Appendix A

Numerical Methods for Quantum
Mechanics

A.1 The Fourier Transform

In quantum mechanics it is possible to represent the wavefunctions describing a system in
different representations, i.e. one can represent a state |®) in position space (®(z) = (x| ®))
or in momentum space (®(k) = (k| ®)) [92]. These two representations are connected
through a Fourier transform (FT) defined (for one dimensional wavefunctions) as [152]

1 400 .
(k) = [dr () (A1)
and the inverse relation as
1 +00 L~
U(r) = — dk ™ (k). (A.2)
V2m J oo

Other physical representations connected in such a way by a FT are, e.g. the time and
frequency domain. The possibility to change between representations is often employed in
quantum mechanical applications. The most prominent is the split operator propagator
(presented in Section 2.4.3), which needs a FT performed on a grid, and, because one has
to do two transformations per time step, one which scales efficiently.

In the following description, the notation for a FT between a function of time f(¢) and
its counterpart in the frequency domain F(v)

Fw)= [T g e g () (A.3)

— 00

will be used.

177

APPENDIX A. NUMERICAL METHODS FOR QUANTUM MECHANICS

A.1.1 The Discrete Fourier Transform

For the discrete FT usually needed for numerical applications, one starts with a set of N
discretely sampled function values of f(t):

fo=1[f(tn) tha=nAt n=0,1,2,..N—1, (A4)

with the (convenient, but not necessary) condition of even N. The introduction of a finite
sampling time At will introduce the so called Nyquist frequency vpay, which defines the
maximum frequency which can be resolved with the existing data points. The sampling

theorem gives
1

Vmax = Q—At
As the discrete FT [152] starts from a set of N sampled points, the transformation will
only be able to generate N discrete values for the frequency domain. These, according to
Eq. (A.5), have to be in the range _Tit <y, < Z%At, which leads to a choice of the grid in
the frequency domain in the form

(A.5)

J . N N
Now Eq. (A.3) can be approximated by a discrete sum
~+o00 .
Fj=F(y;) = / dt e~ 2t f (1)
N-1 _
~ Y At e P f(t)
n=0
N-1
Fj = At) e ®#minNf, (A7)
n=0

This equation is the discrete FT. It has to be noted, that Eq. (A.7) is periodic in n with a
period of N, so that from the N + 1 values F; defined in Eq. (A.6) only NV are independent,
ie., F_% is equal to F%.

A.1.2 The Fast Fourier Transform

The discrete FT given by Eq. (A.7) can be rewritten as a multiplication of a matrix with
a vector:

) ajo Mo ajo NN—1
F}, e ..o fro

(A.8)

. ajN—1 Mo ajN-1 NN-1
Fiy . e ...e frn_s

with @ = —i27/N. This implies that each discrete FT would need N x N multiplications of
complex numbers, making it an algorithm scaling on the order of O(N?) with the number

178

A.2. THE FOURIER-GRID METHOD

of grid points. This effort can be reduced to O(N log, N) by the Fast Fourier transform
(FFT) [152] algorithm. This makes use of the Danielson-Lanczos Lemma, which states
that a discrete Fourier transform of length N can be rewritten as the sum of two discrete
Fourier transforms, each of length N/2. One of them containing the even-numbered points
e and the other the odd-numbered o. This can be shown as follows:

N-1 o
Fj — Z 67227@ n/an
n=0

N/2-1 N/2-1

— Z e~ i2m] 2n/Nf2n + Z e i2mj (2n+1)/Nf2n+1
n=0 n=0
N/2-1 N/2—1
_ Z 67i27rj n/(N/Q)an + 67i27rj/N Z 67i27rj n/(N/Z)f2n+1
n=0 n=0
— e —i2mj /N 170
= Fj+e "R (A.9)

This can be applied recursively, to halve the length the two resulting discrete F'T again,
until the point is reached, where one has N discrete F'T of length one. A Discrete FT for
N =1 is just the copying of the input to the output:

P‘;Z@OB@OO...B@OOB — fn . (A]_0)

Each Fj is then calculated by first reordering the input, and then calculating the transforms
of length 2,4,8,...N by multiplying with the factors e=*>™/N from Eq. (A.9). As this has to
be done loga N times, the total numerical effort of the FFT is O(N log, N).

