
Chapter 4

Four-wave mixing in PCF’s and

tapered fibers

The dramatically increased nonlinear response in PCF’s in combination with

single-mode behavior over almost the entire transmission range and the engi-

neerable dispersion characteristic suggest that new phenomena could appear

also in other nonlinear processes. In particular four-wave mixing (FWM) is

one of such processes which should be possible in a much wider frequency

range than in standard fibers, and is promising for applications.

The third-order nonlinear polarization leads in general to the interaction

of four optical waves with frequencies ω1, ω2, ω3, ω4 and include such phenom-

ena as FWM and parametric amplification. These processes can be used to

generate waves at new frequencies. In the degenerate case ω1 = ω2 = ωP two

photons of a strong pump pulse are annihilated with simultaneous creation

of two photons at ωS = ωP + Ω and ωI = ωP − Ω. This process can be

analitycally described for the case when the pulse durations are long enough

so that effects of linear dispersion are negligible, the pump pulse is much
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stronger than sideband beams, the depletion of pump can be neglected, and

the loss is absent. In this case the description of the process is given by [50]

∂AS,I
∂ξ

= 2iγS,I|AP |2AS,I + iγS,IA
∗
I,SA

2
p exp(−i∆k0z) (4.1)

∂AP
∂ξ

= iγP |AP |2AP , (4.2)

where AP,S,I are the envelopes of pump, signal, and idler, respectively, γP,S,I =

ωP,S,In2/(cAeff), Aeff is the effective nonlinear mode area which is assumed

to be the same for all pulses, and ∆k0 = β(ωS) +β(ωI)−2β(ωP ). The pump

field is found in the form AP = AP0 exp(iγP |AP0|2ξ), and for the the side-

bands the substitution AS,I = ÃS,I exp(i2γS,I|AP0|2ξ) reduces the original

system to
∂ÃS,I
∂ξ

= γS,IÃ
∗
I,S|AP0|2 exp(2iγP − i∆k0ξ) (4.3)

which has solutions in the form of waves growing as exp(gξ) with

g =
√

(γPP0)2 − (∆k0 + 2γPP0)2. (4.4)

Maximum gain gmax = γPP0 occurs if the phase-matching condition ∆k0 +

2γPP0 = 0 is satisfied.

4.1 Phase-matching condition

In collinear propagation as in fibers significant FWM occurs only if the phase-

matching relation [50] ∆k = ∆kM + ∆kWG + ∆kNL = 0 is nearly satisfied.

Here ∆kM ,∆WG,∆kNL = 2Wn2ωpIp/c represent the wavevector mismatch

occurring as a result of material dispersion, waveguide dispersion and the

nonlinear contribution to the refractive index, respectively. For standard

optical fibers FWM has been studied extensively [50]. Phase matching can
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be achieved in multimode fibers by using different modes or in birefringent

fibers by the different effective index for waves propagating with orthogonal

polarization. In single-mode nonbirefringent fibers phase matching can be

satisfied near the zero-dispersion wavelength around 1.28 µm for very spe-

cific conditions for the pump frequency because the material contribution

becomes quite small and can be compensated by the waveguide contribu-

tion. When the pump wavelength lies in the anomalous dispersion region

the negative material and waveguide contribution can be compensated by

the positive nonlinear contribution. In both cases the frequency shift is typ-

ically lower than 100 THz. At visible frequencies of the pump wave, FWM

has been demonstrated in weakly birefringent single-mode fibers [88]. In a

nonbirefringent single-mode fiber phase matching has been achieved in the

visible range by a combination of SPM and cross-phase modulation [89]. Re-

cently FWM has been observed in microstructure fibers in the optical region

at 753 nm with a frequency shift of about 100 THz [15].

To study FWM in PCF’s or tapered fibers, first we consider the phase

matching condition. In Fig. 4.1 the wave vector mismatch

∆km + ∆kWG = β(ωs)ωs + β(ωI)ωI − 2β(ωp)ωp (4.5)

is presented. Here β(ω) is the eigenvalue of the Helmholtz equation including

both the waveguide and the material contribution which was found numeri-

cally as described in Chapter 2. Phasematched idler and signal frequencies

can be found as common points of the horizontal line drawn at the pump

intensity and the curve corresponding to the pump frequency. As can be

seen, phasematching in a PCF shows a rather distinct behavior from stan-

dard fibers (compare [50]) caused by the large waveguide contribution ∆kWG
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Figure 4.1: Phase-matching for 2.95-µm-diameter tapered fiber and different

input frequencies: 0.9ω0 (curve 1), 1.0ω0 (curve 2), 1.1ω0 (curve 3) with

ω0 =2.27 fs−1. Phase-matched frequencies are determined as crossing points

of the corresponding curve and the horizontal line at I = IP .
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to the wavevector mismatch. In Fig. 4.1, the PCF with large hole radius (or

tapered fiber) with parameters as given in the caption and a zero-dispersion

wavelength of 830 nm (for three different pump frequencies) is considered.

