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Abstract
Ito’s representation theorem gives the existence of a martingale

representation of stochastic variables with respect to Brownian mo-
tion. Similar results exist for instance for compensated Poisson pro-
cesses and Azema’s martingale. We give sufficient conditions for pre-
dictable representation (in a weak sense), i.e. there exists predictable
processes φα such that every F ∈ L2(F∞, P ) can be represented
F = E[F ] +

∑
α φ

α · Mα for some given collection of martingales
{Mα}α∈I . Thereafter we show how one can obtain explicit expres-
sions for the representation using Malliavin calculus methods. The
theory is then applied to Lévy processes.

Keywords. chaos expansion ; Clark-Ocone formula ; Lévy process ; prop-
erty of predictable representation ; stable subspace

1 Introduction

Clark-Ocone formulas have proved to be useful tools to obtain explicit ex-
pressions for the martingale representation of stochastic variables. In the
Brownian motion case the Clark-Ocone formula has for instance been used
frequently to obtain hedging portfolios for derivatives. The object of this pa-
per is to generalize the formula to the case of an infinite collection of stochas-
tic processes, each admitting a chaos decomposition. The Clark-Ocone for-
mula we obtain is in some sense an infinitely dimensional extension of the
Clark-Ocone formula appearing in [8].

The first step in order to derive an explicit expression for the martingale
representation of stochastic variables is to show that there exists a martin-
gale representation of a given form. In section 2 we first extend some of the
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results in [11] and introduce the notion of a basis for predictable representa-
tion. A basis for predictable representation can be viewed as an analogue of
a basis of orthogonal functions in a classical Hilbert space. It is basically a
collection of orthogonal square integrable martingales such that every square
integrable martingale can be represented as a sum of integrals with respect to
these martingales. This property is shown to be equal to the predictable rep-
resentation property (in a weak sense), i.e. every square integrable functional
which is measurable with respect to F∞ can be expressed by its expectation
plus a sum of integrals with respect to the martingales constituting the ba-
sis of predictable representation. The main result in the section concerning
martingale representation is a result which gives sufficient conditions for a
collections of martingales to have this property.

Section 3 deals with the possibility of chaos expansions. In order to use
Malliavin calculus methods we want to have a chaos expansion property.
We assume that each of the square integrable martingales constituting the
basis for predictable representation have the chaos representation property.
By results in [5] this is the same as assuming that each of the martingales
have the predictable representation property. The chaos decomposition is
obtained by using a monotone class argument, the density of the Doléans-
Dade exponential and iterative use of the representation property. Thereafter
we obtain a chaos expansion consisting of sums of integrals with respect to
product stochastic measures, similar to the Wiener chaos expansion.

In section 4 we define a Gross derivative of stochastic variables via their
chaos expansion. The definition is similar to the definition in [8], and the
results in this section extend some of the results in that paper. We show a
correspondence between this derivative and the directional Gross derivative
and the directional Gross derivative (difference) for Poisson processes. This
enables us to actually compute the derivative in these cases. The Clark-Ocone
formula is obtained by similar techniques as its counterpart in [8]. Our for-
mula is in a sense an infinitely dimensional generalisation of the Clark-Ocone
formula in [8]. As in this paper we only assume that the martingales consti-
tuting the basis for predictable representation satisfis certain properties, and
do not specify these martingales to be for instance Brownian motions.

A basis for predictable representation which satisfies the sufficient condi-
tions for a chaos expansion can often be seen directly from a known represen-
tation of a given process. In Section 5 we apply the theory to Lévy processes
which is one such example. Such processes can be expressed in terms of a
Brownian motion and Poisson processes. The Brownian motion and the com-
pensated Poisson processes will then constitute a basis for predictable rep-
resentation which also allows a chaos expansion. The Clark-Ocone formula
then provides a practical tool to obtain expressions for stochastic variables.
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In order to illustrate the theory we give two examples in the Lévy process
case.

2 Martingale representation

We assume as given a complete filtered probability space (Ω,F , {Ft}t≥0, P ).
As usual we assume that F0 contains all P -null sets of F , and that the
filtration {Ft} is right-continuous and contains all P -null sets. Following the
notation and ideas in [11],

Definition 1. Denote by M2 the space of all square integrable martingales
M such that supt≥0E

[
M2

t

]
<∞, and M0 = 0 a.s.

Notice that if M ∈ M2 then limt→∞E
[
Mt

]
= E

[
M∞

]
< ∞. Such

martingales are identified by their terminal value. We endow M2 with the
inner-product (M,N) = E

[
M∞N∞

]
, and notice that M2 is a Hilbert space.

(see [11] for more details)
A closed subspace F ⊂M2 is called stable if M ∈ F implies Mτ ∈ F for

every stopping time τ . (where Mτ
t = Mt∧τ ). Let A be a subset of M2. We

define the stable subspace generated by A, denoted S(A), as the intersection
of all closed, stable subspaces containing A.