A.2 The Fourier—Grid Method

The goal of this method is to give a closed expression for the matrix elements of the total
Hamiltonian on a discrete grid in position space [99]. Writing the Hamiltonian as a function
of the position and the momentum operator one has

N2

o p_ R
H= o + V(x). (A.11)

As the next step the two bases for the Hilbert space are defined. In position space one has
X|z) =z |x) (A.12)
with the orthonormality and completeness relation

(x| x) = §(x — ') (A.13)
1= /_Z dr |z) (z]. (A.14)

179

APPENDIX A. NUMERICAL METHODS FOR QUANTUM MECHANICS

In this basis the potential is diagonal:
(| V(%) |z) = V(x)d(x — a'). (A.15)

The equivalent relations for the momentum space are:

p |k) = hk|k) (A.16)
(K'| k) = 6(k — k') (A.17)
and -
1= /_oo dk k) (k| . (A.18)
This basis results in a diagonal kinetic energy part:
272
| T [k = 22 5(k — k). (A.19)

In addition the Fourier transformation gives a direct relation between the two basis

sets: 1

Now it is possible to write the total Hamiltonian H in position representation:
(Z'|H|z) = @'| T |z) + V(x)d(z — 2'). (A.21)

The first term of this result can be transformed by inserting the completeness relation or
the momentum (Eq. (A.18)) twice and applying Eq. (A.20) and Eq. (A.19):

(/| H |z) = 2i / 7 Ak eMD (k) + V(2)d(x — o), (A.22)
m J—c0

where the exponential term can be interpreted as arising from taking a forward and back-
ward Fourier transformation.

For numerical treatment now the continuous range of coordinate values has to be re-
placed by a discrete grid of N values

Tn = nAz n=1,...,N (A.23)

where Az is the grid spacing. This discrete position grid defines the grid spacing in

momentum space via the relation
2m

~ NAz
With this one can write a discretized version of the Hamilton matrix element in position
space as

Ak

(A.24)

1 K 6il27r(mfn)/N

H,, =— — . T A2
mn = A l:z_:K N 1+ V(xm)émn (5)

180

A.3. INTEGRATORS

with K = (N —1)/2 and
h2

T=o—
2m

(IAK)%. (A.26)

Diagonalizing this Hamiltonian matrix will result in the eigenenergies and eigenfunctions
for the discretized system.

A.3 Integrators

In the most simple approximation, an initial value problem for a first order differential
equation like

dy

dz
as they are encountered in the numerics of the time dependent Schrédinger equation, can
be solved with the so called Euler method. (As any ordinary differential equation can be
rewritten as a set of coupled first order differential equations, this is true for all initial value
problems [152].) To start with, one gets the initial values x; and y; for Eq. (A.27) and then
has to calculate the value y; for the location x;. In the Euler method one now rewrites dx
as a finite step Az and multiplies Eq. (A.27) by Az. This gives an approximation for the
change in y,, when the independent variable x is increased by one step Az, i.e., from z,, to
Tpi1 = T, + Az. Now it is possible to calculate the values of y, 1 starting from y; until

= z(x,y), (A.27)

one reaches y; as follows:

In this method the error made in each iteration is only one order smaller than the length of
the step taken [O(Az?)]. Due to this the Euler method is not suitable for long propagations,
as even for very small steps the inaccuracies will start to add up quickly.

A.3.1 The Runge—Kutta Method

To improve the Euler method, one approach is to use information about the derivative of
y not only from the beginning of the interval, but also from trial points within it. The
Runge-Kutta [152] method does this by using one or several trial steps within the interval to
determine z(z, y) for different points in the interval Az. Adding up the right combinations
of these trial steps can eliminate the higher order error terms. In the commonly used forth-
order Runge-Kutta formula one can reduce the order of the error to O(Az®) by applying
the following algorithm:

Yst = < (xna yn) Ax
Az
Ys2 = Z<xn+— yn"—@) Ax

2’ 2
A
Ysz = Z<xn+7{rayn+%> Ax

APPENDIX A. NUMERICAL METHODS FOR QUANTUM MECHANICS

Ysa = < (xn + AIL‘, Un + ys3) Az
Ys1 Ys2 Ys3 Ysa
= Yot o+ 4
Yn+1 Yn 6 3 3 6
While this requires several evaluations of the derivative in the interval, it usually allows a

much larger step size, without accumulating significant errors.

182

Appendix B

Evolutionary Algorithms

Evolutionary algorithm (EA) is an umbrella term used to describe computer- based problem
solving systems which use computational models of evolutionary processes as key elements
in their design and implementation. More precisely, EAs maintain a population of struc-
tures, that evolve according to rules of selection and other operators, that are referred to
as ”search operators”, (or genetic operators), such as recombination and mutation. Each
individual in the population receives a measure of it’s fitness in the environment, which
has to be defined as a function of all the characteristics this individual has. Reproduc-
tion focuses attention on high fitness population members, introducing the the process
of natural selection. Recombination and mutation perturb those individuals, providing
a random way to explore the fitness landscape. This landscape is described by the de-
fined quality of the individual, in dependence on all the N parameters, which are allowed
to vary, thereby generating a N-dimensional “quality hypersurface”. Although simplistic
from a biologist’s viewpoint, these algorithms are sufficiently complex to provide robust
and powerful adaptive search mechanisms, which are especially useful for problems where
no analytical searching method exists. As the methods are very general, it is also possible,
to search, e.g., for an optimal fitting formula of a potential, as shown in [153]

