APPENDIX A
Mathematical Supplements

A.1. The (Cylinder) Braid Group

In the Cartesian product (R?)*", let D,, be the set of points = (z1,... ,7,) (z; € R?)
with z; = z; for at least one pair (x;,z;) with ¢ # j. Let S, be the permutation group of n
elements. S,, obviously acts as a transformation group on (R?)*" (on the right), leaving D,
invariant:

(®7)i = Tr(i) , € Sp,x € (R2)*™.
We introduce the space
"B = (B)*"\ D) / S (A1)
In this space we choose the base point

xg :=xy-S,, where (A.2)
z) = ((1,0),...,(n,0)) . (A.3)

The fundamental group of "R? with this base point is defined as the set of homotopy classes [Y]
of closed paths v : [0,1] = "R? starting from x¢. The group product is defined by [y2] [11] :=
[v2 * 71], where 72 * 1 is the path which runs first through ; and then through 7,. This
fundamental group is isomorphic to the braid group B, (see e.g. [Bir75]), and will be identified
with it in our context:

Bn =T (TLR2,$0) .

Its elements may be visualized as follows. For a closed path v at &y we consider its lift through
x). It may be pictured as n paths (or strands) in the three-dimensional layer [0,1] x R?,
which do not intersect. The set of these n strands is called the geometric braid associated
with v. Two closed paths at xog are homotopic if and only if their associated geometric braids
can be continuously deformed into one another. Thus the fundamental group 7 ("]Rz,wo) is
isomorphic to the set of such topological equivalence classes of geometric braids, where the
product corresponds to appending one geometric braid to the other. Algebraically, the braid
group B, has a presentation with generators ty, ... ,t,_1 which satisfy the relations (0.14). The
kth elementary braid ¢ corresponds to the homotopy class of the S,,-orbit of the following path

S‘aI(iIlg fI()IIl il:6 :
(. ) . ( ) [ ) [ J ( ) e (. )
' ' \_/ ' '

A picture of the corresponding geometric braid can be found on page 8. We finally recall
from our introduction that there is a natural homomorphism v from the braid group onto the
permutation group defined by

v :Bp— Sp, (A4)
tk—T1 ,k=1,...,n—1, (A.5)

where 71, denotes the transposition ( k,k + 1). The kernel of this homomorphism is called the
pure braid group.
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The cylinder braid group B,(C) is the fundamental group of the manifold ((R? — {0})*™\
D,,)) / Sn. Algebraically, it arises from B, by adding one new generator ¢; satisfying the addi-
tional relations

(Cl t1)2 = (tl C1)2 and
city =trcy if £k>2.

For later conveniance, we define for both B,, and B,(C) the braids
Ck ::tkfl---tlcltl---tkfl 5 k=2,...,n, (AG)

where ¢; is set to the unit element if ¢, is viewed as an element of B,,. As an element of B, (C),
for k=1,...,n ¢ corresponds to the homotopy class of the S,-orbit of the following path:

Xoo @9 0

A.2. The Universal Covering Group of the Poincaré Group

We recall some well known facts in order to establish notation. Elements of the or-
thochronous Poincaré group Pi of the 3-dimensional Minkowski space M3 may be written
as (a,A) with a € M3 and A € LIL, the orthochronous Lorentz group. Group multiplication
is given by (a,A)(a',A") = (a + Ad', AA") with unit element (0,1) such that Pl is the semidi-
rect product of M3 and Ll. A twofold covering of Li is given as the subgroup of SL(2,C)
(conjugate to SL(2,R)) consisting of elements of the form

a f _ =
(ﬁ_ @) ,aa — B8 = 1. (A7)
The corresponding Lorentz transformation A = A(a, 8) € Ll is given as follows. For a =
(a®,al,a?) € M3 we set
a® a' —ia®
a= ( al +ia? a® ) (A.8)
and define A(q, 3) a by
_[a B a g
w=(52)e(50) o
In particular for given p = (p°, p', p?) € H,, the element of the form
_1 0 1_ 02
0 2 p-+m p —p
(o +m)) = (B v (.10

gives rise to an element in Ll called a boost and is denoted by A(p). One has
A(p) (m,0,0) = p. The universal covering group le of LT+ can be explicitly written as the set

{(y,w) ‘ veC v|<l,we R} (A.11)
with the group multiplication (y,w)(®',w') = (¥",w") being given by
Y= (e )+ ye ) (A.12)
W' = wtw %log{ (1 +yye= ") (1 + Fy'e™ ) } .

