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Preface

The present work gives an overview of the authors work in the field of elec-
tronic structure calculations. The density functional theory (DFT) is the the-
oretical background used for various applications from physics and chemistry.
Therefore DFT is also the combining principle which joins the selected publi-
cations of the author. The main objective is to show how electronic structure
methods can be used for the description and interpretation of experimental re-
sults in order to enhance our understanding of physical and chemical properties
of materials. DFT is a very powerful method in that respect, as recognized by
the Nobel prize in chemistry 1998.

This method has been successfully applied to many different classes of ma-
terials and properties. In order to place the present work in a proper context
a brief introduction in the basics of DFT will be given. The main part of the
work discusses the electronic structure of a few interesting examples. Today
the electronic structure itself is an experimental property measured by angle
resolved photo emission spectroscopy (ARPES), resonant inelastic X-ray scatter-
ing or probed directly by the de Haas-van Alphen (dHvA) effect. The recently
found superconductor MgB � is an example where the electronic structure was
the key to our understanding of the surprising properties of this material. The
experimental confirmation of the predicted electronic structure from first prin-
ciples calculations was very important for the acceptance of earlier theoretical
suggestions.

The only input parameter to DFT is the atomic composition of the material,
no further experimental information is required. Because it is possible to de-
termine the forces acting on the atoms within the DFT, one can optimize the
atomic postions, predict stable structures and calculate vibrational spectra. IR
and Raman spectroscopy are widely used tools for materials characterization
and first principles electronic structure calculations deliver very important in-
formation for interpreting these spectra. Not only vibrational frequencies but
also IR and Raman intensities can be calculated from DFT, as will be discussed
in a few examples.

Molecular crystals build from magnetic clusters containing a few transition
metal ions and organic ligands show fascinating magnetic properties at the
nanoscale. DFT allows for the investigation of magnetic ordering and magnetic
anisotropy energies. The magnetic anisotropy which results mainly from the
spin-orbit coupling determines many of the poperties which make the single
molecule magnets interesting. Some recent results of the author in this field
will be given.

6



Chapter 1

Introduction to DFT

Molecules and solids are complicated many-particle systems which are in prin-
ciple described by the corresponding Schrödinger equation. Unfortunately, an-
alytic solutions are available only for a few very simple systems [1], and even
numerically exact solutions are limited to a small number of atoms or electrons.
Therefore one is forced to find accurate approximations in order to describe real
materials. The density-functional theory is one of the most successful methods
in that respect.

Within the scope of this work we will give only a brief introduction to the
basic foundations of density functional theory [2, 3]. There are excellent re-
views available on that topic [4–8] which will give much more insight in the
theoretical basics, accuracy and limitations than this short overview.

In principle electrons and atomic nuclei can be treated at the same theoret-
ical basis, although the problem can be simplified by decoupling the electronic
and nuclear degrees of freedom. In many cases it is very appropriate to assume
that electronic and nuclear dynamics take place at different time scales and can
therefore be separated. This approach called Born-Oppenheimer approxima-
tion considers all nuclei as fixed in space during the electronic relaxation.

The stationary Schrödinger equation of a system consisting of
	

electrons
is given by:
�� 
����� ��� �������� 
�����! #" �%$ � 
� �'&�� ( �)+*-, �/. " � � " � . �103254  �" �769898:8:6 " 
 $<;>=

(1.1)

where �! #" �%$<; � ��� ? � ( �)+*-, �/. @ � � " � . (1.2)@ � and ? � are the coordinates and atomic numbers of the nuclei. The spin vari-
ables have been omitted for clarity (or the

" �
could be interpreted as generalized

coordinates which include the spin degrees of freedom too). From here on we
will use atomic units (1 Hartree = 27.2116 eV, 1 ACB =0.529177 Å).
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CHAPTER 1. INTRODUCTION TO DFT

The most important observation for a non-degenerate ground state of this
many-electron system is, that the total energy can be expressed as a unique
functional of the electron density D  �" $ [2], which is determined solely by the
locations @ � of the nuclei.0FEHGIE ;KJ �MLND  #" $PO �RQ d

" D  �" $ �� #" $ � 0TS LUD  �" $PO � 0FVXW LND  #" $YO (1.3)

where Z S LND  #" $PO�;\[� Q d
" D  �" $ Z S  #" $�;][� Q<Q d

"
d
"_^ D  �" $ D  #" ^ $. " � " ^ . (1.4)J �MLND  #" $YO is the kinetic energy of a non-interacting electron gas with density D  �" $ ,0TS

is the Hartree energy due to the average electrostatic interaction of the
electrons.

0FVXW LUD  �" $YO is the exchange-correlation energy, which is in general an
unknown functional of the electron density. The potential

�� �" $
for an interact-

ing
	

-electron system is defined as a general external potential. The knowledge
of the ground state density D  �" $ determines the external potential within an ir-
relevant constant. The initial proof of the above statement given by Hohenberg
and Kohn in 1964 [2] has been extended also to the lowest state of each sym-
metry [9], degenerate ground states [7] or spin density functional theory [8].

1.1 Kohn-Sham equation

The ground state density must give the lowest energy by definition. This al-
lows to use the variational principle in order to obtain the ground state energy.
Instead of using the electron density directly, Kohn and Sham [3] suggested
to represent the electron density in terms of single particle orbitals ` �ba . Mini-
mization of the total energy functional (1.3) with the constraint that the single
particle orbitals fulfill a normalization condition leads to the Kohn-Sham equa-
tion: c � � � � �! #" $ � Z S LUD  �" $PO � Z aVXW LND+d  #" $ 6�D+e  #" $POHf ` �bag; , �ih a ` �ba 6 (1.5)Z aVXW LUD+d  �" $ 6jD+e  �" $POk;ml 0nVXW LUD+d  �" $ 6jD+e  �" $POl D a  #" $ 6 (1.6)D  �" $<; D+d  �" $ � D+e  �" $�; �H�ih apo  �q � , �rh as$ . ` �ba . � 8 (1.7)

Here t is the u -component of the spin variable and the external potential
�� �" $

is due to the nuclei. The step function
o  �q � , �rh as$

ensures that all Kohn-Sham
orbitals with

, �rh awv q
are occupied and the chemical potential

q
is defined by

conservation of charge Q d
" D  #" $�; 	 8 (1.8)
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1.2. THE EXCHANGE-CORRELATION ENERGY

Equation (1.5) is a significant simplification compared with the initial many
electron problem (1.1), because it presents a single particle equation. The origi-
nal interacting electron system has been replaced by a system of non-interacting
electrons in an effective potential. However, all the difficulties are conserved in
the exchange correlation functional

0TVXW
which is not explicitely known.

It should be noticed, since the functionals in (1.5) depend on the electron
density and thus on the Kohn-Sham orbitals themselves, the Kohn-Sham equa-
tion has to be solved self-consistently until input and output densities are iden-
tical.

1.2 The exchange-correlation energy

The only unknown quantity is the exchange-correlation energy and many ef-
forts are devoted to seek approximations for this functional. Different function-
als have been proposed and today several functionals exist which give excellent
results for most molecular and solid properties.

While

0nVXW
is often only a small fraction of the total energy of an atom,

molecule or solid it is an important contribution to the chemical bonding en-
ergy or atomization energy. The exchange-correlation energy is the glue, with-
out most matter would bind only very weakly. Therefore, very accurate ap-
proximations of

0FVXW
are essential in order to obtain reliable results from DFT

calculations.

1.2.1 Local Spin Density Approximation: LSDA

The most widely used approximation in the past has been the local spin density
approximation (LSDA)0nVXW LND+d  #" $ 6�D+e  #" $POx; Q d

" D  �" $ , VXW  D+d  �" $ 6jD+e  �" $j$ (1.9)

where
, VXW  D+d  �" $ 6�D+e  �" $j$ is the exchange and correlation energy of a homogenous

electron gas of the corresponding spin densities. The exchange-correlation en-
ergy for a uniform electron gas is known with great accuracy ( y 0.1 %) and
can be obtained by Quantum Monte-Carlo simulations [10,11] for various val-
ues of the spin densities which are then parameterized. Among others, differ-
ent parameterizations for

, VXW  D+d  �" $ 6�D+e  �" $j$ have been given by Gunnarsson and
Lundqvist [9], von-Barth and Hedin [12], Vosko et al. [13], and Perdew and
Zunger [14]. This approximation is based on the assumption of slowly vary-
ing densities, which is unfortunately not fulfilled in most molecules or solids.
Surprisingly, LSDA has been shown to give satisfactory results for equilibrium
bond lengths (1% too short), elastic constants and vibrational properties. The

9



CHAPTER 1. INTRODUCTION TO DFT

main weakness is the well known tendency to overbind, that means to over-
estimate the total energies of condensed matter compared with their atomic
constituents. For example it has been shown for 20 selected molecules, that
the mean absolute error of the atomization energies has a value of 1.3 eV [15].
Similarly, energy barriers are calculated too small.

1.2.2 Generalized Gradient Approximations: GGA

The best energy functionals or potentials used currently depend on the spin
densities, their gradients and their second derivatives. The most common ap-
proximations for the gradient corrected functionals have been developed by
Perdew and coworkers [15,16] and Becke, Lee, Yang and Parr [17,18]. This is
still an area of active research in order to achieve the goal of chemical accuracy

( y 50 meV for atomization energies).
GGA normally improves significantly on energy barriers or atomization en-

ergies. The average absolute error of the atomization energies for the same 20
molecules as mentioned before reduces to 0.3 eV [15]. The bond lengths show
similar accuracy as the ones obtained from LSDA with 1% accuracy, although
the bond lengths are now too long compared with experiment. Some extensive
tests of GGA functionals can be found in [6,15,16].

1.3 Basis Set Expansion

In order to make further progress one has to expand the Kohn-Sham orbitals
in terms of a basis set. A straight-forward approach would be the solution
of the numerical problem on a real space mesh without any restrictions. The
DMOL

�
code [19] follows this approach and uses numerical functions on an

atom-centered grid as its atomic basis. The atomic basis functions are obtained
from solution of the DFT equations for individual atoms and are stored as sets
of cubic spline.

Nevertheless, due to the numerical difficulties most DFT implementations
are based on expanding ` �za in terms of suitable basis functions { �  #" $ . The
Kohn-Sham orbitals can be expressed as a product of spatial basis functions{ � (r) and spinors ( | a ) according to:` �rh a  �" $�; �}��~ �ba� { �  �" $ | a (1.10)

Once this ansatz is introduced, one varies the expansion coefficients (
~ �ba�

) rather
than the value of each wavefunction at each point in space which leads to a
secular equation.

The choice of basis functions { �  #" $ determines the size of the matrix one has
to diagonalize, which is often the most time consuming part of the calculations.

10



1.4. NRLMOL IMPLEMENTATION

All-electron approaches consider both core and valence electrons explicitely.
The strongly localized core electrons consequently require strongly localized
basis functions such as linearized augmented plane waves (LAPW) [20] or lin-
earized muffin-tin orbitals (LMTO) [21], Slater-type orbitals [22] or Gaussian-
type orbitals (GTO) [22–28]. Pseudopotentials, which effectively project out
the core states from the problem, allow for the use of plane waves as basis
functions. Plane waves are numerically very easy to handle but result in rather
large basis sets. The use of intelligible and numerical efficient basis functions
is crucial for the development of the DFT method. The best suited basis should
be chosen based on the problem to solve, but is more often dictated by the
availability of a certain program package.

Many algorithms for the solution of the above equations exist, and the al-
gorithm that one uses depends rather strongly on the form of the spatial basis
functions that are used.

1.4 NRLMOL implementation

The Naval Research Laboratory Molecular Orbital Library (NRLMOL) program
is an all-electron Gaussian-type orbital implementation of DFT [29–38]. Be-
cause the author spent a large fraction of his time working on and using ex-
tensively the NRLMOL program package developed by Pederson, Jackson and
Porezag it seems suitable to give some details on this particular numerical im-
plementation.

The molecular orbitals were expanded as linear combinations of Gaussian
functions centered at the atomic sites. The multicenter integrals required in the
solution of the Kohn-Sham equation are calculated by integrating numerically
over a mesh of points [30]. Many LSDA and GGA functionals are available. One
important feature is a very efficient parallelization which allows for calculations
of more than 100 atoms at the all-electron level, which becomes important in
case of the molecular magnets discussed later in this work. Here the parallel
version will not be discussed , please see Ref. [38] for more information.

In Figure 1.1, a simplified flow chart is presented that describes the standard
tasks which are used in NRLMOL in order to self-consistently solve the Kohn-
Sham equations (1.5).

As shown in the flow chart, it is first necessary to determine the locations
and charges of the basis sets. Once these are determined, the program uses a
previously generated basis set [37]. The basis set has been obtained by per-
forming an self-consistent LDA calculation of the spherical unpolarized atom
where the total energy of the atom was converged to within 10 meV.

Second, for each isolated atom the self-consistent potential is numerically
determined and a least-square representation of it is generated. These poten-
tials are expanded as a sum of bare spherical Gaussians or as a sum of Gaussian-

11



CHAPTER 1. INTRODUCTION TO DFT

Figure 1.1: Flow chart of parallel version of NRLMOL. The gray area represents
the iterative part of the self-consistency cycle which is the computationally in-
tensive part of the problem. The stars on the boxes represent the tasks which
are massively parallelized.

screened

[_�s�
potentials.

Given the basis sets and the Gaussian-representation of the atomic poten-
tials, it is possible to obtain very good insight into the class of multicenter in-
tegrands that need to be integrated, and this information is used to generate
a numerical variational integration mesh [30] that allows to precisely deter-
mine integrals required for calculation of secular matrices, total energies and
derivatives according to: � ; Q d

"M�� #" $<; ���>�� �" ��$����
(1.11)

where

���
is the volume associated with point

" �
. Once the variational mesh is

determined the calculation starts. Errors arising from the numerical integra-
tion can easily be checked and controlled by adjusting a few parameters which
control the mesh construction.

For a new problem, a guess of the Hamiltonian matrix or self-consistent
wavefunctions is not available so one relies on the least-square fit representa-

12



1.4. NRLMOL IMPLEMENTATION

tion of overlapping atomic potentials to determine a starting Hamiltonian. Once
the wavefunctions are determined, by solution of Poissons equation it is possi-
ble to calculate the potential due to these wavefunctions. Further, the Coulomb
potential due to the electrons and the nuclei as well as the exchange-correlation
energy density and potentials are required. The exchange-correlation term re-
quires the evaluation of spin densities and the first and second derivatives of the
spin densities for GGA. The solution of the Kohn-Sham equation (1.5) for that
potential determines the new wavefunctions. The equations are then solved
self-consistently by iterating until the total energy is converged to a

q
Hartree.

The number of iterations required to reach self-consistency can be signifi-
cantly decreased by using sophisticated mixing of input and output potentials
which were originally proposed by Broyden and others. We use the Broyden
algorithm of Johnson in our calculations [39].

Once self-consistency is achieved the forces acting on each atom are de-
termined from the Hellmann-Feynman-Pulay theorem. [40] The determination
of the Hellmann-Feynman force is relatively inexpensive but the Pulay force
is computationally intensive for Gaussian-orbital methods. After obtaining all
the forces acting on all the atoms a conjugate-gradient method, or other force-
based algorithms, can be used to determine a new set of atomic coordinates.
Once a new set of atomic coordinates is determined we find that the wavefunc-
tion expansion coefficients provide the best starting point for a calculation on
this geometry. Once an equilibrium geometry and Kohn-Sham wavefunctions
are determined there are many physical observables which one might be in-
terested in calculating. These include local, total and joint electronic densities
of states, polarizabilities, vibrational frequencies, infrared and Raman spectra,
magnetic moments, charge states, magnetic anisotropy energies, and potential
and density contour plots.

1.4.1 Calculation of vibrational properties

The forces are derivatives of the total energy with respect to the nuclear co-
ordinates and can be computed easily from the Hellman-Feynman theorem in-
cluding the Pulay corrections [31, 40]. The Pulay corrections arise from the
dependence of the basis functions on the nuclear coordinates. This correction
is particularly important in cases of atomic centered basis sets like the one used
in NRLMOL, in contrast to a plane wave basis set where the Pulay correction
vanishes. Accurate forces are an requirement for computing the vibrational
frequencies. NRLMOL calculates the vibrational modes in the harmonic ap-
proximation, using a finite difference scheme of the atomic forces to build the
dynamical matrix [35]. The vibrational frequencies are calculated by direct
diagonalization of the dynamical matrix. This matrix is constructed by taking
finite differences of both positive and negative displacements (0.05 a.u.) of the

13



CHAPTER 1. INTRODUCTION TO DFT

coordinates of each atom near the equilibrium geometry and calculating the
forces for each corresponding geometry. The symmetry of the cluster will be
used, so that only non-equivalent geometries have to be calculated. Using this
approach NRLMOL computes on average frequencies within 3% of the experi-
mental ones, where LDA give harder and GGA softer modes.

The IR and Raman intensities are a response of the matter to an electric
field. This can be described in the Kohn-Sham equation (1.5) by introducing an
additional potential due to a spatially uniform, static external electric field GZ

ext

; � ( "��+� 8 (1.12)

For finite systems like molecules it is straightforward to include an external
field. The external potential

Z
ext will in general lower the point group symmetry

of the molecule, which will be the only change required. This is different in case
of infinite systems with periodic boundary conditions, because

Z
ext breaks the

translational invariance.
The electric dipole moment

q
and polarizability � �N� of a molecule can be

defined through derivatives of the total energy with respect to the external
electric field. q �!; ��� 0�k� �}����z��� � (1.13)

and � �N�n; � � � 0�k� � �k� � ���� ��� � ; � q ��k� � ���� ��� � 8 (1.14)

The electric field derivatives are computed by finite differences using

l � �
=

0.005 a.u. which yields well converged values of derivatives [35]. The used
field strength corresponds to 2.6 10 � V/m, which is about two orders of magni-
tude larger than strong laboratory fields. Despite the fact that the applied fields
are much larger than the experimental ones, the change in total energy is still
very small on the order of 0.3 meV. Obtaining accurate results for IR and Raman
intensities thus requires very well converged and accurate total energies.

The IR intensity depends on the change of the dipole moment and the Ra-
man activity on the change of the polarizability with the atomic motions of the
corresponding vibrational mode. Consequently, for a vibrational mode to be
IR active, the dipole moment of the molecule must change as a result of the
displacements. The polarizability can be related to the volume of the molecule,
therefore modes that change the molecular volume tend to be Raman active.
Very high numerical accuracy is needed for Raman activities, because Raman
intensities involve second derivatives.

IR intensities calculated using the GGA functionals show 10-20% deviations
from experimental data, weak modes are in general reproduced in correct ex-
perimental order. Strong Raman active modes are calculated with an accuracy
of 20-30%.
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Chapter 2

Applications

The electronic structure is a key to our understanding of chemical bonding,
structural and elastic properties, vibrational spectra, electric field gradients,
hyperfine fields or magnetic properties and many more.

The following sections present a few selected examples of the authors work.
By using these examples the author intends to show how electronic structure
calculations can be used in order to obtain a better understanding of physical
and chemical properties of matter. The division into the different sections is
somewhat arbitrary because many examples belong to more than one section.

2.1 The superconductor MgB �
The announcement of the discovery of superconductivity in MgB � with a criti-
cal temperature of 39 K by Akimitsu at a conference in Japan in January 2001
was a great surprise for the scientific community [41]. Several hundreds pa-
pers on that single material appeared in only two years, nearly all possible
experimental methods have been applied, which makes MgB � one of the best
characterized materials. Many of its physical properties showed surprising fea-
tures which called for theoretical investigation. Now, only two years later many
of the unexpected physical properties, in particular the relatively high critical
temperature, are well understood. This is quite different from the case of high-
temperature superconductors where more than one decade after their discovery
no consensus on the mechanism exists [42,43].

The simple hexagonal unit cell with only one Mg- and two B-atoms allows
for first-principles calculations without any limiting assumptions. The key for
our understanding was given by the calculation of the electronic structure [44–
46], which is in excellent agreement with experimental data obtained from
de-Haas-van-Alphen [47] or ARPES measurements [48]. Nearly all key ideas
in that field have been suggested from this kind of simulations and were then
experimentally confirmed.
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CHAPTER 2. APPLICATIONS
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Figure 2.1: Bandstructure of MgB � with the B � -character. The radii of the red
(black) circles are proportional to the B

*
(B t ) character.

MgB � occurs in the so-called AlB � structure. Borons form a primitive honey-
comb lattice, consisting of graphite-type sheets stacked with no displacement.
The borons form hexagonal prisms with the base diameter of 3.5Å nearly equal
to the height. This creates large, nearly spherical pores for Mg. As in graphite,
the intraplanar B-B bonds are much shorter than the distance between the
planes, and hence the B-B bonding is strongly anisotropic.

2.1.1 Electronic structure

The energy bands and Fermi surface of MgB � are shown in Figure 2.1 and 2.2
and discussed in detail in Appendix A. One finds that there are no Mg states at
the Fermi level. In fact, one can say that Mg is fully ionized in this compound,
however the electrons donated to the system are not localized on the anion, but
rather are distributed over the whole crystal. The resulting band structure can
be easily understood in terms of the boron sublattice. If the boron sublattice
accepts the two valence electrons from the Mg atom it becomes formally isova-
lent to graphene sheets. As expected, the bands are therefore quite similar to

16



2.1. THE SUPERCONDUCTOR MGB �

Figure 2.2: The Fermi surface of MgB � . Green and blue cylinders (hole-like)
come from the bonding � V h � bands, the blue tubular network (hole-like) from
the bonding ��� bands, and the red (electron-like) tubular network from the
antibonding ��� band. The last two surfaces touch along the K-H line.

those of graphite.

MgB � has two
*

and three t -bands (Fig. 2.1) formed by, respectively, the two
B ��� and the three bond-orbitals per cell, or, more correctly, by the correspond-
ing Wannier-like functions. A bond orbital is the bonding linear combination of
the two B ��� � -hybrids which are directed along a B-B bond. The attractive po-
tential from the Mg

�P�
ions in the hollows between the hexagonal boron layers

is felt much stronger by a �k� -electron than by a bond-electron and, as a result,
the

*
-band is pulled so far down in energy that y 0.17 holes are left at the top

of the t -band. The strong coupling of these holes to the optical bond-stretching
modes is what drives the superconductivity.

The above described band structure is typical for an �j� � metal. What is not

typical is that this particular �j� � metal is held together by covalent bonding
with a substantial ionic component [44,49], which inevitably leads to a strong
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Orbit � calc [T]
�

calc � �  � $ calc � exp [T]
�  � $ exp

1 t�� -plane 728 -0.245 1.25 0.551 540 0.54
2 t¡ ¢� -plane 1605 -0.530 1.16 1.145
3

* � -plane 34630 1.96 0.43 2.763
4 t A-plane 1756 -0.312 1.25 0.702 1530 0.66
5 t¡  A-plane 3393 -0.618 1.16 1.335
6

*  ¢� -plane 31130 -1.00 0.47 1.470
7

* � AM-plane 458 -0.246 0.43 0.352
8

*  ¢� AM-plane 2889 0.315 0.47 0.463 2685 0.45

Table 2.1: Calculated de Haas-van Alphen parameters from Appendix B ( � calc)
compared to the experimental data ( � exp) of Ref. [47]. The electron-phonon
coupling constant � has been computed from Tables 1 and 2 of Ref. [45].�  � $£; .  [ � � $ � . is the thermal mass renormalized by the electron-phonon
coupling � . All masses are in units of the bare electron mass.

electron-phonon interaction.

It may be seen in Figure 2.2 that the
*

bands form two tubular networks:
an antibonding electron-type sheet centered at ¤�� ; * � ~

(red) and a similar
bonding hole-type sheet centered at ¤�� ;�=

(blue). In contrast to graphite thet -bands are filled incompletely. They have only a small ¤¥� dispersion along the� -A line (see Figure 2.1) and form two nearly cylindrical Fermi surface sheets
along the � -A line. The holes in the t -bands are very unusual, in fact MgB �
seems to be the first material for which this has been observed. These holes
are of the utmost importance in order to understand the superconductivity in
MgB2 � .
2.1.2 de Haas-van Alphen effect

Historically, the most reliable probe of the bulk electronic structure has been
the de Haas-van Alphen effect (dHvA) [50]. Recent observation of this effect
in MgB � single crystals [47] provides key information to assess the validity of
the standard band structure calculation. Given the fact that most theoretical
papers rely on this band structure, the importance of a proper analysis of these
data can hardly be overestimated.

The Fermi surface of MgB � consists of four sheets (Figure 2.2). Two sheets
are formed by boron t -bands primarily, and are shaped as slightly (nearly sinu-
soidally) warped cylinders, t (bonding) and t¦  (antibonding), and two tubular
networks, the bonding one,

*
, in the � ( ¤�� ;>=}$

plane, and the antibonding one,*   6 in the A ( ¤§� ; * � ~ $
plane. There are 6 extremal dHvA cross-sections for the

field parallel to ¤}� (along the � � A line), namely:
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2.1. THE SUPERCONDUCTOR MGB �
1. t in the � plane,

2. t¡  in the � plane,

3.
*

in the � plane (“holes” between the tubes),

4. t in the A plane,

5. t   in the A plane,

6.
*   in the A-plane.

For a field parallel to ¤ � (perpendicular to the � � AM plane) there are two
extremal cross-sections (tubes’ necks), for the

*
surface (7) and for the

*   sur-
face (8).

The agreement between the calculated and measured thermal masses (see
Table 2.1) can be characterized as excellent. Very importantly, this agreement
is so good only because the calculated electron-phonon coupling differs by a
factor of 3 between the t and

*
bands. This is the first direct demonstration

of this important effect. The agreement between the calculated areas � and
the experimental ones is good, but not outstanding. �¢�76}� � and �¨� are overesti-
mated by 35%, 15%, and 8%, respectively. The first number indicates that the
calculations underestimate the ¤�� dispersion: the �<� and � � ratio measures the
degree of the warping of the t cylinder. In fact, shifting the t band by 6 mRy
up in the � plane and by 1 mRy up in the A plane, and the

*   band by 6 mRy
down brings the calculated areas to full agreement with the experiment.

This observation does not mean that we try to enhance agreement with
experiment by adjusting the Fermi level. The discrepancies between experiment
and theory are less than 300 T, which corresponds to only 0.2% of the area of
the hexagonal Brillouin zone. Therefore, the difference itself is not large and
will result only in quantitative corrections in the description of MgB � but will
not change the qualitative picture. Similar shifts of the Fermi level which would
bring the experimental and calculated areas to better agreement have also been
noted by Rosner et al. [51].

2.1.3 Angle resolved photoemission spectroscopy

While at the dawn of electronic structure calculations it was not believed that
the electronic bands themselves will be a measureable quantity, progress in ex-
perimental technique proved that to be wrong. Angle resolved photo emission
spectroscopy (ARPES) allows for the detection of occupied bands close to the
Fermi level. The electronic structure of several metals such as Cu or Ag has been
probed by photoemission [52, 53] in good agreement with electronic structure
calculations.
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Figure 2.3: The measured ARPES spectra [48] compared with the band struc-
ture calculated by the author (lines).

Figure 2.3 shows the experimental ARPES from single crystals of MgB � [48]
compared with band structure calculations of the author of this work. Both the*

and t bands were observed along the � -M direction in excellent agreement
with the theoretical predictions. The dispersion along � -K shows only one of the
two t bands, were the authors of [48] speculated that this is due to a superpos-
tion of the two bands which could experimentally not be resolved. Although,
due to different symmetries along the two measured directions different selec-
tion rules may influence the transition matrix elements. The parabolic feature
around � with a minimum 0.5 eV below the Fermi energy has been identified
as a surface state [54].

In summary, ARPES and dHvA experiments in MgB � both fully support the
DFT calculations, which leaves practically no room for electron-electron corre-
lation or manybody renormalization of the band masses and Fermi velocities.
This already gives strong support for a more conventional picture of super-
conductivity driven by the electron-phonon coupling, because it makes several
more exotic theories [55,56] rather unlikely.
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2.1. THE SUPERCONDUCTOR MGB �
2.1.4 X-ray spectroscopy

X-ray emission and absorption spectroscopies are also powerful probes of the
electronic structure of solids. Photon emission and absorption involve a tran-
sition between electronic states. In the soft x-ray regime, one of the states is a
localized, dispersionless core level. This allows for the interpretion of the mea-
sured spectra in terms of unoccupied states for absorption and occupied states
for emission. Since dipole selection rules govern the transitions to or from the
core level, it is actually the angular-momentum-resolved density of states that
is measured. Furthermore, since the core level is associated with a specific ele-
ment in the compound, x-ray absorption and emission are also element specific.
Finally, they have the advantage of being relatively insensitive to the quality of
the sample surface, unlike x-ray photoelectron spectroscopy (XPS) or ultravio-
let photoemission, where in order to measure the bulk electronic structure it is
necessary to prepare atomically clean, stoichiometric, and ordered surfaces.