There are two different approaches to implement the search for the optimal individual.
In genetic algorithms, the parameters are encoded into discrete sequences or strings, similar
to the human genes, which are then allowed to recombine and mutate using certain rules.
In contrast to this, the evolutionary approach normally codes the parameters as their real
values and varies the population by small random fluctuations of these numbers. The
algorithms used in this work are based on the genetic approach as presented in the book
of, for example, Goldberg [114].

The advantage of these methods over the usual, gradient based approaches is, that they
stay robust in the presence of several local extrema. While a gradient search will always
converge to the nearest local extremum, a EA will normally not get trapped there. The
reasons for this will be shortly highlighted in the following sections.

183

APPENDIX B. EVOLUTIONARY ALGORITHMS

B.1 Genetic Algorithms (GA)

GAs differ from the more traditional gradient based search algorithms in four important
points:

1. GAs work with a coding of the parameter set, not the parameters themselves.
2. GAs search from a population of points, not from a single point.

3. GAs use quality information (fitness) of the points, not gradients or other derivative
information.

4. GAs propagate by random transitions, not via deterministic rules.

The second and the last point are mainly responsible for the ability of the GAs to find
several local extrema — the fact that the scattered population can move to several, different
minima, and the random mutations, which prevent trapping in locally optimal niches.

In practice, this genetic model of computation is implemented by having arrays of
bits or characters to represent the parameters in finite-length strings. An individual is
then described by a set of these strings, its “chromosomes”. Within a population of these
individuals, new members are then created by “mating” two parents, giving parents with
higher fitness a better chance to reproduce. The chromosomes of the child are created from
the ones of the two parents by crossover and mutation. For a crossover, the corresponding
chromosomes of the parents are cut at a random position, and then the parts are swapped
between them, to produce two new genes. After two new individuals are created in this
way, each of the encoded genes has a chance of mutation. To give an example, lets consider
a chromosome representing a parameter allowed to vary from [0, 1]. For the computer, a
binary encoding is most natural, so this parameter is encoded in a binary string of arbitrary,
fixed length. If one chooses ten bits for this chromosome, one gets an encoding in the form

0000000000 = 0
0000000001 = 1/1022
1111111111 = 1

The chromosome allows to encode 1023 discrete values of the parameter within its domain.
This already shows the one limitation of this approach — to encode a large parameter
domain, one often needs quite a lot of genes to allow for a fine enough grid. The crossover
between two of these chromosomes is the performed by choosing a random position to cut
these strings and recombine the exchanged parts:

0110| 001101 N 0001]001101
0001|111010 0110111010

184

B.1. GENETIC ALGORITHMS (GA)

After this crossover, each of the the bits in the new individuals has a small random chance
of mutating, i.e. flipping from zero to one or vice versa. Due to a single mutation in a
high significant bit the new individual could end up in a completely different part of the
parameter space, than the parents. This shows, that this arbitrary mutation rate should
be small enough to prevent completely random fluctuation of the parameter, but large

enough to allow some individuals to explore new parts of parameter space.

The implementation of GAs on the computer can be written in the following pseudo
code segment:

PSEUDO CODE

Algorithm GA is

// start with an initial time

t

= 0;

// initialize a usually random population of individuals

initpopulation P (t);

// evaluate fitness of all initial individuals of population

evaluate P (t);

// test for termination criterion (time, fitness, etc.)

while not done do

// increase the time counter
t =t +1;

// select a sub-population for offspring production
P’ := selectparents P (t);

// recombine the "genes" of selected parents
recombine P’ (t);

// perturb the mated population stochastically
mutate P’ (t);

// evaluate it’s new fitness
evaluate P’ (t);

// select the survivors from actual fitness
P := survive P,P’ (t);

185

APPENDIX B. EVOLUTIONARY ALGORITHMS

od
end GA.

B.2 Evolutionary Programming (EP)

A slightly different approach than GAs is used within EP. There are two main differences.

First, there is no constraint on the representation. The typical GA approach involves
encoding the parameters of the problem into strings of representative tokens, the chromo-
somes. In EP, the parameters are used directly, i.e. a parameter varying in the domain
[0, 1] would simply be represented as a real number in this range.

Second, the new generation normally is only generated by mutation of the parents,
there will be no crossover between individuals. A mutation in this approach changes the
parameters of the offspring according to a statistical distribution which weights minor vari-
ations in the parameter value as highly probable and substantial variations as increasingly
unlikely. This mutation method differs drastically from the one used for GAs, where it is
equally likely for all bits to mutate, no matter if this results in a large or a small shift of
the parameter.