Definition 2. We will call a collection {Mα}α∈I of martingales in M2 a
Basis for Predictable Representation (BPR) if Mα and Mβ are orthogonal
for all α 6= β and S({Mα}α∈I) = M2.

Note that since M2 is a Hilbert space a BPR for M2 always exists. The
next two results, Lemma 3 and Proposition 4 are almost identical to [2,
remark, pp. 360].

Lemma 3. Assume that {Mα} is a BPR for M2. Then

M2 =
⊕
α∈I
S(Mα)

Proof. First note that S(A) is a closed subspace of a Hilbert space and hence
complete for every A ⊂M2. Therefore X :=

⊕
α∈I S(Mα) is complete and

therefore also closed. Now choose N ∈M2 and assume that N is orthogonal
to X. By [11, Th.35, pp.149] we have S(Mα, . . . ,Mγ) = S(Mα)⊕· · ·⊕S(Mγ)
for every finite collection α, . . . , γ. Since M2 = S({Mα}) we see that N must
be zero. Hence, X is dense in M2. Since X is closed, X = M2.
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The direct sum
⊕

α S(Mα) is interpreted in the usual way, i.e. if I is a
countable set we denote by

⊕
α S(Mα) the set{

x = (xα, xβ, . . . ) ∈ S(Mα)× S(Mβ)× · · · ;
∑
α∈I
‖xα‖2

α <∞
}

(1)

where ‖ · ‖α denotes the norm in S(Mα). The concept is extended to general
infinite index sets I by simply noting that since all the Hilbert-spaces S(Mα)
are mutually orthogonal, at most a countable number of the xα’s are nonzero.
Note that by Lemma 3 we have the isometry ‖M‖2

L2(Ω) =
∑

α∈I ‖Y α‖2
L2(Ω)

for every M ∈M2, where M = (Y α, Y β, . . . ) is in
⊕

α S(Mα).

Proposition 4. Assume {Mα} is a BPR for M2. Let F ∈ L2(F∞, P ). Then
F has a representation

F = E
[
F
]

+
∑
α∈I

Hα ·Mα

where Hα is predictable and
∑

α∈I E
[
(Hα)2 · [Mα,Mα]

]
<∞.

Proof. F = E
[
F
]

+ E
[
F − E[F ]|F∞

]
. The process Mt = E

[
F − E[F ]|Ft

]
is a square integrable martingale with M0 = 0, hence M ∈ M2. Therefore
every F ∈ L2(F∞, P ) has a decomposition F = E

[
F
]

+M∞ where M ∈M2.
By Lemma 3 every M ∈M2 can be represented as

M = (Y α, Y β, . . . ), Y α ∈ S(Mα) (2)

The result now follows since
⊕

α∈I S(Mα) and
∑

α∈I S(Mα) are unitarily
equivalent and by [11, Th.35, pp. 149],

S(Mα) =
{
H ·Mα;E

[
(H)2 · [Mα,Mα]

]
<∞

}
(3)

Given a collection {Mα}α∈I of martingales in a filtered probability space
(Ω,F , {Ft}, P ), we want to determine sufficient conditions for {Mα} to be a
BPR. Denote by N the P -null sets of F . Let {Mα}α∈I be a collection of mu-
tually independent stochastic processes, each square integrable martingales
with respect to their own completed filtration, Fαt = σ(Mα

s ; 0 ≤ s ≤ t) ∨ N .
Denote by M2

α the set of martingales M2 in (Ω,F , {Fα}, P ). We assume
that all the filtrations {Fαt } are right-continuous. Let Ft ⊂ σ(Fαt ,Fβt , . . . )
be a right-continuous filtration such that all the processes Mα are mar-
tingales with respect to {Ft}. Notice that the filtration {Ft} given by
Ft = σ(Fαt ,Fβt , . . . ) satisfies these requirements, so such filtrations exist.
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Theorem 5. Let (Ω,F , {Ft}, P ) be a filtered probability space and {Mα}α∈I
a collection of martingales, where Mα and {Ft} are as specified above. As-
sume that [Mα,Mβ ] = 0 for all α 6= β. If S(Mα) = M2

α (i.e. Mα has the
predictable representation property). Then the collection {Mα} is a BPR for
M2.

Proof. Define a multiplicative class M by

M :=

{ n∏
i=1
αi∈I

Fαi;
 n∏
i=1
αi∈I

Fαi
 <∞, n <∞, n ∈ N , Fαi is Fαi∞ -measurable

}
(4)

Define a space H by

H :=

{
F ∈ R + M2; there exist {Hα}, E

[∫ ∞
0

(Hα
t )2d[Mα,Mα]t

]
<∞

Hα is predictable, and such that F = E
[
F
]

+
∑
α∈I

∫ ∞
0

Hα
t dM

α
t

}
(5)

In order to apply the monotone class theorem we first want to show that H
is a monotone vector space. Let Fn be a monotone increasing sequence in H.
For each n there exists a collection of predictable processes {Hα

n} such that
Fn = E

[
Fn
]

+
∑

α∈I
∫∞

0
Hα
n (t)dMα

t . Since Fn converges to F and S(Mα)
which is equal to

{
H ·Mα;E

[
H2 · [Mα,Mα]