Using the full potential LAPW code WIEN97, [57] the author calculated the
near edge absorption and emission X-ray spectra. According to the final-state
rule formulated by von Barth and Grossmann, [58] accurate X-ray emission
and absorption spectra of simple metals may be obtained from ordinary one-
electron theory if the relevant dipole matrix elements are calculated from va-
lence functions obtained in the potential of the final state of the x-ray process:
in other words, a potential reflecting the fully screened core hole for absorp-
tion but not for emission. Because we neglected core relaxation effects in our
calculations, we expect significantly better agreement between theory and ex-
periment for emission spectra. The calculated spectra are Lorentz broadened
with a spectrometer broadening

As shown in Appendix C, the measured x-ray emission and absorption spec-
tra of the constituents of the superconductor MgB � are found in good agree-
ment with results of band structure calculations and in particular calculations
of intensities of x-ray spectra taking the necessary matrix elements into ac-
count. Further, according to the experimental findings magnesium is positively
charged in this compound, which supports the results of electronic structure
calculations. The comparison of x-ray emission spectra of graphite, AlB � , and
MgB � supports the idea of superconductivity driven by hole doping of the cova-
lent t bands.

2.1.5 What is special about MgB © ?
The previous sections discussed only the electronic structure of MgB � in some
detail together with several experiments which are able to probe this electronic
structure. Although, there are many more interesting features of this material
which are outside the scope of the present work. Most importantly, all aspects
of superconductivity are not mentioned here.
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More than forty years ago Suhl, Matthias, and Walker predicted the exis-
tence of multigap superconductivity, in which a disparity of the pairing interac-
tion in different bands, such as the � - and ª -bands in transition metals, leads
to different order parameters and to an enhancement of the critical temper-
ature [59]. Despite much effort, a clear materialization of this phenomenon
was not found, neither in transition metals, nor in novel transition-metal com-
pounds, such as YBa � Cu � O « or Sr � RuO ¬ . The material MgB � appears to be the
first superconductor, for which a two-gap model [45,60] offers a simple expla-
nation of many anomalous experimental findings.

Recent experimental data from scanning tunneling measurements and point-
contact spectroscopy [61–63], high-resolution photo-emission spectroscopy [64],
Raman spectroscopy [65], specific heat measurements [66] and muon spin re-
laxation studies of the magnetic penetration depth [67] support the concept of
a double gap in MgB � (see Ref. [68] for a review of experiments).

For the sake of completeness a short summary of what makes MgB � so excit-
ing is given. For detailed information of the authors work in the field of MgB �
please see [44,45,69–76].­ There are holes at the top of the �j� � -bonding t -bands.­ These holes couple strongly to the optical bond-stretching modes with® v � ¤§¯ .­ Since ¤§¯ is merely 1/5 of the Brillouin zone radius, very few electrons and

very few phonons contribute to the electron-phonon coupling constant� a%ag° [
.­ Since the t -holes couple stronger to the phonons than the

*
-electrons,

there are two distinct superconducting order parameters.­ The critical temperature

J W
is enhanced by the anisotropy of the gap.­ These effects are visible only because impurity t � *

band scattering is
negligible, except in severely damaged samples.­ Multiband effects are very important also in the normal state transport
and thermodynamical properties .

2.2 Electric field gradients

Electric field gradients (EFG) are determined by the non-spherical contribu-
tions of the electronic charge density around a nucleus. Therefore, one can see
the efg has a sensitive probe of the quality of electronic structure calculations.
While the calculation of EFG has been already implemented for some time in
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2.2. ELECTRIC FIELD GRADIENTS

DFT codes like WIEN97 [57], it has been only recently implemented in the
NRLMOL package by Jackson and Kortus [77]. Here we will give a few details
and benchmark calculations for that implementation.

The EFG is due to the electrons and the other nuclei in the material. The
EFG at nucleus X can be calculated as:Z²±³ h ´ ; Q ª " D  �" $ LNµ  � ³ �1¶ ± ³ $  � ´ �·¶ ± ´}$ � . " � @ ± . � l ³ h ´MO. " � @ ± . � (2.1)� �%¸ ? ¸ µ  ¶ ¸ ³ �¹¶ ± ³ $  ¶ ¸ ´ �1¶ ± ´}$ � . @ ¸ � @ ± . � l ³ ´. @ ¸ � @ ± . � (2.2)

where D  �" $ is the electronic charge density at position r, the R’s represent the
positions of the nuclei and the ? ’s the corresponding atomic numbers. To eval-
uate

Z ±³ h ´ , we compute the first integral numerically, and add the second term,
which is a simple sum over the nuclei.

The Mössbauer quadrupole splitting arises from an interaction between the
nuclear quadrupole moment and the EFG at the position of the Mössbauer nu-
cleus. The quadrupole splitting for a

� ; µ � � state is given by:� ; ( � Z �P�sº  [ ��» � � µ $ � � (2.3)

where Q is the nuclear quadrupole moment,

Z �P� is the largest eigenvalue of the
EFG tensor and » is the asymmetry parameter,» ; Z �¼� � Z V'VZ �¼� (2.4)

Here the principle axes are chosen such that . Z �P�+.�½�. Z �¼� .�½ Z V'V
.

To test the reliability of our DFT approach, we have computed EFG com-
ponents for several benchmark molecules that were studied recently using ab

initio methods. In Table 2.2 we show a comparison of our DFT NRLMOL results
and the corresponding values obtained at the Hartree-Fock (HF) and Møller
Plesset second order perturbation theory (MP2) levels of theory [78]. The ta-
ble shows the value of

Z �P� at each nucleus in the molecule, in atomic units. The
ab initio results were obtained using extensive basis sets. The DFT results are
reported for the default basis sets implemented in NRLMOL. The table shows
very good agreement between the different methods. Typical differences be-
tween DFT and MP2 results are on the order of 10 ¾ or less. We tested the DFT
results for basis set effects by recomputing the EFG components using extended
basis sets, including additional diffuse single Gaussian orbitals for all angular
momentum types. As shown in Table 2.2, the EFG parameters change only
slightly with the larger basis.

Coming back to the solid state, the very delicate interplay between struc-
tural parameters and EFG in wurtzite semiconductors is discussed in Appendix
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ab initio DFT
HF-SCF MP2 default extended

H � -0.342 -0.338 -0.350 -0.388
N � 1.368 1.115 1.153 1.112
F � -6.944 -6.258 -6.516 -6.343
HF H -0.521 -0.546 -0.566 -0.538

F -2.860 -2.591 -2.788 -2.720
HCl H -0.293 -0.296 -0.294 -0.296

Cl -3.579 -3.402 -3.458 -3.469
CO C 1.174 0.950 0.979 0.939

O 0.724 0.779 0.705 0.684
HCN H -0.317 -0.319 -0.334 -0.322

C 0.498 0.376 0.370 0.339
N 1.201 0.946 1.008 0.979

HNC H -0.419 -0.421 -0.443 -0.424
N 1.035 0.833 0.864 0.834
C -0.017 -0.048 -0.116 -0.130

H � O H -0.472 -0.481 -0.501 -0.477
O 1.836 1.624 1.763 1.713

NH � H -0.392 -0.391 -0.407 -0.390
N 0.957 0.838 0.973 0.941

Table 2.2: A comparison of calculated electric field gradient (EFG) parameters
using ab initio (Ref. [78]) vs DFT NRLMOL results. The values quoted for each
molecule represent

Z �P� , the largest eigenvalue of the EFG tensor, at the various
atom positions shown. Values are quoted in atomic units. The ab initio results
were obtained using extensive basis sets. The NRLMOL results are given for the
default electronic structure basis sets and for an extended basis.

D. The wurtzite structure consists of two close packed sublattices which are dis-
placed along the

~
direction by ¿ ~ . There is a strong dependence of the A- and

B-site EFG on this internal ¿ parameter. A small change of ¿ (0.2%) results in a
large relative change (50%) of the EFG values at the A-site. For given hexago-
nal lattice parameters A and

~
one can determine a theoretical ¿ parameter from

minimization of the total energy. Theoretical values of ¿ have been calculated
for AlN, ZnO, CdS, GaN and ZnS. These values follow a linear dependence on
the

~ � A ratio in agreement with earlier observations [79]. The experimental un-
certainty of ¿ from X-ray data could be minimized by checking the theoretical
values against the measured and calculated EFG. A good agreement of the EFG
would give direct experimental support for the theoretical ¿ value.
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2.3 Vibrational properties

This section will be mainly devoted to the discussion of vibrational properties
which can also be obtained from DFT calculations. The examples include a
naturally occurring mineral: melanophlogite, which is iso-structural to the type
I gas hydrates. The guest host interaction in this clathrate significantly influ-
ences the Raman modes and their intensity. The other two examples are more
chemical oriented and describe the vibrational properties of two high-energy
molecules: octanitrocubane and azidopentazole. While the first one has been
already synthesized the other one is still elusive. In case of octanitrocubane we
discuss the interesting case of a failure of the usually used harmonic approxi-
mation.

2.3.1 Host guest interaction in a clathrate

Melanophlogite is a naturally occurring SiO � -based clathrate structure which
has the same structure as type I gas hydrates. Two types of voids are found in
melanophlogite (Figure 2.4 and 2.5). The SiO ¬ tetrahedra of the host form a
three-dimensional framework consisting of two different kinds of cages. In fact,
melanophlogite was the first known example of a silicate framework structure
with the pentagonal dodecahedron as a framework element [80].

This framework contains two types of cages: two pentagondodecahedra
(cage I) and six tetrakaidecahedra (cage II) per unit cell. The structure of
the smaller cage I shown in Fig. 2.4 is well known from recent interest in car-
bon fullerenes. It is the natural occurring equivalent of silica to a C � � fullerene.
However, due to the tetrahedral coordination preferred by Si atoms the cages
share faces to satisfy the �j� � bonding. The corners are occupied by silicon
atoms, whereas the oxygen atoms are located on the middle of the edges. The
free space within cage I can be approximately described by a sphere-like void
with diameter ªÀy 5.7 Å and a volume

Z y 97 Å
�
.

The structure of cage type II is presented in Fig. 2.5. The top and bottom
faces are hexagons and the remaining faces are pentagons. The free space
inside can be approximated by an ellipsoid with ª���yÁª � y 5.8 Å , ª}�ÂyÄÃC8ÅÃ Å and
a volume of 136 Å

�
. An interesting feature of cage II is how the stacking of cages

lead to nanotube like structures, which may contain long chain-like molecules.
The entire crystal structure may also be described as a three-dimensional array
of stacked cages of type II.

Further, as in the case of the gas hydrates, melanophlogite traps gas molecules
within the voids. This silica polymorph usually contains several guest molecules
(e.g. CH ¬ , N � and CO � ) in varying amounts. In Appendix E we present a joint
theoretical and experimental investigation of the CH ¬ Raman spectra associated
with the enclathrated CH ¬ molecules.
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Figure 2.4: Cage I (pentagon dodecahedra) consists of 12 pentagonal faces. It
is the natural occurring equivalent of silica to a Æ � � fullerene. The atoms on the
corners are silicon atoms (lighter balls), whereas the atoms between are oxygen
atoms (dark). The broken bonds are saturated by hydrogen atoms (very light
balls). The guest molecule (methane) located inside this cage is presented too.

Raman spectroscopy provides a non destructive method for obtaining in-
formation about the kind of guests by observing their vibrational fingerprints.
Further, if the Raman activity of the guest molecules is known, the density of
the guests may be determined. Since, density-functional calculations provide a
cost-effective ab initio means for determining the Raman activity of molecules
the two methods combined give us a powerful tool for analyzing and charac-
terizing the above mentioned structures.

We find that the Raman intensities of the totally symmetric hydrogen stretch
modes are significantly perturbed by the presence of the clathrate cage and
show that the calculated Raman spectra may be used to determine the concen-
tration and location of the enclathrated gas molecules. Relative to the gas-phase
structure we identify two effects which are responsible for the change in inten-
sity of the enclathrated molecules relative to the gas phase. The polarizability of
the surrounding cage acts to increase the Raman spectra of the stretch mode in
the pentagondodecahedra cage. However, in the lower-symmetry tetrakaidec-
ahedra cage, mixing between the hydrogen-stretch mode and other optically
silent molecular vibrations counteracts this affect and accounts for the different
Raman intensities observed for the two types of voids.

We suggest that similar calculations and experiments on the gas-hydrates
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Figure 2.5: Cage II (tetrakaidecahedra) has two hexagonal faces on the top
and bottom, remaining with 12 pentagonal faces. The atoms on the corners
are silicon atoms (lighter balls), whereas the atoms between are oxygen atoms
(dark). The broken bonds are saturated by hydrogen atoms (very light balls).
The guest molecule (methane) located inside this cage is presented too.

may provide an in situ diagnostic tool for determining the amount of natural
gas contained within the gas-hydrates on the sea floor.

2.3.2 Octanitrocubane

The well-known molecule cubane (C � H � ), which was first synthesized by Eaton
and Cole [81], is build from a cube of carbon atoms saturated with hydrogen
atoms at each corner.

It has been suggested that cubane can be made more energetic by replacing
its H atoms with nitro (NO � ) groups. [82,83] In fact, Zhang, Eaton, and Gilardi
[84] have recently synthesized octanitrocubane (see Figure 2.6) where all the
hydrogen atoms have been replaced by nitro groups.

In Appendix F we present an first-principles calculation of the optimized
geometry of octanitrocubane, its molecular orbital energies and vibrational
spectra. We show that the molecule, while stable, allows for large torsional
displacements of the nitro groups and would release large amounts of energy
upon dissociation into molecular N � and CO � . Because octanitrocubane is sig-
nificantly more electronegative than cubane there is the possibility of cation
induced stabilization of the crystal through selective doping. The calculated
infrared and Raman spectra should be useful in determining the presence of
octanitrocubane and in confirming the symmetry lowering which apparently
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Figure 2.6: The molecular structure of octanitrocubane. The carbon atoms form
a cube to which the nitro groups are connected on the corners.

occurs in the solid structure.

Further, one of the very soft torsional modes exhibits strong anharmonicity
and is fundamentally interesting. This extremely soft concerted torsional vibra-
tion is associated with the rotation of NO � groups about the C-N bond axes.
Interestingly, at the harmonic level we find a total of eighty-nine real frequen-
cies and seven zero-frequency modes. While six of the zero-frequency modes
correspond to the usual rotational and translational modes, the seventh zero-
frequency harmonic mode requires a more in-depth discussion. For reasons
that will become clear below, we refer to this mode as the quartic concerted
torsional mode (QCTM) throughout the remainder of the discussion.

We start by noting that the harmonic analysis shows that this mode is en-
tirely associated with torsional rotations of pairs of oxygen atoms about their
respective C-N bonds. Finally, we note that we have performed frozen vibron
calculations for both the energy and the force as a function of the displacement
of that mode and the resulting potential energy curve is shown in Fig. 2.7. A
detailed analysis of both the energy and forces as a function of the QCTM dis-
placement confirms that the second derivative and all odd derivatives of this
mode vanish identically.

In addition to the classical potential observed by the torsional mode, we
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Figure 2.7: Potential as a function of vibrational displacement observed by the
QCTM. Also included are the squares of the lowest eigenmodes of this predom-
inantly quartic potential. The energy intercepts of the eigenmodes are shifted
by their respective energies which shows a zero point energy of 16 cm Ç � and a
lowest excitation energy of 42 cm Ç � .
have determined the anharmonic vibrational wavefunctions and energies asso-
ciated with this mode and present the results in Fig. 2.7. Because of the quartic
nature of the potentials, the anharmonic wavefunctions are flatter than what
would be expected from a harmonic oscillator potential. The zero point energy
associated with this mode is found to be 16.4 cm Ç � and the first excited state is
found to be 58.5 cm Ç � , suggesting that the lowest observable excitation would
be observed at 42 cm Ç � . Because this mode is anharmonic, it might be detected
by looking for second-harmonic generation in the Raman spectra which, ac-
cording to our calculations, should occur at 102.1 cm Ç � . Unfortunately, there
are other strong Raman active modes which appear at both of these energies.

Since the potential associated with the QCTM is convex and since all other
harmonic modes exhibit real frequencies, the symmetry of the molecule studied
here corresponds to a locally stable geometry for the free molecule. To address
the question of global stability we have performed calculations on two other
reasonable symmetries of the molecule and have found that these symmetries
lead to higher energies.
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Figure 2.8: Optimized geometry of the ground state of azidopentazole which
has ÆFÈ symmetry with the PBE gradient-corrected density functional. The bond
lengths are given in Å and the angles in degrees.

2.3.3 Azidopentazole

Azidopentazole (N � ) is a polynitrogen high-energy molecule whose structural
geometry is characterized by a five-membered ring with a three-atom nitrogen
tail (see Figure 2.8). While this molecule has not yet been synthesized, there
have been a number of theoretical calculations in the literature on the electronic
and structural properties of azidopentazole.

Despite this possible limitation on its long-term stability, we still believe
that azidopentazole is a possible candidate for a novel polynitrogen molecule,
especially in light of the newly discovered N

�� cation by Christie et al. [85].
We report in Appendix G a first-principles all-electron density functional theory
study of the electronic, structural, and vibrational properties of azidopentazole,
in its ground state. While a structural optimization and vibrational analysis of
azidopentazole have been previously reported in the literature [86–89], only
calculated IR intensities have been reported [86]. The calculated bond lengths
and bond angles are within 0.1Å and 1 É , respectively, of the B3LYP/6-31G*
results of Glukhovtsev, Jiao, and Schleyer [86]. This excellent agreement can
be seen as a test of the accuracy of the PBE functional used in our work in
comparison to the more commonly used functionals in quantum chemistry.

The results described in Appendix G include both a detailed analysis of the
calculated IR spectra as well as a discussion of the predicted Raman spectra and
their intensities. We hope that this information on the vibrational properties
of azidopentazole will assist future experimental work in characterizing this
elusive high-energy polynitrogen species.
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2.4 Magnetic ordering

This section starts the discussion of magnetic properties of molecules and clus-
ters, one of the main research interests of the author. In this section the author
will focus on systems which are not single molecule magnets, which will be dis-
cussed more extensively in the last part of the present work. The first example
discusses an exhaustive investigation of magnetic order and vibrational prop-
erties of an iron oxide cluster, which has been found recently in the gas phase.
The second one is more concerned with the influence of alloying Fe and Co on
the magnetic properties.

2.4.1 Magnetic and vibrational properties of the Fe Ê�Ë O Ì clus-

ter

Recently, Wang et al. [90] synthesized a new iron oxide cluster by reactive laser
vaporization. From time of flight mass spectra and first-principles calculations
[90, 91] they respectively concluded that this iron oxide cluster consists of 13
iron and 8 oxygen atoms with ÍÀ¬PÎ symmetry. Wang and coworkers [90] have
emphasized the need for understanding the Fe-O interactions because of the
role that such interactions play in corrosion, biological processes and oxide film
formation.

Because of the coupling of the magnetic and structural degrees of freedom,
consideration of ferro- ferri- and antiferromagnet ordering is an important issue
from the standpoint of determining the ground state of a magnetic molecule. As
such, the investigation of different possible spin orderings as well as total mo-
ments were the primary aims of the work in Appendix H. For the energetically
most stable structure obtained we calculated the vibrational spectra which clar-
ified some questions raised by the reported values of Sun and coworkers [91].

A way to determine whether a magnetic state is at least meta-stable is to ex-
amine the highest occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) levels of the majority and minority spin. The spin
gaps, defined as � � ; �  �Ï

maj

HOMO

� Ï
min

LUMO

$
(2.5)� � ; �  �Ï

min

HOMO

� Ï
maj

LUMO

$ 6 (2.6)

correspond to the energy required to transfer an infinitesimal amount of charge
from the HOMO of one spin to the LUMO of the other one. The system can only
be magnetically stable if both spin gaps are positive. Further, if the spin gaps
are not both positive they determine whether an increase or decrease of total
moment will stabilize the system.

Within the constraint of the ÍÀ¬PÎ symmetry we performed a rather exhaus-
tive search of the possible ferromagnetic states. First, using ÍÐ¬PÎ symmetry we
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Figure 2.9: The upper panel displays the calculated vibrational density of states
(VDOS), the middle the IR spectra and the lower panel the Raman spectra of
the most stable ferromagnetic iron oxide Fe ��� O � cluster with ÍÀ¬PÎ symmetry. The
lowest frequency is 29.7 cm Ç � . The IR and Raman intensities are in arbitrary
units, a constant line width of 6 cm Ç � was assumed.

optimized the geometry of the cluster with a ferromagnetic state corresponding
to a total moment of 20

q B . Both spin gaps,
� � ;Ä= 8ÅÑ [ÓÒ eV and

� � ;Ä= 8 = [ � eV,
are positive, which show that this state is at least meta-stable. However,

� �
is small, indicating that another ferromagnetic state obtained by transferring
charge from the minority spins to the majority ones could also lead to a meta-
stable state. Starting from this geometry we carried out 16 different calcula-
tions with fixed total moments of the cluster ranging between 20

q B and 52q B . Using the above defined criteria of positive spin gaps for both spins we
determined the magnetically meta-stable configurations for which we further
optimized the geometry within the constraint of this given moment. In some
cases one of the spin gaps became negative during the geometry optimization.
In theses cases we changed the moment accordingly and relaxed the geometry
further. This approach resulted in the identification of four meta-stable ferro-
magnetic states with total moments of 20

q B , 26
q B , 32

q B and 34
q B . The
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magnetic states with 32
q B and 34

q B were found to be the most stable ones.
These states are energetically nearly degenerate with the 34

q B state only 3
meV higher in energy. The most stable structure found, was the state with 32q B .

If orbitals are spatially orthogonal and occupy the same region in space,
parallel alignment of the spins leads to a larger exchange interaction energy and
ferromagnetic coupling is subsequently favored. Antiferromagnetic coupling
occurs in cases where the orbitals are spatially separated but nonorthogonal.
In such cases anti-parallel alignment of the spins bypasses the need for spatial
orthogonality and provides for a reduction in the kinetic energy.

Using the same approach as in the ferromagnetic case we started with 12
different fixed total moments between 0

q B and 20
q B . We find antiferromag-

netic and several ferrimagnetic states with total moments 4, 8, 10, 12, 13, 14
and 15

q B to be meta-stable magnetic states for the iron oxide cluster. The fer-
rimagnetic states with 12, 13, 14 and 15

q B have two-fold states at the Fermi
level, which are not fully occupied suggesting that Jahn-Teller distortions would
lead to a reduction in symmetry.

All these states are close in energy and show similar behavior. The mag-
netic state with 14

q B is the lowest energy state exhibiting antiferromagnetic
coupling between the Fe atoms. However, this state is 86 meV higher in energy
than the ferromagnetic state with 32

q B .

In Figure 2.9 we show the vibrational spectra including IR and Raman in-
tensities calculated from density-functional theory. We find that the ferromag-
netic state with a moment of 32

q B per cluster is locally stable. Our frequencies
range from 29.7 cm Ç � as the lowest to 660 cm Ç � as the highest frequency. These
values differ by an order of magnitude from the frequencies given by Sun and
coworkers. [91] A good test for the numerical accuracy of our calculations is the
value of the trivial frequencies of the three translational and rotational modes
which should be zero, which we also obtain from diagonalizing the dynamical
matrix. The largest absolute value for one of these six modes is 0.000012 cm Ç � .
2.4.2 Magnetic moment and anisotropy in Fe Ô Co Õ clusters

Appendix I presents electronic structure calculations on Fe � Co � (n+m=5 and
13) clusters in order to examine the effect of alloying on the magnetic moment
and magnetic anisotropies.

In Fig. 2.10 we show the configurations studied in this work. The 5- and 13-
atom clusters are chosen because they allow for uniaxial structures. For each
of the pure uniaxial configurations it is possible to further enhance the uniaxial
character via substitution of different transition metal atoms along the axis of
symmetry. This procedure allows for iron-rich uniaxial clusters with composi-
tions Fe � Co � , and Fe ��� Co � . Similar cobalt-rich uniaxial clusters with opposite
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Figure 2.10: The uniaxial geometrical configurations studied here include tri-
angular bipyramid geometries (N=5) and distorted icosahedrons (N=13). For
the mixed clusters the dopant atoms were placed along the uniaxial axis as
indicated by the darker atoms.

stoichiometries are also studied here. For the smaller clusters (
	 ; Ñ ), the

uniaxially symmetric stable geometries have been further optimized for these
stoichiometries with no symmetry constraints in order to find the influence of
geometry on the magnetic anisotropy energy.

The density-functional studies show that many mixed clusters have mo-
ments comparable to or higher than the pure clusters. The anisotropy en-
ergy changes nonmonotonically with geometry and size. We show that shape,
composition and compositional ordering must be considered for optimization
of anisotropy energies. Phenomenological models where one uses the bulk
anisotropy constants for determining the anisotropy energy in clusters may be
deficient at small sizes. In addition to size, shape, composition and geometry,
we have shown that the magnetic anisotropy in clusters can depend sensitively
on temperature.
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2.5 Molecular magnets

Magnetic materials play a very important role in todays information technology.
In order to increase the capacity for information storage, the system size of the
storage devices must be decreased and this eventually suggests the need for
transitioning from bulk matter to nanoscale molecules and clusters.

The magnetic molecules of current interest are typically composed of one or
more transition metal atoms which are locked at their lattice sites by a carefully
arranged host consisting of organic molecules and ligands. The molecules in
the solid phase may be characterized by very weak interactions between the
molecular entities, so that the magnetic behavior probed by experiments will
be determined by that of a single molecule.

In this size regime the temperature at which a magnetic device will retain its
magnetic orientation is determined by the magnetic anisotropy energy (MAE)
which is due to directional dependencies of the spin-orbit-coupling operator.
Further, quantum physics becomes important as evidenced by the phenomenon
of quantum tunneling of magnetization (QTM) [92]. In QTM, the hysteresis
loops in the macroscopic samples of molecular magnets containing the clus-
ters show discrete steps related to the quantum jump of the magnetization in
different directions. Magnetic molecular clusters such as the manganese-oxo
cluster with acetate ligands (Mn � � -ac) [93,94] or the octanuclear iron(III) oxo-
hydroxo cluster (Fe � ) [92, 95] are probably the most widely studied materials
for which QTM has been observed [96–99]. Another very interesting cluster is
the V ��� spin system [100]. Besides the fundamental interest in understanding
quantum effects in these nanomagnets they might be also relevant for imple-
mentations of quantum computers.

In general the properties of a nanoscale system of coupled spins depend
directly on the strength of the exchange-parameters and on the strength of
the spin-orbit coupling. When the exchange interactions are large enough, the
lowest energy magnetic excitations in a many spin system are in fact due to the
collective changes in spin-orbit coupling energy and this energy scale is known
as the magnetic anisotropy energy [101]. The ability to accurately predict and
modify the MAE is a key to understanding QTM and the temperature range at
which a system will retain its magnetic orientation.

As pointed out early by van Vleck, [101] the magnetic anisotropy Hamilto-
nian, which ultimately controls the above tunneling resonances, arises because
of spin-orbit coupling and other relativistic terms. For over a decade it has
been recognized that the calculation of magnetic anisotropies are in principle
possible within density-functional theory [102] and many researchers have per-
formed such calculations on solids and films [103]. Problems associated with
the accurate density-functional-based determination of MAE in the solid state
have been identified and the role of incomplete orbital polarization has been
shown to be one issue related to inaccuracies in the solid.
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Calculations on such correlated systems present a challenge to mean-field
frameworks such as density-functional theory because it is important to account
for the strong ligand-metal interactions and to determine whether the behav-
ior of a given spin system is mainly mediated by the anisotropy, by spin-spin
coupling or by a combination of the two.

After some theoretical details on the calculation of the spin-orbit coupling
and magnetic anisotropy energy the author will discuss several magnetic clus-
ters with respect to their electronic structure, magnetic anisotropy and the V ���
spin system, which is governed by spin-spin interactions.