Therefore, the EP strategy places ore emphasis on the connection between parents and
their offspring. It does not employ the techniques, which are usually termed as genetic
operations (e.g. the crossover between two individuals), but more resembles a random
search with a multitude of starting points.

An pseudo code implementation of this approach is given below:

PSEUDO CODE
Algorithm EP is

// start with an initial time
t := 0;

// initialize a usually random population of individuals
initpopulation P (t);

// evaluate fitness of all initial individuals of population
evaluate P (t);

// test for termination criterion (time, fitness, etc.)
while not done do

// perturb the whole population stochastically
P’(t) := mutate P (t);

186

B.2. EVOLUTIONARY PROGRAMMING (EP)

// evaluate it’s new fitness
evaluate P’ (t);

// stochastically select the survivors from actual fitness
P(t+1) := survive P(t),P’(t);

// increase the time counter
t =t +1;
od
end EP.

187

Appendix C

Molecular Dynamics (MD)
Algorithms

When a molecular system gets larger, or an ensemble of several molecules has to be exam-
ined (e.g. a microscopic description for the bath of a dissipative quantum system, cf. Section
2.3.3ff.), the methods of quantum mechanics cannot be used any more. Even with severe
approximations, it is not possible to solve the time dependent Schrodinger equation for
a system of several hundred interacting particles (which would only represent a relatively
small bio—molecule, to represent a bath, several thousand atoms normally have to be in-
cluded). To simulate the behavior of such “macroscopic” (with respect to the quantum
world) systems, the methods of molecular dynamics can be used. These methods use
Newtons classical equations of motion for each atom, thereby loosing the quantization of
the energy, but simplifying the problems greatly. These methods are discussed in several
textbooks for further reference [141, 142].

C.1 Equations of Motion

For an ensemble of N interacting particles, located at the positions r; (i = 1,..., N), the
motion of each particle is given by the solution of the equation of motion derived from
Newtons second law (m;i; = F;), where F; is the total force acting on the it" particle. The
total force is calculated from the pair interaction potential between the atoms, which are
modeled differently for inter- and intramolecular interactions. Two particles, separated by
rij = |r; — rj|, belonging to different molecules will normally use a Lennard—Jones (LJ)
interaction potential and, if they are charged, a Coulomb potential, in the form

Tij ” 9ij ’ qiq;¢*
u(rig) =deig (=) — (=) ¢+ (C1)
1] 1] 2]

Here the first (LJ) part of the sum describes the short range van der Waals type inter-
actions. The r ¢ term describes the potential between two induced dipoles, resulting in

189

APPENDIX C. MOLECULAR DYNAMICS (MD) ALGORITHMS

a weak attractive force. The r 2 term models the repulsion at extremely short range,
when the electron clouds of the atoms begin to touch. This modeling is chosen for numer-
ical convenience, as this term can be calculated by simply squaring the r=% term, saving
computational effort. o and e are the parameters of the LJ model potential, and have
to be fitted to experimental results. They are different for each pair of different atoms.
The second part of the sum gives the Coulomb interaction of the particles, which exists
when they carry any partial charge ¢;. The potential between particles belonging to the
same molecule are normally modeled using bond-, angle- and torsion forces, which can be
derived from quantum chemical calculations or from spectroscopic data. A more detailed
treatment of those intramolecular potentials can be found in the literature [141, 142, 154].

From these pair potentials the interaction force between the atoms is then calculated
(fij = —Vu(ri;)). These pair forces add up independently, resulting in the total force F;
on one particle. Writing Newtons equation with this force in the Hamilton form (i.e. split
into two first order differential equations), one gets the basic equations of motion for a
single particle within a larger ensemble:

r, = pi/mi =V;
pi = Fi=) fj (C.2)
i£j

The solution of this problem for a system of N particles then requires the integration of
the 6N first order differential equations given by Eq. (C.2).