]
<∞, H ∈ P

}
and S(Mα) is a

closed subset of a Hilbert space, F must be in H.
In order to show that M is contained in H consider first for simplicity

one element F 1F 2 ∈ M. Since F 1 is F1
∞-measurable and S(M1) = M2

1,
there exists a predictable process H1 with E

[∫∞
0

(H1
t )2d[M1,M1]

]
<∞ such
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that F 1 = E
[
F 1
]

+
∫∞

0
H1
t dM

1
t . Similarly F 2 = E

[
F 2
]

+
∫∞

0
H2
t dM

2
t . Now,

F 1F 2 = E
[
F 1
]
E
[
F 2
]

+

∫ ∞
0

E
[
F 1
]
H2
t dM

2
t +

∫ ∞
0

E
[
F 2
]
H1
t dM

1
t

+
(∫ ∞

0

H1
t dM

1
t

)(∫ ∞
0

H2
t dM

2
t

)
= E

[
F 1
]
E
[
F 2
]

+

∫ ∞
0

E
[
F 1
]
H2
t dM

2
t +

∫ ∞
0

E
[
F 2
]
H1
t dM

1
t

+

∫ ∞
0

(∫ t−

0

H1
sdM

1
s

)
H2
t dM

2
t +

∫ ∞
0

(∫ t−

0

H2
sdM

2
s

)
H1
t dM

1
t

+

∫ ∞
0

H1
tH

2
t d[M1,M2]t

= E
[
F 1
]
E
[
F 2
]

+

∫ ∞
0

(
E
[
F 1
]

+

∫ t−

0

H1
sdM

1
s

)
H2
t dM

2
t

+

∫ ∞
0

(
E
[
F 2
]

+

∫ t−

0

H2
sdM

2
s

)
H1
t dM

1
t

where we have used that [M1,M2] = 0. This shows that F 1F 2 ∈ H. The
proof that F 1 · · ·F n ∈ M is in H is similar. Hence, M is contained in
H. Since |Mα| < ∞ almost surely, M contains all the martingales Mα.
Obviously, σ(Mt) = σ({Fαt }). By the monotone class theorem H = M2 and
the result follows.

Standard examples of processes satisfying the conditions in Theorem
5 are independent Brownian motions and independent Poisson processes.
Both possess the predictable representation property which is the same as
S(Mα) = M2

α. If B1 and B2 are two independent Brownian motions then
[B1, B2] = 0. This follows from the fact that [B,B]t = 〈B,B〉t = t and the
polarization identity. If N1 and N2 are two independent compensated Pois-
son processes then [N1, N2] = 0. This is because two independent Poisson
processes jump at different times almost surely, and if X is a pure jump semi-
martingale then [X, Y ]t =

∑
0<s≤t4Xs4Ys for any semimartingale Y ( [11,

Th. 28. pp.68]). This also shows that [B,N ] = 0 when B is a Brownian
motion and N is a compensated Poisson process. Hence any mutually inde-
pendent collection of Brownian motions and compensated Poisson processes
satisfy the conditions of Theorem 5.

A not so standard example is the case when the filtration Ft = σ(Mt,Gt)
where Mt is the completed filtration of a Brownian motion W and Gt is
the completed filtration of an Azema martingale A independent of W . Since
Azema’s martingale is quadratic pure jump it follows from [11, Th. 28, pp.68]

6



that [W,A] = 0. Both the Brownian motion and Azema’s martingale possess
the predictable representation property with respect to their own filtration.
Hence by Theorem 5, {W,A} is a BPR for M2 in this case. (for properties
of Azema’s martingale see [11, pp. 180]).

3 Chaos expansion

We will now specialize to the case where there exists a BPR {Mα}α∈I with
some desired properties. These properties are that [Mα,Mβ ] = 0 and Mα

and Mβ are independent for α 6= β. I.e. the conditions of Theorem 5
are satisfied. In addition we will assume that 〈Mα〉 is deterministic and
absolutely continuous with respect to Lebesgue measure for every α ∈ I.
Let [0, T ] be a finite fixed time horizon. Define the integrals

Jn(Hn) :=
∑
α1∈I

∫ T

0

∑
α2∈I

∫ t1−

0

· · ·

· · ·
∑
αn∈I

∫ tn−1−

0

Hα1,...,αn(t1, . . . , tn)dMαn
tn · · ·dM

α1
tn (6)

Hn(t1, . . . , tn) ∈
⊕

(α1,.,αn)∈In
L2
(
d〈Mα1〉 ⊗ · · ⊗d〈Mαn〉 ⊗ dP

)
(7)

Where, Hn(t1, . . . , tn) =
(
Hα1,...,αn
n (t1, . . . , tn), Hβ1,...,βn

n (t1, . . . , tn), . . .
)
, and

Hα1,...,αn
n (t1, . . . , tn) is predictable. Notice that we have the Ito isometry,

E
[
J1(H)J1(G)