2.5.1 Spin-orbit coupling and magnetic anisotropy energy

Recently, Pederson and Khanna have developed a method for accounting for
second-order anisotropy energies [104, 105]. This method relies on a simple
albeit exact method for spin-orbit coupling and a second-order perturbative
treatment of the spin Hamiltonian to determine the dependence of the total
energy on spin projection. In this method, a cartesian representation of the
spin-orbit term is used which is exact and also is more adaptable for multi-
center systems. According to this method, the spin-orbit coupling termÖ  �" 6�×¢6%Ø $�; � [� ~ � Ø � ×1ÙÛÚ�Ü  �" $ (2.7)

can be incorporated as given below. Using single-particle wavefunctions ex-
pressed in terms of a basis set` � È  �" $<; �N�¼h a Æ � È�¼a { �  �" $ | a 6 (2.8)

where the { �  #" $ are the spatial functions and | are spin functions, the matrix
elements can be expressed asÖ �¼h a7h Ý%h aXÞß; à { � | a . Ö  #" 6�×á67Ø $ .+{ Ý | a7Þãâ (2.9)

; �Tä à { � . Z V .+{ Ý9â9à | a .§å V .M| a7Þãâ (2.10)

where the operator

Z V
is defined asà { � . Z V .+{ Ý9â¢; [� ~ �áæ�ç ªC{ �ª�u ���� 4 ���� ª¥{

Ý
ª}èÛé � ç ªC{

�
ª}è ���� 4 ���� ª¥{

Ý
ª�upéÂê 8 (2.11)

In the above,

4  #" $
is the Coulomb potential. Thus this treatment uses matrix

elements of the Coulomb potential with partial derivatives of the basis func-
tions, thereby avoiding the time consuming task of calculating the gradient of
the Coulomb potential directly.
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Ar Kr

NRLMOL Dirac NRLMOL Dirac
2p 0.0796 0.0817 1.8731 1.9635
3p 0.0063 0.0066 0.2775 0.2897
3d — — 0.0471 0.0479

Table 2.3: Spin-orbit splittings of energy levels (
��ëMì

in Hartree) for Ar and
Kr calculated with NRLMOL compared to results of a full relativistic numerical
solution of the Dirac equation [106].

The implementation of the spin-orbit coupling has been tested on calcula-
tions of the energy level splittings of several free noble atoms because in that
case one can compare with non spin polarized solutions of the Dirac equa-
tion [106]. Some results are shown in Table 2.3. Please note that the agree-
ment improves significantly for the outer electronic shells, for which in general
relativistic effects become less important. This is very important because a
completely filled shell gives no contribution to the magnetic anisotropy energy.
Only the states close to the Fermi level are important for the determination of
the tunneling barriers.

Here we generalize some of the derivations from uniaxial symmetry to an
arbitrary one. The same definitions and lettering of the symbols is used as in
Ref. [105]. In the absence of a magnetic field, the second-order perturbative
change to the total energy of a system with arbitrary symmetry can be expressed
as � � ; � a7a Þ �7�N�îí a%a Þ�N� å a7a Þ� å a Þ a� 6 (2.12)

which is the generalization of Eq. (19) of Ref. [105]. In the above expression,t sums over the spin degrees of freedom and

ä 6Yï sums over all the coordinate
labels, ð¦6�èx6'u respectively. The matrix elements å a7a Þ� ; à | a .Nå � . | a Þ â implicitly
depend on the axis of quantization. The matrix elements

í a%a Þ�N�
are given byí a7a Þ�N� ; � � Ý�ñ à { ñòa . Z � .N{ Ýja Þ â9à { Ý�a Þ . Z � .U{ ñóa+â, ñóa � , Ý�a Þ 6 (2.13)

where { ñóa are occupied and { Ý�a Þ and unoccupied states and
,
’s are the energy

of the corresponding states.

The above equation can be rewritten in a part diagonal in the spin index
plus the non-diagonal remainder according to:� � ; �X�N�ô� a í a7a�U� å a7a� å a7a� � �X�U�õ�a+ö� a Þ í a7a Þ�U� å a%a Þ� å a Þ a� 8 (2.14)
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Using the following relation for the expectation value of a spin operator for
a closed shell molecule with

� 	
excess majority spin electronsà [ .Nå � . [ â<; � à � .Uå � . � â<; à å �#â� 	 6 (2.15)

the first term of Eq. (2.14) can be expressed as�7�N�� Ií �Y��U� � í �Y��U� $ à å �#â:à å �7â � 	 $ � 8 (2.16)

With the help ofà [ .Uå � . � â9à � .Uå � . [ â÷; à [ .Nå � å � . [ â � à [ .Nå � . [ â9à [ .Nå � . [ â; à [ .Nå � å � . [ â � à å ��â9à å �7â � 	 $ � 6 (2.17)

and similar relation for

à � .Nå � . [ â9à [ .Uå � . � â , and a bit of algebra the second term of
Eq. (2.14) becomes�'�N� �  Ií � ��U� � í � ��U� $ à å �#â9à å �%â � 	 $ � � [) ���øí � ��z� � í � ��z� 8 (2.18)

Therefore, the total second order shift
� � together from Eq.(2.16) and Eq.(2.18)

becomes � � ; [) �k� í � ��z� � í � ��z� ��7�N�� Ií �Y��U� � í �Y��U� � í � ��N� � í � ��N� $ à å ��â9à å �7â � 	 $ � 8 (2.19)

As can be easily verified, the last equation gives the same result for uniaxial
symmetry as Eq. (21) of Ref. [105], where the Cartesian off-diagonal

í �N�
ma-

trices vanish and
í a7a ÞV'V ; í a%a Þ���

. For the derivation of the above expression of
� �

we did not assume any particular symmetry, therefore the resulting expression
is general.

A few relevant points about this method are that for electronic structure
calculations which employ an analytical basis set such as Gaussians, it is easier
to take the derivative of the basis functions rather than that of the Coulomb
potential. The treatment uses the Cartesian formulation as given above which is
exact and therfore accounts for all contributions from the nuclear and electronic
potential which is a major part of the spin-other orbit effects. Further, although
the spin-orbit coupling is not incorporated into the self-consistent cycle, the
results are still quite accurate due to the fact that the first order perturbation
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to density due to the operator

��ä�ù � Ø vanishes. This follows from the fact that
the first order corrections to orbitals are purely imaginary.

Our calculations include all single-determinental two-electron interactions
which have a classical origin due to the interaction of a moving spin 1/2 elec-
tron in a field of charge protons and electrons. It does not include any effects
which are related to multi-determinental overlap. These effects may be small
in the case that the metal-ion overlap is small as is the case for most single
molecule magnets.

For gapless systems, direct diagonalization of the Hamiltonian including the
spin-orbit operator can be used instead of second-order perturbation theory.
The anisotropy hamiltonian is then determined by accounting for changes in the
trace as a function of the axis of quantization or magnetization direction. Be-
cause of the small gaps in this problem we have used both exact diagonalization
and second-order perturbation theory for the results presented here. However
we find that the results do not strongly depend on the numerical treatment even
though the gaps near the Fermi level are small. Typical differences between the
perturbative and exact diagonalization treatment are approximately 2-4 per-
cent. We believe the reason for the accuracy of the perturbative treatment is
that the numerator in a second-order expansion vanishes as the square of the
spatial overlap between states so that nearly degenerate pairs of occupied and
unoccupied states which are spatially disparate will not contribute to the MAE.

2.5.2 Electronic structure of the Fe Ì magnet

Appendix J discusses the electronic structure of one of the most widely inves-
tigated single molecule magnet. The octanuclear iron(III) Fe � -cluster has the
chemical formula LNú�û9�'ü �  üþý $ � �  #ÿ������ $ � O � � , with tacn = 1,4,7-trizacyclononane
(
� ��� �Xýþ��� ).

The structure of the Fe � -cluster is shown in Figure 2.11. The approximateÍ � symmetry observed in the molecule [95], is formally broken by the presence
of halide atoms and water of crystallization.

The central iron atoms are connected by oxo-hydroxo bridges to the four
outer iron ions. The large spheres show the iron atoms, which are Fe(III) ions
with a ª � electron configuration. The ferrimagnetic coupling of spins between
the eight Fe atoms results in an å ; [ =

spin ground state [107] and is illus-
trated by arrows inside the spheres. The organic tacn-rings are very important
for stabilizing the magnetic core of the molecule because the three pairs of ni-
trogen dangling bonds complete a quasi six-fold environment for the Fe atoms.
Further, the tacn-rings separate the Fe � -clusters in the crystal, resulting in negli-
gible intermolecular dipole fields which are typically of the order of 0.05T [99].
The resulting formal charge states are nominally Fe

� �
, (OH) Ç � O Ç � , and tacn

�
leading to a molecule with an overall formal charge state of +8 which may then
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Figure 2.11: The geometry of the Fe � cluster. The large balls show isosurfaces
of the spin density at �

= 8 = 
 ( � A�8ò¿¦8 � . the arrows represent the ferrimagnetic spin
ordering in the cluster. On top and bottom a fluorine atom can be seen, which
also has small spin polarization.

be compensated by the eight negatively charged halide ions.
In the molecular crystal the positive (+8) charged Fe � -cluster is neutral-

ized by eight Br ions. However in our Br calculations we found that the Fe to
Br charge transfer was incomplete. The incomplete charge transfer lead to a
competition between ferrimagnetic and ferromagnetic ordering with the ferro-
magnetic state lying lower. The incomplete charge transfer was confirmed by
a density of states plot, similar to Fig. 2.12, which showed Br valence � states
at the Fermi level. This physically incorrect hybridization of the Br � and Fe ª
states may be due to several effects. First, at least one of the Br atoms in the
crystal is surrounded by waters of crystallization which polarize when placed
in close proximity to a Br ion. We find that the HOMO level of a (Br-H � O) Ç �
anionic complex, while still predominantly Br(4p), is decreased by 0.70 eV as
compared to an isolated Br Ç � anion. Further the induced (electrical) dipole
moment on the H � O molecules decreases the Br valence � states by approxi-
mately 0.70 eV and decreases the Hubbard U from approximately 4.12 to 3.59
eV according to our DFT calculations. This is a large effect. For example, within
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Figure 2.12: The total and projected density of states for the fluorinated Fe �
complex near the Fermi level as calculated within GGA. The F

� � states appear
at the Fermi level.

GGA, an isolated Br-H � O complex prefers full charge transfer compared to an
isolated Br ion. Another possible source for incomplete charge transfer could
be the need for either self-interaction corrections or LDA+U methods. Inclu-
sion of such corrections could enhance the charge transfer from the Fe to Br
atoms. Finally, the Madelung contributions which are complete in the crystal
would act to increase the ionicity of each of the components of the molecular
complex. While we were unable to stabilize a ferrimagnetic å ; [ =

state for the
isolated brominated molecular complex, we found that the application of any
small spin-independent external potential which favored the Br atoms over the
Fe atoms would allow for the experimentally observed magnetic state.

The considerations from the above paragraph lead us to the view that a
fluorinated version of the molecule would provide a better starting point for
calculations on this system. Flourine is more electro-negative and therefore
allows for a more complete charge transfer. With the F atoms the calcula-
tions converged to the experimentally observed ferrimagnetic state with å ; [ =
without an external potential. However, the metallic behavior at the Fermi level
with a strong peak due to the fluorine � states near the Fermi level remained.
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Molecule S D(K) E(K) type References
Theory Expt. Theory Expt. Theory Expt.

Mn � � 10 -0.56 -0.56 0 0 uniaxial [108] [109]
Mn ��� 13 -0.06 -0.05 0 0 uniaxial [110] [111]
Fe ¬ 5 -0.56 -0.57 0.06 0.05 triaxial [112]
Cr � 3/2 -2.49 -2.66 0 0 uniaxial [113]

Table 2.4: Comparison of the calculated and experimental magnetic anisotropy
parameters for the single molecule magnets discussed in the text.

This is shown in Fig. 2.12. We have used a Fermi-function with an electronic
temperature of 0.001 a.u. for the occupation of states near the Fermi level.

2.5.3 Magnetic anisotropy in single molecule magnets

Up to second order, the spin Hamiltonian can in general be expressed as

�
; �#�rh ��� �N� å � å � 6 (2.20)

where

ä 6Yï sum over ð¦6�èx6'u . Diagonalizing this particular anisotropy Hamiltonian
defines the set of principal axes and in the most general case identifies the easy,
medium and hard axes. Using the eigenvalues one can rewrite (2.20) in the
more often used standard form which differs from (2.20) by an insignificant
additional constant �

; Í�å �� � 0  å �V � å �� $ 6 (2.21)

where Í and

0
are known as axial and transverse anisotropy parameters.

In Table 2.4 we present the calculated Í and

0
parameters for a few single

molecule magnets and compare with the available experimental values. We
refer to these molecules in the text by their transition metal core since it is
these atoms which are responsible for their magnetic behavior. In all the cases
presented here the spin ordering is in agreement with experiment. In all cases
except Fe ¬ , the geometries were optimized till the forces on the atoms became
negligible. The geometry optimizations were carried out at the all-electron level
and to reduce computational costs, the symmetry of the molecule was exploited
whenever possible.

The calculated Í and

0
parameters for Mn � � , Mn ��� , the ferric star Fe ¬ and

Cr-amide molecular magnets are in excellent agreement with experimental val-
ues. The single molecule magnets are in general characterized by a high spin
ground-state. However, as can be seen from Table 2.4, a high spin state does
not necessarily correlate with a high anisotropy barrier.

Some detailed discussion of these results will be given below.
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Mn � � -acetate

The Mn � � molecule has S ¬ symmetry and therefore the calculations were carried
out using only 25 inequivalent atoms. Moreover, in Mn � � , the acetate units
were replaced by formate groups (OOCH) so as to reduce the computational
efforts while keeping the core of the molecule the same. This molecule has
ferrimagnetic spin ordering with an inner core of Mn ¬ O ¬ of minority spin atoms
and an outer ring of Mn � O � majority spin atoms. The inner-core Mn atoms have
spin magnetic moment of

� µ q B whereas the outer ones have 4
q B thus leading

to a net magnetic moment of 20
q B .

The HOMO and the LUMO belong to the majority spin channel and the gap
is quite small 0.45 eV [105]. The density of states near the Fermi level are
dominated by the Mn 3d states and has also some contribution from oxygen
2p states. Although the states near the Fermi level belong to the majority spin
channel, it is actually the majority occupied and minority unoccupied states
which contribute nearly 65% of the anisotropy barrier. For more information
see [104,105,108,114,115].

Mn ��� cluster

The [Mn ��� O ¬ (2,2’-biphenoxide) ¬ Br � � ] ¬ Ç functional unit is compensated by clus-
ter with a single Mn center [Mn(CH � CN) ¬ (H � O) � ]. Experimental results suggest
that the magnetic anisotropy is due to the localized valence electrons of the ten
Mn atoms and our calculations on the [(CH � CH � ) � NH] � [Mn(CH � CN) ¬ (H � O) � ]
confirm that this unit behaves as a charge compensating paramagnetic spec-
tator. High-field EPR measurements have determined that the molecule in its
ground state has spin å ; [ �

. However, our calculations have shown that this
spin state would not be magnetically stable since there would be no common
Fermi level in the majority and minority channels. As a result we obtained aå ; [ µ spin state. This is consistent with experiment since it is difficult to
differentiate between the two possibilities experimentally [116].

The majority gap is also in the case of Mn ��� much smaller than the mi-
nority one [110]. In Mn ��� , all matrix elements from the occupied majority
electrons prefer an easy-axis system whereas the matrix elements from the oc-
cupied minority spin channel would result in an easy-plane system. There is
a competition between these possibilities and due to the larger contribution
from the occupied majority spin channel the system ends up as an easy-axis
system. Therefore, in spite of the fact that Mn ��� possesses a high-spin state, the
anisotropy barrier in this system is small. The calculated barrier height of 9.5K
compares reasonably well with the experimental value of 7.7K [111]. We found
that the removal of subsets of the Br ions will change the magnetic anisotropy
drastically by changing the electronic structure. However, neutralizing the elec-
tric field due to Br ions by an external potential in the calculations changed the
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anisotropy barrier by less than 1 K. Therefore, we conclude that the electric
fields created by the Br ions do not have a significant effect on the magnetic
properties of the molecule in contrast to chemical interactions. A detailed dis-
cussion of that system is given in Appendix K.

Fe ¬ -star

While the molecular structure of the other examples is well known or has been
discussed in detail in an earlier publication it seems to be worthwhile to give
the structure for this case to demonstrate the magnetic ordering. In the Ferric
star or the Fe ¬ cluster shown in Fig. 2.13, all iron atoms are Fe

� �
-ions, the inner

Fe is coupled antiferromagnetically to the outer Fe atoms, resulting in a ferri-
magnetic spin-ordering with total å ; Ñ . The calculated values in Table 2.4 for
the Fe ¬ show very good agreement with experimental data. This calculation has
been a real test of the accuracy of the theoretical approach because it was car-
ried out in form of a blind test. The magnetic parameters have been determined
experimentally at the University Erlangen [112]. The DFT calculation has been
carried out without that information and in that respect can be regarded as a
true theoretical prediction.

Figure 2.13: The molecular structure of the Fe ¬ -star. The four Fe atoms are
shown by large spheres.
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2.5. MOLECULAR MAGNETS

Figure 2.14: The molecular structure of the Cr-amide. The Cr atom in the
center is shown by the large sphere. Hydrogens are not displayed for clarity.

Cr-amide

The Cr-amide Cr[N(Si(CH � ) � ) � ] � contains only a single magnetic center (Cr
� �

)
located in the middle of the molecule threefold coordinated by nitrogen atoms
(see Fig. 2.14). The charge state is confirmed by calculating the spin density
within a sphere around the Cr atom. A sphere with radius of 1.2 Å contains
already 2.7 majority electron, clearly confirming the Cr

� �
charge state. The

electronic density of states obtained from Gaussian broadened molecular levels
is presented in Fig. 2.15. The HOMO comes from Cr majority 3d states at
around -5 eV. The Cr-molecule has large majority and minority gaps on the
order of 2 eV and 2.5 eV respectively. The anisotropy barrier in this molecule
is small (Table 2.4) which can be attributed to the large HOMO-LUMO gap. In
this case the spin density is well localized on the Cr atom. The HOMO and
LUMO states are definitely Cr(3d) and there is some covalent bonding between
the Cr states and the ligands. The magnetic behavior is completely determined
by the Cr states. This is an interesting case. Since the spin is small (3/2)
there is only one magnetic field at which resonant tunneling of magnetization
would be achieved. However, no such experimental measurements have been
reported so far. The calculated magnetic anisotropy barrier of 5.6 K agrees
well with the experimental value of 6 K obtained from electron spin resonance
measurements [113].
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Figure 2.15: The electronic density of states of the Cr-amide. The HOMO is
derived from Cr majority 3d spin states at -5 eV. The molecular levels have been
broadened by a Gaussian.

2.5.4 The V Ê�� spin system

The � � L��g������� � ü�¬ �  ý � ü $YO 
 ý � ü molecular crystal, first synthesized by Müller
and Döring [100], represents a transition-metal spin system in the same size
regime as the Mn � � and Fe � molecular crystals. In contrast to Mn � � and Fe �
molecules, the V ��� molecule is thought to behave as a weakly anisotropic mag-
net composed of 15 spin � =1/2 particles which couple together to form a
molecule with a total spin å =1/2 ground state. Calculations on such corre-
lated systems present a challenge to mean-field frameworks such as density-
functional theory because it is often not possible to construct a single collinear
reference state which preserves the inherent symmetry of the system and has
the correct spin quantum numbers. Appendix J presents some results on the
electronic structure calculations of this system.

The work in Appendix L utilizes an efficient coupled multilevel analysis
which relies on fitting density-functional energies to mean-field Heisenberg or
Ising energies in order to determine the exchange parameters. The approxi-
mate exchange parameters gleaned from the first

	
Ising configurations were

used to find the next lowest energy Ising configuration and subsequently to
improve the parameterization of the exchange parameters. “Self Consistency”
of this approach is determined when the predicted Ising levels are unchanged
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2.5. MOLECULAR MAGNETS

Figure 2.16: The spin density of the V ��� cluster. The picture shows clearly the
single ª -electron of a V

¬ �
ion. Most of the spin density is localized at the V, less

than 1% of the spin density is on the oxygen atoms which are on top of the V.
The dark balls represent oxygen and the lighter ones arsenic.

by the addition of data from new Ising configurations. The coupling of the
density-functional method to a classical Ising representation allowed us to de-
termine the exchange parameters by considering only several spin configura-
tions. Further, the resulting ground-state spin configuration within density-
functional theory exhibits the correct spin projection of

[_� �
. With the exchange

parameters determined, we diagonalize the complete many-body Heisenberg
Hamiltonian to calculate the susceptibility and spin correlation functions for
comparison with experiment. The many-body basis is complete, so all states are
allowed including non-collinear spin arrangements and quantum disordered
phases.

All of the data displayed in Table 2.5 has been used to determine the ex-
change parameters from a least square fit to the mean-field solution of the
Heisenberg Hamiltonian �

; � � �U� Ø � � Ø � 8 (2.22)
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Table 2.5: DFT energies (

0
in meV) of calculated Ising configurations, energies

obtained from the fit, and
) à å��� å �� â along each of the six bonds. Also included is

the anisotropy shift

l
for the

í È ; å state of each Ising configuration. A least
square fit of this data leads to exchange parameters of

�
=290.3,

� ^
=-22.7,�

”=15.9,
� [

=13.8,
� �

=23.4 and
� µ =0.55 meV.

The fit is very good with errors ranging from 0.1-1.55 meV. The fit leads to
exchange parameters of

�
= 290.3 meV,

� ^
= -22.7 meV,

� ^ ^
=15.9 meV,

� [
=

13.8 meV,
� �

= 23.4 meV and
� µ = 0.55 meV, where positive numbers cor-

respond to AF and negative ones to FM interactions. The ferromagnetic in-
teraction

� ^
is a surprising result and deserves further discussion since it is

qualitatively different from earlier assumptions based on entirely AF interac-
tions [100,117]. Ferromagnetic coupling is possible without polarizing the oxy-
gens through a 4’th order process similar to super-exchange. In super-exchange,
the intermediate state has the lowest ª -orbital on the V doubly occupied with
up and down electrons [118]. However, electrons can also hop to higher en-
ergy ª -orbitals on the V’s. In this case both parallel and antiparallel spins are
allowed without violating the Pauli exclusion principle, but Hund’s rule cou-
pling prefers parallel alignment. The super-exchange process (same ª -orbital)
completely excludes the process with same-spin electrons while the FM pro-
cess (different ª -orbitals) merely favors FM alignment. Thus a FM coupling is
obtained if the V-O hopping matrix elements into the higher ª -orbital are sig-
nificantly larger than the matrix elements for the hopping of O electrons into
the lowest energy ª -orbital. The occurrence of such interactions are possible in
a low-symmetry system such as the one studied here.

Even with this FM interaction, our spin Hamiltonian yields an å =1/2 ground
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J

J

J1

J1

J2

J2

J’

J’

J’’

J’’

J3

J3

Figure 2.17: The 15 magnetic vanadium atoms of the � � L��g������� � ü ¬ �  ý � ü $PO
molecule. They form two hexagonal layers and an inner triangular layer of
vanadium atoms sandwiched within. The arrows show the lowest energy spin
configuration found from DFT calculations. The six exchange parameters used
in the Heisenberg Hamiltonian are shown as lines. Schematically displayed are
energy levels of the Kramer doublet ( å =1/2) ground state and the low lying
quadruplet ( å =3/2) separated by

�
.

state composed largely of Ising configurations similar to the one depicted in
Fig. 2.17. This Ising configuration was predicted from the

�
’s from earlier fits

to DFT energies and corresponds to the ground state DFT configuration (I).

Comparing our calculated susceptibility with experiment [117], we find the
low-temperature behavior indicates our doublet-quadruplet gap

�"! [ =
K to be

significantly larger than the experimental value of
�#! µ 8ÅÃ K, while the high-

temperature behavior shows our calculated value of
�

is too large. Both of
these discrepancies can be explained almost entirely by a

�
that is too large

within the density-functional-based treatment. We note that only the V-V bond
length corresponding to

�
obtained from our DFT optimized geometry (GGA)

is too short compared with experiment [119]. The large value of
�

can be
attributed to both exchange processes through the oxygens and to direct ex-
change between the V. If direct exchange is important, the value of

�
will be
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influenced greatly by the overlap between the V atoms. Similarly, the high
temperature behavior will be greatly influenced by changes in geometry, effec-
tively making

�
temperature dependent. At higher temperatures more high

spin configurations get populated, which will have a different geometry than
the low temperature å ; µ � � configuration used for geometry optimization.
Geometry relaxation will influence the ferromagnetic configuration (XII) most,
which is also responsible for the large

�
, making

�
significantly smaller. Sim-

ilarly, self-interaction-corrections (SIC) will decrease
�

because it will localize
the vanadium ª -orbitals more, decreasing the overlap of the wavefunctions.

In order to determine if our enhanced
�

may be due to spurious on-site re-
pulsions associated with the DFT, we have approximately accounted for the ef-
fects of self-interaction-corrections (SIC) in model calculations on V dimers (V �
and V � O ��� ) with electronic structure constrained to match that of the dimers in
the V ��� cluster. The results, while preliminary, show that SIC induced changes
in the wavefunctions could decrease the direct contributions to

�
by a factor of

3 which supports the reduction of
�

to yield better agreement between experi-
ment and theory.
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Chapter 3

Summary

This work presented selected publications of the author in the field of elec-
tronic structure calculations. The author carried out all density functional the-
ory calculation for the systems discussed in the Appendices by himself and is
responsible for a major part of the theoretical interpretations.

After a short introduction to DFT the author discussed the NRLMOL pro-
gram package which has been used in most of the cases discussed later in the
work. The author contributed actively to the development of NRLMOL by im-
plementing several new features as calculations of hyperfine fields, electric field
gradients, simple thermodynamic properties, local charges and spin densities
and arbitrary external potentials. Further, he was involved to a great extent
in the parallelization of the code and testing and implementation of the spin-
orbit capability. The last two achievements have been the basic prerequisite for
investigations of single molecule magnets.

The discussion in Section 2.1 focuses on the electronic structure as a mea-
sureable quantity itself. There are now several experimental techniques avail-
able to probe the electronic structure directly. Basically all these standard meth-
ods have been used for the superconductor MgB � . While any single method
always leaves some doubts, the overall excellent agreement of the from DFT
theoretically predicted electronic structure with all the experimental methods
gives us great confidence in the calculations. This is very important, because
most of the theories trying to explain the superconductivity or optical and trans-
port properties rely on this electronic structure.

Electric field gradients do not probe the band structure directly but rather
the quality of the obtained charge density. Obviously, these two quantities are
closely connected as evident by the Kohn-Sham equation. Modern DFT imple-
mentations give very accurate values of the EFG, so that theoretical calculations
are often an integral part for the interpretation of experimental data. Similarly,
vibrational properties offer a deep insight in materials as shown in Section 2.3.
The calculation of vibrational frequencies and IR and Raman intensities from
DFT is well established by now. Therefore first-principles calculations become

51



CHAPTER 3. SUMMARY

also here a very important tool in understanding experiments. The examples
have been selected to show how this kind of calculation can be used for ex-
plaining experimental results, but also that there is enough confidence in the
method to make predictions. Certainly, the author hopes that chemists will be
able to synthesize azidopentazole and can confirm the predicted properties.

Magnetic materials play a very important role in many areas of technology.
In Section 2.4 and 2.5 the author presents results of his work in that field.
Most of the work is directed towards the calculation and understanding of the
magnetic anisotropy energy. The ability to quantitatively determine which elec-
trons are important for forming the anisotropy energy allows to investigate how
chemical and physical modification of assembled arrays of molecular magnets
will effect thermal reorientation barriers and spin-tunneling fields. The under-
standing of the magnetic properties from fundamental research does not only
provide information to chemists in order to design novel materials, but can
also help to suggest new solutions in other technologically interesting areas.
The study of the quantum effects and the dynamics of the magnetization might
also help to understand the transition from pure magnetic quantum systems to
macroscopic magnetism.

New and interesting physics nearly always arises if different phenomena ap-
pear at the same time. The coupling of the vibrational degrees of freedom, the
phonons, to the electronic degrees of freedom, the electrons, gives rise to su-
perconductivity, which can be also understood from DFT. Superconductivity in
MgB

�
, driven by the electron-phonon coupling, has been a major research area

of the author [44, 45, 69–76], only publications directly concerned with elec-
tronic structure properties have been discussed here. The magnetic ordering
is sensitive to the vibrations. The coupling of vibrational degrees of freedom
to the magnetic ones giving rise to fourth-order magnetic anisotropy has also
been part of the authors research [120].

What have all these examples in common? The used methods cover finite
systems, molecules and clusters, as well as infinite systems, solids with peri-
odic crystal structure. The author wanted to show that the DFT can be applied
successfully in very different areas. The good agreement of first-principles cal-
culations with experimental results without using any experimental data as in-
put allows for real predictions. Predictions of new materials with customized
properties made on a computer. The progress in this field gives us enough con-
fidence to use the term computer experiments as a fertile option for the future.
Besides the classical division of physics in experimental and theoretical physics,
physics on the computer may be a third column on which physics rests.
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Boron in MgB2 forms stacks of honeycomb layers with magnesium as a space filler. Band structure
calculations indicate that Mg is substantially ionized, and the bands at the Fermi level derive mainly
from B orbitals. Strong bonding with an ionic component and considerable metallic density of states
yield a sizable electron-phonon coupling. Together with high phonon frequencies, which we estimate via
zone-center frozen phonon calculations to be between 300 and 700 cm21, this produces a high critical
temperature, consistent with recent experiments. Thus MgB2 can be viewed as an analog of the long
sought, but still hypothetical, superconducting metallic hydrogen.

