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Abstract. Global grid environments do not only provide massive aggregated computing power but also an un-
precedented amount of distributed storage space. Unfortunately, dynamic changes caused by component failures,
local decisions, and irregular data updates make it difficult to efficiently use this capacity.

In this paper, we address the problem of improving data availability in the presence of unreliable components.
We present an analytical model for determining an optimal combination of distributed replica catalogs, catalog
sizes, and replica servers. Empirical simulation results confirm the accuracy of our theoretical analysis.

Our model captures the characteristics of highly dynamic environments like peer-to-peer networks, but it can also
be applied to more centralized, less dynamic grid environments like the EurDpe¢a@rid.

1 Introduction

World wide data grids [2, 8, 4, 5] provide an unprecedented amount of aggregated storage space
on geographically dispersed computers. Even when using simple commodity PC farms as com-
pute nodes in the grid, the combined storage space may exceed hundreds of terabytes. The Eu-
ropean particle physics laboratoBern for example, will employ approximately 50.000 PCs,
grouped in clusters at various sites throughout the world, to analyze the empirical particle colli-
sion data generated by tharge Hadron Collideq2]. With current disk technology, the aggre-
gated storage capacity of such a commodity data grid would easily exceed the petabyte range.

The large amount of data and its distributed and dynamic nature makes data management a
big challenge. Replication, synchronization, mapping, and retrieval of data are some of the key
issues.

We focus on the replication aspect in this paper. For common grid environments with unre-
liable components, we analyze how many replicas are needed to provide a given file availability
from the view of a requester. From a system administrator’s view, the model can be used to de-
termine how many replicas are needed and how much disk space that would cost. Our model
captures a peer-to-peer environment with central or distributed replica catalogs.

2 Towards Optimal Data Replication

In scientific research domains like high energy physics, data grids with thousands or millions
of distributed files and thousands or millions of clients will be established over the next years.
Such large grids can only be operated in a self-optimizing way with distributed data catalogs.
Any central directory would inevitably become a performance bottleneck and a single point of
failure.

The management of distributed data involves the following aspects:

— replicationto improve reliability by introducing redundant file copies,



synchronizatiorfor keeping replicas up-to-date,

mappingto determine optimal replica locations for a fast access,
cachingandprefetchingio benefit from spatial and temporal access locality,
stagingto improve job execution time by scheduled data transfers,

data movemenwith efficient and secure protocols.

From these aspects, data reliability is probably the most important one for the successful up-
take of grid technology in practice. Especially at this early time, the growing user community
needs to gain trust in the temporal and spatial availability of their data. Clearly, file availability
can be improved by creating replicas. The more replicas, the higher the availability of the file at
any time. However, the required disk space grows proportionally. To find a good balance between
availability and space consumption we present an analytical framework that models various ar-
chitectures of replica systems. With this framework it can be calculated how many replicas are
needed to provide a given availability threshold. This facilitates the design of distributed storage
systems that have a similar (or better) reliability as common disk subsystems or RAID servers.

3 Analytical Model

Let's assume a replica system where several copies of the same file are stored on independent
nodes which are linked by some network. The nodes holding the files and catalogs may be unre-
liable with a given probability.

Replica Catalog.Before being able to access a replica, a name resolution must be performed.
This is done by a lookup in theeplica catalog Architectural choices for the catalog affect the
outcome of the model: single versus multiple catalogs, unreliable versus reliable, probability of
finding an entry, etc.

Access.Our analytical model distinguishes two kinds of nodes, replica nodes and catalog nodes.
When accessing a file, the requester first asks one or more catalogs holding storage locators to
the replicas. He then tries to access the replicas, one after the other until he succeeds. In this
procedure, three things may happen:

1. there is no catalog available,
2. the catalogs do not know about any replica of the file,
3. the servers holding the replicas are down.

Global and Local View.In the analysis, it is important to distinguish between a local and global
view. Thelocal viewis the perspective of a single component on the system when it monitors
its neighboring components. In very large systems, the horizon of the local view may be limited,
disclosing only a small subset of the components. @lobal viewgives a birds view on all
components. Typically, system designers or administrators are interested in the global view. It
allows them to estimate the overall resource requirements and to configure the system according
to the needs.



