h (to be definite) and a non-zero
field g3 € ®(I3) carrying charge xe. Due to the localization properties of ¢;(z) and @3, the
commutator ¢y, ., () vanishes. We have chosen the localization regions so that there is a path
I, € K containing I + =, I, and I5 in the sense of (1.22). Using isotony of the field algebra,
this implies that the subspace

D:=F(h+z)Qn (| F(L) Q (5.25)
i=2,3
contains F (1:2)' €2, which is dense in H due to the Reeh-Schlieder property, see Property 4 of
Definition 4.1. Thus, D is a dense subspace on which equation (5.23) holds. Now let ¢ € D.
Denoting w;; = w9 GNUsli)+1) and ¢1y 1= ¢y, 0, (2), We get from Proposition 5.10 and from
equation (5.22)

(p1(x)* Y, p2p32) =
= (1, c12 03 Q) +wiawizwaz (P3¢, 02 p1(z) ) (5.26)
= <¢ , W23Wi13C12 P3 Q) + wiawizwas <<P§ Y, 0201 (37) Q) . (5-27)

In equation (5.26) we have first commuted 3 with ¢1(2)* and then ¢ (z) with ¢3, and in (5.27)
first @3 with @2, and then ¢} with ¢; (2)*. Note that all of the twofold products ¢} ¢1(z)* etc.
are well defined on D. Since D is dense, we conclude that

c12 93 2 = waswiz ci2 Y3 2.

By assumption, c12 @3 2 # 0, so that wazwig = 1 follows. On the other hand, we have chosen
the localization regions such that N(I,I3) = —1 and N(I2,I3) = 0, which implies that wi3 =
w3 = and wes = w9 = w. Hence w? = 1. O

Proposition 5.10 and Lemma 5.11 imply our no-go theorem for free anyons:

THEOREM 5.12. If the statistics phase of the elementary charge is not 1 or —1, i.e. in the
case of anyons, there can be no free field algebra satisfying Assumption 5 and for which some
of the commutator functions cy, ,,(x) appearing in equation (5.23) of Proposition 5.10 do not
vanish identically in x.

107t is a necessary condition for the proposition that this geometric situation can be achieved. This is not
the case, e.g. if the “free fields” are not localizable in regions smaller than wedge regions.