]
=
∑
α

E
[∫ T

0

Hα
t G

α
t d〈Mα〉t

]
(8)

Define spaces Dn by

Dn :=

{
Hn ∈

⊕
α∈In

L2
(
[0, T ]n, d〈Mα1〉 ⊗ · · · ⊗ d〈Mαn〉

)}
(9)

and the corresponding n’th homogeneous chaos Hn as the intersection of all
closed spaces containing{∑

α∈I
Hα ·Mα;H = (Hα, Hβ, . . . ) ∈ Dn

}
(10)

From the Ito isometry we see that Hn and Hm are orthogonal whenever
n 6= m. For notational convenience we make the convention, H0 := R.
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Theorem 6. Assume {Mα} is a BPR for M2, where the Mα’s are mutually
independent and every Mα has the chaos representation property (with respect
to its own filtration). If [Mα,Mβ] = 0 for every α 6= β and 〈Mα〉 � dt is
deterministic, then

L2(FT , P ) =
∞⊕
n=0

Hn

Proof. Choose one F ∈ L2(FT , P ). By Theorem 6,

F = E
[
F
]

+ J1(H1), H1 = Hα1(t1) (11)

Now we use the same procedure again to obtain a representation of H1 to
get

F = E
[
F
]

+ J1

(
E
[
H1

]
+ J1(H2)

)
= E

[
F
]

+ J1

(
E
[
H1

])
+ J2(H2)

we proceed in this way, and after n steps we have

F = E
[
F
]

+ J1(F1) + · · ·+ Jn−1(Fn−1) + Jn(Hn) (12)

where Fi ∈ Di. By the triangle inequality we see that the norm of Rn :=
Jn(Hn) is bounded by the norm of F . Therefore R := limn→∞Rn exists as a
limit in L2(P ). We want to show that R = 0.

Since every Mα has the chaos expansion property the linear span of the
Doléans-Dade exponentials E(θ ·Mα) is a dense subset of M2

α where θ = θt is
a deterministic process. This is due to the fact that it holds in the Brownian
motion case. Therefore there exist for every fn ∈ L2([0, T ]n, dt) a sequence
{θi}∞i=1 of deterministic functions in L2([0, T ]) and constants {ci}∞i=1 such
that limN→∞

∑N
i=1 ci(θi)

⊗n = fn in L2([0, T ]n, dt) (where θ⊗n = θt1θt2 · · · θtn).
Since we have assumed that 〈Mα〉 is absolutely continuous with respect to
Lebesgue measure, this implies that for every fn ∈ L2([0, T ]n, d〈Mα〉) one can
find sequences as above such that limN→∞

∑N
i=1 ci(θi)

⊗n = fn. The density
of the linear span of Doléans-Dade exponentials then follows from their chaos
expansion.

By a monotone class argument similar to that in the proof of Theorem 5
one can then show that the linear span of

{∏
α E
(
θα·Mα

)
; θα deterministic

}
is dense in L2(FT , P ). Since [Mα,Mβ ] = 0 for α 6= β it follows from [11, Th.
37, pp.79] that

∏
α E
(
θα ·Mα

)
= E

(∑
α θ

αMα
)

which shows that the linear
span of

{
E
(∑

α∈I θ
α ·Mα

)
; θα deterministic

}
is dense in L2(FT , P ).
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Consider a Doléans-Dade martingale Z = E
(∑

α θ
α · Mα

)
. That is Z

solves the stochastic differential equation Zt = 1 +
∫ t

0
Zs−

∑
α θ

αdMα. Hence

E
[
Z2
t

]
= 1 +E

[( ∫ t

0

Zs−
∑
α

θαdMα
)2]

= 1 +

∫ t

0

∑
α

E
[
Z2
s−
]
d〈Mα〉s (13)

We therefore have that E
[
Z2
t

]
= exp

{∑
α〈Mα〉t

}
. Now,

exp
{∑

α

〈Mα〉t
}

= 1 +
∑
α

〈Mα〉t +
(
∑

α〈Mα〉t)2

2
+ · · · (14)

by comparing the norm of the different terms in the chaos expansion of
Z given by (12) with the expansion (14), we deduce that all exponential
martingales E

(∑
α θ

α ·Mα
)

are contained in
⊕∞

n=0Hn. Hence R is orthogonal
to a dense subset of L2(FT , P ) and must therefore be zero. Since

⊕∞
n=0Hn

is closed it must be equal to L2(FT , P ).

R ⊕ M
2 ←→ R ⊕

⊕
α∈I S(Mα)

l l

L2(FT , P ) ←→
⊕∞

n=0Hn

It is clear from proceeding discussions that if we fix the timehorizon to [0, T ]
then there exists bijective isometries between all the spaces in the diagram
if there exists a BPR {Mα} for M2 which fulfills the conditions in Theorem
6. These conditions are satisfied if for instance {Mα} consists of Brownian
motions and/or compensated Poisson processes.