DOI: 10.1103/PhysRevLett.86.4656 PACS numbers: 74.20.Fg, 71.18.+y, 74.25.Jb, 74.70.Ad

Before the discovery of high-temperature superconduc-
tors much effort was devoted to boosting the critical tem-
perature of conventional, BCS-Eliashberg superconductors
[1]. An exotic and appealing idea going back to the early
1960’s was that of metallic hydrogen [2]. The arguments
were very simple: due to the light mass, the phonon fre-
quencies in metallic hydrogen would be very high, of the
order of several thousand degrees Kelvin, and the prefactor
in the BCS formula would be very large, so that even a
moderate coupling constant would provide a sizable Tc.
This idea can be quantified as follows: for monatomic sol-
ids, the electron-phonon coupling (EPC) constant, l, which
enters the BCS equation, can be written in the so-called
McMillan-Hopfield form [3], l � N�0� �I2��M�v2�,
where N�0� is the density of states (DOS) at the Fermi level
per spin per atom, �I2� is the properly averaged electron-
ion matrix element squared, M is the atomic mass, and
�v2� is (again, properly averaged) the phonon frequency.
The product M�v2� does not depend on the mass, but
on the force constants only [1], while h � N�0� �I2�,
also known as the Hopfield factor, is a purely electronic
property. Correspondingly, light elements, everything else
being the same, are beneficial for superconductivity.

Lacking metallic hydrogen, attention was focused upon
compounds with light elements: carbides, nitrides (argu-
ably, the superconductivity in fullerenes was a discovery
along this road). Indeed, many of them were “high-Tc

superconductors” on the contemporary scale: 10–15 K. It
was pointed out [4] that �I2� is rather large in these ma-
terials due to the relatively high ionicity (although not as
high as in MgB2), but N�0� is rather small. This led to
the suggestion of cubic MoN, which would have a larger
N�0� than existing nitrides and carbides, as a hypothetical
superconductor with Tc . 30 K [5].

The recently discovered medium-Tc superconductor
MgB2 [6] with Tc * 39 K is clearly a continuation of the
same idea. The main component, B, is even lighter than
C and N. Furthermore, electronic structure calculations
show that the compound is not only quite ionic with a siz-

able DOS, but also has strong covalent B-B bonding (the
bonding-antibonding splitting due to in-plane B-B hopping
is about 6 eV) and thus exhibits strong electron-phonon
interactions. Interestingly, unlike carbides and nitrides, and
similar to metallic hydrogen, electrons at the Fermi level
(and below) are predominantly B like. Mg s states are
pushed up by the B pz orbitals and fully donate their elec-
trons to the boron-derived conduction bands. In the follow-
ing we will describe the physics of such “metallic” boron in
detail, present an estimate of the EPC constant, and propose
some routes for optimizing Tc in this kind of compound.

MgB2 occurs in the so-called AlB2 structure. Borons
form a primitive honeycomb lattice, consisting of graphite-
type sheets stacked with no displacement. The borons form
hexagonal prisms with the base diameter of 3.5 Å nearly
equal to the height. This creates large, nearly spherical
pores for Mg. As in graphite, the intraplanar B-B bonds
are much shorter than the distance between the planes, and
hence the B-B bonding is strongly anisotropic. However,
the interplane bonds are only twice as long as the intraplane
ones, as compared to the ratio of 2.4 in graphite, allowing
for a significant interplane hopping.

We have calculated the electronic structure of MgB2 us-
ing a general potential LAPW code [7]. For the rigid atomic
spheres calculations we used the Stuttgart LMTO code [8].
For the exchange-correlation potential, the generalized gra-
dient approximation of Ref. [9] was employed. Despite the
rather simple crystal structure, very few electronic struc-
ture calculations for MgB2 have been reported (a model
TB calculation of Burdett and Miller [10] and a recent
full-potential LMTO study [11]), and these have concen-
trated mainly on chemical bonding, paying hardly any at-
tention to transport and electronic properties. The results
of our LAPW calculations are shown in Figs. 1 and 2. We
note first that there is almost no valence charge inside the
Mg muffin-tin (MT) sphere (less than 0.2e). About half
of the total valence charge resides inside the B spheres,
and about the same amount in the interstitials. This is par-
tially due to the fact that the chosen LAPW setup employs

4656 0031-9007�01�86(20)�4656(4)$15.00 © 2001 The American Physical Society
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FIG. 1 (color). Band structure of MgB2 with the B p character.
The radii of the red (black) circles are proportional to the B pz

(B px,y) character.

rather small MT spheres for Mg. For the LMTO calcula-
tions we used an atomic sphere of nearly the size of the
free Mg atom (up to 3.13aB�, and obtained, as expected,
a larger charge of 2.8 electrons. However less than 25%
of the charge has s character. The remaining charge of p,
d, and f character arises not from Mg electrons but rather
from the tails of the B p orbitals and contributions from
the interstitials. In fact, one can say that Mg is fully ion-
ized in this compound, however the electrons donated to
the system are not localized on the anion, but rather are
distributed over the whole crystal.

The resulting band structure can be easily understood in
terms of the boron sublattice. The character of the bands
is plotted in Fig. 1. We show only the B p character, since
other contributions near the Fermi level are very small.
Observe two B band systems: two bands are derived from
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FIG. 2 (color). Total density of states (DOS) and partial DOS
for the MgB2 compound. The small Mg DOS is partially due
to the small rMT of 1.8aB used.

B pz states and four from B px,y . All these bands are
highly dispersive (light), the former being quite isotropic
and the latter more two dimensional. Both pz bands cross
the Fermi level (in different parts of the Brillouin zone),
but only two bonding px,y bands do so, and only near the
G point. They form two small cylindrical Fermi surfaces
around the G-A line (Fig. 3). However, due to their 2D
character, they contribute more than 30% to the total N�0�.

In contrast, the pz bands have 3D character, since the
smaller intraplane distance compensates for a smaller
(ppp vs pps) hopping. In the nearest neighbor tight
binding (TB) model their dispersion is ´k � ´0 1 2tpps 3
cosckz 6 tppp

p

3 1 2 cosa1k 1 2 cosa2k 1 2 cosa3k

where a1,2,3 are the smallest in-plane lattice vectors. The
on-site parameter ´0 can be found from the eigenvalue at
the K point and is �1.5 eV above the Fermi energy. We
estimated tpps and tppp from the LMTO calculations as
�2.5 and �1.5 eV, respectively. This model gives a very
good description of the pz band structure near and below
the Fermi level, although the antibonding band acquires
some additional dispersion by hybridizing with the Mg p

band. The role of Mg in forming this band structure can
be elucidated by removing the Mg atoms from the lattice
entirely and repeating the calculations in this hypothetical
structure. The in-plane dispersion of both sets of bands at
and below the Fermi level changes very little (ppp bands
are hardly changed, while the pps in-plane dispersion
changes by �10%). The kz dispersion of the pz bands is
increased in MgB2 as compared with the hypothetical empty
B2 lattice by about 30%, and these bands shift down with
respect to the px,y bands by approximately 1 eV. This
shift, as well as the additional dispersion, comes mainly
from the hybridization with the empty Mg s band, which
is correspondingly pushed further up, increasing the ef-
fective ionicity. Substantial kz dispersion of the pz bands

FIG. 3 (color). The Fermi surface of MgB2. Green and blue
cylinders (holelike) come from the bonding px,y bands, the blue
tubular network (holelike) from the bonding pz bands, and the
red (electronlike) tubular network from the antibonding pz band.
The last two surfaces touch at the K point.
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produces the Fermi surface which is approximately mirror
reflected with respect to a plane between the kz � 0 and
kz � p�c planes, one pocket (electronlike) coming from
the antibonding and the other (holelike) from the bonding
pz band. The two surfaces touch at one point on the K-H

line and form a honeycomb tubular network, replicating
in reciprocal space the boron lattice in real space.

The resulting bands are fairly 3D: the average Fermi
velocities are yx,y � 4.90 3 107 cm�s and yz � 4.76 3
107 cm�s. The plasma frequencies are vpx,y � 7.1 eV
and vpz � 6.9 eV. Correspondingly, we predict fairly iso-
tropic high-temperature electrical resistivity, with the lin-
ear slope dr�dT � 0.08ltr mV cm�K . The total DOS at
the Fermi level is N�0� � 0.36 states�spin f.u.

The above described band structure is typical for an
sp metal. What is not typical is that this particular sp

metal is held together by covalent bonding with a sub-
stantial ionic component [12], which inevitably leads to a
strong electron-phonon interaction. In the following we
present a semiquantitative estimate of the corresponding
coupling constant, and argue that the fortunate combina-
tion of strong bonding, sizable N�0�, and high phonon fre-
quency is responsible for the high transition temperature
in this compound.

In its most rigorous formulation the McMillan-Hopfield
formula reads [1]

l � n21
X

ij

�NIiaIjb� �F21�ia,jb , (1)

where the indices i, j run over all n ions in the crystal;
a, b are Cartesian indices; �NIiaIjb� is the electron-ion
matrix element averaged over the Fermi surface; and
Fia,jb is the standard force matrix. While this expression
is exact, a number of simplifications are needed to make
it more practical. One usually neglects the nondiagonal
terms and reduces Eq. (1) to one unit cell. The standard
justification makes use of the large size of the Fermi
surface; see Ref. [1]:

l �
X

i

�NI2�iF
21
ii �

X

i

hi�Fii�
21. (2)

The quantity Fii � ≠2Etot≠R
2
i is a local quantity, which

can be calculated from the total energy differences of frozen
zone-center phonons. The Hopfield factor can be calculated
in the rigid muffin-tin (or rigid atomic sphere) approxima-
tion [13] (RMTA), assuming that the change of the crystal
potential due to an ion’s displacement can be described by
shifting the electronic charge distribution rigidly inside the

TABLE I. Partial LMTO DOS, N�0�, in eV21�spin and partial
Hopfield factors, h, in mRy�a

2
B, for Mg and B (per atom).

N�0� h
l s p d f sp pd df

Mg 0.018 0.043 0.078 0.019 ,1 2 3
B 0.003 0.199 0.010 · · · ,1 135 · · ·

corresponding atomic sphere. Although expressions for h
have been derived for arbitrary site symmetry [14], these
are complicated and we will use here simplified formulas
[13] formally correct for cubic site symmetry. Then h can
be readily calculated from the LMTO potential parameters
and partial DOS’s. We show the results in Table I.

In order to get an estimate of the phonon spectrum of
the system, we calculated all zone-center modes, using the
full-potential LAPW method. There are four distinct modes
[15]: one silent mode, B1g (two borons displaced along
z in opposite directions), one doubly degenerate Raman
mode, E2g (in-plane displacements of borons), and two
infrared-active modes, which do not involve changes of
in-plane bonds: A2u (B and Mg planes moving against
each other), and a doubly degenerate E1u mode (B and
Mg planes sliding along x, y). Their frequencies are, re-
spectively, 690, 515, 390, and 320 cm21, and their force
constants are 390, 220, 70, and 44 mRy�a

2
B�atom. All

calculations were carried out at the experimental lattice
constant and c�a ratio [16]. The E2g mode shows strong
anharmonicity. While the harmonic frequency calculated
from the second derivative of the total energy with respect
to the phonon coordinate yields 515 cm21, a numeric so-
lution for the calculated anharmonic potential results in an
anharmonic frequency of 590 cm21.

Given the physics of the electronic structure described
above, it seems likely that the lowest mode couples little
with the electrons and that its softness is derived from its
in-plane acoustic character. Thus, we excluded it from the
calculations of l below. Correspondingly, the average in-
verse force matrix for boron is �FB�21

� M
21
B �v22� �

7.1a
2
B�Ry, corresponding to �v22�21�2 � 400 cm21.

Together with the above value for h this gives l � 0.7

and the logarithmically averaged frequency of the same
three modes is �690 3 5152 3 390�0.25

� �vlog� �
500 cm21 � 700 K. We can now estimate the critical
temperature according to the McMillan formula, Tc �

�vlog�

1.2 exp�21.02�1 1 l���l 2 m� 2 m�l�	. Using for the
Coulomb pseudopotential m� the commonly accepted
value 0.1, we obtain Tc � 22 K.

TABLE II. Comparison of the electron-phonon coupling in Al and in MgB2. The entries labeled by a question mark are obtained
by scaling the RMTA l by the ratio of lexp�lrmt in Al. qTF is the Thomas-Fermi screening parameter in a

21
B . Tc was calculated by

the McMillan formula with m�
� 0.1. LAPW N�0� is given in eV21�spin, h in mRy�a

2
B, and �Mv2� in Ry�a

2
B.

N�0� hrmt �vlog� �Mv2� lrmt Tc�lrmt� lexp Tc�lexp� Tc,exp qTF

Al 0.15 27 250 0.135 0.2 0 0.4 1.3 1.3 0.73
MgB2 0.18 (per B) 135 500 0.141 0.7 22 1.4? 70? 39 0.70
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It is instructive to compare the calculation above with a
typical sp superconductor, Al (Table II). RMTA usually
underestimates the electron-ion scattering in sp metals due
to the weaker screening than in d metals. Also in Al, l
is underestimated by a factor of 2. The screening proper-
ties of MgB2 are similar to those of Al (they have similar
Thomas-Fermi screening lengths), and the electronic prop-
erties are similar as well. It is therefore tempting to scale
the calculated l for MgB2 by the same factor. The scaled
results are also shown in Table II and the corresponding
Tc is approximately 70 K. Let us emphasize that these
numbers should be regarded only as rough estimates. The
RMTA in MgB2 is clearly a worse approximation than in
Al. The boron site symmetry is far from cubic and, more-
over, large differences in the atomic sphere radii lead to
artificial potential jumps at the sphere boundary, a problem
for which there is no remedy in RMTA. In other words,
with regard to EPC, our calculations should be considered
as a qualitative indication of a strong electron-phonon in-
teraction. We can nevertheless be confident of our main
qualitative conclusions.

Our main conclusion is that MgB2, being essentially
metallic boron held together by covalent B-B and ionic
B-Mg bonding, is electronically a typical sp metal with a
typical DOS. Strong bonding induces strong electron-ion
scattering and hence strong electron-phonon coupling. An
additional benefit is the high frequency of the boron vibra-
tions (while the force constants remain reasonably soft).
Superconductivity is mainly due to boron. The light mass
and correspondingly large zero-point vibrations (.0.1aB)
suggest a possibility of anharmonic and/or nonlinear EPC,
and possible deviation of the isotope effect from 100%.
Isovalent doping may be beneficial if it increases the den-
sity of states N�0�. Lattice expansion due to Ca doping
should lead to an overall increase of the density of states,
and may provide the additional benefit of reduced pz-s-pz

hopping. Another interesting dopant is Na, which should
not only expand the lattice, but also decrease the Fermi
level, exposing more of the px,y bands, which may pro-
vide an additional contribution to l.

Finally, let us outline the directions for further theo-
retical investigation. First, EPC calculations beyond the
RMTA (e.g., in the linear response formalism) are highly
desirable and computationally feasible. Second, calcu-
lations with full structure optimization for (hypothetical)
CaB2 and BeB2, and virtual crystal calculations for Na
doping should elucidate the effect of isovalent and hole
doping, giving some hints toward further optimizing Tc.
Work along these lines is currently in progress.

We are thankful to J. E. Pask, C. S. Hellberg, and D. J.
Singh for critical reading of the manuscript. This research
was supported in part by ONR and by DOE under Con-
tract No. W-7405-82.

Note added.—Since this paper was submitted, a sizable,
but incomplete, isotope shift for B [17] (but not for Mg)
was obtained, supporting the picture described above.
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Recent reports on quantum oscillations in MgB2 provide valuable information on three important aspects of
this material: ~i! electronic structure near the Fermi level, ~ii! disparity of the electron-phonon interaction
between the two systems of bands, and ~iii! renormalization of spin susceptibility. However, extraction of most
of this information requires highly accurate band-structure calculations of the relevant quantities. In this paper
we provide such calculations and use them to analyze the experimental data.
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MgB2, a superconductor with Tc'40 K, has attracted
enormous attention in the last year. The most popular model,
suggested by Liu et al.1 and Shulga et al.,2 and elaborated
upon by Choi et al.,3 is the two-gap model, which, based on
the very large interband disparity of the electron-phonon in-
teraction ~first noted in Ref. 4!, predicts two different gaps
for the two different band systems. The calculations1,3 yield
an effective ~including an enhancement due to gap variation!
electron-phonon coupling constant of the order of 1. On the
other hand, the two-gap theory has a serious conceptual
problem: Two distinctive gaps may exist only if the interband
impurity scattering is very weak. That seems to be in contrast
to the experimental observation that even poor quality, high-
resistivity samples have very good superconducting proper-
ties. It has been argued5,6 that the specificity of the electronic
and crystal structures of MgB2 results in a peculiar relation
among the three relevant relaxation rates, namely that the
impurity scattering inside the so-called p band is much
stronger than inside the s band, and the latter, in turn, is
much stronger than the interband scattering. However, there
has been no direct experimental confirmation of this claim.

On the other hand, some authors7 argue that the calculated
band structure is strongly renormalized by electron-electron
interactions not accounted for in the local-density calcula-
tions, so that the plasma frequency is a factor of 5 smaller
than the calculated one. This would imply an electron-
phonon coupling constant less than 0.2. There are claims that
infrared spectroscopy supports this point of view,8,9 although
other researchers in the field5 dispute the interpretation ac-
cepted in Refs. 8 and 9. In any case, the fact that all optical
experiments until now have been performed on polycrystal-
line samples undermines their value as a decisive test for the
electronic structure calculations.

Single-crystal angular-resolved photoemission spectros-
copy10 ~ARPES! measurements agree very well with the
calculations.11 However, some calculated bands were not ob-
served, and, furthermore, ARPES probes only a very thin
surface layer and is therefore often not representative of the
bulk electronic structure.

Historically, the most reliable probe of the bulk electronic
structure has been the de Haas–van Alphen effect ~dHvA!.
Recent observation of this effect in MgB2 single crystals12

provides key information to assess the validity of the stan-
dard band-structure calculation. Given the fact that most the-
oretical papers rely on this band structure, the importance of
a proper analysis of these data can hardly be overestimated.
It must be emphasized that such an analysis requires highly
accurate band-structure calculations, i.e., the use of a much
finer k-point mesh in the Brillouin zone and a much more
accurate integration than is customary in other applications
of the band theory. In this paper we present such calculations
and show that both Fermiology and effective masses ~and
hence the Fermi velocities and plasma frequencies! produced
by conventional band-structure calculations are in excellent
agreement with the experiment, thus giving a strong founda-
tion for the widespread use of this band structure. Further-
more, we show that the calculational predictions of a strong
disparity of the electron-phonon interaction in the two-band
systems in MgB2 are supported by the de Haas–van Alphen
experiment, and that the scattering rates inside the s band
and between s and p bands are probably much smaller than
inside the p bands.

The Fermi surface of MgB2 consists of four sheets.13 Two
sheets come primarily from the boron px and py states, and
form slightly ~nearly sinusoidally! warped cylinders, s
~bonding! and s* ~antibonding!,14 and two tubular networks,
the bonding one, p, in the G (kz50) plane, and the antibond-
ing one, p*, in the A (kz5p/c) plane. There are six ex-
tremal cross sections for the field parallel to kz ~along the GA
line!. These are ~1! s in the G plane, ~2! s* in the G plane,
~3! p in the G plane ~‘‘holes’’ between the tubes!, ~4! s in the
A plane, ~5! s* in the A plane, and ~6! p* in the G plane. For
a field parallel to ky ~perpendicular to the GAM plane! there
are two extremal cross sections ~tubes’ necks!, for the p
surface ~7! and for the p* surface ~8!.

We performed highly accurate and well-converged full
potential linear augmented plane-wave ~LAPW! calculations,
using the WIEN-97 package,15 including local orbitals16 to re-
lax the linearization errors. We used the generalized gradient
approximation of Perdew-Wang17 for the exchange-
correlation potential. By comparing the results with linear
muffin-tin orbitals calculations, we found that for a proper
description of the s orbits it is essential to use a full potential
method. It is furthermore essential to use a very fine mesh in
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k space; we employed a 38338327 mesh, corresponding to
1995 inequivalent k points. To achieve sufficient accuracy
for the small areas of the orbits 1, 2, 4, 5, 7, and 8, we used
an integration engine built in the SURFER program,18 which
internally interpolates the integrand with splines.

The bare ~band! masses in the third column of Table I
were then calculated by varying the Fermi energy and using
the standard formula,

mdHvA5

\2

2p

dA
dE

. ~1!

Here and below we use the notation A for the areas of the
orbits in standard units and F for those in Tesla units. In
order to obtain the energy derivatives we fitted the calculated
A(E) by quadratic polynomials in the ranges of about 0.03
Ry around the Fermi energy. The experimentally observed
‘‘thermal masses’’ differ from the ‘‘band’’ masses by a renor-
malization factor of ~11l!, where l is the coupling constant
for the interaction of electrons with phonons or other low-
energy excitations. For Table I we used the values of l com-
puted in the following way ~see, e.g., Ref. 19!: we assumed
that the matrix elements of the electron-phonon interaction
are constant within each of the four bands ~a good approxi-
mation, see Ref. 3!, but different among the bands and for
different interband transitions. If the matrix of the electron-
phonon interaction is U i j , where i , j are the band indices,
then the mass renormalization in the band i is

l i5(
j

U i jN j , ~2!

where N j is the partial density of states per spin for the ith
band. Recall that the conventional Eliashberg coupling con-
stant is l5( i jU i jN iN j /( iN i . The matrix U and the vector
N calculated in Ref. 1 were used to compute the fifth column
in Table I.

The agreement between the calculated and measured ther-
mal masses can be characterized as excellent. Very impor-
tantly, this agreement is so good only because the calculated
electron-phonon coupling differs by a factor of 3 between the
s and p bands. This is a direct demonstration of this impor-
tant effect. The agreement between the calculated areas F

and the experiment is also very good. Although F1 , F2, and
F3 are overestimated by 35%, 15%, and 8%, respectively,
the absolute values of these errors are only 0.5% ~or less! of
the total area of the corresponding Brillouin-zone cross sec-
tions. Even better appreciation of the significance of these
errors can be gained from the observation that shifting the s
band by 6.3 mRy down, and the p* band by 5.5 mRy up
brings the calculated areas to full agreement with the experi-
ment. It is not at all clear whether or not such a small dis-
crepancy with the experiment is meaningful. It is interesting,
nevertheless, that after such an adjustment of the band posi-
tions the calculated masses agree with the experiment even
better: for the three orbits in question the electron-phonon
coupling constants deduced from the experiment by taking
the ratio of the measured masses to the calculated masses
are, respectively, 1.15, 1.12, and 0.43. After the Fermi-level
adjustment, they are 1.22, 1.18, and 0.45. It is also worth
noting that, for instance, a change in the c/a ratio of 1.5%
shifts the s and p bands with respect to each other by '12
mRy, or that a shift of the Fermi level by 6 mRy corresponds
to a 0.05 e change in the number of electrons. This shows
how sensitive the de Haas–van Alphen results are to the
crystallography and stoichiometry.

Another important observation reported in Ref. 12 is the
so-called ‘‘spin zero.’’ This is a suppression of the de Haas–
van Alphen amplitude when the difference in the areas ~in
Tesla units! of the spin-split ~by the external field H) cross
sections is exactly H/2. This effect has been observed for
orbit ~8! in the field H517 T, when the field was tilted with
respect to the crystallographic axis by f515218°. This
means that (F8

↑
2 F8

↓)/cos(f)58.5 T, or DF85F8
↑
2F8

↓

'8.1 T ~note that the angle itself does not depend on the
field in which the measurements are performed, but only on
the Fermi-surface geometry and Stoner renormalization!. It
is easy to estimate this splitting in the first approximation,
using the data from Table I and the Stoner renormalization of
33%, calculated in Ref. 21: DA852pmDExc , where DExc
52mBH(11S) is the induced spin splitting of the bands
near the Fermi level, enhanced by a Stoner factor (11S).
This formula gives DF8'7.1 T. A caveat here is that the
induced spin splitting need not be the same for all bands, in
other words, while the average S is 0.33, individual S’s may

TABLE I. Calculated de Haas–van Alphen parameters from present work (Fcalc) compared to the experimental data (Fexp) of Ref. 12.
The masses are given in free-electron mass units.

Orbit Fcalc ~T! mcalc dmcalc/dE (Ry21) la u(11l)mub Fexp ~T! u(11l)muexp

~1! s G plane 730 20.251 1.1 1.25 0.56 540 0.54
~2! s* G plane 1589 20.543 2.7 1.16 1.17
~3! p G plane 34630 1.96 23 0.43 2.80
~4! s A plane 1756 20.312 1.2 1.25 0.70 1530 0.66
~5! s* A plane 3393 20.618 2.3 1.16 1.33
~6! p* G plane 31130 21.00 4.1 0.47 1.47
~7! p GAM plane 458 20.246 1.5 0.43 0.35
~8! p* GAM plane 2889 0.315 0.8 0.47 0.46 2685 0.45

aComputed from Tables 1 and 2 of Ref. 1.
bComputed from the preceding columns.
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vary from orbit to orbit. To avoid this problem, we per-
formed self-consistent LAPW calculations in an external
field of 1.8 kT ~still well within the linear-response regime!
and measured dDA8 /dH explicitly. Using these results, we
found that for the actual field of 17 T, DF856.7 T, close to,
but slightly smaller than the above estimate of 7.1 T. In other
words, the calculated Stoner factor for this orbit is S8
50.26, smaller than the average over all bands, which is
0.33. Note that the experimental number of 8.1 T can be
reconciled with the calculated mass, if S8 were '0.5, fairly
close to the electron-phonon coupling constant for the same
band, 0.47. We, however, believe that the coincidence is ac-
cidental, although we do not have any plausible explanation
for the noticeable underestimation of the Stoner factor for
this orbit. No ‘‘spin-zero’’ effect has been observed for the
orbit ~4!, which has essentially the same mass as orbit ~8!.
Our calculations for this orbit give DF456.9 T; that is, the
calculated Stoner factor for this orbit is S450.31. At the
same time, the actual Stoner factor must be either larger than
0.60 or smaller than 0.18, for this orbit not to exhibit the
‘‘spin-zero’’ effect @this is neglecting deviations from a cy-
lindrical shape, which are noticeably stronger expressed for
this orbit than for the orbit ~8!#. Further experimental studies
on better samples should give more insight into this problem.

Finally, we would like to discuss the problem of the
‘‘missing orbits.’’ The amplitude of the de Haas–van Alphen
signal is proportional to22

H21/2
X

sinh X
exp

2c\ApA
eHl

cos
pDF

H
X

5p2mc~11l !kBT/\eH ,

where l is the mean free path for the orbit in question. Thus,
it is not surprising that the large orbits ~3! and ~6! are not
observed; the Dingle exponent c\ApA/eHl is at least ten
times larger than for the other orbits. However, the question
remains for the orbits ~2!, ~5!, and ~7!. Let us start with the
first two. We observe that, compared to the orbits ~1! and ~3!,
both the Dingle factor and the thermal factor are reduced.
The latter is smaller because the effective mass m(11l) is
twice larger, which reduces the maximal temperature at
which these orbits can be observed by a factor of 2. The
former is reduced because both the orbit size, AA , is larger,
and the mean free path, l}vF , ~assuming the relaxation time
is the same for both s and s* bands!, is smaller @from Table
1 of Ref. 21, vF(s)/vF(s*)'1.4#. The total reduction of the
Dingle exponent compared to orbit ~4! is by a factor of 2 for
orbit ~5!, and of 1.4 for orbit ~2!.

The absence of a signal from the orbit ~7! seems puzzling.
Its area and its thermal mass are the smallest of all orbits,
and the average velocity for this band is the highest ~50%

higher than for the s band!. A very plausible explanation is
that, as conjectured in Ref. 5 and elaborated upon in Ref. 6,
the impurity scattering rates differ drastically between the
bands. If the dominant defects reside in the Mg plane ~e.g.,
Mg vacancies!, then such defects are very weak scatterers for
the s bands for the simple reason that those bands have very
little weight at the Mg atoms. However, this simple picture
does not explain why orbit ~8!, originating from the p* band,
apparently has a small relaxation time and therefore is seen
in experiment. Its velocity is close to ~in fact, 15% smaller
than! that of the p band and its linear size is more than twice
larger than that of orbit ~7!, so the scattering rate has to be at
least five times larger. We do not have a plausible answer as
to why the impurity scattering appears to be so suppressed
for this orbit. Possibly, this is related to its parity ~while the
p band is even with respect to the z→2z reflection, the p*
band is odd!.