Here the logarithm is defined in terms of its power series [Bard7, p.594]. The corresponding
element in the twofold covering of Ll described above is then given as

( RPN ) (A.13)
Fe 'z Pl

[N

1=y~
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The resulting element in Ll will be denoted by A(y,w). Let

1_ ;2
pt —ip

= A.14

() O +m ( )

for given p € H,,. Then the element h(p) = (y(p), w =0) in le is such that A(h(p)) = A(p).

The universal covering group 75; of Pl is now the semidirect product of M3 with I?_TF, the
group multiplication being given by

(a.nw) (@ (7)) =(a+ Arw)a’, (rw)( o) ) - (A.15)

In analogy with the higher dimensional case, ﬁ; has no nontrivial central extensions.

We will frequently identify elements of PJI and le with homotopy classes of paths in PI and
LL respectively, starting at the unit element and denote them by g. The covering projection

Pl =Pl , (a,(7,w) = (a,A(y,w))

will then be written as g +— g .

We denote by (7(1/) = R the abelian subgroup of f/g consisting of elements of the form
(0,w). For arbitrary p € Hp, and (y,w) € Lg, the element

t((rw), p) = h®) ! (1,0) h(A(r,w) 'p) (A-16)

—~

is in U(1) and hence may be written in the form
t((rw), p) = (0.2((,0), p))- (A.17)
In fact, by (A.16) and (A.12)

Q((rw),p) =w +tlog{ (1-7m)ve “)(1- 7)) "}
)

. 7= e ™ _ 1
+= log { (1 + WW(A(%M) p)
(1+ 717__:7(2;);1-“ 1A ™p) } - (A8

ote that vy=0,w), p) =w for all w and p.
N hat Q 0 fi 11 d

Proper Poincaré Group. The proper Poincaré group Py can be obtained from the proper
orthochroneous Poincaré group by adjoining the reflection j at the 22-axis (see equation (1.60))
with the appropriate relations:

j2:1 ) J(mal)J:(]$71) 3

Ao Aor o2 Aoo Aot —Ae2
J Ao Ar A j = A1o A1 —A12
A20 A2 g —Aag —Aa1 Az

Correspondingly, the universal covering group P, of this (disconnected) group may be defined
by adjoining an element j to ]31 satisfying the relations

32 =1 and j (.’L‘, (77"‘))) .} = (.7‘737 (’75 _w)) . (Alg)

In fact, the map j — j, (7,w) = A(7y,w) is a homomorphism and hence a projection.



A.3. CALCULATIONS CONCERNING THE TOMITA OPERATOR 81

Action of P, on nH;. Let "H; be defined in analogy to equation (A.1), with R? replaced
by the unit mass shell H;. The universal covering space of the latter will be denoted by "H;.Be-
ing diffeomorphic to "R?, the fundamental group of " H; can be identified with the braid group
B,,. Hence B,, acts canonically on nH, from the right. Further, il acts as a transformation
group on H;™ via

(1) 1 a= (a1, sa0) = (AGL)a, - A w)an )

leaving D,, invariant and commuting with the action of S,,. Hence this action of Iil descends
to an action on ™H;j. This action lifts to an action on the universal covering manifold ”fIl
written as (y,w) : § = (v,w) - § which commutes with the right action of the braid group:
((77“)) : (1) ‘b= (77“") : (q : b)

The reflection j does not leave the mass shell H,, invariant, but the action of ]31 on H,,
can be extended to an action of P, by the definition

J : p=(po,p1,p2) = —jp= (Po,pP1,—D2) -

As above, this action descends (for m = 1) to an action on ™H;, which in turn can be lifted to
an action of Py on ™H; which extends the above action of Pl. Namely, we set

j : q = _.;q )
where —j-@ is defined as follows. If § is the homotopy class of -y, then —j-§ is the homoyopy
class of the path

t= —j-y(t) .