All considered pump frequencies are within the tuning range of a Ti:sapphire

laser. As can be seen the possible frequency shifts to the idler and the signal

waves are now in the range of the pump carrier frequency and more than

one order of magnitude larger than in standard fibers. In particular for the

input frequency of 2.5 fs−1 the idler wavelength is about 1600 nm and the

signal at 400 nm. Small changes of the pump frequency lead to a huge range

of detuning covering the range of IR up to the blue. Since additionally the

geometry parameters of the PCF can be adjusted during the fabrication pro-

cess, WFM in PCF’s offers the potential for the use of broadband parametric

amplifiers, frequency shifters and other interesting devices.

4.2 Competition with supercontinuum gen-

eration by soliton fission.

We start the numerical study of FWM by examining the propagation of a

200-fs-long pulse with I0 = 2.0 TW/cm2 in a 2.95-µm-thick tapered fiber or in

a PCF structure with very thin silica bridges [cf Fig. 1.1]. The propagation

is described by the forward Maxwell equation (2.66). The input central

frequency ω0 = 2.27 fs−1 coincides with the zero-dispersion frequency of this

fiber. The evolution of the pulse shapes and spectra are illustrated in Fig.

4.2(a) and Fig. 4.2(b). During the initial stage of propagation, SPM causes

slight broadening of the spectrum around the input frequency. With longer
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Figure 4.2: Evolution of output pulse shape (a) and spectrum (b) for ω0 =

ωZD, I0=2 TW/cm2, τ0=200 fs in 2.95-µm-diameter tapered fiber.

propagation length, two additional peaks arise at wavelengths ∼ 1150 nm and

640 nm, which agree rather well with those predicted by the phase-matching

condition in Fig. 4.1. At around 12 mm propagation length, seen in the

middle section of Fig. 4.2, additional spectral components are generated.

The temporal shape shows in the central part besides fast oscillating also

low oscillating components, arising from the superposition of the different

side peaks in the spectrum seen on the left side. With longer propagation to

20 mm the part of radiation transferred to the anomalous dispersion region

by FWM and SPM is sufficient to form solitons. As can be seen in the upper

section now a wide-band SC reaching from 500 nm to 1600 nm is generated

and several peaks arise in the temporal shape. With further propagation

these peaks move with different velocities and form separated pulses which

do not change their form during further propagation (not shown here). This
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Figure 4.3: Output spectra (a) and pulse shapes (b) for L=3 mm, I0=8.7

TW/cm2, τ0=200 fs and different input frequencies as indicated.

allows the interpretation that the SC in the upper part of Fig. 4.2 is caused

by fission of higher-order solitons as described in Chapter 3. However, FWM

and SPM is the dominant process on the early stages of propagation, which

is responsible for generating new frequency components.

As discussed above and seen in Fig. 4.1 the dispersion properties of the

medium have a large influence on the 4-wave-mixing processes. In Fig. 4.3,

we compare the spectra of pulses with different input frequencies in anoma-

lous (ω0 < ωZD) and normal (ω0 > ωZD) dispersion regions but for the same

intensity I0 = 8.7 TW/cm2 and pulse duration τ0 = 200 fs with fiber length

L = 3 mm. In the anomalous dispersion regime, similar to the previous case

new spectral components arise on both sides of the input peak. As predicted
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by comparison of curves 1 and 2 in Fig. 4.1, the frequency difference to the

side peak is larger for the frequencies closer to the zero-dispersion point. This