To conclude, we presented highly accurate calculations of
the de Haas–van Alphen parameters for MgB2. Comparison
with the experiment reveals ~i! absence of any mass ~veloc-
ity! renormalization apart from that due to phonons; ~ii! a
good agreement of the calculated cross-section areas with the
experiment; ~iii! excellent agreement of the calculated
electron-phonon coupling with the dHvA mass renormaliza-
tion, including very large disparity between the coupling of
the s and p bands, which clearly confirms the basic assump-
tion of the two-gap model for superconductivity in MgB2;
~iv! some underestimation, despite a good qualitative agree-
ment, of the calculated and measured Stoner factors for the p
bands, ~v! indirect evidence of substantially different impu-
rity scattering rates in the s and p bands, and ~vi! a problem
that remains to be understood, the total suppression of the
neck orbit, associated with the bonding p band, given a clear
observation of the much larger orbit from the electronically
similar p* band.

After this work was finished, we learned about similar
works by Rosner et al.20 and Harima.23 Their results, particu-
larly those of Ref. 20, are quite close to ours. Both papers
employ similar methods and take full care of the k-mesh
convergence. The remaining difference is a good gauge of
how reliable such calculations are, in a technical sense.
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Measurements of x-ray emission and absorption spectra of the constituents of MgB2 are presented. The
results obtained are in good agreement with calculated x-ray spectra, with dipole matrix elements taken into
account. The comparison of x-ray emission spectra of graphite, AlB2, and MgB2 in the binding energy scale
supports the idea of charge transfer from s to p bands, which creates holes at the top of the bonding s bands
and drives the high-Tc superconductivity in MgB2.
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I. INTRODUCTION

The recent discovery of superconductivity in MgB2 with a
Tc close to 40 K ~Ref. 1! was an unexpected experimental
achievement. Up to now, it is the highest Tc value reported
for any binary compound.2 This value of Tc is much higher
than previously expected within the context of BCS theory.3

Not surprisingly, its discovery has given rise to much experi-
mental and theoretical activity, having raised the possibility
of a whole new class of superconductors.

The experimentally observed B isotope shift of Tc ~Ref.
4! and other experimental data5 suggest conventional BCS
s-wave electron-phonon coupling. However, careful analysis
of the temperature and magnetic field dependence of the spe-
cific heat6 suggests anisotropic or multiple gaps. The re-
ported values of 2D/kBTc51.224 from tunneling
measurements7 also raise the possibility of multiple gaps,
although the values below the BCS weak coupling limit of
3.5 have been attributed to surface effects. Even though there
is growing evidence for conventional BCS s-wave electron-
phonon coupling, the experimental picture is not yet entirely
clear. In addition to theoretical explanations based on BCS
theory,8–10 an alternative explanation based on hole super-
conductivity has been proposed.11 Both theories are based on
the results of band structure calculations of MgB2.

X-ray emission and absorption spectroscopies are power-
ful probes of the electronic structure of solids. Photon emis-
sion and absorption involve a transition between electronic
states. In the soft x-ray regime, one of the states is a local-
ized, dispersionless core level. This allows for the interpre-
tion of the measured spectra in terms of unoccupied states for
absorption and occupied states for emission. Since dipole
selection rules govern the transitions to or from the core
level, it is actually the angular-momentum-resolved density
of states ~DOS! that is measured. Furthermore, since the core
level is associated with a specific element in the compound,
x-ray absorption and emission are also element specific. Fi-

nally, they have the advantage of being relatively insensitive
to the quality of the sample surface, unlike x-ray photoelec-
tron spectroscopy ~XPS! or ultraviolet photoemission, where
in order to measure the bulk electronic structure it is neces-
sary to prepare atomically clean, stoichiometric, and ordered
surfaces, which are impossible to realize for sintered samples
such as MgB2.

Recently, a high-resolution photoemission study of a sin-
tered powder sample of MgB2 was carried out,12 however,
the behavior of the spectral function was analyzed only in
the vicinity of the Fermi level. In the present paper, the x-ray
emission and absorption spectra ~XES and XAS! of the con-
stituents have been studied in MgB2 and related compounds
~graphite and AlB2). The results obtained are compared with
the partial density of states and first-principles calculations
of the intensities of x-ray spectra which take dipole matrix
elements and selection rules into account.

II. EXPERIMENTAL DETAILS

Both pressed powder and sintered polycrystalline MgB2
samples were used for measurements of the XES. The sin-
tered polycrystalline sample was prepared as described in
Ref. 1. X-ray diffraction measurements show that the sample
is single phased and electrical resistivity and dc magnetiza-
tion measurements confirm the onset of a sharp supercon-
ducting transition at 39.5 K. The B K emission and absorp-
tion spectra were studied on Beamline 8.0.1 at the advanced
light source ~ALS! at Lawrence Berkeley National Labora-
tory employing the soft x-ray fluorescence endstation.13

Emitted radiation was measured using a Rowland circle type
spectrometer with spherical gratings and a multichannel two-
dimensional detector. The measurements of the Mg
L-emission spectra were performed using an ultrasoft x-ray
grating spectrometer ~R51 m,n5600 l/mm! with electron
excitation.14 The B Ka and Mg L2,3 XES were measured
with excitation energies far from the B 1s and Mg 2p thresh-
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olds ~nonresonant spectra!, with an energy resolution of 0.3
eV.

The Mg 2p absorption spectra were measured at the
beamline BL-12A at the Photon Factory in KEK using pho-
tons from a synchrotron source. The energy resolution near
the Mg 2p threshold ~50 eV! is 0.5 eV, using a 0.1 mm
monochromator slit width. For Mg 2p measurements, we
used a Si filter despite the Si 2p absorption threshold at
about 100 eV because at this beamline non-negligible second
order light is included in this energy region. The absorption
spectra were taken by recording the total electron yield
~TEY! sample drain current. To remove surface contamina-
tion before the measurements, the sample was scraped with
sandpaper and then striped off with vinyl tape repeatedly
until the mark left on the tape was uniform. The vacuum was
below 1.031026 Torr and the measurements were carried
out at room temperature.

In order to determine the position of the Fermi level and
convert x-ray spectra to the binding energy scale of XPS
~difference of measured XES energies and a selected XPS
core level energy!, B 1s and Mg 2p core levels were mea-
sured. As mentioned above, XPS for valence band states is
very sensitive to surface contamination, nevertheless the
binding energies of core levels can be determined after

cleaning the surface. The XPS measurements have been car-
ried out with an ESCA spectrometer manufactured by Physi-
cal Electronics ~PHI 5600 ci!. The monochromatized Al Ka
radiation had a full width at half maximum ~FWHM! of 0.3
eV and combined with the energy resolution of the analyzer
~1.5% of the pass energy! results in an estimated energy reso-
lution of somewhat less than 0.35 eV. XPS measurements of
a MgB2 sample fractured in high vacuum have shown less
oxygen content on the surface than those of sintered mate-
rial. Further reduction of the oxygen content was achieved
by ion etching. After cleaning the surface, we obtained the
following values for the binding energies associated with the
core levels: B 1s ~185.5 eV! and Mg 2p ~49.5 eV!. These
results agree well with recent XPS studies of MgB2 ~the Mg
2p core level energy agrees within 0.2 eV!15 which shows
that the XPS core levels are not significantly influenced by
oxidized surfaces, as shown in this study by comparing as-
grown and etched surfaces in which the oxidized layer is
effectively removed. This supports the use of these values in
Fig. 3 to convert XES spectra to the binding energy scale.

III. RESULTS AND DISCUSSION

The states at the Fermi level derive primarily from B and
so the resulting band structure can be understood in terms of
the boron sublattice. Mg can be described as ionized (Mg21)

FIG. 1. Calculated ~a,c! and experimental ~b,d! B K emission
and absorption spectra of MgB2. The emission spectrum was ob-
tained from electron excitation far from resonance and is an accu-
mulation of several scans. The absorption spectrum was recorded
from the total electron yield ~TEY! sample drain current using pho-
tons from a synchrotron source.

FIG. 2. Calculated ~a,c! and experimental ~b,d! Mg L emission
and absorption spectra of MgB2. The density of states is signifi-
cantly changed by the dipole matrix elements, which are necessary
in order to recover the experimental XES shape.
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in this compound. However, the electrons donated to the sys-
tem are not localized on the anions, but rather are distributed
over the whole crystal. The s (sp2) bonding states which
have B pxy character are unfilled, in contrast to graphite
where the s states are completely filled and form strong
covalent bonds. These s states form two small cylindrical
Fermi surfaces around the G-A line and the holes at the top
of the bonding s bands are believed to couple strongly to
optical B-B modes and to play a key role in the supercon-
ductivity of MgB2.

Using the full potential LAPW code WIEN97,16 we calcu-
lated the near edge absorption and emission spectra. Accord-
ing to the final-state rule formulated by von Barth and
Grossmann,17 accurate XES and XAS of simple metals may
be obtained from ordinary one-electron theory if the relevant
dipole matrix elements are calculated from valence functions
obtained in the potential of the final state of the x-ray pro-
cess: in other words, a potential reflecting the fully screened
core hole for absorption but not for emission. Because we
neglected core relaxation effects in our calculations, we ex-
pect significantly better agreement between theory and ex-
periment for emission spectra. The calculated spectra are
Lorentz broadened with a spectrometer broadening of 0.35
eV, with additional lifetime broadening for emission spectra.

Theoretical B K emission and absorption spectra of
MgB2, which according to dipole selection rules (1s→2p
transition! probe B 2p occupied and unoccupied states, re-
spectively, are presented in Figs. 1~a!,1~c!. These calcula-
tions show that the intensity distributions of B K emission
and absorption follow the B 2p partial density of states very
closely because the radial dipole matrix elements are mono-
tonically increasing functions of energy within the valence
and conduction bands. The experimental B K emission and
absorption spectra @Figs. 1~b!,1~d!# are in good agreement
with the calculated spectra. Note that the position of the
Fermi level of XAS cannot be determined with the help of

XPS measurements of core levels due to the different final
states. The experimental and calculated XAS spectra shown
in Figs. 1 and 2 are compared by aligning the Fermi levels.
Our results are also in good agreement with other recent
experimental studies.18,19 Callcott et al.18 have reported soft
x-ray fluorescence measurements and also XAS for the K
edge of B in MgB2. Comparing their results to our TEY @Fig.
1~d!# we find similar structures around 187 and 193 eV as
observed in Ref. 18. Similar results were also obtained by
Nakamura et al.19 We do not find the peak labeled C in Ref.
18 around 195 eV, which was associated with boron oxide.
We also obtained good agreement comparing our XES re-
sults with other B K-emission experimental data.18,19

Calculated Mg L emission and absorption spectra which
probe occupied and unoccupied Mg 3s states are shown in
Figs. 2~a!,2~c!. The intensity distribution associated with the
Mg L emission differs somewhat from the Mg 3s partial
DOS. The DOS is significantly changed by the dipole matrix
elements which are necessary in order to recover the experi-
mental XES shape. The contribution to the x-ray intensity is
larger for states near the Fermi level relative to those at the
bottom of the valence band, in accordance with the energy
dependence of the radial dipole matrix elements. Again, we
note reasonable agreement between the calculated @Figs.
2~a!,2~c!# and experimental spectra @Figs. 2~b!,2~d!#.

All density-functional calculations appear to agree that
Mg is substantially ionized.8–10 In order to provide direct
experimental evidence for charge transfer from Mg, we com-
pared the Mg L emission spectrum in MgB2 to that in pure
Mg metal. The shift of the Mg core 2p level with respect to
the Fermi level contains this information and will be called
chemical shift. This does not involve counting of electrons in
order to obtain the chemical potential, which would depend
critically on the shape of the bands. Normally, one would
expect a core level shift towards higher binding energies
~positive shift! in losing valence charge because less elec-
trons screen the Coulomb potential weaker and therefore the
electrons are bound stronger.

Band structure calculations reveal, the Mg 2p level shows
significant hybridization with the B pz level, which raises the
former while lowering the latter, in difference to the simple
picture outlined above. The mechanism is similar to an inter-
acting two-level system, where new states are formed, one
level is lowered in energy and the other level is pushed up in
energy proportional to the overlap ~hybridization! between
the states.

A negative chemical shift of about 0.5 eV is found in the
MgB2 spectrum with respect to that of pure Mg, which we
hold as evidence for charge transfer from Mg to B atoms in
this compound. The same negative chemical shift of 0.5 eV
has been observed recently in XPS measurements15 as well.

This is a very important effect because it lowers the
p (pz) bands relative to the bonding s (sp2) bands. This
lowering of the B p bands relative to the s bands, compared
to graphite, causes s→p charge transfer and s-band hole
doping, driving the superconductivity in MgB2.9 To investi-
gate this prediction further, we compared the Ka XES (2p
→1s transition! for graphite, AlB2, and MgB2 by alignment
of the Fermi levels which were determined in the binding

FIG. 3. Comparison of x-ray emission spectra of hexagonal
graphite, AlB2, and MgB2 using the binding energy scale ~differ-
ence of XES energies and the 2p core level energy obtained from
XPS!. The major maximum originates from s (sp2) states in all
materials. The observed shift from graphite to MgB2 supports the
theoretical results of Ref. 9.
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energy scale using XPS measurements of core levels. B
1s (MgB2)5185.5 eV, B 1s (AlB2)5188.5 eV,20 and C
1s ~graphite!5284.5 eV ~Ref. 20! ~Fig. 3!. As the figure
shows, the major maximum originating from s states is
shifted in MgB2 towards the Fermi level with respect to that
of graphite. AlB2 occupies an intermediate position due to
the higher electron concentration compared to MgB2 which
results in filling of the s bands, decreasing N(E f) and finally
destroying superconductivity.

IV. CONCLUSION

In conclusion, we have measured x-ray emission and ab-
sorption spectra of the constituents of the new supercon-
ductor MgB2 and found good agreement with results of band
structure calculations and in particular calculations of inten-
sities of x-ray spectra taking the necessary matrix elements
into account. Further, according to our findings magnesium
is positively charged in this compound, which supports the
results of electronic structure calculations. The comparison
of x-ray emission spectra of graphite, AlB2, and MgB2 sup-

ports the idea of superconductivity driven by hole doping of
the covalent s bands. While the experimental results of our
study cannot give direct insight into the mechanism of the
superconductivity, they do support and lend credence to the
standard band structure methods used in the theoretical
analysis of this new and exciting material. This information
could prove important in understanding and answering the
questions which still exist.
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Electric field gradients (efg) in binary wurtzite-type semiconductors have been calculated self-con-
sistently by application of the program WIEN 95 which is based on the LAPW method. The re-
sults were compared with measured efg at the A- and B-sites. All efg are small and they are
largely influenced by the parameter u, which describes the displacement of the anion and cation
sublattices and which has a low experimental accuracy. From the minimum of the total energy the
reliable u parameters can be determined for substances where no experimental values exist. These
u parameters show a linear dependence on the axis ratio c/a.

1. Introduction

By the nuclear quadrupole interaction the microscopic environment of suitable probe
nuclei in noncubic solids especially semiconductors can be investigated. Thereby the
quadrupole frequencies depend on the electric field gradient (efg) Vzz at the probe site
and on the nuclear quadrupole moment Q. Methods like nuclear magnetic resonance
(NMR), double resonance (ENDOR), MoÈ ssbauer effect and perturbed angular correla-
tions (PAC) can be used. One of the aims of these investigations is the study of defects in
semiconductors [1]. On the other side the efg at the position of a nuclear probe can be
used to test very sensitively the quality of a calculated electronic charge distribution. This
holds for nuclear probes which can be both impurities and host atoms in the semiconduc-
tors investigated. Thereby the calculation of the host atom case is much simpler and it is a
prerequisite for realistic calculations of impurity configurations.

There is a group of binary semiconductors of types AIIIBV, AIIBVI and AIBVII which
crystallize in the noncubic wurtzite structure. Quadrupole coupling constants nQ = eQVzz/h
are known for many of the cations and anions in such semiconductors. The theoretical
interpretation of the measured efg was carried out in the past by simple point charge
estimations or more realistically with regard to the polarization of the ions [2 to 4].
Today it is possible to calculate by first principle methods the electronic structure and
the efg in such compounds considering all electrons. Thereby computations with suita-
ble clusters [5] or with periodic lattices are performed. We used the WIEN 95-code of
Blaha and Schwarz [6,7] which is based on the LAPW-method (full potential linearized
augmented plane waves).

The wurtzite structure consists of two hexagonal close packed sublattices which are
displaced in c-direction by uc. The structure parameters of the wurtzite compounds are
the lattice constant a, the axis ratio c/a and the parameter u. For most of the com-
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pounds the c/a ratio differs more or less from the ideal value
��������

8=3
p

� 1:633, and also
the parameter u deviates from its ideal value 3/8 = 0.375. This means that the tetrahe-
dra of next neighbours are slightly distorted. Only the lattice constant a and the c/a
ratio can be determined from the positions of the X-ray reflections with high accuracy.
For the evaluation of the parameter u a structure refinement is necessary. Thereby the
intensities of the reflections must be determined accurately and the corresponding
structure amplitudes have to be fitted to those of the real wurtzite structure with a
defined u parameter. Such a procedure has a limited accuracy. Therefore, the u param-
eter has a larger uncertainty than the lattice parameters a and c/a. Beside this all lattice
parameters are slightly influenced by the growth conditions and the defect concentra-
tion of the specimens.

2. Calculation of Charge Distributions and Electric Field Gradients

The electric field gradient (efg) at the position of a probe nucleus is a traceless sym-
metric tensor which is determined by the anisotropy of the charge distribution around
the probe. It is defined by the second derivative of the electric potential leading to the
principal component of the tensor Vzz and the asymmetry parameter h = (Vxx ±± Vyy)/Vzz.
In the wurtzite lattice we have a threefold axis and therefore h = 0. The quadrupole
frequencies depend only on Vzz.

Today it is possible to calculate the charge distribution r(r) in a crystal self-consis-
tently considering the full electronic structure. Electric field gradients at the positions of
lattice points can be calculated in an adequate manner. In the WIEN 95-code [7] the
full potential is determined from the self-consistent charge density distribution. In the
LAPW method a scalar relativistic version without spin±orbit coupling was used.

Well converged solutions were found for RcutKmax � 8, where Kmax is the plane wave
cut-off and Rcut is the smallest of all atomic sphere radii. Partial waves up to l = 12
inside atomic spheres and 24 k-points in the irreducible wedge of the Brillouin zone
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Fig. 1. The total energy in dependence on the parameter u for CdS. The minimum (arrow) is near-
by the experimental value u = 0.3775 [18]. The relative depth of the minimum is very small. The
total binding energy of all electrons of the two Cd- and the two S-atoms in the elementary cell is
about 325943 eV
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were used in maximum. The convergence was checked by the use of different basis
sets. The exchange and correlation effects are treated within density functional theo-
ry by the standard exchange correlation potential suggested by Perdew and Wang
[8].

The efg Vzz is strongly influenced by the u parameter which has a relatively large
uncertainty. For some of the substances there are no experimental values available.
Therefore, we determined a reliable u parameter from the minimum of the total energy
on the basis of the experimental a and c/a parameters. For this the iteration was
stopped, when the energy convergence was one order of magnitude better than the
total energy changes introduced by varying the u parameter. Fig. 1 shows such an
Etot(u) dependence for the case of CdS. The minimum (u = 0.3771) is nearby the ex-
perimental u parameter (u = 0.3775). In ZnO we have the same situation. This encour-
aged us to take the theoretical u parameters for the calculation of the efg in the cases
of AlN (u = 0.3818), GaN (u = 0.3770) and ZnS (u = 0.3748), where we could not find
any experimental u parameters in the literature.

3. Results

We have calculated the efg in AlN, ZnO, BeO, CdS, GaN, CdSe, AgI and ZnS by the
WIEN 95-code [7]. The results for the A- and B-positions are listed in Table 1.

There are linear dependences of the A- and B-efg on the u parameters. This result is
also known from qualitative theories [2,3]. The slope of Vzz(u) is positive for cations
and negative for anions. This is demonstrated for CdS in Fig. 2.

The experimental efg can also be found in Table 1. In some cases the quadrupole
coupling constants were determined by different methods and with high accuracy
(ZnO: 67Zn MoÈ ssbauer results [9], 67Zn NMR results [4] and 67Zn as well as 17O
double resonance results [10]). In other cases the efg could only be estimated from

Electric Field Gradients in Wurtzite-Type Semiconductors 15

Ta b l e 1
Theoretical and experimental efg Vzz (in 1021 V/m2) at A- and B-sites for eight binary
semiconductors with wurtzite-type structure. The substances are arranged with increasing
c/a ratio. Only in the case of ZnO at the A-site the sign of the experimental efg is
known from MoÈ ssbauer investigations [9]. The theoretically estimated u parameters are
marked by an asterisk

substance AlN ZnO BeO CdS GaN CdSe AgI ZnS
c/a 1.601 1.602 1.622 1.623 1.626 1.631 1.635 1.637
u *0.3818 0.3826 0.3786 0.3775 *0.3770 0.3767 0.3747 *0.3748

A-site
Vzz

theor. �0.47 �0.91 �0.041 �0.41 �0.46 �0.47 ÿ0.015 �0.025

exp.
probe
ref.

0.61
27Al
[12]

�0.66
67Zn
[9, 10]

0.032
9Be
[13, 14]

0.36
111Cd
[3, 15]

0.705
71Ga
[10]

0.24
111Cd
[3, 16]

<0.14
67Zn
[4]

B-site
Vzz

theor. ÿ0.010 ÿ0.38 �0.12 ÿ0.16 �0.019 ÿ0.053 �0.44 �0.18

exp.
probe
ref.

0.23
17O
[10]

<0.65
33S
[11]

0.079
14N
[10]

0.53
127I
[17]

0.32
33S
[4]
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the line broadening (ZnS: 67Zn NMR result [4]). We could not consider all experi-
mental results from the literature in Table 1. For most of the experimental efg the
signs are unknown.

4. Discussion

The wurtzite structure and the cubic zincblende structure are very similar. In both cases
we have a tetrahedral coordination of next neighbours and some of the compounds are
dimorphous (e.g. ZnS, AgI). In the zincblende structure the efg at the lattice sites van-
ish because of the cubic symmetry. Therefore, the efg in the wurtzite compounds are
very small in most cases and they show a strong dependence on the structure para-
meters. This situation is described in a point charge model by a small difference of two
large values, the efg of the cation and the anion sublattices.

If we compare the theoretical and experimental efg Vzz in Table 1, we have to con-
sider that the nuclear quadrupole moments, the quadrupole frequencies and the struc-
ture parameters have larger uncertainties in some cases. The situation for CdS is repre-
sented in Fig. 2. We see a very strong dependence of the A- and B-site efg on the u
parameter. A small change of u results in a large relative change of Vzz. Although the
difference of the experimental (0.3775) and the theoretical (0.3771) u parameter is
small the corresponding A-site-efg of 0.41�1021 V/m2 and 0.25�1021 V/m2 differ signif-
icantly. The experimental efg (0.36�1021 V/m2) lies in between. At the B-site we could
only find Vzz < 0.65�1021 V/m2 from a 33S-NMR experiment [11]. Therefore, in these
cases of very small efg the calculated values respond very sensitively to crystallographic
uncertainties. The situation is much better if we have compound semiconductors with
large efg [19]. As a whole the correspondence between theory and experiment is satis-
fying also for wurtzite-type compounds (Table 1).

Further essential results are the theoretical u parameters determined by the minima
of the total energy. By given lattice parameters a and c/a the total energy of all elec-
trons in the elementary cell depends on the u parameter. For the correct structure the
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Fig. 2. The calculated efg Vzz for CdS at the A- and B-sites in dependence on the parameter u.
The vertical lines correspond to the experimental (0.3775) and the theoretical (0.3771) u parameter
(calculated from the minimum of the total energy, Fig. 1)
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Etot(u) dependence must have a minimum. This minimum is very flat if we compare its
depth with the total energy. Nevertheless the minimum has the correct position for
substances where experimental u parameters exist. Theoretical u parameters were de-
termined for the substances AlN, ZnO, CdS, GaN and ZnS. These u parameters show a
linear dependence on the axis ratio c/a whereby the experimental u parameters of
other substances are consistent with this linear dependence (Fig. 3). Such a linear de-
pendence between u and c/a was assumed in [3] too.
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Abstract. Melanophlogite is a naturally occurring SiO2-based clathrate structure which has the
same structure of type I gas hydrates. Two types of voids are found in melanophlogite. Furthermore,
as in the case of the gas hydrates, melanophlogite traps gas molecules within the voids. In this work
we present a joint theoretical and experimental investigation of the CH4 Raman spectra associated
with the enclathrated CH4 molecules. We find that the Raman intensities of the totally symmetric
hydrogen stretch modes are significantly perturbed by the presence of the clathrate cage and show
that the calculated Raman spectra may be used to determine the concentration and location of the
enclathrated gas molecules. Relative to the gas-phase structure we identify two effects which are
responsible for the change in intensity of the enclathrated molecules relative to the gas phase. The
polarizibility of the surrounding cage acts to increase the Raman spectra of the stretch mode in
the pentagondodecahedra cage. However, in the lower-symmetry tetrakaidecahedra cage, mixing
between the hydrogen stretch mode and other optically silent molecular vibrations counteracts
this effect and accounts for the different Raman intensities observed for the two types of voids.
We suggest that similar calculations and experiments on the gas hydrates may provide an in situ

diagnostic tool for determining the amount of natural gas contained within the gas hydrates on the
sea floor.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

Structures containing large voids of free space have been the subject of great scientific interest
due to their large-scale application in the chemical industry and the possibility for studying
basic interactions between the host structure and the guests which fill the voids. Examples
of these cage structures are fullerenes [1, 2], clathrate structures such as gas hydrates [3] or
zeolites.

Zeolites are of interest because they serve as shape and size selective catalysts and
molecular sieves. However, the possibility of using these materials as hosts for the synthesis of
small clusters has only recently been explored [4, 5]. Similar to the well known semiconductor
superlattices, zeolite frameworks provide a method for creating new three-dimensional periodic
arrays of guest molecules enclosed in the zeolite voids.

The experimental effort in this area, driven partially by potential applications to nonlinear
optical devices and solar elements has resulted in several zeolite-based materials, which include

§ Present address: Center for Computational Materials Science—6392, Naval Research Laboratory, Washington DC
20375-5000, USA.

0965-0393/00/030403+09$30.00 © 2000 IOP Publishing Ltd 403
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small semiconductor clusters. Some specific examples are CdS [6], GaP [7] and Se [8]
clusters. More information about other systems can be found elsewhere in review articles
[4, 5] and references therein. In addition to experimental efforts there have also been theoretical
studies, which have investigated the structural and electronic properties of zeolites [9, 10] or
the simulation of small silicon clusters in sodalite [11]. Some of the most interesting questions
about these systems pertain to the guest–guest and guest–host interactions. The guest–host
interaction seems to be dominant, because in typical zeolites guests are separated by more than
ten angstroms. The experimentally observed blue shift of the optical absorption threshold [8]
compared with free clusters suggest similar quantum confinement effects that occur in layered
semiconductor superlattices, due to changes of electronic states in the system by guest–host
interactions.

The present paper will discuss a similar clathrate structure known as melanophlogite.
Melanophlogite is a naturally occurring, low-density form of silica, which is always found
to contain some organic matter. The SiO4 tetraeders of the host form a three-dimensional
framework consisting of two different kinds of cages. One of these cages is the naturally
occurring silica equivalent of a C20 fullerene. In fact, melanophlogite was the first known
example of a silicate framework structure with the pentagonal dodecahedron as a framework
element [12].

The main goal of the present work is to investigate the interesting guest–host interactions
of the host framework and the methane included in this material. Raman spectroscopy provides
a non-destructive method for obtaining information about the kind of guests by observing their
vibrational fingerprints. Furthermore, if the the Raman activity of the guest molecules is
known, the density of the guests may be determined. Since, density-functional calculations
provide a cost-effective ab initio means for determining the Raman activity of molecules the
two methods combined give us a powerful tool for analysing and characterizing the above-
mentioned structures.

From a technological standpoint, the secondary goal of this work is to demonstrate, by way
of example, that techniques similar to those used here may be helpful for obtaining information
about the concentration and type of natural gas contained within the gas hydrates. One of the
clathrate structures of the gas hydrates is, in fact, identical to the structure of melanophlogite.
The work discussed in the following shows that in situ Raman measurements of gas hydrates
in conjunction with theoretically determined Raman spectra could be used to determine the
location, type and concentration of such molecules

In the following sections we provide more information about this not so well known
material and give experimental and theoretical details. In section 3 we discuss the experimental
and theoretical details. In section 4 we present and discuss our results and conclusions are
given in the last section.

2. Melanophlogite

Melanophlogite is a white and colourless mineral, which is found only at a few localities
(Sicily [13], Fortullino [14], Chvaletice [15], Mount Hamilton [16] and Tsekur-Koyash [17]).
Although melanophlogite is quite rare in nature it has been synthesized at 443 K from an
aqueous solution of silica acids under a high pressure of different gases [18].