This definition presupposes that the base point g, in ™ H; is chosen such that —j-g, = q,- We
therefore fix g, as in equation (2.45). Finally, we prove an important cocycle relation of the
Wigner rotation (A.17) with respect to the lift 5 of the reflection.

LEMMA A.1. For all § € le and p € H,, the following relation holds.

PROOF. From the definition of h(p) via equation (A.14) and the group relations (A.19)
satisfied by j we get

h(=j-p) =jh(p)J . (A.21)

This implies t(§, —j-p) = j t(j§7,p)j and hence the claim. O

A.3. Calculations Concerning the Tomita Operator

For the proof of Proposition 4.22 we need two Lemmata. Firstly, we use well known results
on representions of the additive group of complex numbers by unbounded operators A#* arising
from unitary one parameter groups A" = U(X;(t)), see e.g. the article [BW75] of Bisognano
and Wichmann:

LEMMA A.2. If ¢ € H is in the domain of A%, then the map

t—»UM@)$, teR

is the boundary value of an analytic H-valued function on the strip R — i (0, %) which is con-

tinuous and bounded on R — i[O, %] The analytic function is then A ¢, and the bound is

max{ ||¢]|, [|A% ¢]|}.

In application to Az, a complication arises from the factor exp isQ(\; (), p). Namely, it has
branch points in R — 4 (0, 1), which can be seen from equation (A.33) below. To get rid of this
factor, we have designed the function u such that, considered as a multiplication operator, it
intertwines S((0,w)-W1) with So((0,w)-W1) on a certain domain simultaneously for all w in
some intervall contained in (—m,0], thus reducing the problem to the well known case s = 0.
We first establish the relevant properties of the function w.
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DEFINITION AND LEMMA A.3. Let for p € Hy, and (w, 2) in RxR orin [0,7)x R—i [0, 3]

sinw p2 +1im 2“)23
e .

w =271 4 e7 )29 (1
Uy (2,p) (I+e™) ( +1+coswp0—P1

(A.22)

If w € [0,7), then for all p € H,, the function z — w,(2,p) is analytic in the open strip
(0,3)

R—i(0, % . Further, it satisfies for all p € H,, the following equations:
Uy (8, 0) = uw(0, A1 (—t)-p) foralweR,teR (A.23)
uw(—%,p) =e 2y ,(0,p) forallwe[0,7). (A.24)

LEMMA A.4. For oll p € H,, the following equations hold.

eis (A1 (1).p) w(A (=t)-p) = e~ 2 y(p) forallt R, (A.25)
u((—5)-p) = u(p) (A.26)
u(R(-w)-p) = u(p) - u.(0,p) forallw e R. (A.27)

PRrOOF. We rewrite u(p) it as follows. Let
I(p):==po—pr+m+ips and *(p):=1(p)°. (A.28)

Note that for all p € H,,, the real part of I(p) is strictly positve since pg — p; > 0, hence the
function ! has values in the cut complex plane C\ Ry . Thus its power to s € R can be defined
via the branch of the logarithm in C\R; with In1 = 0. In the sequel, all powers to real numbers
will be understood this way. Then