allows to control the wavelength of the generated radiation by a slight shift

of the input frequency. For ω0 = 0.9ωZD an additional spectral peak on the

blue side is seen. This peak is generated by cascaded 4-wave mixing. How-

ever, for frequencies in the normal dispersion region, no side peaks caused by

FWM are generated and only spectral broadening by SPM can be seen. The

temporal shapes for the input frequencies in the anomalous dispersion region

and at the zero-dispersion frequency show low and high-frequency compo-

nents as expected from the spectrum, in contrast to the shapes for ω0 > ωZD

where the low-frequency components do not arise. With further propagation,

as illustrated by Fig. 4.4, for ω0 < ωZD a significant part of the spectrum is

in the anomalous dispersion region. This part forms a higher-order soliton,

its fission leads to the generation of a SC covering more than 1 octave from

600 to 1400 nm as described in the previous chapter. The separate peaks in

the temporal shape are identified as solitons, while the trailing part of the

pulses consists of NSR. For ω0 = 1.1ωZD, broadening by SPM also induces

spectral components in the anomalous dispersion regime which also forms a

higher-order soliton. After its fission a SC is generated which is now narrower

than in the previous cases. The above given interpretation is supported by

the evolution of the spectra for higher input frequencies in the normal dis-

persion region. As can be seen in Fig. 4.4 for ω0 = 1.2ωZD after 10 mm

of propagation a spectrum arises that is remarkably narrower than for lower

input frequencies and shows the typical behavior of SPM-induced spectral

broadening. The generated spectral components are here too far from the

zero-dispersion point and therefore no solitons can be formed in the anoma-
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Figure 4.4: Output spectra (a) and pulse shapes (b) for L=10 mm, I0=8.7

TW/cm2, τ0=200 fs and different input frequencies as indicated.
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lous region. Therefore, the final spectrum qualitatively differ from the other

cases because fission of higher-order solitons does not occur. The temporal

shape in this case does not show spikes but only a temporal elongated smooth

pulse which is typical for SPM in the normal dispersion region.

Finally we study the possibility of generating pulses further in the IR by

means of 4-wave mixing. As shown in Fig. 4.5(a), after propagation of 1

mm in a 2.95-µm-diameter tapered fiber radiation is generated as a separate

peak around ∼2000 nm. The FWHM duration of this radiation is 140 fs.

A higher intensity of 27 TW/cm2 is necessary in this case. Note that with

further propagation SC will be generated. Therefore it is important that

the fiber length be chosen correctly. Thus 4-wave mixing can be used for

producing spectrally-separated radiation at around 2000 nm. Additionally,

we study the possibility to enhance 4-wave mixing by sending two pulses of

the same intensity 12.4 TW/cm2 at frequencies of 1.1ωZD and 1.85ωZD which

are chosen to be phasematched. As one can see in Fig. 4.5(b), the generated

radiation does not move further in the IR and is not significantly stronger,

and moreover it reveals a slightly irregular spectral shape.

4.3 Four-wave mixing for very low intensity

and long pulses

Four-wave mixing with large ∆ω [16] has important applications, for example

in WDM systems, and therefore deserve a separate study. As it was shown in

the previous sections, for shorter pulse duration due to walk-off the effective

FWM is difficult to achieve for the most interesting regime with pump in
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Figure 4.5: Output spectra for L=1 mm and (a) I0=27 TW/cm2, τ0=200

fs,ω0 = ωZD; (b) two pulses with I0,1 = I0,2 = 12.4 TW/cm2, τ0,1 = τ0,2 = 100

fs, ω0,1 = 1.1ωZD, ω0,2 = 1.84ωZD.
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the anomalous region. Therefore, here we study this process for longer ns-

duration pulses and much smaller intensity. For such pulses, methods which

imply the resolution of carrier oscillations are no longer necessary and are in

fact not applicable due to the large time window. Therefore these processes

can be studied by standard slowly varying envelope approximation equations

(2.24). The main definitions are repeated here for sake of completeness.

The electric field propagating in the z direction is represented as ~Ex(z, t) =

exp[i(ωxt−βxz)]~F (~r⊥, ωx)A(z, η), where ωx is the carrier frequency, the index

x = P, I, S denotes pump, idler, and signal wave, respectively. The function

~F (~r⊥, ωx) is the transverse distribution of the field in the cross-section S of

the fiber, β(ω) is the wavevector and A(z, η) is the slowly-varying envelope

with η = t−z/vg,P. The group velocity vg,x is given by vg,x = [dβ/dω(ωx)]
−1.