3.1 Basic Equations

Without loss of generality we analyze the access smglefile only. Accesses to multiple files
can be analyzed by applying the model to each single access and combining the results.

We make use of two basic equations, ti€p,n) function and the binomial function. The
ok(p,n) function (eq. 1) describes the probability that at least 1 out tfdundant systems is
available when the single systems have a probalplity being online.

Vp,ne RO<p<1n>0:

ok(p.) =1~ (1 p)" W

The probability for a system beimptavailable iS1— p) and the probability for alh systems
failing is (1— p)",n € N. Note that a system is either available or not. It cannot be the case that
only a fraction of a system is available. To allowe R for convenience, we floan so that we
get(1— p)l" as the probability that alln| systems are not available. Ther-11— p)." is the
probability that not all n| systems are not available, or, in other words, the probability that at
least one system is ok.

Fig. 1. ok(p,n).

The ok(p, n) function is illustrated in Figure 1 for different input values. The contour lines
depictz=ok(p,n) for z€ {0.2, 0.4, 0.6, 0.8}. The figure shows, for example, thrat 8 replicas
are needed to provide a system reliabilityodf p, n) = 0.8 when the single components have a
probability of onlyp = 0.2 to be intact.

Our second basic equation determines all combinatioksat of n items. When multiplied
with the probability of their occurrence (see eq. 2), this equation can be used to determine the
number of accessible replicas when there is a given number of catalogs with partly redundant
(i.e. overlapping) entries. Figure 2 depicts a plobwfom(n, k, p) for n = 20.
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vnkpeR 0<p<1 nk>0:

binom(n,k, p) := (D pK(1— p)"* 2

binom(20,k,p)
05
04 - /AN
ﬁ\ //I/ ]
03 !\ . P
AR, A
02 - \X/ 'Y < e N\ Vi
A </ X7 /\,\X\/\/\/\/\X/ M \i’
| ! X \)< \)( \'< < ( < / / 7\ /\ /\ /
0.1 — /\/\,\/\/\/\/\/\\ \ \/\,\/
1 \ \\( X X ,(\ /<\ /(\ /<\ /<\/(/<\A/ NAN /<\ /<\ y ~
/ \ ~
0o - 4 Va4 pe AK’(KAKA\(A e \(A )<\<)<v/\ 0.9

Fig. 2. binom(n,k, p).

3.2 Definitions

Before presenting our analytical model, we need to define the following terms that are used
throughout the analysis.

Prep- The probability for a node that holds a replica to be available.
We do not distinguish between more or less reliable noplgg.shall be the average uptime
probability for all participating nodes holding replicas.
Pcat: The probability for a node that holds a catalog to be available.
In peer-to-peer systems, where clients also take the role of catalog se4ers,prep.
Pentry: The probability for a catalog to hold an entry of a given replica.
If there arerg replicas in the system, each catalog knows on the average abaut rg
replicas.pentry tells how well the catalog is informed. Replica catalogs may not be completely
informed, e.g. because they have been offline or separated by the network for some time
period.
. The total number of replicas of a given file in the system.
rq is independent of the accessibility of the replicas. Werydater to determine the amount
of replicas needed to guarantee a certain file availability.
re: The number of replicas that a local node can try to access.
Note that, in the case of multiple catalogg,describes only the number of non-redundant

replica entries that are seen in the local view. Some listed replicas may be temporarily not
accessible. For systems with just one reliable cataleg pentry- rg.

4



c. The number of replica catalogs that are seen by a requester.
Catalogs may be unavailable due to network partitioning or system downtimes. pg:dpor
Pentry May be compensated by introducing more catalogs.

3.3 Analytical Model

c Pcat local view global view
Tg
1 100% Ok( prep7 ré) Z\b”’]on’(rg/ i7 pentry) N Ok( prep7 |)
i=
Ig
C 100% Ok( prep7 ré) Z\blnon‘(rg/hok( pentry./ C)) Ok( prep7|)
i=
g
1 Pcat Pcat - OK(Prep, r¢) Pcat - Zkbinon'(rg,i, Pentry) - OK(Prep,i)
i=
c
c Pcat OK(Peat; C) - OK(Prep,re) z binon(c, j, pcat)
g =1
: Zbinon(rg,i.,ok( Pentrys J)) - OK(Prep, i)
i=

Table 1. Overview of the analytical model.