4 Clark-Ocone formula

So far the attention has been on the existence of predictable processes such
that a given stochastic variable can be represented as integrals of these pre-
dictable processes with respect to some given martingales {Mα}α∈I. We will
now try to obtain explicit expressions for the predictable processes appearing
in this representation. This can be achieved by Clark-Ocone formulas which
express these processes in terms of a Gross derivative. We will start by defin-
ing a Gross derivative via the chaos expansion. The Clark-Ocone formula can
then be proved in a way similar to that in [8]. Then we show how the Gross
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derivative is related to the Gross derivative in the Brownian motion case and
the Poisson process case. This has the advantage that we can use existing
theory of the properties of the Gross derivative in these cases.

For the rest of the paper we assume that {Mα}α∈I is a BPR for M2 which
satisfies the conditions in Theorem 6. That is {Mα} consists of mutually
independent martingales with 〈Mα〉 � dt deterministic and the quadratic
covariation process [Mα,Mβ ] = 0 for α 6= β. When 〈Mα〉 � dt the diago-
nals 4n =

{
(t1, . . . , tn); ti = tj for some i, j and i 6= j

}
are null sets of the

measures d〈Mα1〉 ⊗ · · · ⊗ d〈Mαn〉.
Define the spaces Xn :=

⊕
α∈In L

2([0, T ]n ×Ω), and denote by

‖H‖2
n =

∑
(α1,.,αn)∈In

E

[∫
[0,T ]n

(
H(α1,.,αn)(t1, ., tn)

)2
d〈Mα1〉t1 · ·〈Mαn〉tn

]
(15)

the norm on Xn. We are now extending the integral Jn defined previously
on the increasing simplex to its symmetrization [0, T ]n. As pointed out by
several authors, e.g. [8], the symmetrization does not cover the diagonal.
Since the diagonals are null sets, every function on [0, T ]n is equal in L2(dt)
to a function on [0, T ]n which are zero on the diagonal in Xn. We can
therefore assume that every function is zero on the diagonal. Denote by
Xn
s :=

⊕
α∈In L

2
s([0, T ]n × Ω) the space of all functions fα(t1, . . . , tn) which

are symmetric in the variables (t1, . . . , tn) and where f ∈ Xn. For constant
functions f ∈ R := X0

s we define I0(f) = f , and for functions f ∈ Xn
s we

define the integrals

In(f) :=
∑

(α1,.,αn)∈In

∫
[0,T ]n

f (α1,...,αn)(t1, . . . , tn)dMα1
t1 ⊗ · · · ⊗ dM

αn
tn (16)

We now restate Theorem 6 to the case of symmetric functions and integrals
In:

Theorem 7. Assume {Mα} is a BPR for M2, that 〈Mα,Mα〉 � dt is deter-
ministic. Then for every F ∈ L2(FT , P ) there exists a sequence of functions
{fn}∞n=0 where fn ∈ Xn

s such that

F =
∞∑
n=0

In(fn), moreover ‖F‖2
L2(Ω) =

∞∑
n=0

n!‖fn‖2
n

Proof. The first part follows from Theorem 6, so we only have to prove that
‖F‖2

L2(Ω) =
∑∞

n=0 n!‖fn‖2
n. This isometry follows from the Ito isometry and

that the increasing simplex Sn =
{

(t1, . . . , tn); t1 < t2 < · · · < tn < T
}

is 1
n!

of [0, T ]n.
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Define a subset D 1,2 of L2(Ω) which will be the domain of our derivative
operator,

D 1,2 :=

{
F =

∞∑
n=0

In(fn)
 ∞∑
n=1

n · n!‖fn‖2
n <∞

}
(17)

Since every F ∈ L2(Ω) of the form F =
∑N

n=0 In(fn) is in D 1,2 we see that
D 1,2 is dense in L2(Ω).

Definition 8. The operator D : D 1,2 7→
⊕

α∈I L
2([0, T ]× Ω, d〈Mα〉 ⊗ dP ),

defined by

Dt,αF :=
∞∑
n=1

nIn−1(fαn (·, t)) (18)

will be referred to as the derivative operator.

Similar to the Brownian motion case one can define a Skorohod integral δ
as the adjoint of the derivative operator. One can show that the integral δ is
an extension of the Ito integral, i.e. the Ito integral and the integral δ coincide
if the Ito integral exists. Since lots of the results concerning the Skorohod
integral only relies on the chaos expansion and the martingale property of
Brownian motion, much of these results can be extended to the δ integral
case.

The next observation is that if a variable F ∈ L2(FT , P ) is in D 1,2 then
DF ∈

⊕
α∈I L

2
(
[0, T ] × Ω, d〈Mα〉 ⊗ dP

)
as claimed in the definition of D.

Assume F =
∑∞

n=0 In(fn) ∈ D 1,2 then

E
[(∑

α

∫ T

0

Dt,αFdM
α
t )2
]

= E
[∑
α

∫ T

0

(
Dt,αF

)2
d[Mα,Mα]t

]
=
∑
α

∫ T

0

‖
∞∑
n=1

nIn(fαn (·, t)‖2
L2(Ω)d〈Mα〉t

=
∑
α

∫ T

0

∞∑
n=1

n2(n− 1)!‖fαn (·, t)‖2
n−1d〈Mα〉t

=
∞∑
n=1

n · n!‖fn‖2
n <∞ (19)

Proposition 9. Assume {Fn}∞n=1 is a sequence of stochastic variables in D 1,2

which converges in L2(P ) to F ∈ D 1,2 . Then DF = limn→∞DFn.