We use the standard propagation equation to describe the evolution of A(ξ, η)

[50]:

∂AP

∂z
= AP

(
−α + iγP[|AP|2 + 2|AI|2 + 2|AS|2]

)

+ 2iγPA
∗
PASAI exp(i∆kz) + iβ ′′(ωP )

∂2AP

∂η2

∂AS

∂z
= AS

(
−α + iγS[|AS|2 + 2|AP|2 + 2|AI|2]

)

+ iγSA
∗
IA

2
P exp(−i∆kz) +

(
1

vg,P
− 1

vg,S

)
∂AS

∂η
+ iβ ′′(ωS)

∂2AS

∂η2

∂AI

∂z
= AI

(
−α + iγI[|AI|2 + 2|AS|2 + 2|AP|2]

)

+ iγIA
∗
SA

2
P exp(−i∆kz) +

(
1

vg,P
− 1

vg,I

)
∂AI

∂η
+ iβ ′′(ωI)

∂2AI

∂η2
.(4.6)

In these equations γx = n2ωx/(cAeff), n2 is the nonlinear refractive index, α

is the loss, Aeff = (
∫
S
F (~r⊥)2dS)2/

∫
S
F 4(~r⊥)dS is the effective nonlinear area

of the mode which was assumed to be equal for all three waves, β ′′ = d2β/dω2.

Higher-order nonlinear effects, the Raman effect and higher-order dispersion
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Figure 4.6: Dispersion coefficient D (thick solid curve) and phase mismatch

for pump wavelengths of 1100 nm (dotted curve), 980 nm (dashed curve)

and 900 nm (thin solid curve) as a function of the idler wavelength. PCF

parameters are Λ = 3.5 µm, d = 2.5 µm.

effects were neglected, which is valid for low-intensity pulses with nanosecond

duration considered here.

4.3.1 Phase matching in dependence on fiber geometry

First we consider the phase matching in a photonic crystal fiber with Λ = 3.5

µm and d = 2.5 µm for pump wavelengths of 900, 980 and 1100 nm as

presented by thin curves in Fig. 4.6. The dispersion coefficient D = Lβ ′′(λ) is

shown by a thick line for L = 1 m fiber length. No phase-matching is achieved

for λp=1100 nm, since this wavelength is in the anomalous dispersion range,
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above the zero-dispersion wavelength λZD = 1013 nm, and −12β ′′/β(4) <

0. For λP = 980 nm, β ′′ changes the sign and therefore phase matching

with large distance to the sidebands is achieved. Note that this situation

is opposite to that for standard telecommunication fibers, for which phase

matching can occur with the pump wavelength in the anomalous dispersion

regime. In contrast, in PCF’s effective FWM is possible with λP in the near-

infrared and visible region, which means that many easily available sources

can be used to generate the pump wave. With further shift of the λP to the

visible, the spectral distance to the sidebands increases. However, losses in

the far-IR region soon overweigh the gain and no effective FWM is possible

for shorter pump wavelengths with the chosen PCF parameters.

Since dispersion properties have a crucial effect on the FWM in the pho-

tonic fiber, we now examine the dependence of the idler and signal wave-

lengths on the geometry of the fiber. In Fig. 4.7, the dependence of these

wavelengths versus the hole diameter for fibers with Λ = 3.5 µm is pre-

sented for two pump wavelengths λP of 980 and 1100 nm. As soon as the

zero-dispersion wavelength becomes larger than the λP, solutions of phase-

matching conditions arise. For λP ' λZD, the approximate relation for ωS,I

derived earlier in the text can be modified to describe the dependence of

phase-matched wavelengths on d:

λS,I = λP

(
1±

√
12β ′′′(dZD − d)∂ωZD/∂d

β(4)

)−1

, (4.7)

where ωZD(dZD) = ωP. This approximation (shown by dashed lines in Fig.

4.7) satisfactorily corresponds to the results of the numerical calculation in

the region λP.



CHAPTER 4. FOUR-WAVE MIXING 92

800

1200

1600

2000

2400

1 1.5 2 2.5 3 3.5

λ 
(n

m
)

d (µm)

1 2

3
4

Figure 4.7: Dependence of zero-dispersion wavelength, idler wavelength, and

signal wavelength on the hole diameter d for PCF with Λ = 3.5 µm. Idler

(curves 1 and 2) and signal (curves 3 and 4) wavelengths are shown for

pump wavelength of 1100 nm (curves 1 and 3) and 980 nm (curves 2 and 4).

The zero-dispersion wavelength is shown by the thick solid line, dotted lines

represent approximate estimates (4.7).