This silica polymorph usually contains several guest molecules (e.g. CH4, N2 and CO2)
in varying amounts. Kamb [12] first suggested that this low-density cubic form† of silica,
which may also incorporate long, straight-chain hydrocarbons, is isostructural to the cubic gas

† The reported tetragonal forms, with a doubled unit cell in one direction, will not be discussed here.
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hydrates [3] of type I. The SiO4 tetraeders form a three-dimensional framework by sharing
corners. This framework contains two types of cages: two pentagondodecahedra (cage I) and
six tetrakaidecahedra (cage II) per unit cell. Figure 1 displays a schematic diagram of the
crystal structure of three by three unit cells parallel to the [100] direction. The highlighted
part presents four cages of type I on the corners and two cages of type II in the middle. The
structure of the smaller cage I shown in figure 2 is well known from recent interest in carbon
fullerenes. It is the natural occurring silica equivalent of a C20 fullerene. However, due to the
tetrahedral coordination preferred by Si atoms the cages share faces to satisfy the sp3 bonding.
The corners are occupied by silicon atoms, whereas the oxygen atoms are located on the middle
of the edges. The free space within cage I can be approximately described by a sphere-like
void with diameter d ∼ 5.7 Å and a volume V ∼ 97 Å3.

Figure 1. View of three by three unit cells of melanophlogite in the [100] direction. The corners
of the emphasized section displays four cages of type I and two cages of type II in the middle. The
lighter atoms are silicon atoms which are connected by oxygen atoms (dark circles). There are no
guest molecules displayed.

The structure of cage type II is presented in figure 3. The top and bottom faces are
hexagons and the remaining faces are pentagons. The free space within can be approximated
by an ellipsoid with d1 ∼ d2 ∼ 5.8 Å, d3 ∼ 7.7 Å and a volume of 136 Å3. An interesting
feature of cage II is that the stacking of cages lead to nanotube-like structures, which may
contain long chain-like molecules. The open circular objects seen in figure 1 represent a top
view of the stacked cages of type II. The entire crystal structure may also be described as a
three-dimensional array of stacked cages of type II.

3. Experimental and theoretical details

3.1. Raman measurements

Small crystallites of melanophlogite from Furtullino without visible fluid inclusions were
carefully selected under an optical microscope from Olympus. The measurements were
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Figure 2. Cage I consists of 12 pentagonal faces. It is the natural occurring silica equivalent of
a C20 fullerene. The atoms on the corners are silicon atoms (light circles), whereas the atoms
between are oxygen atoms (dark circles). The guest molecule (methane) located inside this cage
is not shown.

Figure 3. Cage II has a total of twleve pentagonal faces and two hexagonal faces (top and bottom).
The atoms on the vertices are silicon atoms (light circles), which are connected to one another by
bridging oxygen atoms (dark circles). The guest molecule (methane) located inside is not shown.

performed with the 514 nm line of an Ar+ laser employing a triple-stage Jobin Yvon
monochromator and a liquid nitrogen cooled CCD for detection. The scattered light was
measured in subtractive mode. All experiments were carried out at room temperature with
special care: using low power density of the laser in order to prevent the influence of
illumination on the measurement results. The Raman spectra shown in figure 4 are typical of
several obtained from different spots on the crystallite.

The spectral resolution in the C–H stretching vibration range was about 2 cm−1 due
to the finite slit width of the spectrometer. Using this value in order to deconvolute the
measured halfwidths the corrected halfwidths of the two observed CH4 vibration bands are
about 6 cm−1.

3.2. Theoretical considerations

There are several current limitations which make it difficult to perform such calculations
on periodic systems. First, the system is very large and contains a total of 143–178 atoms
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Figure 4. Raman spectra of melanophlogite: framework vibrations, CO2 vibrations, N2 vibrations
and the totally symmetric breathing vibration of the guest molecule methane, CH4.

depending on how many clathrate voids contain CH4 molecules. Including the guest molecules
in the void of the cages significantly lowers the symmetry of the unit cell. Second, the short
C–H bond length would require extremely small muffin-tin spheres for a linearized augmented
plane wave (LAPW) calculation which implies a very large value of R ∗ kmax. Even without
this complication all-electron calculations on unit cells of this size are not currently an option.

Another frequently used numerical method for ab initio calculations of large unit and
super cells would be a plane-wave expansion of the electronic wavefunctions, and non-local
pseudopotentials to replace the effect of the core electrons. However, for the particular problem
we are concerned with here, this approach is numerically very expensive for the following
reason. The oxygen valence wavefunctions are strongly localized which results in a high
plane-wave cutoff energy (typically about 60–70 Ryd). Together with the large volume of the
complete unit cell, this makes plane-wave calculations too expensive.

There is also a more fundamental reason for using cluster-based models for this study. To
date, the Raman spectra of periodic systems has only been studied for very simple periodic
systems. This is primarily due to the problem of dealing with a uniform or extremely long-
period electric field in another extremely short-period system. The calculation of Raman
spectra for periodic systems remains an active area of research.

The calculation of the vibrational spectra of the whole unit cell together with different
guest molecules by first-principle ab initio methods is currently still beyond present computing
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possibilities. Therefore, in order to calculate the Raman frequencies and intensities of interest,
we used some approximations based on experimental observations. The basic assumption
is that no mixing of the vibrational modes of the framework and of guest molecules occur.
This assumption is supported by experiment, because the framework vibrations are more than
2000 cm−1 lower than the investigated totally symmetric 1A1 mode of methane. Further
possible changes of the molecule geometry due to charge transfer between guests and
framework is neglected, although we allow for full relaxation of all electronic degrees of
freedom and we account for breathing of the methane molecule. Using these assumptions
the influence of the different cages can be considered as a small perturbation of a nearly free
vibrating molecule.

Based on x-ray data [12] we generated the unit cell of melanophlogite and removed the
two different cage types. The dangling bonds were then resaturated with hydrogen atoms.
Holding the cage atoms fixed we allowed the methane to vibrate. This does not introduce a
large error because, as already mentioned, the framework vibrations are slow compared to the
totally symmetric 1A1 mode of methane.

The orientation of methane inside the cage has not been experimentally determined. Due
to the space available there is no a priori reason for excluding the possibility that the methane
can rotate within the cage at room temperature. For our calculations we restricted ourselves to
an orientation of the methane molecule, which was adapted to the symmetry of cage I. There is
no orientation of the Td methane molecule which is compatible with the symmetry of cage II,
therefore we have choosen the same orientation as for cage I. That means that all methane
molecules would have the same orientation in the entire crystal framework of melanophlogite.
This special choice certainly is not satisfactionary and could be avoided by using, for example,
molecular dynamic techniques including the relaxation of the entire unit cell together with the
included guest molecules. To address this point we carried out some preliminary tight-binding
calculations allowing for full relaxation of the unit cell and the included methane. The initial
placement of methane is not a special case for which the forces acting on the molecule vanish
by symmetry. With the initial placement of methane described above we did not observe a
rotation of methane during these simulations. The results of these tight-binding calculations
will not be discussed here, although they agree well with the ab initio results. The use of the
computationally more demanding ab initio methods was required, because the tight-binding
method did not allow for the calculation of Raman intensities.

To determine the changes in the Raman frequencies and intensities, we displaced the
hydrogen atoms of methane by a small distance (0.05 au) according to the positive and negative
direction of the normal vibration of the methane A1 mode and calculated the total energy and
the forces of the corresponding geometry for both cages. Using the information of the forces
acting on the relaxed free methane placed in both cages allowed for the calculation of the new
equilibrium geometry of methane in the cages. In order to calculate the Raman intensities we
applied an external electric field of 0.005 au to our cage structures with the methane as an
included guest. The total energy for the frequency calculations was converged to 10−6 Hartree
and for intensities to 10−8 Hartree.

The calculations were performed using the all-electron, full potential Gaussian-orbital
cluster code NRLMOL [19]. The potential is calculated analytically on a variational integration
mesh which allows for the determination of the electronic structure, total energies and Pulay-
corrected Hellmann–Feynman forces with any desired numerical precision. We used the
Perdew–Zunger parameterization of the standard Ceperly–Alder [20] functional within local
density approximation (LDA). A more detailed description of the technique used and of
computational problems associated with calculation of Raman scattering activities within
density functional theory can be found elsewhere [21].
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4. Results and discussion

4.1. Raman measurements

Figure 4 presents the results of Raman measurements of melanophlogite. The vibrational
spectra shown in figure 4(a) was identified as the framework vibrations of melanophlogite.
The higher peaks at 727, 810 and 847 cm−1 are not due to melanophlogite but probably due
to dolomite, which was present in the investigated samples. This observation was supported
by an absence of these peaks in samples from a different origin. Figures 4(b) and 4(c) are
associated with the vibrations of CO2 and N2, respectively. Due to the larger halfwidths
of these peaks than that of free molecules in air, we concluded that these molecules are an
integral part of melanophlogite. The most interesting results used for further discussion of the
Raman measurements are displayed in figure (d). The peak found at 2917 cm−1 is located
at the same position as the totally symmetric A1 mode of methane. Further support that the
observed vibration is connected with methane comes from the higher peak found at about
3058 cm−1, which is assigned to be asymmetric stretching T2 mode of methane. The lower
peak at 2906 cm−1 (	 = 11 cm−1) is somewhat unexpected, since the total symmetric mode
of methane is non-degenerate.

4.2. Theoretical calculation

As described above, we calculated the frequencies and Raman activities of the modes of
methane in both cages. Due to the symmetry compatible orientation of methane in cage I the
force constant matrix is diagonal for the investigated totally symmetric mode of methane. This
further supports our chosen orientation, because within our numerical accuracy we found no
torque components acting to rotate the methane molecule. The case of methane in cage II is
more complicated, because the normal vibration of the totally symmetric mode of free methane
is broken in cage II. Therefore our force constant matrix is no longer diagonal, which results
in a mixing of other modes with the totally symmetric A1 mode. After diagonalization of the
force constant matrix we found a mixing of the totally symmetric mode with the threefold
degenerate T2 mode above 3000 cm−1. This mode splits in a single vibrational mode and a
twofold degenerated mode separated by 9 cm−1. Eventually this could be found in experiment
as a broad structure, because the unsplit threefold degenerate mode of the methane in cage I
is found between the split modes of cage II. However, the current available experimental data
do not allow for reliable investigation of this effect.

The results including only harmonic effects compared with the calculation of the free
methane molecule using the same numerical approximations are summarized in table 1.
Compared with the experimental results all calculated frequencies are slightly too high, which is
a well known behaviour of LDA calculations. Using the free methane vibrations as a reference
the A1 mode in both cages is shifted downwards, but by different amounts. The perturbation
of methane in the smaller cage I is larger, which results in the observed splitting of the totally
symmetric mode of methane. The calculated splitting of only 3 cm−1 is too small compared
with the experimentally measured value of 11 cm−1. The previously mentioned tight-binding
calculations of an entire unit cell of melanophlogite resulted in a splitting of 4.5 cm−1.

In order to improve the theoretical results we included anharmonic effects in our
calculations. Using all available energies and forces we fitted the data to a third-order
polynomial of the total energy as a function of the displacement of the totally symmetric mode.
Because we are still confined to the subspace of only one normal mode this problem reduces
to a one-dimensional quantum mechanical problem of a particle in the resulting potential,
which we solved numerically. This gives an additional splitting of 2 cm−1 due to anharmonic
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Table 1. Raman frequency ω and activity R of the totally symmetric mode of methane in cages I
and II compared with free methane including only harmonic effects.

ω (cm−1) R (Å4 amu−1)

Free CH4 2934 248
Cage I 2928 480
Cage II 2931 153

effects, which is additive to the harmonic splitting. Repeating the same calculations with
a fourth-order polynomial lead to the same splitting as previously obtained. Therefore, our
calculations give a totally splitting of the total symmetric mode of methane in melanophogite
of 5 cm−1. The agreement with experiment is still not perfect, and we attribute this to the
approximate configuration of the CH4 and the crystallographic data used for the generation of
the cages. However, we believe that the qualitative description of this system is satisfactionary.
The basic interaction between the cage and methane leads to a weakening of the bonding of
the hydrogens to the carbons, which results in the downward shift of frequencies caused by an
elongation of the carbon–hydrogen bond. This is an effect that is well known since zeolites
are used for the cracking of long-chained hydrocarbons.

In addition to the calculations of vibrational frequencies the NRLMOL code allows for the
calculation of Raman activities. The results presented in table 1 are, at first sight, confusing.
Compared with the free molecule, the Raman activity of methane in cage I is enhanced, but
decreased in cage II. This behaviour can be understood by the observed mixing of the totally
symmetric A1 mode and the T2 mode above 3000 cm−1, which caused by the cage II induced
broken symmetry. Due to this mixing the Raman activity of the totally symmetric A1 mode is
decreased and increased for the T2 mode above 3000 cm−1. In the case of cage I this mixing
does not occur, because cage I and methane share a common set of symmetry operations,
so that the symmetry of cage I is compatible with that of methane for the totally symmetric
vibrational mode.

As the final result we obtained a ratio of Raman activities of 3:1 for cage I and II. Bearing
in mind that a unit cell of melanophlogite has a cage I:cage II ratio of 1:3, the observed, nearly
equal, Raman intensities of both peaks are in good agreement with our calculations, assuming
that the probability of methane as a guest molecule in both cage types is the same.

5. Conclusions

We have presented experimental and theoretical results for a vibration of a guest molecule in
different cage structures. The applied methods are not confined to the discussed sample, but
should be useful tools for investigations of a broader class of materials such as zeolites or other
clathrates with guest molecules. The limiting condition for application should always be a
careful check of the framework and guest interactions.

The calculations performed here qualitatively explain the splitting of the CH4 symmetric
vibrational A1 mode that has been experimentally measured. Furthermore, the comparison
between the calculated Raman-intensity ratios and the experimentally observed ratios suggests
that, for this sample, the methane molecules occupy the two different types of cages with equal
probability.

If such materials could be used to engineer arrays of weakly interacting encapsulated
molecules or clusters, it would be useful to use Raman spectroscopy to determine the density of
encapsulants and the relative probabilities of finding a given encapsulant in the different cages.

96



Vibrational modes and Raman activity of methane 411

We have shown that the Raman intensities of the encapsulated molecule differ significantly
from that of the gas-phase molecule and exhibit a sensitive dependence on the cage structure.
This means that a quantitative determination of the relative populations cannot be achieved
by borrowing gas-phase intensities. However, density-functional calculations provide a cost-
effective means for determining how the encapsulant Raman intensities depend on the cage
and could provide a mean for characterizing future samples.

Indeed melanophlogite samples from another location lead to experimentally observed
ratios that are different from those discussed here. It would be interesting if an alternative
experimental means could be used to confirm that the two samples do indeed have different
ratios of cage I:cage II methane densities.

We hope this work will encourage some research on melanophlogite as an interesting
material for basic studies of guest–host interactions and, possibly, as a means for developing
arrays of weakly interacting particles.
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Abstract

We have performed density functional calculations on the recently discovered energetic molecule, octanitrocubane
Ž .C NO . We predict a strongly exothermic dissociation energy and calculate the ionization potentials, electron affinities8 2 8

and vibrational spectra. We predict that the isolated molecule exhibits a symmetry which is higher than that found in the
solid. The vibrational density of states shows strong Raman activity at low frequencies and strong IR intensities at high
frequencies. We identify a low-energy anharmonic mode which is consistent with the experimentally assumed free torsional
rotations of the NO groups about their respective C–N axes. q 2000 Elsevier Science B.V. All rights reserved.2

1. Introduction

High-energy molecules are important not only for
their obvious technological applications as explo-
sives and propellants, but also for their inherently
interesting molecular properties. One such example

Ž .is the well-known molecule cubane C H , which8 8
w xwas first synthesized by Eaton and Cole 1 . Cubane

w xhas been extensively studied 2,3 because of the
enormous strain energy due to the distortion of its
C–C–C bond angle to 908.

It has been suggested that cubane can be made
more energetic by replacing its H atoms with nitro
Ž . w x w xNO groups 4,5 . In fact, Zhang et al. 6 have2

) Corresponding author. Fax: q1-202-404-7546; e-mail:
pederson@dave.nrl.navy.mil

Ž .recently synthesized octanitrocubane cf. Fig. 1
where all the hydrogen atoms have been replaced by
nitro groups. Octanitrocubane has been speculated to
be even more energetic than the N-nitro compound
HMX, which is one of the most energetic substances
known.

In this Letter, we present an ab initio calculation
of the optimized geometry of octanitrocubane, its
molecular orbital energies and vibrational spectra.
We show that the molecule, while stable, allows for
large torsional displacements of the nitro groups and
would release large amounts of energy upon dissoci-
ation into molecular N and CO . Because octani-2 2
trocubane is significantly more electronegative than
cubane, there is the possibility of cation induced
stabilization of the crystal through selective doping.
The infrared and Raman spectra calculated here
should be useful in determining the presence of

0009-2614r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.
Ž .PII: S0009-2614 00 00425-5
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Fig. 1. Optimized molecular structure of octanitrocubane. The
carbon atoms form a cube to which the nitro groups are connected
at the corners. The dark balls are the oxygen atoms. The arrows
point in the direction of the quartic concerted torsional mode that
is discussed in this Letter.

octanitrocubane and in confirming the symmetry
lowering which apparently occurs in the solid struc-
ture. Further, one of the very soft torsional modes
exhibits strong anharmonicity and is fundamentally
interesting.

2. Calculational details

w xOur density functional-based calculations 7,8
were performed with the all-electron Gaussian-

w xorbital-based NRLMOL program 9,10 , using the
Ž .Perdew–Burke–Ernzerhof PBE generalized-gradi-

ent approximation for the exchange and correlation
w xfunctional 11 . For each oxygen, nitrogen and car-

bon atom, we use nine s-type contracted functions,
four p-type contracted Gaussians and 3 d-type con-
tracted Gaussians. For carbon the contracted basis set
is constructed from a total of 12 bare Gaussians,
while for oxygen and nitrogen the contracted basis
sets were constructed from a total of 13 bare Gauss-
ians. The decay constants were optimized for den-
sity-functional applications and range between 2.22
=104 and 0.0772 for carbon, 5.18=104 and 0.0941
for nitrogen, and 6.12=104 and 0.1049 for oxygen.

The contraction coefficients and decay constants are
available electronically upon request and a discus-
sion of the method used for determining these quan-

w xtities appears in Ref. 12 . To determine the opti-
mized geometries, we first solve the all-electron
Schrodinger wave equation to find the self-consistent¨
Kohn–Sham orbitals. Once these are obtained the
Hellmann–Feynman–Pulay forces are determined
and used in conjunction with the conjugate-gradient

walgorithm to optimize the molecular geometry 13–
x15 . This process is iterated until the forces on each

˚atom are smaller than 0.01 eVrA. Given the equilib-
rium geometry, we determine the vibrational fre-
quencies, infrared spectrum and Raman spectra using

w xthe method discussed in Ref. 16 . Since we gener-
ally use symmetry to optimize our molecular geome-
tries, the determination of the harmonic vibrational
frequencies tells us if we are at a local minimum. If
imaginary frequencies are found, the symmetry is
reduced and we repeat the calculation until we are
satisfied that we have found a symmetry that is
locally stable.

A point of special interest to this molecule is the
extremely soft concerted torsional vibrations associ-
ated with the NO groups about the C–N bond axes.2
For these degrees of freedom it is necessary to go
beyond a harmonic approximation to fully under-
stand their dynamics. We will discuss this further
when we come to the problem.

To place our calculated vibrational spectra of
octanitrocubane in the proper context, we note that

Ž .there have been several Hartree–Fock HF based
and density functional-based calculations on the vi-

w xbrational spectra of cubane 17–20 . Here we briefly
compare the structural properties and IR spectra of
cubane, as calculated with NRLMOL and the PBE
density functional, to the DFT-based results of Mi-

w xaskiewicz and Smith 20 .
The PBE density functional should perform simi-

larly as the BLYP density functional, which also is a
gradient corrected density functional, but does not
include a HF part as in the case of the hybrid
B3LYP.

˚The C–C bond length of 1.5714 A obtained from
our geometry optimization of cubane with O sym-h

˚Ž .metry falls between the BLYP 1.5833 A and
˚Ž .B3LYP 1.5701 A results, and compares favorably

with the experimental C–C bond lengths of 1.5708–
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Table 1
Calculated frequencies and IR intensities of the three IR active modes of cubane. All frequencies given are unscaled. The results from this
work are given under PBE.

y1Ž . Ž .IR frequency cm IR intensity kmrmol

Exp. BLYP PBE BLYP B3LYP PBE

852 839 849 4.7 6.1 9.3
1235 1239 1223 1.1 1.9 5.9
2990 3034 3033 165 140 137.5

w x w xThe experimental values are given in Ref. 24 . The BLYP and B3LYP results are from Ref. 20 .

˚ w x1.571 A obtained from microwave spectroscopy 21
w xand electron diffraction experiments 22 respec-
˚tively. The C–H bond length of 1.0954 A agrees also

˚Ž . Ž .˚well with BLYP 1.0995 A , B3LYP 1.0914 A and
˚ ˚w xthe experimental values of 1.098 A 22 or 1.097 A

w x w x21 . Miaskiewicz and Smith 20 have also calcu-
lated IR intensities for cubane. In Table 1 we com-
pare our results for the frequencies and IR intensities
for the three IR active modes with the previous DFT
calculations on cubane.

The agreement among the various DFT and exper-
imentally determined IR spectra is similar to what

w xwould be expected from previous DFT results 23 .
Especially for the purpose of predicting experimental
IR signatures of the cubane molecule the agreement
among the PBE, BLYP and B3LYP is quite satisfac-
tory. The qualitative strengths of the three modes
show the same orderings for all three calculations.
For a detailed discussion of basis-set and exchange-
correlation dependencies in experimentally well un-

w xderstood molecules the reader is referred to Ref. 16 .
w xBased on their calculations, Cole et al. 24 propose a

semi-quantitative description of the IR bands at 852
and 1235 cmy1 as strong, and describe the IR mode
at 2990 cmy1 as very strong. This description is
reproduced by all of the calculations. The overall
good agreement among our PBE density-functional
results, other DFT calculations, and experimental
results for cubane gives one confidence that the
method will provide similar accuracy for describing
octanitrocubane.

3. Results and discussions

Pictured in Fig. 1 is the equilibrium structure of
the octanitrocubane molecule. The structure has two

inequivalent carbon atoms, two inequivalent nitrogen
atoms and three inequivalent oxygen atoms. The
overall symmetry of the molecule is determined by a
group of order 8 that is generated from the symmetry

Ž . Ž . Ž . Žoperations X,Y,Z % Y, X,Z , X,Y,Z % yX,y
. Ž . Ž .Y,Z and X,Y,Z % yX,Y,yZ . With respect to 4

N molecules and 8 CO molecules we find that this2 2
molecule is bound by 798 kcal moly1 which is in
good agreement with the MINDOr3 calculations of

w x y1Owens 25 of 761 kcal mol . We find that this
molecule has an electron affinity of 3.43 eV and an
ionization energy of 10.54 eV.

To address the question of local stability of this
molecule we have performed a vibrational analysis
of this cluster using the methodology discussed in

w xRefs. 16,26 . Interestingly, at the harmonic level we
find a total of eighty-nine real frequencies and seÕen
zero-frequency modes. While six of the zero-
frequency modes correspond to the usual rotational
and translational modes, the seventh zero-frequency
harmonic mode requires a more in-depth discussion.
We start by noting that the harmonic analysis shows
that this mode is entirely associated with torsional
rotations of pairs of oxygen atoms about their respec-
tive C–N bonds. For reasons that will become clear
shortly, we refer to this mode as the quartic con-

Ž .certed torsional mode QCTM throughout the re-
mainder of the discussion.

Pictured in Fig. 1 are arrows on each of the 16
oxygen atoms which designate the displacement of
the QCTM. For the equilibrium geometry, the nitro
groups on opposite corners of the cube arrange them-
selves in a staggered configuration and the QCTM
mode acts to preserve this staggered structure. There-
fore we expect steric interactions between opposing
nitro groups to remain unchanged by a QCTM dis-
placement. Since the primary interactions between
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oxygen atoms are mediated by pair repulsions, it is
worthwhile to determine how the second-order en-
ergy changes if only pair interactions between the
oxygen atoms are assumed. For this case we find that
the second-order energy change is exactly zero for
any pair potential for the QCTM, shown in Fig. 1.
Finally, we note that we have performed frozen
vibron calculations for both the energy and the force
as a function of the QCTM displacement and the
resulting potential energy curve is shown in Fig. 2. A
detailed analysis of both the energy and forces as a
function of the QCTM displacement confirms that
that the second derivative and all odd derivatives of
this mode vanish identically.

In addition to the classical potential observed by
the torsional mode, we have determined the anhar-
monic vibrational wavefunctions and energies asso-
ciated with this mode and present the results in Fig.
2. Because of the quartic nature of the potentials, the
anharmonic wavefunctions are flatter than what
would be expected from a harmonic oscillator poten-
tial. The zero point energy associated with this mode
is found to be 16.4 cmy1 and the first excited state is
found to be 58.5 cmy1, suggesting that the lowest
observable excitation would be observed at 42 cmy1.
As discussed below, our calculations show that this
state exhibits weak Raman coupling. Because this

Fig. 2. Potential as a function of vibrational displacement ob-
served by the QCTM. Also included are the squares of the lowest
eigenmodes of this predominantly quartic potential. The energy
intercepts of the eigenmodes are shifted by their respective ener-
gies which shows a zero point energy of 16 cmy1 and a lowest
excitation energy of 42 cmy1 .

Fig. 3. The upper panel shows the calculated vibrational density of
Ž .states VDOS of octanitrocubane. The middle and lower panels

display the calculated IR and Raman spectra which are shown in
arbitrary units.

mode is anharmonic, it might be detected by looking
for second-harmonic generation in the Raman spec-
tra which, according to our calculations, should oc-
cur at 102.1 cmy1. Unfortunately, as discussed be-
low, there are other strong Raman active modes
which appear at both of these energies. The effective
mass of this state is 15.99534 amu which again
confirms that this state is associated entirely with the
motion of oxygen atoms.

Since the potential associated with the QCTM is
convex and since all other harmonic modes exhibit
real frequencies, the symmetry of the molecule stud-
ied here corresponds to a locally stable geometry for
the free molecule. To address the question of global
stability we have performed calculations on two
other reasonable symmetries of the molecule and
have found that these symmetries lead to higher

w xenergies. In the solid phase, Zhang et al. 6 have
determined the structure from X-ray measurements.
The unit cell consists of four molecules which are
related to one another by inversion and translations

1 1Ž .by , ,0 lattice vectors. As an isolated molecule,2 2

each octanitrocubane molecule has a two-fold sym-
metry which means it has a lower symmetry than our
equilibrium structure shown in Fig. 1. We have
determined, that the experimental structure of the
isolated molecule is higher in energy than our calcu-
lated structure. Furthermore, the molecule relaxes
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without encountering a barrier to our equilibrium
structure. This result strongly suggests that the ge-
ometry shown in Fig. 1 is the ground state geometry
for the isolated molecule and that symmetry lower-
ing in the crystal is due to intermolecular interac-
tions.

We now discuss the harmonic modes that have
spectroscopically interesting features. The calculated
vibrational density of states is shown in the upper
panel of Fig. 3. The middle and lower panels show a
calculated overview of the IR spectra and Raman
spectra. The IR and Raman spectra are given in
arbitrary units.

3.1. Raman spectra

Because O, N and C have similar masses and
form similar bonds the vibrational spectrum is gener-
ally associated with complicated coupled movements
of all atoms in the molecule. However at very low

Ž y1 .energies below 131 cm the vibrations are associ-
ated primarily with oxygen motion and in the 970–
1157 cmy1 energy range the motion is associated
primarily with carbon atoms. Also at very high

Ž y1 .energies 1283 cm and higher the carbon atoms
are essentially stationary and the vibrational dis-
placements are associated entirely with N and O
motions. From the vibrational density of states we
determine the zero point energy of the molecule to
be 3.84 eV. At approximately 41 cmy1 there is a
doubly degenerate Raman active mode that is associ-
ated primarily with torsional oxygen vibrations. Be-
cause this mode is two-fold degenerate and because
it is nearly degenerate with the one-fold QCTM
some interesting changes in the peak positions are
expected to occur in this region as a function of
temperature, symmetry lowering, and changes in
charge state. At 258 cmy1 there is a two-fold state
that leads to a reasonably strong Raman peak which
is just below a very strong one-fold Raman active
state at 276 cmy1. These modes are primarily associ-
ated with C–N and C–C stretching. Since the molec-
ular polarizability is roughly proportional to the vol-
ume, the strong Raman activity of these states is
understood by noting that as the C–N and C–C
stretches occur the size of the molecule and effective
polarizability change during the vibration. Indeed,
the Raman mode at 276 cmy1 is a breathing mode of

octanitrocubane. At 815 cmy1 a one-fold mode leads
to strong Raman activity. This Raman mode is asso-
ciated with a collective breathing of the C and N
atoms together with a O–N–O bending of the oxy-
gens. At 1327 cmy1 there is another strong Raman
peak, which is associated with breathing of the N
atoms. In this case the C atoms are predominantly
stationary and the oxygen atoms beat against the
nitrogen atoms, as the nitrogen breaths outward.
Finally, at 1583 and 1589 cmy1 there is strong
Raman activity associated with two modes. In each
case only 4 nitrogen atoms take part, with the N
atoms wagging in the plane defined by the nearest
neighbor carbon and oxygen atoms. The N atoms
beat against the oxygen atoms and the carbons are
fixed.