C.2 Numerical Integration of the MD Equations

The numerical solution of the equations of motion given by Eq. (C.2) requires a method
which is very fast, as it has to handle a very large number of equations. At the same time
it must be accurate enough to correctly approximate the properties of classical trajectories:
For time- and velocity—independent pair potentials the total energy of the system has to
be conserved, and the trajectories have to be invariant under time reversal. Maybe the
most widely used integrator for MD calculations is the Verlet algorithm [154]. Tt is based
on a Taylor expansion around r(t) (in the following a = v = ¥ and a quantity without
index represents a vector containing all 3N coordinates of the system):

(t400) = x(0)+0tv(t) + 5or%alt) + - (C.3)

r(t —6t) = r(t) —6tv(t) + %5752;1(,5) ...
(C.4)

From these the velocities can be eliminated by subtraction, resulting in

r(t + 6t) = 2r(t) — r(t — 6t) + 6ta(t). (C.5)

190

C.3. COMPLEX MD SYSTEMS

This simple equation is enough to calculate the trajectories, but does not contain the
velocities, which are needed to calculate the kinetic energy (and therefore the total energy)
of the system. So instead of calculating v(¢) from the finite differences of r(¢), one can use
the so called “velocity Verlet” algorithm, which uses the velocities as well:

r(t+6t) = r(t) +otv(t) + %61&2&(15) (C.6)
v(t+0t) = v(t)+ gotlalt) +a(t + 1),

These simple methods are in principle able to model even large systems of complex
molecules, as long as accurate pair potentials for all possible inter- and intra—molecular
interactions exist. Some of the problems which can develop with more complex or larger
systems are given in the next section.

C.3 Complex MD Systems

Periodic Boundaries and Cutoffs

The total number of particles, which are theoretically manageable with the numerical MD
methods, is limited by the amount of computer memory available. The velocity Verlet
method (Eq. (C.7)) needs to store a total amount of 9N words (one word equals 8 bytes,
needed to store on double precision number) for the positions, velocities and accelerations
of the particles. So even with memory in the order of TBytes (=~ 10'?) the amount of
storeable particles is on the order of 10! — still far away from a macroscopic system.
While this is enough for the simulation of clusters, the modeling of a bulk liquid with this
small amount of particles would be dominated by surface effects. To avoid this, one usually
introduces periodic boundary conditions. This means, that a cubic simulation volume is
replicated as an infinite lattice through space. As a particles leaves the box through one
side, the periodicity requires the image particle from a neighboring box to enter from
the opposite side. This removes the surface effects, and now models the macroscopic
system as a small, infinitely periodic system. If the result will reflect this depends on
the range of the inter-molecular potentials and on the actual size of the simulation box.
For a pure LJ potential a cubic box with edges of length L ~ 60 (o from Eq. (C.1))
is large enough, so that a particle will not interact significantly with any of its images
in neighboring boxes. This allows the use of the minimum image convention: A particle
will only interact with partners located within a box with edges of length L, centered on
its position. This ensures, that it does not influence its own image. This sort of system
therefore do not notice the symmetry of the periodic lattice, as long as the forces neglected
are small enough. Problems will arise for smaller simulation boxes and for molecules
with longer range potentials, e.g. polar molecules (dipole-dipole interaction u(r) ~ =3 or
charged particles with Coulomb interaction (u(r) ~ r~'). Despite these limitations, the

191

APPENDIX C. MOLECULAR DYNAMICS (MD) ALGORITHMS

equilibrium properties of liquids away from phase transitions are not disturbed by including
periodic boundary conditions.

If the size of the simulation box is increased, to lessen the effect of the periodicity,
one runs into other problems. The number of evaluations of the potential function for N
atoms scales with N? (each of the N particles interacts with the N —1 others). As the time
needed for these evaluations normally gets too large long before the memory requirements
limit the number of possible particles, an additional approximation is introduced. The
main contribution to the forces on an atom normally comes from neighboring short range
interactions. Knowing this, one can define a cutoff radius r¢, outside of which again the
potential is small enough to be neglected. To ensure consistency with the minimum image
convention, this radius must be smaller than %L. With this inclusion the effort of evaluating
the potential scales with N - N, for N, particles within the cutoff radius. This again does
not work well for systems containing long range (e.g. Coulomb type) interactions, and will
change the thermodynamic properties of the fluid. Methods to apply long range corrections
for these problems to a system are discussed in detail in the literature [155, 156].

Constrained Molecular Systems

The largest time step possible in a MD simulation is limited by the oscillation frequency
within the system, to ensure the energy conservation of the integrator. If a molecule in the
simulation contains a high frequency mode, e.g. a C-H or O-H bond, the time resolution
necessary will slow down the calculation significantly. There are two possible solutions
to this problem, if one wants to increase the time step. The first is to define a so called
“united atom”, treating the system hydrogen—heavy atom as a single particle with specially
tailored LJ—potential parameters. This is useful to simulate regions of molecules of lesser
interest, e.g. parts of the scaffold far away from reaction centers. The other method, which
allows to model single hydrogens (e.g. the proton involved in a hydrogen bridge), is to
introduce constraints to the system. So the bond, which normally would display a high
frequency oscillation, will be kept fixed at a set bond length r;;(t) = d;;. This condition is
introduced into the equations of motion via the Lagrange formalism of constraint forces.
Two methods to couple this constraint formalism with the standard integrators of MD are
given by the SHAKE algorithm (for the Verlet method), and in a slightly changed form by
the RATTLE algorithm (for the velocity Verlet method) [157, 158, 159, 160].