Do —P1ys ;5 TPYIRY
up) = (B2 1) /1) (4.20)
We show equation (A.25) by expanding the denominator and numerator of e 2P into
powers of e2™. Using
(M(=1)p)o = (M (=t)p), = e (po £ p1) (A-30)
we get for the boost (A1 (—t)-p) defined in equation (A.14)
e > (po — p1) + > (po + p1) — 2ipo
A (—1)-p) = . A3l
’Y( 1( ) p) e—27rt(p0 _pl) + eQTrt(pO +p1) + 2m ( )
Further we can write
. e—27rt -1
Putting this into equation (A.18) yields after some calculation
SisoGup) _ [ L@+ (0 = 1®) v (=)-p)
1=3@) + (v = 3(®)) 7 (M (-1)-p)
_ (po—p1+m+ ipz)( 27r1t(po p1) +m— ip2) ) (A.33)
(po — p1 +m —ip2) (e (po — p1) + m + ips)

IS IS
== A
=) (O (=0)p)
Using again equation (A.30), this shows equation (A.25). Note that all occuring numerators
have stricly positive real part, hence the fractions are complex numbers (of modulus 1) in

C\ Ry and the powers to s can again be defined via the branch of the logarithm with In1 = 0.
Equation (A.26) is easily verified. Now let

sin w p2+im)
1+coswpo—p1’°

I (p) = %(1 by (14 (A.34)



A.3. CALCULATIONS CONCERNING THE TOMITA OPERATOR 83

The push-forward of this function under boosts \; (t) may be read off equation (A.30), and its
power to 2s is just our function u, (¢, p) :

e 1 Ci2s sinw  pa+im o,
Loa(=1)p) ™ = g (L4 e (L4 g 2ot —— e

This implies in particular equation (A.23). Let w € [0, 7). Then the number in brackets in the
last factor has strictly positive imaginary part, and we conclude that this number is still in
C\ Ry if we let t € R + i(—3,0]. The first factor also has strictly positive real part. Hence
the powers to 2s are well defined via the usual branch of In in the cut plane C\ Ry, and the
function u,(z, p) is analytic in the strip. Equation (A.24) is easily verified. Note that for real ¢,
Uy (t,p) is well defined for all w € R due to the relation

)25 ,tweR

sinw

(14e™) =—i(l—e™).

14 cosw
It remains to show equation (A.27). Exploiting the last relation one finds after a lenghty but
straightforward calculation that

L(R(—w)p) =1(p) -lu(p) foralw€e€R,p€ Hpy, . (A.36)
Using the identity

1(p) - U(p) = 2(po +m)(po — 1) ,

we can rewrite the function u(p) as

u(p) = (2m(po +m)) " I**(p) ,
and hence equation (A.36) implies that

w(R(-w)p) = (2m(po +m)) " - I**(R(-w)p) = u(p) - lu(p)** .
Here we have exploited that all three functions occuring in equation (A.36) have values in the
cut complex plane, hence (I-1,,)?° and 125 - [2¢ are defined via the same branch of the logarithm
and coincide. Taking account of equation (A.35), this shows equation (A.27). Here the reason
becomes apparent why we have to take the unbounded factor po —p; into the definition of u(p) :
without this factor, the last equation would read u(R(—w)p) = u(p) - l.(p)*/l.(p)*. But the
analytic continuation of A; (t).l, has zeroes in the strip and cannot serve to define an analytic
function w,(z,p). O

PROOF OF PROPOSITION 4.22. We suppress the notation of the basis vectors e4 of C2,
which are only switched by the operator U(j). The representation U of ]31 will be written as
U(§)p = €%@:°) g, ¢, and we will use that for g € Pl the push-forward g, commutes with
the Fourier transformation, i.e. g, F,, f = E,g+f. Let f be a Schwartz function with support in
R(—w)-Wi. We first have to show that U ((0,w)) u - En f is in the domain of A3. To this end,
we perform the transformations