11



Proof. By (19), Dt,zFn and Dt,zF is in
⊕

α∈I L
2([0, T ] × Ω). The result

therefore follows by dominated convergence.

Given a stochastic variable F ∈ L2(FT , P ), we are now able to describe
its martingale representation by the following formula:

Theorem 10 (Clark-Ocone formula). Let F ∈ L2(FT , P ). If F ∈ D 1,2

then

F = E
[
F
]

+
∑
α∈I

∫ T

0

E
[
Dt,αF |Ft−

]
dMα

t

where by E
[
Dt,αF |Ft−

]
is meant the predictable projection of Dt,αF .

Proof. The proof follows the ideas in [8]. Note that for fn ∈ Xn
s we have that

In(fn) = n!Jn(fn). By Theorem 7, we can for every F ∈ L2(FT , P ) write,

F = E
[
F
]

+
∞∑
n=1

In(fn) = E
[
F
]

+
∑
α∈I

∫ T

0

uαt dM
α
t (20)

where uαt is a predictable process given by

uαt =
∞∑
n=1

n!
( ∑

(α1,..,αn−1)∈In−1

∫
t1<··<tn−1<t−

fα1,..,αn−1,α
n (t1, . . . , tn−1, t)

× dMα1
t1 · · ·dM

αn−1

tn−1

)
(21)

Hence we have to show that uατ = E
[
Dτ,αF |Fτ−

]
for any predictable stopping

time τ ∈ [0, T ], where Dτ,αF = Dt,αF |t=τ . By definition of D we have

Dt,αF =
∞∑
n=1

nIn(fαn (·, t))

=
∞∑
n=1

n!
(∑

α

∫ T

0

hαn−1,α
n (tn−1, t)dM

αn−1

tn−1

)
(22)

where

hβ,αn (s, t) = (23)∑
(α1,..,αn−2)∈In−2

∫
t1<··<tn−2<s−

fα1,..,αn−2,β,α
n (t1, .., tn−2, s, t)dM

α1
t1 · ·dM

αn−2

tn−2

(24)

12



hβ,αn (s, τ) is predictable for every predictable stopping time τ since clearly
hβ,αn (s, t) is predictable for fixed t, α. Define

Mα
n (r, t) :=

∑
β∈I

∫ r

0

hβ,αn (s, t)dMβ
s , r ∈ [0, T ] (25)

Since E
[∫ T

0

(
hβ,α(s, τ)

)2
d[Mβ,Mβ ]s

]
<∞ for every β, α ∈ I and predictable

stopping time τ and Mβ is a square integrable martingale, it follows from [11,
Lem, pp. 142] that Mα

n (·, τ) is a martingale for every predictable stopping
time τ and α. In particular,

E
[
Mα

n (T, τ)−Mα
n (τ, τ)|Fτ

]
= 0 (26)

Hence,

E
[
Mα

n (T, τ)−Mα
n (τ, τ)|Fτ−

]
= E

[
E
[
Mα

n (T, τ)−Mα
n (τ, τ)|Fτ

]
|Fτ−

]
= 0
(27)

By (21) we then have that
∑∞

n=1 n!Mα
n (t, t) = uαt for all t a.s. Consequently

we see that for any predictable stopping time τ ∈ [0, T ],

E
[
Dτ,αF |Fτ−

]
=
∞∑
n=1

n!E
[
Mα

n (T, τ)|Fτ−
]

=
∞∑
n=1

n!E
[
Mα

n (τ, τ)|Fτ−
]

= uαt

(28)

where the last equality is due to the predictability of u.

Theorem 10 might provide an expression for the martingale representa-
tion of a general stochastic variable F , but since the chaos expansion of F
generally is not known it might seem hard to find an expression for DF . The
next result provides a link between D and the directional Gross derivative
for Brownian motion and Poisson processes. Properties of the derivative in
these cases are known, and thus provide a key to derive an expression for the
derivative DF .

Proposition 11. Assume that Mβ is a Brownian motion and that Mη is
a compensated Poisson process. Then Dt,β coincides with the directional
Gross derivative, and Dt,η coincides with the directional Gross derivative
(difference) for compensated Poisson processes.