Table 1 gives an overview of the main equations of our analytical model. We distinguish between
a global and a local view. The global view is that of a hypothetical totally-informed observer on
the whole system, while the local view is taken from the perspective of a requester who just
wants to access a file.

In the following sections, we discuss the model in more detail and show how the equations
in Tab. 1 are derived.

System with one fully available catalog. First, we analyze a system with a 100% available
replica catalog. This is a common situation when the catalog is installed on a server with fail-
over facility and redundant network connections. Still, the catalog on this server may not be
completely informed. This is the case, for example, when not all new replicas are registered or if
the storage capacity is insufficient and the catalog must replace entries according to some caching
strategy. The probability for a replica to be listed in the catalquigy.

In the local view, illustrated in Fig. 3, the requester has reliable access to the caiglog (
1). He retrieves, = 3 replica references. But when he actually tries to access the replicas, he

5



local view
|
Vi
[
| k | pcat = 1
1 M 3 Prep — 2/3

Fig. 3. One fully available catalog in the local view.

finds the first server with replica down. Only the other two replicas are currently accessible,
henceprep = 2/3.

In general, a local requester with a fully reliable catalog can access a fileow(itrp, r¢)
probability. The success rate can be improved by increasing either the availability of the replica
serverprep Or the number of catalog entries

€

VSN

Iy Iy I3 Iy I I prep =2/ 3, I‘g =6

pcat = 1’ pentry = 05

Fig. 4. One fully available catalog in the global view.

In the global view, illustrated in Fig. 49 = 6 replicas exist. Onlyrep = 2/3 of them can be
accessed, because the servers holdirandrs are temporarily down.

In general, only those replicas that are listed in the catalog improve the overall availability,
provided their server is up and running. So we first determine for all possible cases with exactly
i=1,2,...,rg replicas listed in the catalog the number of combinations and multiply the result
with the corresponding likelihood of occurrence:

r . .
( ig) Pentry (1 — pentry)rg_I

Summing all cases, weighted with their replica availabitikfprep,i), we get the overall avail-
ability as listed in Tab. 1.:

Iy

Z\binorr(rg’ i, Pentry) - OK(Preps ).
=



System withc fully available catalogs. We now discuss the case ofeliable catalogs instead

of just one. Here, the equation for the local view does not change, because the local requester
follows the same principle: He first looks into all available catalogs, determines the union of the
entries and then tries to access the replicas. In the snapshot illustrated in Fig. 5 two of the six
entries in the catalogs refer to the same replica, henees.

local view

Fig. 5. Two reliable catalogs in the local view.

In the global view, we may use the same equation as above, but must allewcdtalogs
instead of just one. Witlt catalogs, each of them holdingntry entries on the average, the
overall probability for a replica to be listed in at least one catalagki®entry,C). By replacing
Pentry i the last scenario byk( pentry, C) we get

lg
Zbinon‘(rg,i,ok( Pentry: C)) - OK(Prep, i)-
i=

It is interesting to note that, for a system with two catalogs pgihy = 0.5 our model as-
sumes an overlap of the catalog entries that follows a binomial distribution. In other words, a
100% overlap (i.e. the two catalogs have exactly the same entries) is just as likely as a 0% over-
lap (i.e. both catalogs are disjunct). Most likely is a 50% overlap of the entries.

System with one catalog with availability pca;. When the catalog is installed on a regular
rather than a fail-safe server, we have to take a probalmlifyinto account, that the catalog is
not available. This is common for large distributed environments. In peer-to-peer systems, there
is no distinction between clients and servers; each node may take the role of a client or server or
even both. As a consequen®at = Prep-

Both, in the local and the global view, we have to multiply the above equatiopgzbyT his
is because we have to model two events in a sequence: first a lookup to an unreliable catalog,
then a lookup to an unreliable replica. Hence, we get for the global view

Iy

Pcat - Zbinon(rga i, Pentry) - OK(Prep;i).
i<
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As can be seen, the overall availability is restricted by the minimuprgfand the second factor.
It is impossible to increase the overall availability ab@gg because the catalog is a single point
of failure.