192

Appendix D

Input Files

To allow for easier reproduction of some of the results, the most important input files for
the software packages used are given in this appendix.

D.1

A good introduction to using GAUSSIAN is given in [134]. Following is the input used to
generate the second derivative matrix of PMME along the reaction path. It initiates an
optimization, but stops it before starting the second cycle, to get at the force constants,
which are really calculated (on Hartree-Fock level) and not only guessed, as would be
usual for the first step of an optimization. for MP2 calculations, the keyword B3LYP has
to exchanged with MP2 and calcFC with calcHFFC (to calculate the force constants only

(GAUSSIANOS

on HF level, not the too expensive MP2 one).

%KJOB L103 2

B3LYP/6-31+G(d,p) IOP(1/33=2) NoSymm
Opt (cartesian,maxcycle=2,calcFC) Test

PMME MOLECULE at position XX of the 0D bond

01

r2
r3
r4
rb5
r6
r7
r8

OO
NN R D WN e

N = N W N -

a3
ad
ab
a6
a7
a8

1 d4
2 d5
3 dé
3 47
1 d8

193

APPENDIX D. INPUT FILES

r9 2
ri0
riil
ri2
ri3
ri4d
rib
ri6
ri7
rils8
ril9
r20
H 18 r21
Variables:
r2=1.40432536
r3=1.42433835
a3=117.72576173
r4=1.40882314
a4=119.20459665
d4=-0.19311624
r5=1.39084931
ab=121.68389305
db5=1.48565098
r6=1.39236233
a6=122.34440553
d6=-1.36429951
r7=1.53398645
a7=112.37631885
d7=-177.08912612
r8=1.32976749
a8=120.21181313
d8=-158.032569
r9=1.49375066
a9=124.85299577
d9=178.14653929
r10=1.22916863
a10=125.93396873
d10=-23.80676442
r11=1.21590307
al11=119.17312995

0 O = O O b N © W
O© N W NP P WD W

—_
(0]

[y
o

DT EmQI@Dno@DMmDm@mE Mmoo Q
[
(e}

[
o
[
(e}

-
D

a9
alo
ali
al2
al3
al4d
alb
alé
al7
al8
al9
a20
a21

1

(o}
©

O © © W NN WNWDNDEF-DN

d10
di1
di2
di3
di4
dib
dieé
da1v
di8
d19
d20
d21

194

D.2. MCTDH

d11=19.6129855
r12=1.08272018
al12=118.60759601
d12=-179.07806953
r13=1.08558048
al13=119.88217767
d13=179.00669755
r14=1.08583072
al4=119.72766142
d14=-178.96491785
r15=1.08344076
al15=117.15311728
d15=177.95400614
r16=1.33824679
al16=113.08247147
d16=158.04824707
r18=1.44560255
al18=116.40245396
d18=177.51150072
r19=1.08886698
a19=105.00529711
d19=179.81784864
r20=1.09189824
a20=110.20148122
d20=-60.58234507
r21=1.09165028
a21=110.1115407
d21=60.34718663
r17=XX
al7=112.359
d17=-8.334

D.2 MCTDH

Here goes the position on the 1d reaction path

For the MCTDH calculation, one needs an operator file and an input file, which are doc-
umented in [140]. Given here are the time dependent operator for the 3d system and the
input file used for the propagation with a laser field.

The 3d operator:

OP_DEFINE-SECTION
title

195

APPENDIX D. INPUT FILES

1D pmme oszillator + x modes (VBFC, fitted for R/E)
end-title
end-op_define-section

PARAMETER-SECTION

mass_x0 = 1.0, D-mass

feld = 0.0005

pi=3.14159

tau=300, fs

pitau=pi/tau

omega = 2425, cm-1

K23_23 = 0.000020088170
F23 = 0.000007713732

Ki_1 = 0.000000086875

F1 = 0.000000881969
K23_23C_0 = 0.000004424463
K23_23C_1 = 0.000023298457
K23_23C_2 = -0.000019441142
K23_23C_3 = 0.000012112697

K23_1C_0 = 0.000000188816
K23_1C_1 = -0.000000491782
K23_1C_2 = 0.000000458777
K23_1C_3 = -0.000000158073
K1_1C_0 = 0.000000290335
K1_1C_1 = -0.000000400008
K1_1C_2 = 0.000000213266
K1_1C_3 = -0.000000018034