U (1) U(0,w) u- Emf (A.37)
= eisg(xl(t)") el A1 (t)*R(w)*(U : Emf)
= ¢isw s (D)) ) ()u(w - uy(0,-) - R(w)u B f) by eq. (A.27)

m S

= e e 2™ 4 X (1) 4w (0, - ) - M (1)« R(w)+E by eq. (A.25)
=e" ety uy(t, ) - MO« EmRW)s f by eq. (A.23) (A.38)
=: e e 2™ y(t) - P(t) (A.39)
where we have written
v(t)(p) == u(p) - uu(t,p) and (A.40)
¢ (p) := (M (t)« Em R(w)f) (p)
= (2m)%/? Bz PP (RW), f)(z) . (A.41)

W1
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We discuss analyticity in ¢ of the last function. For fixed p € H,,, we can extend ¢(t)(p) as a
function of ¢ into the strip R —i[0,1] as follows. For any € R®, the vector valued function
t — A1 (t)z can be extended to an entire analytic function on the complex plane, since its
dependence on t via sinh 27t and cosh 27t is entire analytic. One computes for ¢, € R

(M (t +it")z) " = cos(@rt’) (M (t)z)° — i sin(2nt’) (A (D))",
(Mt +it)z)" = cos(2rt’) (M (t)z) " — i sin(2nt') (A (Dz)°
(M(t+ z't')an)2 =z2.

This can be rewritten as

M+t = e M)z —isin2rt) o M (t) z, (A.42)
where
cos 27t 0t 0 010
Jp = 0 cos2nt’ 0 and ¢g:=[1 0 0 (A.43)
0 0 1 0 0 0
Note that in particular
MDYz =jz. (A.44)

2

For x € W, the vector oz lies in the forward light cone, and hence for p € H,, the function
p- oz is bounded below by a function which is linear in |p;|. This produces a damping factor

esin(2ﬂ't') poii(t)z

in equation (A.41) if we replace ¢ by t +it' € R —i (0,1 ), because the support of R(w), f is in
W1 by assumption. Recall that ¢(¢) is for real ¢ a Schwartz function on the mass shell, and the
same holds for it' = —i/2, since

¢(=3) = EmjuR(w)«f = R(=w)«Emjs f (A.45)
by equation (A.44) and the group relation j R(w) = R(—w) j. . Now due to the damping factor,
#(2) is still a Schwartz function for all z in the strip R — i [0, 1] — even for Imz = —1 where
the transformation Jo1 has a vanishing determinant. The dependence of ¢(z) on z is pointwise
analytic, and we denote the pointwise derivative by ¢'(z)(p), i.e.

¢'(2)p) = 2m)~*"? | Prip-N(2)z PN (Rw). f)(2) -
Wi
Having the same damping factor as above, ¢'(2)(p), is also a Schwartz function for all z €
R —i[0,2]. Now ¢(z) is analytic as a Hilbert space valued map in ¢ € R — i(0, 3) iff the the
difference quotient

$(2) — 8(c)

1
R—4(0,2 A4
1289 | seer—i(0,3) (4.46)

z = P(2) =
is continuous in ¢, converging to ¢'(c). This is in fact the case, since for z in a fixed disc around ¢
the function p — |¢.(2)(p) — ¢'(c)(p)|? is dominated by an integrable function which we denote
by |®(c)(p)|?, and we may therefore apply Lebesgue’s theorem on dominated convergence. In
fact, ®(c) is of the same form as ¢'(c) and is hence also a Schwartz function, which we shall use
later.

Next we discuss the large p behaviour of the continuous function v(z) of equation (A.40)
for z € R — [0, 1]. We consider only the case s > 0, the other case working analogously. Then

since [I(p)/1(p)| =1,

. 2s
Do — D1 s P2 +1m

v(2 = la, 1+b,(z

[v(2)(p)] = |ac| | - | ()po_p1 ;
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where

a, = 2725(1 +67iw)2s ,

sin w
b =
(2) 1+ cosw

If p1 < 0, then pp — p1 is bounded by m < pp — p1 < 2|p1| + |p2| + m. Hence |v(2)(p)| is
bounded for large negative p; and large |p2| by

ay (M)n (bw(z) %)271

m

27wz

?

where n is a natural number greater than s. For p; > 0, we use the identity
p2 +im =z.p0+p1 +m —ipy
Po —P1 Po—p1+m+ips
Since for p; > 0 we have m < po +p1 < 2p1 + |p2| + m and py — p; converges to zero as p;
goes to infinity, |v(z)(p)| is bounded for large positive p; and large |p2| by

|p1] + |p2[\?"
(2) )
m

for all p e H,, .