System with ¢ catalogs with availability pca. With ¢ unreliable catalogs chances of getting
access to a replica are higher than when using just one unreliable catalog. In the local view a
node tries to access all catalogs, accumulates the resultsrtpand then tries to access the
replica in a subsequent step. Rather thagp as before, chances are noW(pcat, €) to get access

to an active catalog server. Hence the equation for the local view is

OK(Pcat, C) - OK(Prep, I'¢)-

Note that the availability grows with each additional visible catalog. Still, the upper limit is given
by ok( pcat, €) for the same reasons as described above.

Depending on the number of accessible catalogs and their overlap, the listed replicas are more
or less complete. To model this in the global view, we distinguish the different cases and sum all
availabilities:

c Iy
Z binom(c, j, Pcat) - Zbinon'(rgaiﬁk(pentryy J)) -OK(Prep; i)-
= =

4 Simulation Environment

For the empirical verification of the analytical model we implemented a simple simulator in
C++. The simulator initially creates replicas in a loop and each catalog memorizes them with
probability pentry. In @ second step, the requesters try to access a replica by asking the catalogs
for known replicas. The catalogs respond with probabpiy. In the positive case, the requesters
try to access the replicas. Each single access is successful with probplityf at least one
access succeeded, the file is available.

With this scheme, we determined the average file availability by running each combination
of prep andrg 100,000 times. A complete plot took only a few minutes on a PC. The results can
be seenin Figs. 6 and 7.

5 Results

We have evaluated the accuracy of our analytical model by comparing the results to that of a
simulation with the same parameter set. Figures 6 and 7 show the results. In each @hion
and (d)-(f) the analytical model is depicted at the top, the simulation in the middle, and the
difference between both at the bottom.

In all four cases, the simulation matches almost ideally the results of the analytical model.
The small statistical variance can be reduced by increasing the number of simulation runs.

For all cases we have chosen a catalog entry probabilipg@f, = 0.4. While this value may
seem to be too small to properly reflect reality, we have chosen such a low probability to better
illustrate the shape of the curves.



(b) Simulation: 1 catalog. (e) Simulation: 3 catalogs.
(a) - (b) (d) - (e)

0.05
0.04
0.03
0.02
0.01
0
-0.01
-0.02
-0.03
-0.04
-0.05

0.05
0.04
0.03
0.02
0.01
0 <
—0.01
-0.02
-0.03
—0.04
—0.05

(c) Difference between (a) and (b). () Difference between (d) and (e).

Fig. 6. Analytical model versus simulation for fully available cataloggtry = 0.4.

Fig. 6 shows an architecture with a catalog on a highly available sepygr=€ 1), whereas
Fig. 7 depicts the results for a typical peer-to-peer system with vadgag= prep.

Architecture with a highly available catalog. With only one replica in the systemg(= 1) a
maximum file availability of 04 can be reached, becauys&y is 0.4 (Fig. 6a). When reducing
the replica server availabilitprep, from 1.0 down to 00, the overall availability also decreases
linearly. This linear curve in the left part of Fig. 6a changes to an asymptotic curve with an
increasing number of replicas, as can be seen in the right hand side.

When holdingprep fixed to some arbitrary chosen value and varyiggwe observe how
Pentry affects the maximum availability. The more replicas exist, the more likely it is that some
of them are listed in the catalog—despite the lowiry.
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(b) Simulation: 1 catalog. (e) Simulation: 3 catalogs.
(a) - (b) (d) - (e)

0.05
0.04
0.03
0.02
0.01
0
-0.01
-0.02
-0.03
-0.04
-0.05

0.05
0.04
0.03
0.02
0.01
0 <o
—0.01
-0.02
-0.03
—0.04
—0.05

(c) Difference between (a) and (b). () Difference between (d) and (e).

Fig. 7. Analytical model versus simulation for catalog availabiliiyat = prep and pentry = 0.4.

Using three instead of one catalogs (see Fig. 6d-e), the curves get more pronounced because
of the higher probability to find an entry in the merged catalogs.