VC_1 = -0.001465471345
VC_2 = 0.253868818283
VC_3 = -0.384436279535
VC_4 = 0.244873702526
VC_5 = -0.068412922323

VC_6 = 0.007109705824

F23C_0 = 0.000249872537
F23C_1 = 0.000051380171
F23C_2 = 0.001188250375
F23C_3 = -0.001492481446
F1C_1 = 0.000014676155
F1C_2 = 0.000040114362
F1C_3 = -0.000087538589

196

D.2. MCTDH

F1C_4 = 0.000037307072

DC_0
DC_1
DC_2
DC_3
DC_4
DC_5
pl =
p2 =

7.217092
1.576173
1.418831
1.484585
-1.676802
0.3768853
3.2

-2.0

end-parameter—section

HAMILTONIAN-SECTION

modes | x0 | =x1
1.0 | KE
Vel | xql
VC_2 | xq2
ve3 | xq3
VC_4 | xq4
VC_5 | xg5
VC_6 | xq6
1.0 |2 KE
0.5%K23_23C_0 2 xq2
0.5%K23_23C_1 | ex1
0.5%K23_23C_2 | ex2
0.5%K23_23C_3 | ex3
K23_1C_0 12 xq1
K23_1C_1 | ex1
K23_1C_2 | ex2
K23_1C_3 | ex3
-1.%F23C_0 12 xq1
-1.%F23C_1 | ex1
-1.%F23C_2 | ex2
-1.%F23C_3 | ex3
-0.5 | gg
1.0 |3 KE
0.5%K1_1C_0 13 xq2
0.5%K1_1C_1 | pex1

x2

[2
[2
[2

|2
|2
|2

|2
|2
|2
|2

| Time

xq2
xq2
xq2

xql
xql
xql

xql
xql
xql
xql

13 xq1

13 xq2

197

13 xql
13 xql
13 xq1

APPENDIX D. INPUT FILES

0.5%K1_1C_2 | pex2 13 xq2
0.5%K1_1C_3 | pex3 13 xq2
-1.%F1C_1 | xq1 |3 xql
-1.*F1C_2 | xq2 I3 xql
-1.xF1C_3 | xg3 I3 xql
-1.*F1C_4 | xq4 I3 xql
-1.%DC_0 | 1 |4 efeld*sn2xcs
-1.xDC_1 | xq1 |4 efeldxsn2x*cs
-1.xDC_2 | xq2 |4 efeldxsn2x*cs
-1.xDC_3 | xq3 |4 efeldxsn2x*cs
|

-1.xDC_4 xq4 |4 efeld*sn2xcs
-1.%DC_5 | xq5 |4 efeld*sn2x*cs
end-hamiltonian-section

HAMILTONIAN-SECTION_basepot

modes | x0 | =x1 | x2
1.0 | KE
Vel | xql
ve_2 | xq2
ve.3 | xq3
VC_4 | xq4
VC_5 | xg5
VC_6 | xq6

end-hamiltonian-section

HAMILTONIAN-SECTION_dipole

modes | x0 | x1 | x2
DC_0 | 1
DC_1 | xql
DC.2 | xq2
DC_3 | xq3
DC_4 | xq4
DC.5 | xq5

end-hamiltonian-section
LABELS-SECTION

sn2 = sin[pitau] "2
cs = cos[omegal

198

D.2. MCTDH

xql = q

Xq2 = q°2
xq3 = q°3
xq4 = q°4
xgb = q°b
xq6 = q°6
exl = exp[-1]
ex2 = exp[-2]
ex3 = exp[-3]
pexl = expl[1]
pex2 = expl[2]
pex3 = expl[3]

gg = gauss[pl,p2]
end-labels-section

end-operator
And the input file for the dynamics:

HHHHHH R H R R AR R
PMME-D
LASER DRIVING
HHHHBHRHHHH R B H R H R

RUN-SECTION

name = time3

gendvr genoper geninwf
propagation

tfinal= 300.0

tout= 1.0

overwrite

output psi gridpop
end-run-section

OPERATOR-SECTION

oppath = /user/naundorf/work/MCTDH/VBFC/REfit_ops
opname = pmmeD3dTime

alter—parameters

efeld = 0.0005

omega = 2445.0, cm-1

end-alter-parameters
end-operator—-section

199

APPENDIX D. INPUT FILES

SBASIS-SECTION

x0 = 6
x1 = 6
x2 = 5

end-sbasis-section

PBASIS-SECTION
x0 ho 40 xi-xf -0.8 1.1
x1 ho 40 xi-xf -100. 100.
x2 ho 40 xi-xf -250. 250.
end-pbasis-section

INTEGRATOR-SECTION

VMF

ABM = 6 , 1.0d-7 , 0.01
end-integrator-section

INIT_WF-SECTION
file =/public/bee/scratch/naundorf/MCTDH/new3D/relax3
end-init_wf-section

end-input

D.3 Gromacs

The Gromacs input is documented in [143]. Given here is the topology file for PMME
in a solvent of CCl; molecules. It uses the simplified PMME geometry described in Sec-
tion 3.3.5, with partial charges obtained from GAussiAN CHELP/CHELPG [150, 161]
calculations.