Proof. Let Dβ
t denote the directional Gross derivative with respect to the

Brownian motion Mβ . Then

Dβ
t I1(f1) = Dβ

t

(∫
[0,T ]

fβ1 (s)dMβ
s +

∑
α6=β

∫
[0,T ]

fα1 (s)dMα
s

)
= fβ1 (t) = Dt,βI1(f1) (29)

13



We will now show by induction on n that Dβ
t

(
In(fn)

)
= nIn−1(fβn (·, t)). We

see from the calculations above that it holds for n = 1. Assume it holds for
n = N . In(fn) fulfills the conditions for the commutativity relation between
Skorohod integration and Gross differentiation (see [9, pp. 38]). Hence,

Dβ
t IN+1(fN+1) = Dβ

t

(∑
α∈I

∫ T

0

IN
(
fαN+1(·, s)

)
dMα

s

)
= Dβ

t

∫ T

0

IN
(
fβN+1(·, s)

)
dMβ

s

+Dβ
t

∑
α6=β

∫ T

0

IN
(
fαN+1(·, s)

)
dMα

s

=

∫ T

0

Dβ
t IN

(
fβN+1(·, s)

)
dMβ

s + IN
(
fβN+1(·, t)

)
+
∑
α6=β

∫ T

0

Dβ
t In
(
fαN+1(·, s)

)
dMα

s

=

∫ T

0

NIN−1

(
fβ,βN+1(·, t, s)

)
dMβ

s + IN
(
fβN+1(·, t)

)
+
∑
α6=β

∫ T

0

NIN−1

(
fβ,αN+1(·, t, s)

)
dMα

s

= IN
(
fβN+1(·, t)

)
+NIN (fβN+1(·, t)

)
= (N + 1)IN

(
fβN+1(·, t)

)
(30)

Hence Dβ
t In(fn) = nIn−1(fβn (·, t)) = Dt,βIn(fn). By linearity it follows that

Dβ
t

∑N
n=0 In(fn) = Dt,β

∑N
n=0 In(fn). So the directional Gross derivative Dβ

t

and Dt,β are equal on a dense subset of L2(FT , P ), and must therefore coin-
cide. The proof for the compensated Poisson case is the same.

WhenMβ is a Brownian motion andMη is a compensated Poisson process
we now deduce from the properties of the Gross derivative and the properties
of the Poisson Gross derivative that D obeys the following rules:

Dt,βf(G) = f ′(G)Dt,βG (31)

if f is differentiable and f(G) ∈ D 1,2 ,

Dt,β

(
FG
)

= Dt,βF ·G+ F ·Dt,βG (32)

if F,G, FG ∈ D 1,2 . See for instance [9]. And,

Dt,ηf(G) = f(G+Dt,ηG)− f(G) (33)

14



if f(G), G ∈ D 1,2 , and

Dt,η

(
FG
)

= Dt,ηF ·G + F ·Dt,ηG+Dt,ηF ·Dt,ηG (34)

if F,G, FG ∈ D 1,2 (see for instance [10]).

5 Lévy processes

In order to illustrate the theory we will give some examples using Lévy pro-
cesses. Lévy processes are in this sense very suitable since they in an easy
way can be expressed via a Brownian motion and Poisson processes. If L is
a square integrable Lévy process then L can be represented

Lt = γt+ σWt +

∫ t

0

∫
R\{0}

z(µ− ν)(t, dz) (35)

for some constants γ, σ and some Poisson random measure µ with compen-
sator ν being the Lévy measure, W being the Brownian motion. See for
instance [1], [3] and [4] for results on this topic. If two sets Λ1 and Λ2 are
disjoint we know that µ(·,Λ1) and µ(·,Λ2) are independent Poisson processes.

Lemma 12. There exists a disjoint countable partition {Λn}∞n=1 of R \ {0}
and constants zn ∈ Λn such that∫

R\{0}
z(µ− ν)(t, dz) =

∞∑
n=1

zn(µ− ν)(t,Λn)

in L2(P ).

Proof. There exists a sequence of simple functions φi converging to z point-
wise and in L2(ν) where φi(z) =

∑Ni
j=1 zi,j1Aij(z). Ai = {Aij}Nij=1 being a

partition of R \ {0}. Define

P := σ(A1
1, . . . , A

1
N1
, A2

1, . . . , A
2
N2
, A3

1, . . . ) (36)

There exists a countable number of disjoint sets Λ1,Λ2,Λ3, . . . such that

P = σ(Λ1,Λ2,Λ3, . . . ) (37)

Since φ := limi→∞ φi is of the form φ(z) =
∑∞

n=1 zn1Λn(z) and

(µ− ν)(·,Λ1) + (µ− ν)(·,Λ2) = (µ− ν)(·,Λ1 ∪ Λ2) (38)

when Λ1 and Λ2 are disjoint, the result follows.
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For each Λn ⊂ R \ {0} the processes (µ − ν)(t,Λn) are compensated
Poisson processes with intensity ν(Λn). By Lemma 12 and Theorem 6 we see
that

{
W, {(µ− ν)(·,Λn)}∞n=1

}
constitutes a BPR for M2 and admits a chaos

expansion. From now on we simply write
{
W, {(µ− ν)(·, dz)}

}
for the BPR{

W, {(µ− ν)(·,Λn)}∞n=1

}
. Instead of using α as the parameter, we use z and

w. Hence fα(t) is now either f(t, z) or fw(t). To further clarify the notation,

∑
α∈I

∫ T

0

fα(t)dMα
t =

∫ T

0

fw(t)dWt +

∫ T

0

∫
R\{0}

f(t, z)(µ− ν)(dt, dz) (39)