CHAPTER 4. FOUR-WAVE MIXING 93

4.3.2 Numerical results

To examine the temporal and spectral evolution of the light generated by

FWM, we numerically solve the system (4.6) for PCF with Λ = 3.5 µm,

d = 3.4 µm and input pump pulse with λP = 875 nm, FWHM duration of

0.6 ns and two different peak intensities of 5.4 × 108 W/cm2 and 1.8 × 109

W/cm2. The input signal has ten orders of magnitude lower intensity, the

loss α = 0.02m−1 is included phenomenologically. As can be seen from the

results for lower intensity presented in Fig. 4.8(a),(c),(e), during propagation

up to 25 m the idler pulse experiences gain of ∼26 dB (for field), which

corresponds very good to both the theoretical prediction of 25.5 dB and the

experimental results obtained for similar fiber and input pulse parameters

in Ref. [15]. For larger propagation length, due to walk-off effects and

decreasing pump intensity due to loss, the phase-matching condition is no

longer satisfied which drastically reduces the gain. The idler pulse is not

noticeably amplified during the next 25 m of propagation (see Fig. 4.8). Its

intensity remains around 5 orders of magnitude lower than that of the pump

pulse. Note that the generated radiation remains spectrally narrow, with

maximum width not exceeding 0.2 nm. The situation significantly changes

for higher input pump intensity, as illustrated in Fig. 4.8(b),(d),(f). The

energy transfer from the pump to the idler and the signal waves is strong

enough to amplify the latter pulses to the intensity level of pump. Similar to

the lower-intense case, propagation further than 25 m does not amplify the

idler pulse any more due to losses and pump depletion seen as irregularities

in the pump temporal profile in Fig. 4.8(f). In contrast to the previous case,

the spectrum of the idler pulse is significantly broader, which we attribute



CHAPTER 4. FOUR-WAVE MIXING 94

0

0.5

1

-1 -0.5 0 0.5 1

|E
| (

a.
u.

)

η (ns)

(e)

-1 -0.5 0 0.5 1
η (ns)

(f)

10-4

10-2

1

|E
| (

a.
u.

)

(c) (d)

10-6

10-3

1

-1 -0.5 0 0.5 1
∆λ (nm)

|E
(ω

)|2  (a
.u

.)

(a)

-1 -0.5 0 0.5 1
∆λ (nm)

(b)
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to amplitude modulation instability experienced by the idler pulse in the

anomalous dispersion regime.

4.3.3 Influence of birefringence

The possibility to create a narrow spectrum like the one shown in Fig. 4.8(a),

as well as the dependence of idler wavelength on fiber geometry, raises the

question: Is it possible to control the idler wavelength by the external influ-

ence, for example by introducing birefringence to the fiber? PCF’s possessing

birefringence were already proposed and produced by introducing holes of dif-

ferent diameter [90], changing the shape of the holes [91] and their positions

[92]. It was shown that high values of birefringence [90] and polarization

modulational instability [92] occur in such fibers. As such, the dependence

of the phase-matching in the FWM on the birefringence was already studied

in detail [93, 94], however the specific geometry of the PCFs allows espe-

cially large distance to the sidebands. The example how the external control

of birefringence can be performed in PCF’s is given in Ref. [95], where the

polymer is introduced into two holes in the PCF cladding. By changing the

temperature of the fiber, control over the refractive index of this polymer and

thus over birefringence is achieved. For the description of birefringence it is

necessary to use a model which does not rely on a weakly-guiding approxi-

mation. The assumption that the difference between the refractive indexes

of the core n0 = nsilica and cladding n1 = neff is much smaller than unity

does not hold, in the considered case it can be up to 0.5. Therefore, the

expressions for the fields and the birefringence derived in Ref. [96] are used

here. The equations are written in the nonorthogonal coordinates ρ and φ
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related to the Cartesian coordinates by

x = aρ cosφ (4.8)

y = aρ
√

1− e2 sinφ, (4.9)

where e =
√

1− b2/a2 is the ellipticity, a and b denoting the major and minor

semiaxis, respectively. After rewriting the Helmholtz equation in this coordi-

nate system, the solution for the longitudinal components of the electric field

Ez can be found for the two dominant modes, denoted by the superscripts a

and b, in the fiber:

Ea
z = AJ1(uρ) cosφ+

1

8
e2AuρJ2(uρ) cosφ+

e2

[
BJ3(uρ) +

1

8
AuρJ4(uρ)

]
cos 3φ (4.10)