If one of the 14 N atoms is replaced by a 15N atom
the Raman active peaks shift only by a small amount
Ž y1 .from 1 to 5 cm , but replacing all nitrogens by
their heavier isotope the modes at 815, 1327 and
1589 cmy1 shift by approximately 7.5, 19 and 36
cmy1, respectively.

3.2. Infrared spectra

The IR spectrum shows four main peaks each of
which is composed of a doubly degenerate mode and
a singly degenerate mode. This is similar to the
splitting of the threefold degenerate T IR active1u
modes in cubane.

At 832 cmy1 there is a doubly degenerate IR
mode which is nearly degenerate with a one-fold at
835 cmy1. These modes are primarily associated
with a C–N stretching motion of the NO groups2
and some bending of the oxygens. At 1143 and 1152
cmy1 there are IR active two-fold and one-fold
vibrational states which correspond to C–C stretch
modes and stationary nitro groups.

Because the NO groups are not rigid spheres2
other very strong IR active modes also appear. At
1299 and 1300 cmy1 there are one-fold and two-fold
very strong IR active modes, which correspond to a
C–N stretch due to N atom motion, with the oxygen
atoms beating against the N atoms. The highest
frequency IR active mode is a two-fold degenerate
state at 1576 cmy1 and a one-fold state at 1591
cmy1. This mode is associated with a wagging mo-
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Fig. 4. Isodensity surface of the highest occupied molecular
Ž .orbital HOMO for octanitrocubane. The energy of the HOMO

level is y8.60 eV.

tion of the N atoms beating against the oxygen atoms
and stationary C atoms.

3.3. Electronic structure

Pictured in Fig. 4 is the square of the wavefunc-
tion for the HOMO level. Both the HOMO and
LUMO levels are two-fold degenerate, suggesting
that small changes in charge state could lead to
minor Jahn–Teller distortions followed by symmetry
reduction that would be primarily mediated by
movements of the oxygen atoms. From Fig. 4 it is
also apparent that the HOMO level participates in
C–C covalent bonding and that removal of an elec-
tron from this state could weaken the skeletal frame-

Ž .work. Examination of the LUMO level y5.35 eV
shows that the addition of an electron to the molecule
introduces antibonding states which may also act to
reduce the C–C covalent bonding. The electron

Ž .affinity of octanitrocubane 3.43 eV is very large
Ž .compared to cubane 1.5 eV and is even larger than

Žthat of the C molecule 2.74 eV GGA and experi-60
.ment . In analogy to the fullerene in the alkali-doped

fullerene crystals, the octanitrocubane molecule will
act as an electron acceptor and Madelung induced
stabilization of a solid phase of octanitrocubane could

be accomplished by doping the solid phase with
alkali atoms or other electron donors. However, the
HOMO and LUMO levels show that such a stabiliza-
tion would only be accomplished at the cost of
destabilizing the octanitrocubane framework and this
could lead an overly reactive solid.
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Magnetic and vibrational properties of the uniaxial Fe13O8 cluster

Jens Kortus and Mark R. Pederson
Center for Computational Materials Science, Code 6390, Naval Research Laboratory, Washington, DC 20375

~Received 29 March 2000!

We have performed all-electron density-functional-based calculations on the recently synthesized iron oxide
Fe13O8 cluster. The Fe13O8 cluster shows a complicated magnetic structure, with several magnetically stable
ferro-, ferri-, and antiferromagnetic states. The most stable state is a ferromagnetic state with a total moment of
32mB per cluster. We report a systematic investigation of the electronic and magnetic structure of different
magnetic states. For the most stable ferromagnetic state we calculate the magnetic anisotropy barrier and the
complete vibrational spectra including IR and Raman intensities from density functional theory.

I. INTRODUCTION

Due to their very interesting magnetic properties, which
are analogous to magnetic metallic nanoparticles, several
magnetic molecules have received significant experimental
interest recently. Such molecules include Mn12-acetate and
the octanuclear Fe~III! clusters,1 which have high total spins
and large anisotropy energies, and the layered V15 cluster,2

which has a small net spin. These clusters have been studied
as prototypical systems which exhibit magnetism at the
nanoscale. As shown in a series of experiments, the
Mn12-acetate cluster1 exhibits a magnetic hysteresis and
quantum tunneling of the magnetic orientation. Upon appli-
cation of well-defined magnetic fields, discontinuities in the
hysteresis loops appear, indicating a switching of moment
orientation. In 1937 Van Vleck explained that the moment-
reorientation temperature is determined by the magnetic an-
isotropy energy, which itself is due to relativistic interactions
such as spin-orbit coupling.3

Understanding and influencing the magnetic anisotropy
energy is one of the challenges in the field of nanoscale
magnets since the magnetic anisotropy energy ultimately
governs the potential use of a nanomagnet in information
storage devices. A short introduction to the technological
importance of magnetic nanocrystals for data storage can be
found in Ref. 4.

Recently, Wang et al.5 synthesized a new iron oxide clus-
ter by reactive laser vaporization. From time of flight mass
spectra and first-principles calculations5,6 they respectively
concluded that this iron oxide cluster consists of 13 iron and
8 oxygen atoms with D4h symmetry. Comparing the stability
of this cluster with other possible structures showed that the
Fe13O8 with D4h symmetry is the most stable cluster. Wang
and co-workers5 have discussed the need for understanding
the Fe-O interactions because of the role that such interac-
tions play in corrosion, biological processes, and oxide film
formation. Further, their reported moments of approximately
2mB per iron atom5 suggest potential applications of this
cluster as a nanomagnet. Therefore additional investigations
on the electronic and vibrational structure, spin-ordering,
magnetic states, and the magnetic anisotropy barrier of this
cluster are indeed vital.

Sun and co-workers6 have reported the calculation of the
vibrational modes of Fe13O8, finding local stability of this

iron oxide cluster, because all calculated vibrational frequen-
cies are real. However, the frequencies given in Table II of
that work6 range between 3.9 cm21 to 22.16 cm21 which
are unusually low. Results presented in this work suggest
that there may be a conversion error in their calculations.

In this paper we present results from all-electron density-
functional-based studies of the Fe13O8 cluster as a function
of magnetic state and spin ordering and provide density-
functional-based infrared and Raman spectra. For other tran-
sition metal oxides such as Mn12O12 ~Refs. 7–9! and the
octanuclear iron~III! cluster1 antiferromagnetic couplings are
known to be important and antiferromagnetic or ferrimag-
netic ground states are observed in these systems. Because of
the coupling of the magnetic and structural degrees of free-
dom, consideration of ferro-, ferri-, and antiferromagnet or-
dering is an important issue from the standpoint of determin-
ing the ground state of a magnetic molecule. As such, the
investigation of different possible spin orderings as well as
total moments is one of the primary aims of this paper. For
the most stable structure obtained we calculate the vibra-
tional spectra in order to clarify some questions raised with
the reported values by Sun and co-workers.6 In Sec. II we
provide details on the computational methods employed and
the basis sets used. A short discussion of the calculation of
the magnetic anisotropy energy is also given there. In Sec.
III we discuss the results for the different magnetic couplings
and the vibrational spectra for the most stable geometry
found. We conclude by summarizing our results in Sec. IV.

II. COMPUTATIONAL DETAILS

The density-functional-theory ~DFT! calculations were
performed with the all-electron Gaussian-orbital-based
NRLMOL program.10 NRLMOL is specifically designed for
studies of molecules and clusters and does not use periodic
boundary conditions. All calculations discussed here use the
Perdew-Burke-Ernzerhof ~PBE! generalized-gradient ap-
proximation ~GGA! for the density functional.11 NRLMOL
combines large Gaussian-orbital basis sets, numerically pre-
cise variational integration, and an analytic solution of Pois-
son’s equation in order to accurately determine the self-
consistent potentials, secular matrix, total energies, and
Hellmann-Feynman-Pulay forces. In conjunction with the
conjugate-gradient algorithm, the Hellmann-Feynman-Pulay
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forces are used to iteratively optimize the molecular geom-
etries. The process is stopped after the largest nuclear gradi-
ent is found to be smaller than 0.05 eV/Å.

The exponents for the single Gaussians have been fully
optimized for DFT calculations.12 The basis set for the iron
atoms includes 20 bare Gaussians ranging between
3.866 753106 and 0.045 179 which are contracted to
12 s-like, 5 p-like, and 5 d-like atomic orbitals. The basis set
for the oxygen atoms includes 13 bare Gaussians between
6.1213104 and 0.1049 which are contracted to 9 s-like,
4 p-like, and 4 d-like atomic orbitals. As proved in Ref.
12, in order to obtain errors in total energies that are smaller
than a prescribed tolerance the shortest-range Gaussian ex-
ponent must scale at least as fast as CZ10/3 where Z is the
nuclear charge and C is a constant that determines the accu-
racy of the core energy. The basis sets developed in Ref. 12
obey this scaling law.

The NRLMOL code has been successfully applied to sev-
eral problems with 3d transition metals, such as the magnetic
and structural ordering in small iron clusters,13 the structure
of small Mnn clusters,14 and the calculation of the magnetic
anisotropy barrier in Mn12O12-acetate molecules.8,9,15 Using
the methodology described in Ref. 16 NRLMOL can be used
to calculate the vibrational modes and the IR and Raman
intensities from first principles.

In Fig. 1 we show our structure of the Fe13O8 cluster. In
order to facilitate comparison with the recent work of Sun
et al.6 we have adopted the labeling scheme used in their
work. Using D4h symmetry the cluster has three inequivalent
iron atoms @Fe~1!, Fe~2!, and Fe~3!, respectively# and one
oxygen atom. All other atoms are related by symmetry.

The Fe13O8 cluster shows complicated magnetic proper-
ties and allows for several different couplings between the
iron atoms which will be discussed separately in the follow-
ing sections. Due to the coupling between magnetic and
structural properties, each magnetic state requires a separate
geometry optimization. We confine our discussion to D4h
symmetry for the iron oxide cluster in order to compare our
results with earlier work6 and because the number of stable
magnetic solutions is already very large.

An investigation of several magnetic configurations with
Oh symmetry showed that these configurations are at least 1
eV higher in energy than the lowest-energy state with D4h
symmetry found. As shown later in this paper the lowest-
energy configuration is also vibrationally stable so it is at
least a locally metastable geometry. Further, we have deter-
mined that distortions of 1.25 a.u. along the softest symmetry
breaking vibrational mode lead to an increase in energy of
0.2 eV, showing a predominantly parabolic behavior in this
range. Since there is no rigorous method known for obtain-
ing the ground-state geometry of a multiatom system, a com-
parison between theoretically and experimentally determined
physical observables, such as the vibrational spectra and an-
isotropy energies, can provide an indirect method for ascer-
taining the global stability of a cluster geometry.

A way to determine whether a magnetic state is at least
metastable is to examine the highest occupied molecular or-
bital ~HOMO! and lowest unoccupied molecular orbital
~LUMO! levels of the majority and minority spin. The spin
gaps, defined as

D152~eHOMO
maj

2eLUMO
min !, ~1!

D252~eHOMO
min

2eLUMO
maj !, ~2!

correspond to the energy required to transfer an infinitesimal
amount of charge from the HOMO of one spin to the LUMO
of the other one. The system can only be magnetically stable
if both spin gaps are positive. Further, if the spin gaps are not
both positive, they determine whether an increase or de-
crease of total moment will stabilize the system.

Magnetic anisotropy energy

As discussed in Ref. 15, upon introduction of spin-orbit
coupling, the anisotropy Hamiltonian of a uniaxial molecule
can be written according to

H5aS2
1bSz

2 . ~3!

If b is positive, the molecule has an easy plane of magneti-
zation, for negative b it has an easy axis along which the
moment will align itself. The calculation of the second-order
contributions to the magnetic anisotropy energy ~MAE! is
derived in Ref. 15. The method uses a simplified but exact
method for incorporating spin-orbit coupling into density-
functional and other mean-field theories. In uniaxial systems
the MAE is primarily due to spin-orbit effects and normally
on the order of several tens of kelvin. The MAE can be
obtained from the parameter b and the maximum expecta-
tion value of the spin operator Sz directly:

DMAE5b^Sz&
2. ~4!

For systems such as the clusters studied here, which have a
HOMO-LUMO gap that is large compared to a typical spin-
orbit interaction, second-order perturbation theory can be
used to determine the value of b .15 This procedure has been
carried out in applications for the uniaxial Mn12-acetate mol-
ecule and has been shown to be very accurate. In order to
give an estimate of the accuracy of the method employed
here we note that for the Mn12-acetate nanomagnet the agree-

FIG. 1. The structure of the iron oxide Fe13O8 cluster with D4h
symmetry. The dark balls at the corners are the eight oxygen atoms
and the lighter balls are the Fe atoms.
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ment between the calculated second-order contributions to
the MAE ~55.7 K! and the experimental value ~55.6 K! is
excellent.8,9,15,17

III. RESULTS AND DISCUSSION

A. Ferromagnetic coupling

Within the constraint of D4h symmetry we performed a
rather exhaustive search of the possible ferromagnetic states.
First, using D4h symmetry we optimized the geometry of the
cluster with a ferromagnetic state corresponding to a total
moment of 20mB . Both spin gaps D150.516 eV and D2
50.012 eV are positive, which show that this state is at least
metastable. However, D2 is small, indicating that another
ferromagnetic state obtained by transferring charge from the
minority spins to the majority ones could also lead to a meta-
stable state. Starting from this geometry we carried out 16
different calculations with fixed total moments of the cluster
ranging between 20mB and 52mB . Using the above-defined
criteria of positive spin gaps for both spins we determined
the magnetically metastable configurations for which we fur-
ther optimized the geometry within the constraint of this
given moment. In some cases one of the spin gaps became
negative during the geometry optimization. In theses cases
we changed the moment accordingly and relaxed the geom-
etry further. This approach resulted in the identification of
four metastable ferromagnetic states with total moments of
20mB , 26mB , 32mB , and 34mB . The magnetic states with
32mB and 34mB were found to be the most stable ones.
These states are energetically nearly degenerate with the
34mB state only 3 meV higher in energy. The most stable
structure found, was the state with 32mB . In Table I we give
the HOMO, LUMO, and gap for both spin channels, and the
energy of the optimized geometries with respect to the
lowest-energy state with 32mB .

Using the same labels as Ref. 6, the bond lengths and
bond angles of the optimized geometry of the cluster with
ferromagnetic coupling and a total moment of 32mB are
given by rO-Fe(1)53.3139 Å, rO-Fe(2)51.8948 Å, and
rO-Fe(2)51.8508 Å, and /O-Fe2-O5157.4° and
/O-Fe3-O5177.2°. The average moment of 2.46mB per
iron atom is larger than the average moment of 2.061mB

given by Wang et al.5 Their value corresponds to a total
moment of about 26mB , which from our calculations is a
less stable magnetic state.

In order to compare the local moments we placed a sphere
with a radius of 1.32 Å around the atoms and calculated the
charge within the sphere. For the center Fe atom we find a
moment of 2.82mB and 2.70mB and 1.66mB for the other two
iron atoms. Our local moments are larger than the previous
reported ones,5 which agrees with the larger total moment we
found. The fact that the largest moment is found on Fe~1!
and the smallest one on Fe~3! is in good agreement with that
earlier work.

The magnetic anisotropy barrier,9 which gives the energy
to flip the spin projection, is an important figure of merit for
applications of nanomagnets for information storage. Besides
the large total moment of 32mB the iron-oxide cluster has an
anisotropy barrier calculated from second-order perturbation
theory of 33.4 K. The parameter b from Eq. ~4! has a value
of 4333.4/322

50.1305 K.
Although a magnetic anisotropy barrier of 30 K is large at

the molecular level, this effect is still one order of magnitude
too small for devices working at room temperature. The
MAE is a very sensitive property of electronic structure,
magnetic ordering, and cluster geometry. The MAE for the
energetically nearly degenerate state with 34mB changes to
52 K. This strong dependence will make experimental mea-
surements of the MAE more difficult because the result will
depend strongly on the experimental conditions. On the other
hand, it indicates a rich potential to influence and tune the
MAE according to application requirements. A simple expla-
nation based on the number of interactions between occupied
and unoccupied states in both spin channels and the spin
gaps alone is not sufficient for explaining the change of the
MAE. In order to attain the goal of tuning the MAE for
device applications more insight is required for understand-
ing all interactions which influence the MAE.

Closely connected to this problem is the interaction of the
free cluster with its environment because potential technical
applications for any nanomagnet would require supporting
them on substrates or possibly embedding them within other
condensed media. The cluster-support interaction could
change the magnetic properties of the isolated cluster since
bond formation and/or charge transfer between the cluster
and substrate could occur upon chemisorption of the clusters.
More generally the overall symmetry of the anisotropy
Hamiltonian would change which could effect the magnetic
bistability of the cluster. Further such effects would depend
on whether the cluster was adsorbed with the easy axis per-
pendicular or parallel to the substrate surface. Finally all of
these effects would be strongly dependent on substrate
choice. Additional detailed investigations of these problems
need to be performed to quantify the effects of substrate-
adsorbate interactions on the magnetic properties of small
particles. Calculations aimed at understanding the effects of
these interactions are currently in progress. A good introduc-
tion to the related experimental and theoretical problems as-
sociated with interactions between adsorbates and substrates
is given by Selwood.18 However, prior to addressing interac-
tions between a magnetic particle and the host it is necessary
to have a complete understanding of the magnetic configu-
rations of the isolated particle and we turn to this point here.

TABLE I. Highest occupied molecular orbital ~HOMO!, lowest
unoccupied molecular orbital ~LUMO!, spin gaps D , and the energy
(DE) of the optimized structures with respect to the most stable
state with 32mB for Fe13O8 in the ferromagnetic state for different
total moments of the cluster. The energies are given in eV. The
definition of the spin gaps D is given in the text.

Total moment 20mB 26mB 32mB 34mB

Majority HOMO 24.62 24.54 25.08 24.64
Majority LUMO 24.22 24.25 24.50 24.37
Minority HOMO 24.23 24.29 24.63 24.78
Minority LUMO 24.10 24.21 24.30 24.50
Spin gap D1 0.52 0.33 0.78 0.14
Spin gap D2 0.01 0.04 0.13 0.41
DE 1.554 1.096 0 0.003
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B. Ferrimagnetic coupling

If orbitals are spatially orthogonal and occupy the same
region in space, parallel alignment of the spins leads to a
larger exchange interaction energy and ferromagnetic cou-
pling is subsequently favored. Antiferromagnetic coupling
occurs in cases where the orbitals are spatially separated but
nonorthogonal. In such cases antiparallel alignment of the
spins bypasses the need for spatial orthogonality and pro-
vides for a reduction in the kinetic energy. An example of
antiferromagnetic interactions in clusters is the Mn12O12
tower structure observed by Ziemann and Castleman.7,9 In
this structure the net moment is zero. Antiferromagnetic cou-
pling is experimentally observed in the octanuclear iron~III!
cluster @Fe8O2(OH)12(tacn)6#81, which shows antiferro-
magnetic coupling between neighboring irons. However, the
local moments do not entirely compensate one another, lead-
ing to an nonvanishing total moment of the cluster and fer-
rimagnetic order.1,8,9 The magnetic spinel Fe3S4 also shows a
ferrimagnetic spin arrangement.19

From these experiences we expect that antiferromagnetic
interactions could also play an important role for the iron
oxide clusters and a complete investigation of spin ordering
in this system is required.

Using the same approach as in the ferromagnetic case we
started with 12 different fixed total moments between 0mB
and 20mB . In order to obtain antiferromagnetic solutions we
used a starting potential which favored antiferromagnetic
coupling between the Fe~2! and Fe~3! atoms. During the self-
consistency cycle no constraints on the electronic degrees of
freedom were applied and the coupling between the Fe~1!
atom and the other two atoms was determined self-
consistently. By calculating the self-consistent local mo-
ments for each atom we determined whether the solution had
converged to a state with antiferromagnetic coupling. The
geometries of all states with positive spin gaps were further
optimized.

We find antiferromagnetic and several ferrimagnetic
states with total moments 4mB , 8mB , 10mB , 12mB , 13mB ,
14mB , and 15mB to be metastable magnetic states for the
iron oxide cluster. The ferrimagnetic states with 12mB ,
13mB , 14mB , and 15mB have twofold states at the Fermi
level, which are not fully occupied, suggesting that Jahn-
Teller distortions would lead to a reduction in symmetry.

All these states are close in energy and show similar be-
havior. The magnetic state with 14mB is the lowest-energy
state exhibiting antiferromagnetic coupling between the Fe
atoms. However, this state is 86 meV higher in energy than
the ferromagnetic state with 32mB . Results for the HOMO,
LUMO, and spin gaps for some of the more interesting mag-
netic states are given in Table II. The energy DE is the
energy with respect to the ferromagnetic state with 32mB ,
which was the most stable state found for all magnetic con-
figuration.

The bond lengths of the most stable ferrimagnetic state
with a total moment of 14mB are rO-Fe(1)53.232 18 Å,
rO-Fe(2)51.8878 Å, and rO-Fe(2)51.8393 Å; the bond
angles did not change much: /O-Fe2-O5169.8° and
/O-Fe3-O5174.7°. The local moments within a sphere are
Fe~1!, 2.7320mB ; Fe~2!, 22.7349mB ; and Fe~3!, 2.6794mB .

C. Vibrational spectra

In order to find the vibrational spectra of the Fe13O8 clus-
ter within the harmonic approximation we need to calculate
the dynamical or Hessian matrix. For the calculation of all
matrix elements of the dynamical matrix we need only 14
different geometries due to the D4h symmetry of the cluster.
Diagonalizing the dynamical matrix gives directly the vibra-
tional frequencies and eigenmodes. As explained in detail in
Ref. 16, 12 additional self-consistent field calculations are
necessary for the determination of the polarizability tensor
and the dipole moment, which are the required ingredients
for calculating IR and Raman intensities.

In Fig. 2 we show the vibrational spectra including IR and
Raman intensities calculated from density-functional theory.
We find that the ferromagnetic state with a moment of 32mB
per cluster is locally stable. Our frequencies range from
29.7 cm21 as the lowest to 660 cm21 as the highest fre-
quency. These values differ by an order of magnitude from
the frequencies given by Sun and co-workers.6 A good test
for the numerical accuracy of our calculations is the value of
the trivial frequencies of the three translational and rotational

TABLE II. HOMO, LUMO, and spin gaps D for Fe13O8 with
antiferromagnetic coupling for states with different total moment.
DE gives the energy with respect to the ferromagnetic state with
with 32mB , which was the most stable state found. The energies are
given in eV.

Moment 0mB 4mB 8mB 10mB 12mB 14mB

Majority HOMO 24.58 24.47 24.61 24.56 24.60 24.42
Majority LUMO 24.22 24.25 24.37 24.34 24.28 24.42
Minority HOMO 24.48 24.47 24.52 24.55 24.30 24.51
Minority LUMO 24.04 24.11 24.12 24.18 24.30 24.31
D1 0.53 0.36 0.49 0.38 0.30 0.11
D2 0.26 0.22 0.15 0.21 0.02 0.09
DE 0.70 0.75 0.31 0.20 0.12 0.09

FIG. 2. The upper panel displays the calculated vibrational den-
sity of states ~VDOS!, the middle panel the IR spectra, and the
lower panel the Raman spectra of the most stable ferromagnetic
iron oxide Fe13O8 cluster with D4h symmetry. The lowest fre-
quency is 29.7 cm21. The IR and Raman intensities are in arbitrary
units; a constant line width of 6 cm21 was assumed.

5758 PRB 62JENS KORTUS AND MARK R. PEDERSON

120



modes which should be zero, which we also obtain from
diagonalizing the dynamical matrix. The largest absolute
value for one of these six modes is 0.000 012 cm21.

Our results are closer in magnitude to those of the Fe
dimer, where different levels of theory give values between
350 cm21 and 500 cm21 with an experimental value20 of
300 cm21. The value obtained by NRLMOL within the stan-
dard local spin density approximation was reported earlier as
418 cm21 in Ref. 13 which changes to 406 cm21 for the
PBE-GGA exchange-correlation functional. Since the
NRLMOL code has been successfully applied to the calcula-
tion of vibrational spectra21–25 with very good agreement to
experiment, we are confident in the results reported here. The
calculated IR and Raman intensities could be useful for ex-
periments investigating the iron oxide cluster.

IV. SUMMARY

In this paper we have investigated the magnetic coupling
between iron atoms in the interesting Fe13O8 iron oxide clus-
ter using first-principles density-functional calculations with
the PBE-GGA functional for the exchange-correlation func-
tional. Several metastable ferro- and ferrimagnetic states
with different total moments per cluster have been found.
The antiferromagnetic state is also magnetically metastable.
The state with the lowest energy is a ferromagnetic state with
32mB per molecule, which is nearly energetically degenerate
with a ferromagnetic state with 34mB being only 3 meV
lower in energy. Several ferrimagnetic states are also close in
energy. The observed ground state for the iron oxide cluster

differs from a previous reported ferromagnetic state (26mB)
by Wang and co-workers.5

The calculation of the vibrational spectra shows, in agree-
ment with reports of Sun et al.,6 that the cluster is vibra-
tionally stable within D4h symmetry, although our calculated
frequencies differ significantly from earlier reported ones.
Besides the frequencies we calculated the IR and Raman
spectra which could be helpful for vibrational spectroscopy
studies. Several magnetic configurations with Oh symmetry
have been studied and are found to be at least 1 eV higher in
energy than the lowest-energy state with D4h symmetry
found.

The high magnetic moment of 32mB and a magnetic an-
isotropy energy of 33.4 K suggest that this cluster may be an
interesting nanomagnet if collection and assembly of reason-
ably large quantities of these clusters is possible. The cluster
should show similar interesting behavior of magnetic hyster-
esis and tunneling of the magnetic orientation as found in
other nanomagnets.1

From a practical point of view additional systematic stud-
ies of the influence of passivation and chemisorption on the
magnetic properties of these and other clusters is of current
interest. These interactions are important for understanding
experiments and may enable one to design materials with
given magnetic properties. Work in this direction is currently
being carried out.
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Electronic structure calculations of FenCom ~n1m55 and 13! are used to examine the effects of
alloying on the magnetic moment and magnetic anisotropies. Our density-functional studies show
that many mixed clusters have moments comparable to or higher than the pure clusters. The mixed
clusters, however, have very low anisotropies and could be ideal as soft magnetic materials. It is
shown that shape, composition, and compositional ordering must be considered for optimization of
anisotropy energies. © 2002 American Institute of Physics. @DOI: 10.1063/1.1482793#

Extensive research over the past decade has shown that
small clusters offer a class of magnetic properties. Clusters
of itinerant ferromagnetic solids Fe, Co, and Ni have higher
magnetic moments per atom than the corresponding bulk;1

clusters of nonmagnetic solids like Rh are spin polarized;1,2

and atomic moments in clusters of Mn, which exhibits com-
plex magnetic order in the bulk, are ferromagnetically
aligned.3,4 The reduction in particle size also leads to new
dynamical behaviors. For a particle with a size smaller than
the typical magnetic domain size, the atomic moments are
exchange coupled and the particles behave as a single mag-
net with a combined moment from the individual atoms.
However, the anisotropy energy ~AE! that determines the
minimum energy required to reorient this combined mag-
netic moment decreases with size and typically becomes
comparable to thermal energies in particles of about 10 nm.
These particles then undergo superparamagnetic ~SP!
relaxation.5–8 A fundamental understanding of the magnetic
anisotropy energy ~MAE!, which controls the onset of SP
behavior is therefore requisite to the design of molecular
scale magnets.

While there has been considerable effort in the past to
understand the evolution of the magnetic moment, the few
theoretical attempts to understand the MAE in clusters have
been limited to semiempirical approaches.10 Recently Zhou
et al.11 have shown that the MAE in clusters and low-
dimensional systems can be affected by the orbital-
correlation terms. However in the absence of a precise recipe
for derivation of the orbital-polarization or correlation cor-
rection within density-functional theory, the conclusions of
these papers can best be regarded as informative albeit quali-
tative.