Let now F ∈ L2(FT , P ) where {Ft} is the completed, right-continuous
σ-algebra generated by a square integrable Lévy process L up to time t. By
Theorem 6 we have that there exists predictable processes φ and ψ such that

F = E
[
F
]

+

∫ T

0

φ(t)dWt +

∫ T

0

ψ(t, z)(µ− ν)(dt, dz) (40)

where E
[∫ T

0
φ2(t)dt

]
<∞ and E

[∫ T
0

∫
R\{0} ψ

2(t, z)ν(dz)dt
]
<∞. See also [6]

for results on this topic.
Instead of Dt,α we will now write Dt,w for the directional derivative

with respect to the Brownian motion, and Dt,z for the directional difference
(derivative) with respect to the different compensated Poisson processes. We
can restate Theorem 10 for the case of Lévy processes.

Theorem 13 (Clark-Ocone formula for Lévy processes). Assume L is
a square integrable Lévy process and {Ft} its completed filtration. If a stochas-
tic variable F ∈ L2(FT , P ) ∩ D 1,2 then

F = E
[
F
]

+

∫ T

0

E
[
Dt,wF |Ft−

]
dWt +

∫ T

0

∫
R\{0}

E
[
Dt,zF |Ft−

]
(µ− ν)(dt, dz)

where by E
[
·|Ft−

]
is meant the predictable projection.

Example 1. Let L be a square integrable Lévy process and assume L has
a Lévy-Ito representation of the form (35). Let Mt,T = maxt≤s≤T Ls and
let F = M0,T . Let τ be the time where the maximum is achieved, i.e.
Lτ = M0,T . From [7, pp. 367], Dt,wF = σ1τ>t. In order to compute Dt,zF
we approximate F by

Fn = fn(Lt1 , . . . , Ltn) = max
1≤j≤n

{
Ltj
}

(41)
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Assume that this maximum is achieved for j = i. Then by the relation (33),

Dt,zFn = fn
(
Lt1 +Dt,zLt1 , . . . , Ltn +Dt,zLtn

)
− fn

(
Lt1 , . . . , Ltn

)
= max

1≤j≤n

{
Ltj + z1tj>t

}
− max

1≤j≤n

{
Ltj
}

= z1ti>t (42)

It is easy to see that Dt,zFn converges to 1τ>t. Lévy processes renew them-
selves at stopping times. If we use this we obtain

φt : = E
[
1τ>t|Ft−

]
= P (τ > t|Ft−)

= P (Mt,T > M0,t|Ft−)

= P (M0,T−t > b)|b=M0,t−−Lt−

Hence we have derived an integral representation for the stochastic variable
F = max0≤s≤T Ls given by

max
0≤s≤T

Ls = E
[

max
0≤s≤T

Ls
]

+

∫ T

0

σφtdWt +

∫ T

0

∫
R\{0}

φtz(µ− ν)(dt, dz)

= E
[

max
0≤s≤T

Ls
]

+

∫ T

0

φtdLt (43)

Example 2. Consider the function f(x) = (x − K)+ where K ∈ R+ is a
constant. It can be noted that f is the payoff function of a European call
option. The function is not differentiable so we approximate f by a sequence
of functions fn where fn ∈ C1 and fn(x) = f(x), |x| ≥ 1

n
and 0 ≤ f ′n ≤ 1. Let

F = f(LT ), and Fn = fn(LT ). Since 0 ≤ f ′n ≤ 1 and |fn(x+ y)−f(x)| ≤ |y|,
we have that Fn ∈ D 1,2 . If we now use the properties of the directional Gross
derivative with respect to Brownian motion and Poisson processes we obtain
that Dt,wFn = f ′n(LT )Dt,wLT = f ′n(LT )σ and

Dt,zFn = fn(LT +Dt,zLT )− fn(LT ) = fn(LT + z)− fn(LT ) (44)

By the Clark-Ocone formula we obtain that

Fn = E
[
Fn
]

+

∫ T

0

E
[
f ′n(LT )σ|Ft−

]
dWt

+

∫ T

0

∫
R\{0}

E
[
fn(LT + z)− fn(LT )|Ft−

]
(µ− ν)(dt, dz) (45)

17



As n tends to infinity, Dt,wFn converges to 1[K,∞)(LT )σ and Dt,zFn converges
to (LT −K + z)+ − (LT −K)+. Hence

F = E
[
F
]

+

∫ T

0

E
[
1[K,∞)(LT )|Ft−

]
σdWt

+

∫ T

0

∫
R\{0}

E
(
LT −K + z)+ − (LT −K)+|Ft−

]
(µ− ν)(dt, dz)

This example also shows that contrary to the stochastic variable given in Ex-
ample 1, a stochastic variable F cannot in general be expressed as an integral
with respect to L itself. I.e. L does not have the predictable representation
property, or in our notation, {L} is not a BPR for M2.
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