Eb
z = AJ1(uρ) sinφ+

3

8
e2AuρJ2(uρ) sinφ+

e2

[
BJ3(uρ) +

1

8
AuρJ4(uρ)

]
sin 3φ (4.11)

inside the core (ρ < 1) and

Ea
z = CK1(vρ) cosφ+

1

8
e2CvρK2(vρ) cosφ+

e2

[
DK3(vρ) +

1

8
CvρK4(vρ)

]
cos 3φ (4.12)

Eb
z = CK1(vρ) sinφ+

3

8
e2CvρK2(vρ) sinφ+

e2

[
DK3(vρ) +

1

8
CvρK4(vρ)

]
sin 3φ. (4.13)

Here u and v have the same meaning as in Chapter 2. Other components of

the electric field as well as the magnetic field can be derived from the Maxwell

equations. The resulting system of linear equations for A,B,C,D has a solu-

tion only if the determinant of the system equals zero. Wavenumbers of both
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modes differ from the wavenumber h0 obtained from the dispersion relation

derived in Chapter 2 by the amount of the order of e2. The birefringence is

characterized by the difference of these wavenumbers ∆β = e2k0n1∆, where

∆ =
1

8k0n1h0a2

V 2 + uv(uK − vJ) +X3

V 2Y3/(u2v2)−Xk2
0a

2/(2V 2)
. (4.14)

In this expression, the following notations are used:

J = J0(u)/J1(u), K = K0(v)/K1(v), (4.15)

X1 = uJ − 1, Y1 = −vK − 1, (4.16)

X2 =
1 + J2

u2
− 2

u4
, Y2 =

1−K2

v2
+

2

u4
, (4.17)

X3 = (uJ + vK)(uJ − vK + uvJK), Y3 = 1 + 2h2
oa

2

(
1

u2
− 1

v2

)
(4.18)

X = (v2X1 + u2Y1)(n2
0X2 + n2

1Y2) + (n2
ov

2X1 + n2
1u

2Y1)(X2 + Y2). (4.19)

The relation (4.14) was used to calculate the modification of the wavenumber

for the idler and signal waves, which are assumed to have the polarization or-

thogonal to that of the pump wave. Due to different polarizations of the three

waves, the system (4.6) is correspondingly modified [50]: the cross-phase

modulation terms are multiplied by 2/3 and resonant terms are multiplied

by 1/3. The values of the squared birefringence up to 0.35 are considered,

although there can be deviations from the exact values of ∆ for the higher

birefringencies, since the theory used here is first-order in e2. As shown in

Fig. 4.9, changing birefringence allows to control the idler wavelength in the

region where the dispersion of silica is small. With increasing intensity, the

spectra will become broad, similar to Fig. 4.8, which can be undesirable.

The model developed here can be thus used to predict the optimum pump

intensity. The change caused by birefringence induces an almost linear shift

of the idler wavelength over a large interval. The idler spectra shown in the
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Figure 4.9: Idler wavelengths versus squared birefringence for a fiber with

Λ = 3.5 µm, d = 2.526 µm. The insets show the spectrum of idler pulse after

25 m propagation for e2 of 0.09 and 0.27, as shown by arrows. Vertical scale

of the insets corresponds to 4 orders of magnitude

insets imply the generation of the spectrally narrow radiation, which can

have important applications. For example, soliton propagation in this range

can be achieved with a lower intensity. A system with an adjustable output

wavelength can be also used for the needs of telecommunication.

Thus the change of birefringence of PCF’s by external means can lead

to a creation of a source which can be controlled over the low-loss window

around the 1.3-µm wavelength.
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In conclusion of this Chapter, the role of the 4-wave-mixing in generation

of broadband radiation in PCF’s was studied. The peculiarity of dispersion

in PCF’s results in the modified phase-matching condition, which predicts

the generation of sidebands far from the pump frequency for PCF’s and

tapered fibers. It is shown that control over the positions of the sidebands

can be achieved by changing the input intensity and frequency. To obtain

effective phase-matching for the pump far in the normal dispersion regime,

ps-duration pulses are necessary. For ps pulses necessary to obtain effective

FWM with pump in the normal dispersion region, the process is studied

by the application of a SVEA. The control of birefringence allows shifting

the idler wavelengths in the range around 1.3 µm which is interesting for

applications.