Ay (wa

We conclude that v(z)(p) is polynomially bounded for large p. The same holds for its derivative
with respect to z for fixed p, which we denote by v'(c)(p), and for the difference quotient
ve(2) := (2 — ) Hw(z) — v(e)).

Now the product of each of the functions v(z),v'(c) and v.(z) with each of the above
Schwartz functions ¢(z),¢'(c) and ¢.(z) is again a Schwartz function on the mass shell. In
order to prove our claim, namely that z — v(2) - #(2) is analytic in the L?-norm, we have to
show that the difference quotient

v(c) - de(2) + ve(2) - #(c) + (2 — €) ve(2) - Pe(2)

is continuous in z, the summands converging to v(c)-¢'(c), v'(c)- ¢(c) and zero, respectively, as z
goes to c. All three summands converge pointwise, and we have to look for integrable dominating
functions. To show that v(c) - (¢.(2) — ¢'(c)) converges to zero, we use the dominating function
|ve(2)(p)|? |®(c)(p)|?, where ®(c)(p) is the Schwartz function which was used to show that
¢(2) is analytic. For the second summand, we recall that v.(z) — v'(c) is a polynomial in p
with coefficients depending continuously on z . Hence for z in a given disc around ¢ we can
take the maximum of the coefficients of highest order to define a polynomial V' (p) such that
|V (p) - ¢(c)(p)|? is an integrable dominating function for |(v.(z)(p) —v'(c)(p)) - #(c)(p)|?. Hence
the second summand converges to v'(c) - ¢(c). The third summand converges to zero since the
norm v.(z) - ¢.(z) is bounded for z in a given disc around ¢ by the norm of V; - ®(c), where
Vi(p) is a polynomial constructed in analogy to V(p).

Hence v(z) - ¢(z) is analytic in the strip R —i (0, 1) and we conclude that, coming back to
equation (A.37), the vector ﬁ((O,w)) u- Ep f is in the domain of A%, and that

Az U((0,w)) u- B f by eq. (A.39)

— eisw ei7rs " 'Uw(_%a ) . (p(_%)

_ gims gmisw u_y,(0,-) - R(=w)sx Emjisf by eq’s (A.45) and (A.24)
— T gmisw R(—w)«(u- Bmjiuf) by eq. (A.27)

=™ UG U(0,w) u-Enf,

where we have used in the last but one step that Epjsf = (=j)«Em f. Multiplying the first
and last member by ei™* U(j) we get the claimed equation (4.81). O

PROOF OF PROPOSITION 5.7. Again we discuss only the case s > 0. We identify the
restriction of S(W) to M with S(W)M by equation (4.76). Let w € (—=,0), and let
g = (0,—%):\1(#) (0,w") with ¢/ # 0 and w' € (—m,0), where the parameters ¢’ and w' are
chosen such that g-W; contains the intersection Wi N R(w)-W;. Let further f be a Schwartz
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function with support in Wy N R(w)-Wi. By Lemma A.2, u - E,, f can be in the domain of
S(g-W1) only if the map

ts AYUG) Y u-Enf (A.47)
is analytic in the strip R+i( —%,0). Using the formulae of Lemma A.4 and the cocycle property

g) . p) =—w +Q(M(=t), RW)p) +g

of the Wigner rotation, one calculates for (A.47)
Ua®) U@ ) u-Enf
= 000 ny (1), (00 Vgt g - B f)