; This is your topology file
; PMME in CCl4

; Include forcefield parameters
#include "ffG43al.itp"

[moleculetype 1

; Name nrexcl
PMME 6

200

D.3. GROMACS
[atoms]
; nr type resnr residue atom cgnr charge mass
1 CR1 1 PMME C1 1 0.041 13.019 ; qtot 0.041
2 CR1 1 PMME C2 1 0.048 13.019 ; qtot 0.089
3 C 1 PMME C3 1 -0.079 12.011 ; qtot 0.01
4 C 1 PMME C4 1 -0.162 12.011 ; qtot -0.152
5 CR1 1 PMME C5 1 0.025 13.019 ; qtot -0.127
6 CR1 1 PMME C6 1 0.038 13.019 ; qtot -0.089
7 C 1 PMME C7 1 0.804 12.011 ; qtot 0.715
8 0 1 PMME 01 1 -0.601 15.9994 ; qtot 0.114
9 C 1 PMME C8 1 0.849 12.011 ; qtot 0.963
10 OM 1 PMME 02 1 -0.443 15.9994 ; qtot 0.52
11 CH3 1 PMME CH 1 0.296 15.035 ; qtot 0.816
12 0OA 1 PMME 03 1 -0.605 15.9994 ; qtot 0.211
13 0 1 PMME 04 1 -0.598 15.9994 ; qtot -0.387
14 H 1 PMME HO 1 0.387 1.008 ; qtot -2.98e-08
[bonds]
;ail aj funct cO cl c2 c3
1 2 2 0.1392 0.0
1 6 2 0.13544 0.0
2 3 2 0.1404 0.0
3 4 2 0.1424 0.0
3 7 2 0.1534 0.0
4 5 2 0.1410 0.0
4 9 2 0.1494 0.0
5 6 2 0.1391 0.0
7 8 2 0.1216 0.0
7 12 2 0.1330 0.0
9 10 2 0.1338 0.0
9 13 2 0.1229 0.0
10 11 2 0.1446 0.0
12 14 2 0.0992 0.0
;[dihedrals 1]
;ai aj ak al funct cO cl c2 c3
; 1 2 3 4 2 gi_1
; 2 1 6 5 2 gi_1
; 2 3 4 5 2 gi_1
; 3 4 5 6 2 gi_1

201

APPENDIX D. INPUT FILES

; 4 5 6 1 2 gi_1
; 5 6 1 2 2 gi_1
; 6 1 2 3 2 gi_1

; Include CCl4 topology
#include "ccl4.itp"

[system]
; Name

PMMEinCC14

[molecules 1]

; Compound #mols
PMME 1
CCl4 724

The first included file ££fG43al.itp is supplied by Gromacs and contains the force field
parameters, the included file cc14.itp supplies the solvent geometry:

[moleculetype 1

; Name nrexcl
CCl4 3
[atoms]
; nr type resnr residue atom cgnr charge mass
1 CCL4 1 CCL4 CCL4 1 0 12.011 ; qtot O
2 CLCL 1 CCL4 CL1 1 0 35.453 ; qtot O
3 CLCL 1 CCL4 CL2 1 0 35.453 ; qtot O
4 CLCL 1 CCL4 CL3 1 0 35.453 ; qtot O
5 CLCL 1 CCL4 CL4 1 0 35.453 ; qtot O
[bonds 1]
;ai aj funct c0 cl c2 c3
1 2 2 gb_40
1 3 2 gb_40
1 4 2 gb_40
1 5 2 gb_40
2 3 2 gb_47
2 4 2 gb_47
2 5 2 gb_47
3 4 2 gb_47
3 5 2 gb_47

202

D.3. GROMACS

The run parameters are then supplied by the run.mdp file:

title
warnings
cpp
constraints
freezegrps
freezedim
morse
integrator
tinit

dt

nsteps
nstcomm
nstxout
nstvout
nstfout
nstlog
nstenergy
nstlist
ns_type
deltagrid
rlist
coulombtype
rcoulomb
epsilon_r
vdwtype
rvdw

box

tcoupl
ref_t
tau_t
tc-grps
pcoupl
annealing
gen_vel

run md

10

/1ib/cpp

none

PMME

YYY

no

md

0.0

0.001 ; ps !

30000 ; total 30.0 ps.

1

0

0

1

10

10

10
simple
2

1.3
shift
1.0
2.238
shift
1.0
rectangular
no
300.0
0.1
System
no

no

no

203

