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Stopping Brownian Motion without Anticipation
as Close as Possible to its Ultimate Maximum

S. E. GRAVERSEN�, G. PESKIR�, A. N. SHIRYAEV �

Abstract

Let B = (Bt)0�t�1 be standard Brownian motion started at zero, and letSt =
max 0�r�tBr for 0 � t � 1 . Consider the optimal stopping problem

V� = inf
�

E
�
B��S1)

2

where the infimum is taken over all stopping times ofB satisfying 0 � � � 1 .
We show that the infimum is attained at the stopping time

�� = inf
�
0� t� 1 j St�Bt � z�

p
1�t

	

where z� = 1:12 . . . is the unique root of the equation

4�(z�) � 2z�'(z�) � 3 = 0

with '(x) = (1=
p
2�)e�x

2=2 and �(x) =
R x

�1
'(y) dy . The value V� equals

2�(z�)� 1 . The method of proof relies upon the Itˆo-Clark representation theorem,
time-change arguments, and the solution of a free-boundary problem.
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