Q((0, —w") M (=t (0,

— eis(%_wl) eisﬂ(s\l(t),-) )\1('[’)* (R(_wl)*(eisﬂ(il(_t’),.)Al(_t/)*u) i R(—wl)*)\l (_tl)*l%s i Em g*—l f)
— eis(%—u') ets QA1 (t),) A\ (t)* <e27rst' w - l2—su’ . R(—w')*)\l (_tl)*l%s . Emg*—lf)
= () e 2y x (1), (122, - R(=w) M (—t)0F ) - M(D)eEm g, f -
Here, [,, is the family of functions on the mass shell defined in equation (A.34). We rewrite this
expression as
T@®)U@)  u- Enf= h(t)*-4(t) foralteR (A.48)

where h(t) and 1(t) are functions on the right hand side are defined by

P(t) = e E=De=2ms(=t) o N\ (£),Em gs' f  and

h(t) == X ()« (lwr - R(—w")u X (—=t")ulz ) .
Note that g.f has support in g- (W1 N R(w) -Wl) which by assumption is contained in Wj.
Hence we know from the proof of Poposition 4.22 that 1 (t) is analytic in the strip (put w =0

in equation (A.38)). On the other hand, a lengthy but straightforward calculation shows that
h(t) is of the form

6747rt as + 6727rt al(p) + GO(P)
e—2mt (efzmx _ b(p)) ’
where ag, a1, a2,b and ¢ denote the following constants and functions on the mass shell:

_ (po+p1)
0®) = G0 p)

a1(p) =2 pa(e® COS‘*(J:ID_ sin ‘*))I) +ie’™'m
0 —P1

27t

h(t,p) =c

(1—cosw' — e gin w')

as =14 cosw' + €™ sinw'

sinw’  ps —im
b =
(p) 1+ cosw' pg —p1
(1—i)(1+e*")
1+ cosw' )

cC =

For w' in the specified range, the function b has values in the upper half plane R + iR*, and
therefore the denominator of h(t)(p) has a zero in the strip R+i( —4,0) as a function of t. Having
different zeros for generic values of ¢’ (more precisely, for ¢’ in a punctured neighbourhood of 0),
the numerator cannot cancel this singularity, and nor can ¢ (¢) for a generic Schwartz function
f-Ifse{%,1,3,...}, this produces for every t € R+ i(—2,0) a pole of the function h(t, p)**
of the order |p|~2%, where |p| := \/p? + p3, rendering h(t)?® - 1 (t) not square integrable. Hence
U(3)* u- Epf cannot be in the domain of Az. The nature |p|=2° of the pole can be seen by
considering the point e~2™0 = —; lfgo‘;’;,, where h(to,p) has a pole at p1 = p» = 0. Its order
can be estimated by writing the relevant factor as

1 _ 14cosw' Po — P1
e~2mto —p(p)  —sinw’ po+i(po —p1 —m)
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and estimating the denominator via the formula pg —m = % + O(|p[*) = O(Jp|?) with

P2 +i(po = m —p1)* = 95 + (= o1+ O(Ip*)" = O(Ipl*) ~ as [p| = 0.
On the other hand, if s € R\ $Z, then h(t, p)>* has a branch point. This is in contradiction to the
analyticity of A U (§)~'u- Epf as follows. Let us denote U(§)™ ' u- Ep f =: ¢. Suppose A ¢
is analytic. Then the same holds for Ey At ¢, where V is a compact subset of the mass shell
on which A% ¢ does not vanish identically, and Ey denotes the projector in L2 (H,,,du) onto
functions with support in V. Let D be the set of complex numbers z in the strip R + i(—1,0)
such that e 2™ — b(p) = 0 for some p € V. If we analytically continue the L?-valued map
Ey A" ¢ along a closed path in R + i( —1,0) \ D with winding number 1 with respect to D
(and winding number 0 with respect to the zeroes of the numerator of h(t)(p)), it will pick up
a factor €™ due to the function h(t,p)?* and hence it cannot be analytic in D. We conclude
that u - E,, f is not in the domain of S(§-W;). This implies equation (5.16). O