Peer-to-peer architecture. Fig. 7 shows a scenario where the catalog is as unreliable as the
replica serverspcat = prep. Therefore the maximum system availability is strictly limited by the
reliability of the catalog servers. This can be seen in the curves in the right hand part of Fig. 7a,
which are almost straight lines. Note that these curves are positioned slightly below an ideal
straight line (not plotted), especially for smalkp. This is becaus@cat, having the same value
asprep, increases the existing tendency.
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With more unreliable catalogs (Fig. 7d-f) an almost arbitrary large availability can be sup-
ported. Note that this is independent @é,. In other words, a low replica availability can be
compensated by more replicas and more catalogs.

rg for maximum
architectural parameters downtime in 70,000h of

Prep ‘ Pcat ‘ Pentry ‘ c 1s ‘ im ‘ 1h
1.| 0.9 1 0.4 1 44 35 25
2.1 09 Prep 0.4 9 10 8 6
3.] 0.9 Prep 0.4 7 - 10 6
4.1 09 Prep 0.4 5 - - 11
5.1 0.9 1 0.9 1 9 7 6
6. 0.9 Prep 0.9 9 9 7 5
7.1 0.9 Prep 0.9 7 - 7 5
8.1 0.9 Prep 0.9 5 - - 6

Table 2. Number of required replicag to meet a given file availability.

This effect is shown in Tab. 2 for more realistic parameters. Hard disk manufacturers today
typically guarantee a mean time between failure of 70,000 hours (8 years). Table 2 lists the
number of replicasy that are needed in a distributed system to achieve the same reliability,
but here modeling a transient error of only one second, one minute, or one hour (see the right
hand columns). These numbers are for a 90% uptime probability of the replica node and various
catalog uptime probabilities qdca: = 1 and 09. The number of catalogshas been chosen to be
in the one-digit range.

Under these constraints, we observe that with 9 catalogs only 10 replica are needed to guar-
antee that a file is only for 1 second not available during eight years of runtime (see line 2 in
Tab. 2). When increasingentry from 0.4 to 0.9, only 9 replica are needed (line 6).

Note that the number of catalogs is critical here. With fewer catalogs we cannot achieve the
same availability, because then the availabipgy; of the catalogs is the limiting factor.

6 Related Work

The impetus for this work came partly from our participation in the EurofizaaGrid project
for which a large-scale distributed data management environment [8] based on commodity PC
farms [7] is currently built.

In addition, a recent publication of Ranganathan and Foster [6] was another stimulating factor.
They describe a framework for improving availability by creating more replicas in a feedback
loop. Compared to our work, they only discuss the local view of a system with one central
replica catalog. Their predicted results do not match well enough to the empirical results and we
found an inaccuracy in their model that makes their results somewhat unrealistic.

The adaptive data replication algorithm described in [10] focuses on caching and supporting
consistency for the replicas. In contrast, we focused on the overall resource requirements to
guarantee a certain file availability.

11



Another dynamic data replication scheme is presented in [1] that uses finite automata to
predict future access patterns and then improves data locations with respect to network transfer
costs. Similar approaches are used by [3] and [9].

7 Conclusion

We have presented an analytical model that describes the availability of files in replica systems
with unreliable components. The correctness of the model is confirmed by our simulation results.
The model can be used to determine an optimal combination of replicas, catalogs, and catalog
accuracy, while respecting constraints such as system availability and the accuracy of the catalog
entries. In practice, the catalog accuracy may not only depend on the available memory space,
but also on the spatial extension of the system (causing consistency overhead), temporal aspects
(caching effects) and the dynamical behavior (frequency of replica movement) in the system.
Note that the goal of our work is not only to analyze existing distributed systems, but also
to actively steer them. With the ‘local view’ scheme introduced above, single components in the
system can monitor and decide about necessary activities to improve the overall file availability.

Model Extensions. Our analytical model could have been extended by considering network
links as separate entities. We did not do so, because this would have unnecessarily complicated
the analysis. When network breakdowns or separations occur independent from any other event,
they can be easily incorporated by introducing an additional term in the equation of the compo-
nent availability.

More difficult is a model extension to reflect the distribution of the namespace over several
catalogs. This is commonly done in practice—especially in search engines—to avoid perfor-
mance bottlenecks. In a two-catalog system, for example, one catalog holds all entries of file
names starting with the letters 'a-m’ and another holds files with 'n-z’. This catalog splitting
must be treated separately in our model, because for accessing one file (i.e. our focus) only
replica catalogs responsible for this filename will be asked. Modeling namespaces just by intro-
ducing a lowerpentry Would give wrong results, because there would be no longer a binomial
distribution of the entries in the catalogs.

Part of this work was funded by the EU DataGrid Project.
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