The purpose of this letter is to examine the magnetic
moment and the magnetic anisotropy in small FenCom clus-
ters. Bulk FeCo alloys exhibit the highest saturation magne-
tization and the limiting value, occurring around 35% Co,
known as the Slater–Pauling limit, has long been regarded as
the highest possible magnetization. Can this limit be over-

come in clusters and, as a related issue, do the FenCom clus-
ters exhibit higher magnetization than pure Fe or Co clus-
ters? The bulk alloys are used as soft magnetic materials due
to their small magnetic anisotropy. The magnetic anisotropy
of clusters is not known and the factors that control the mag-
netic anisotropy in these reduced sizes are not well under-
stood. This line of inquiry is motivated by the possibility that
the small anisotropy of the solid alloys may be enhanced by
a chemical ordering of atoms in specialized geometries. To
address these issues, we have carried out studies on several
FenCom clusters. Here, we present results on five and 13
atom clusters.

Our studies employed a linear combination of atomic-
orbitals approach Naval Research Laboratory Molecular Or-
bital Library ~NRLMOL!12 within the generalized-gradient
approximation ~GGA!13 to the density-functional theory. The
basis sets used contained 20 bare Gaussians with exponents
varying from 0.0452 to 3.866 7483106 for Fe and 0.048 28
to 4.208 473106 for Co contracted to 11 s-like, 5 p-like and
4 d-like orbitals resulting in 46 basis functions for each atom.
This large basis set shows great stability and gives reliable
geometries. Detailed information on the construction of the
Gaussian basis sets can be found in Ref. 14.

One focus of the present work is the calculation of the
MAE. The main contribution to this quantity comes from the
spin–orbit coupling and except for the cases where the
second-order term is zero ~due to symmetry!, the most sig-
nificant contribution comes from this term. For intrinsically
uniaxial or lower-symmetry systems such as those discussed
here the second-order contribution to the MAE is given by
the change in the second-order spin–orbit energy (D2) as the
angle ~u! between the axis of symmetry and the quantization
axis varies between 0 and p/2. For lower-symmetry systems,
the second-order MAE depends on two angles. We have just
proposed an implementation of the spin–orbit coupling
that uses the exact representation given by U(r,p,S)
521/2c2S•p3¹F(r). In addition to including some non-
spherical contributions that would be absent in a standard
L•S representation, the numerical implementation is particu-
larly well suited to local-orbital methods such as
NRLMOL.15 Please note, while the scalar relativistic correc-
tions ~mass velocity and Darwin terms! have a 1/c2 contri-
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bution to the single-electron Hamiltonian, these terms do not
effect the second-order MAE for systems with real Kohn–
Sham orbitals.

Some of the intermediate 13-atom clusters studied here
have either no or a very small energy gap. As such the
second-order perturbation method discussed in Ref. 15 is not
obviously applicable so an exact-diagonalization method was
developed. For a simple comparison, we found that the S
53 mB Fe2 dimer has a second-order MAE of 5.36 K which
is in good agreement with the 5.23 K result obtained from
exact diagonalization.

In Fig. 1, we show the configurations studied in this
work. The five- and 13-atom clusters are chosen because
they allow for uniaxial structures. For pure uniaxial configu-
rations, it is possible to further enhance the uniaxial character
via substitution of different transition metal atoms along the
axis of symmetry. This procedure allows for uniaxial clusters
with compositions Fe3Co2 , Fe10Co3 , Co3Fe2 , and Co10Fe3 .
For the smaller clusters (N55), the uniaxially symmetric
stable geometries have been further optimized for these sto-
ichiometries with no symmetry constraints in order to find
the influence of geometry on the MAE.

We start by comparing some of the present results with
previous calculations. In Table I, we show the magnetic mo-
ments and the magnetic anisotropies of mixed FenCom clus-
ters. For Co5 , our calculated ferromagnetic ground state has
D3h symmetry, a magnetic moment of 13mB and a binding
energy of 11.67 eV. Fan et al.16 have performed symmetry
restricted density-functional calculations on Co5 and find a
C4v

ground state with a magnetic moment of 13mB and a
binding energy of 11.45 eV. Castro et al., on the other hand,
find a ground state with a moment of 9mB . The magnetic

moments of Com clusters calculated by these authors in-
crease monotonically from Co2 to Co4 , but Co5 has a lower
moment than even Co4 . Possibly, these authors did not ex-
amine higher spin states. For Fe5 , our calculated moment is
in agreement with earlier calculations by Castro et al.17 The
bond lengths are slightly different and we find a binding
energy of 11.86 eV as compared to their calculated values of
10.98 eV. Postnikov et al.,18 and Hobbs et al.,19 have carried
out ab initio molecular dynamics simulations on Fe5 using
GGA and local density approximation ~LDA!. While Hobbs
et al. find a moment of 14.00 mB in the LDA, Postnikov
et al.18 find a moment of 18.00 mB . For the GGA, Postnikov
et al. and Hobbs et al.18,19 find moments of 18.00 mB . Since
these studies are based on pseudopotentials, it is possible that
the differences between these authors and the all electron
calculation by us and Castro et al.17 are due to the treatment
of the core.

In Ref. 8, moments as a function of size for large Fe, Ni,
and Co clusters are measured. While the smallest clusters in
these studies are still large compared to those discussed here
a reasonable extrapolation of 2.6 mB and 3.2 mB for Co and
Fe agrees well with the present results. The magnetic mo-
ments per atom in bulk Co and Fe are 1.72 mB and 2.22 mB ,
respectively. Further, our predicted MAE for the pure clus-
ters are well below room temperature. This is consistent with
the Stern–Gerlach experiments on Fen and Con clusters
cooled down to 77 K where the clusters are deflected in the
same direction indicating a SP relaxation.9

We now discuss 13-atom clusters. We have investigated
Co13 , Co3Fe10 , Co10Fe3 , and Fe13 clusters assuming C5v

and D2h symmetries. For the mixed clusters, the substituted
atoms have been added to preserve the uniaxial symmetry
~Fig. 1!. All 13-atom clusters are found to be easy-plane
systems. The total magnetic moments obtained are given in
Table II. It is seen that the magnetic moment increases as Co
is substituted by Fe. In particular Fe10Co3 has a moment of
3.15 mB /atom which is almost 35% higher than the Slater–
Pauling limit. The question arises as to whether the clusters
are magnetically softer or harder than the corresponding sol-
ids.

Starting from the Hamiltonian obtained from self-
consistent field ~SCF! calculations without spin–orbit cou-
pling, we calculated the spin–orbit matrix elements as de-
scribed in Ref. 15 and obtained the MAE from exact
diagonalization. Our earlier studies have shown that the mag-
netic anisotropy is mainly determined by the mixing of elec-
tronic states close to the Fermi energy. To further illustrate
this dependence, we introduced an electronic temperature
that allows the occupation of unoccupied states. The calcu-
lated AE as a function of the broadening temperature is

FIG. 1. The uniaxial geometrical configurations studied here include trian-
gular bipyramid geometries (N55) and distorted icosahedrons (N513).
For the mixed clusters, the dopant atoms were placed along the uniaxial
axis.

TABLE I. Symmetry group, magnetic moments, MAE, and smallest highest
occupied molecular orbital–lowest unoccupied molecular orbital gaps for
the ground-state FenCom 5 atom clusters. EA ~EP! means easy-axis ~plane!.
TA stands for a system with three different axes. Anisotropy energies have
been calculated using both second-order perturbation expressions ~Ref. 10!
and exact diagonalization methods. The two methods agree to 0.5–1.0 K for
all cases. The a indicates majority–minority gap,b indicates minority–
majority gap.

Cluster Symmetry Moment mB MAE ~K! GaP ~eV!

Co5 D3h EA 13 6 0.41a

Co3Fe2 Cs TA 13 27/15 0.06b

Co2Fe3 D3h EP 16 21 0.59a

Fe5 C2v
EP 16 14 0.20b

TABLE II. Magnetic moment and MAE for relaxed 13-atom clusters with
three central atoms constrained along the z axis (MAE-z) and fully uncon-
strained ~MAE! for the FenCom clusters. For Co13 , the fully relaxed cluster
has a moment of 21 mb .

Cluster Moment (mB) MAE-z ~K! MAE ~K!

Co13 21 0 0
Co10Fe3 30 56 63
Fe10Co3 41 51 9
Fe13 44 41 41
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shown in Fig. 2. The results on the magnetic anisotropy at
various electronic temperatures can also be used to estimate
the blocking temperature, i.e., temperature above which the
moments will reorient in different directions. This is given
by the temperature at which the MAE becomes equal to the
thermal energy.

The Fe13 cluster has a large energy gap of 0.2 eV, there-
fore temperature changes which are small compared to this
gap will not change the occupation of states or the anisot-
ropy. The Fe10Co3 cluster, however, showed a surprisingly
high moment reorientation temperature of 480 K. However,
this result was obtained only by varying the temperature for
the spin–orbit coupling. A change in temperature for a me-
tallic system also changes the SCF wave functions and ener-
gies. Therefore, we carried out SCF calculations at the same
electronic temperature as used in the spin–orbit part, allow-
ing for full electronic relaxation at that broadening tempera-
ture. The results are also shown in Fig. 2. The SCF anisot-
ropy curve is now shifted downwards, resulting in a
reorientation temperature of about 400 K.

Degeneracies at the Fermi level indicate possible Jahn–
Teller relaxations, therefore we allowed for geometry relax-
ation by lowering symmetry constraints. First, we restricted
the movement of the three central atoms along the z axis, all
other outer atoms were symmetry unconstrained. The degen-
eracies at the Fermi level vanish and all clusters gain Jahn–
Teller energy. Relaxing the symmetry has a dramatic effect
on MAE, which decreases significantly. Removing all con-
straints, the largest change is found for the case of Fe10Co3 .
The axial arrangement of the Co atoms is lost and the MAE
decreases significantly. Fe13 does not show any great changes
in geometry or MAE as expected. Results for the MAE are
given in Table II.

It is interesting to compare the aforementioned results
with the bulk. FexCo12x alloys exhibit the highest magneti-
zation at a Co concentration of around 30% and are associ-
ated with an increase in the local moment on Fe sites from a
bulk value of 2.2 mB /atom to almost 2.8 mB /atom ~Ref. 20!
for Fe sites surrounding Co. In clusters, the Fe sites in Fe13
already have a moment of 3.38 mB /atom and the addition of
Co does not lead to any enhancement of the magnetic mo-
ment. However, the introduction of chemical ordering via
three Fe atoms in Co10Fe3 and by three Co atoms in Fe10Co3
does increase the anisotropy compared to pure clusters when
the atoms are constrained along the z axis. Similar behavior
is also observed in five-atom clusters.

To summarize, the present studies show that the small

Fen and FenCom clusters exhibit high magnetic moments per
atom that are about 35% higher than the Slater–Pauling
limit. However, the clusters have small magnetic anisotropy
energies indicating that bulk magnetic alloys can be made
softer by going to nanosizes. What is most surprising is that
whereas bulk Co has a higher anisotropy than pure Fe or
mixed Fe–Co alloys, Con clusters have the lowest anisot-
ropy. The present work also shows that a high magnetic an-
isotropy requires a strong coupling between occupied and
unoccupied states close to the Fermi energy. One possible
way to accomplish this may be to generate unreactive, com-
positionally ordered uniaxial clusters with small gaps.
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FIG. 2. Anisotropy energy as a func-
tion of electronic broadening tempera-
ture for clusters with imposed C5 sym-
metry. The open squares for Fe10Co3
are results from SCF calculations at
the same temperature as the broaden-
ing temperature. The intersection with
the straight line corresponds to the
moment reorientation temperature.
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Abstract. Based on first-principles all-electron density-functional calculations we report the electronic
structure and magnetic ordering of the molecular magnet Fe8 and the V15 spin system. The ferrimagnetic
ordering with total spin S = 10 of the eight iron atoms in the Fe8 cluster agrees well with experimental
results from polarized neutron data. In comparison the low spin system V15 shows a spin S = 1/2 ground
state which is also found from our calculations.

PACS. 75.50.Xx Molecular magnets – 71.24.+q Electronic structure of clusters and nanoparticles

1 Introduction

Molecular magnets such as Mn12-ac and Fe8 are a new
class of materials that have raised significant scientific
interest due to the observation of quantum tunneling of
magnetization and hysteresis of a purely molecular origin
[1,2]. These big molecular clusters form crystals of iden-
tical nanomagnets, whose structure can be well charac-
terized by X-diffraction measurement. Because nearly all
molecules in the crystal have the same orientation, macro-
scopic measurement can directly observe single molecular
properties and quantum phenomena. The high value of
the ground state spin of S = 10 for Mn12-ac and Fe8

makes these clusters also interesting for possible applica-
tions in nanoscale magnetic devices. In order to build any
device it is necessary to understand the strong interac-
tions of the metal ions, such as spin-spatial couplings and
spin-spin exchange effects. Further, the ligands and other
non-magnetic atoms are very important in stabilizing the
spin configurations. In order to account for the strong
ligand-metal interactions and to determine the electronic
and magnetic structure of a given system, first-principles
methods allowing for electronic, charge and structural re-
laxations are needed. The knowledge gained from these
calculations can be very helpful for understanding and im-
proving the systems.

One of the experimentally best studied clusters is
the Fe8-cluster with the formula [Fe8O2(OH)12(tacn)6]

8+,
with tacn = C6N3H15. The cluster is particularly interest-
ing because its magnetic relaxation becomes temperature

a e-mail: kortus@dave.nrl.navy.mil

Fig. 1. The optimized geometry of the Fe8 cluster. The balls
show the iron atoms, the arrows represent the ferrimagnetic
spin ordering in the cluster. The organic tacn-rings are very
important for stabilizing the magnetic core of the molecule and
in separating the Fe8-clusters in the crystal. The hydrogens are
not shown for clarity.

independent below 0.36 K, showing for the first time a
pure tunneling of the magnetization [3].

The structure of the Fe8-cluster is shown in Fig. 1.
The cluster found in molecular crystals has D2 symmetry.
The central iron atoms are connected by hydroxo bridges
to the four outer iron ions. The spheres show the iron
atoms, which are Fe(III) ions with a d5 electron config-
uration. The ferrimagnetic coupling of spins between the
eight Fe atoms results in a S = 10 spin ground state [4]
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and is illustrated by arrows inside the spheres. The organic
tacn-rings are very important for stabilizing the magnetic
core of the molecule by accepting charge, thus allowing
the correct charge state of the Fe3+ ions. Additionally,
the tacn-rings separate the Fe8-clusters in the crystal, re-
sulting in typical intermolecular dipole fields of the order
of 0.05 T [5].

The V15 compound is a low spin compound with
S = 1/2. The weakly anisotropic V15 demonstrates quan-
tum behavior, such as tunneling splitting of low lying spin
states and is an attractive model system for the study of
mesoscopic quantum coherence and processes which de-
stroy it. Understanding such processes is of interest to the
field of quantum computing.

V15 has a crystallographically imposed trigonal sym-
metry with three sets of inequivalent vanadium atoms [6].
The unit cell contains two V15 clusters and is large enough
that dipolar interactions between the molecules are negli-
gible. Between 20 K and 100 K the effective paramagnetic
moment is 3µB corresponding to three independent spins
and below 0.5 K it decreases showing an S = 1/2 ground
state for the V15 molecule. The experimental results were
interpreted with antiferromagnetic interactions between
all vanadium atoms [6].

The large number of atoms in Fe8 and V15 still makes
first-principles calculations a challenge, and we are not
aware of any other electronic structure calculations for
these clusters. In this paper we present first-principles
gradient corrected density-functional calculations at the
all-electron level for all atoms for both the Fe8- and the
V15-cluster. We report on the electronic structure and
magnetic ordering for these systems.

2 Computational details

The DFT calculations [7] discussed herein were performed
with the all-electron Gaussian-orbital-based NRLMOL
program [8]. All calculations employed the Perdew-Burke-
Ernzerhof (PBE) generalized-gradient approximation for
the density-functional [9]. NRLMOL combines large Gaus-
sian orbital basis sets, numerically precise variational in-
tegration and an analytic solution of Poisson’s equation
in order to accurately determine the self-consistent po-
tentials, secular matrix, total energies and Hellmann-
Feynman-Pulay forces [10]. The exponents for the single
Gaussian have been fully optimized for DFT calcula-
tions [11].

2.1 Fe8 molecular nanomagnet

Using X-ray data deposited at the Cambridge Crystallo-
graphic Data Centre [12] we generated the Fe8 cluster.

For each Fe we used 7 s-like, 3 p-like and 2 d-like
contracted Gaussian orbitals with 19 exponents between
0.12 and 3.87 × 106. Fluorine was described by 5 s- and
4 p-contracted orbitals using 14 bare Gaussian between
0.118 and 1.23× 105. Oxygen had 3 s- and 2 p-contracted
orbitals with 13 Gaussian between 0.105 and 6.12 × 104,

Fig. 2. The spin density of the V15 cluster. The picture shows
clearly the single d-electron of a V4+ ion. Most of the spin
density is localized at the V, less than 1% of the spin density
is on the oxygen atoms which are on top of the V. The dark
balls represent oxygen and the lighter ones arsenic.

nitrogen had the same number of contracted orbitals and
bare Gaussian ranging from 0.12 to 5.17 × 104. Carbon
had also basis of 3 s- and 2 p-orbitals with 12 exponents
between 0.1 and 2.22× 104, finally hydrogen had 2 s- and
1 p-orbital with 6 exponents between 0.1 and 77.84. This
basis set resulted in a total number of 1466 contracted
orbitals for the whole cluster.

2.2 V15 spin system

Starting from X-ray data[13] we generated several unit
cells and isolated from that a single K6[V15As6O42(H2O)]
unit. The structure of V15 is shown in Fig. 2. The vana-
dium atoms are at the place of the shown d-like orbitals,
the oxygen atoms are small dark balls and the arsenic
atoms are represented by lighter small balls. The potassi-
ums included in the calculation are not shown. The three
sets of the vanadium atoms define two hexagons separated
by a triangle of vanadiums. Due to the layered structure
the V15 cluster is expected to show interesting magnetic
properties.

In order to use the D3 symmetry of the V15 molecule
[14] we initially replaced the statistically oriented water
molecule in the center of the molecule by the noble gas
neon. Subsequent calculations show that the electronic
and magnetic properties of this system are unaffected by
the presence or type of inert moiety enclosed within the
void.

The basis set for vanadium consists of 20 bare Gaussian
ranging from 3.108 × 106 to 0.03783 contracted to 9 s-,
4 p- and 3 d-molecular orbitals, for oxygen we used 13 bare
Gaussian between 6.121 × 104 and 0.1049 contracted to
5 s-like, 3 p- and 1 d-molecular orbitals. The arsenic atoms
were described by 21 bare Gaussian between 6.9614505×
106 and 0.0607459 contracted to 10 s-, 5 p- and 4 d-like
orbitals. This gives a total of 1853 contracted orbitals used
as basis set for the calculations.

In conjunction with the conjugate-gradient algorithm
the Hellmann-Feynman-Pulay forces were used in order
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to optimize the molecular geometry. The process was
stopped after the largest nuclear gradient was smaller than
0.2 eV/Å. The total force was 0.28 eV/Å.

3 Results and discussion

3.1 Fe8 molecular nanomagnet

In the molecular crystal [12] the positive charged Fe8-
cluster is neutralized with Br atoms. We started the cal-
culations with Br atoms but run in problems with an in-
complete charge transfer to the Br. A density of states
plot revealed a strong peak of Br p-states at the Fermi
level. This unchemical hybridization of the Br with the
Fe8-cluster due to energetically to high lying Br p-states
can be attributed to problems with density-functional the-
ory itself, requiring self-interaction corrections or LDA+U
methods in order to account for. Another source of the
problem could be the neglected water molecules in our
calculations, which are present in the crystal. Calculations
on a single Br-ion surrounded by water molecules showed
a lowering of the Br p-states, therefore allowing for bet-
ter charge transfer. The incomplete charge transfer results
in a metallic density of states at the Fermi-level, which
complicates the self-consistent calculations and geometry
optimization of the cluster.

Even more problematic is a competition between the
experimental seen ferrimagnetic state with an energeti-
cally close ferromagnetic state with also S = 10. Using
Br atoms we could stabilize the ferrimagnetic state only
by applying a small external potential on the Fe atoms
favoring the ferrimagnetic state.

Due to these reasons we replaced the Br with F atoms,
which are more electro-negative allowing for better charge
transfer. With the F atoms the calculations converged to
the experimental found ferrimagnetic state with S = 10
[4] without an external potential.

More recent experiments by Pontillon et al. [15] con-
firm the ferrimagnetic ordering and find smaller local mo-
ments at the two iron atoms with the minority spins than
on the iron atoms with majority spins.

In order to calculate the local moments, we placed a
sphere of 1.32 Å around each iron and calculated the spin
density inside the sphere. Some charge will not be included
in the sphere, and this approximation will give only a lower
estimate for the local moments and charge states.

For the two iron atoms with minority spins we ob-
tain a moment of −3.6µB, whereas the majority spin irons
have moments 3.8µB and 3.9µB. These local moments are
smaller than expected for Fe(III) which can be attributed
to spin density outside the sphere. A plot of the spin den-
sity confirms the right spin-polarization of the irons by
showing a spherical spin density around the Fe as expected
for a closed shell d5 electron configuration.

3.2 V15 spin system

The plot of the spin density in Fig. 2 clearly shows the lo-
calization of moment on the vanadium atoms. Even more,
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Fig. 3. Electronic density of states (DOS) broadened by
0.54 eV of V15 in a spin S = 3/2 configuration. For each spin
the total DOS, the projected DOS of all V(3d), the projected
DOS of the three V(3d) forming the inner triangle and the
projected O(2p) are presented. The vertical line divides the oc-
cupied and unoccupied states. Units are arbitrary, but the same
scale has been used for all projected DOS plots.

it clearly displays the d-character as expected for a V4+-
ion with a single d-electron, showing that our calculation
reproduce the proper charge state of the vanadiums. The
spin configuration shown in Fig. 2 has a total spin S = 1/2
and is also the lowest energy DFT spin configuration. This
spin configuration was found by a coupled multilevel anal-
ysis which relies on fitting density-functional energies to
mean-field Heisenberg energies [16].

The quantum mechanical ground state will be a su-
perposition of all S = 1/2 states, therefore the obtained
spin configuration from our DFT calculations can not be
compared directly with experiment. Nevertheless, our re-
sults are essentially in agreement with the experimentally
found S = 1/2 ground state [17] of the V15 cluster.

Figure 3 displays the density of states for a spin S =
3/2 configuration with ferromagnetically aligned spins in
the inner triangle and antiferromagnetically coupled spins
in top and bottom hexagons. This low-energy spin config-
uration becomes important at temperatures above 20 K
and below 80 K.

For each spin the DOS is decomposed into the 3d con-
tributions of all vanadium atoms (All V 3d) and the 2p
contributions of oxygen (Oxygen 2p). The vanadium DOS
is further decomposed into the 3d contribution of the vana-
diums (Inner V 3d) forming the inner triangle between
the two hexagons. The projected density of states clearly
shows that the states near the Fermi level are 3d states
from the vanadium atoms.

Further, by comparing the majority and minority con-
tributions of the vanadiums forming the inner triangle, it
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Table 1. Highest occupied molecular orbital (HOMO), lowest
unoccupied molecular orbital (LUMO) and spin gaps ∆ for the
V15 molecule in the spin S = 3/2 state. All energies are given
in eV.

HOMO LUMO ∆

Majority spin −3.369 −2.159 1.210

Minority spin −3.440 −2.412 1.082

is clear that these three vanadiums are aligned ferromag-
netically since they only contribute to the majority DOS.

Further, most of the DOS in the majority DOS comes
from these atoms. The states due to the V atoms at
the Fermi level are well localized and do not show hy-
bridization with other atoms such as oxygen. This indi-
cates mainly ionic bonding, which is supported by our
local moments for the vanadium atoms of 0.97µB, close to
the moment of a VIV ion. The DOS for the arsenic atoms
is not shown, because there are no significant contribu-
tions.

In Table 1 we present the highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO) for the majority and minority spin channel to-
gether with the resulting spin gaps.

In order to estimate local moments we placed spheres
around the atoms and calculated the spin densities inside
the spheres. The only significant moments are located on
the vanadium atoms, the largest other moments are at
oxygen atoms with about 0.06µB. The sphere radius for
the vanadium atoms was 1.32 Å. The vanadium atoms
forming the two hexagons are coupled antiferromagneti-
cally with local moments of −0.88µB and 0.85µB inside
the sphere. The vanadium atoms forming the middle tri-
angle are ferromagnetically ordered with a local moment
of 0.97µB. This result agrees well with the measurements
above 20 K, that the spins in the triangle are localized
spins on the vanadiums acting independently.

For the S = 1/2 spin configuration displayed in Fig. 2,
the moments in the spheres do not change not signifi-
cantly. They are less than 4% smaller than for the S = 3/2
configuration.

4 Conclusion

We performed first-principles gradient corrected density-
functional calculation at the all-electron level on the
experimentally interesting molecular nanomagnet Fe8 and
the spin system V15. The magnetic ordering obtained from
our calculations agrees well with experimental found mag-
netic orderings in these clusters. The local moments found
for the Fe8-cluster confirms recent experimental findings
from polarized neutron scattering. In case of V15 we are

able to describe different spin configurations. Our findings
are in good agreement with experiments.

Electronic structure calculations can give insight in the
magnetic interaction and help in understanding experi-
ment. The information obtained here can be used directly
for interpretation of polarized neutron scattering exper-
iments and finding the charge state of the metal ions.
Much more experimental relevant information has been
obtained from our calculations as magnetic anisotropy en-
ergies, orbital moments, Heisenberg exchange parameters,
hyperfine fields and vibrational properties. These will be
reported elsewhere.

This work was supported in part by ONR grant N00014-
98WX20709 and N0001400AF00002. Computations were per-
formed at the DoD Major Shared Resource Centers.

References

1. J. Friedman, M.P. Sarachik, J. Tejeda, J. Maciejewski, R.
Ziolo, Phys. Rev. Lett. 76, 3820 (1996); L. Thomas, F.
Lionti, R. Ballou, D. Gatteschi, R. Sessoli, B. Barbara,
Nature 383, 145 (1996).

2. C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli, D.
Gatteschi, Phys. Rev. Lett. 78, 4645 (1997).

3. W. Wernsdorfer, R. Sessoli, Science 284, 133 (1999).
4. R. Caciuffo, G. Amoretti, A. Murani, R. Sessoli, A.

Caneschi, D. Gatteschi, Phys. Rev. Lett. 81, 4744 (1998).
5. W. Wernsdorfer, T. Ohm, C. Sangregorio, R. Sessoli, D.

Mailly, C. Paulsen, Phys. Rev. Lett. 82, 3903 (1999).
6. D. Gatteschi, L. Pardi, A.L. Barra, A. Müller, J.
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10. H. Hellmann, Einführung in die Quantentheorie (Deuticke,
Leipzig, 1937); R.P. Feynman, Phys. Rev. 56, 340 (1939);
P. Pulay, Mol. Phys. 17, 197 (1969).

11. D. Porezag, M.R. Pederson, Phys. Rev. A 60, 2840 (1999).
12. K. Wieghardt, K. Pohl, I. Jibril, G. Huttner Angew.

Chem., Int. Ed. Engl. 23, 77 (1984); Cambridge
Crystallographic Data Centre; Refcode: COCNAJ;
http://www.ccdc.cam.ac.uk/
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We report the electronic structure and magnetic ordering of the single molecule magnet
@Mn10O4(2,28-biphenoxide)4Br12#

42 based on first-principles all-electron density-functional calculations. We
find that two of the ten core Mn atoms are coupled antiferromagnetically to the remaining eight, resulting in a
ferrimagnetic ground state with total spin S513. The calculated magnetic anisotropy barrier is found to be 9
K in good agreement with experiment. The presence of the Br anions impacts the electronic structure and
therefore the magnetic properties of the ten Mn atoms. However, the electric field due to the negative charges
has no significant effect on the magnetic anisotropy.

DOI: 10.1103/PhysRevB.66.092403 PACS number~s!: 75.50.Xx, 71.15.Mb, 75.30.Gw

The interest in magnetic molecular clusters of transition-
metal ions has been continuously growing since the observa-
tion of magnetic bistability of a purely molecular origin in
the so-called Mn12-ac ,1 which shows a magnetic hysteresis
cycle below 4 K similar to that observed for bulk magnetic
materials. The magnetic bistability associated with the hys-
teresis cycle has created an interest in these clusters for in-
formation storage, although at low temperature quantum ef-
fects affect the reversal of the magnetization, resulting in
steps in the hysteresis.2 This phenomenon of quantum tun-
neling of magnetization is governed by the magnetic anisot-
ropy energy ~MAE!3 barrier which is due to directional de-
pendencies of the second-order spin-orbit-coupling energy.

Recently, Pederson and Khanna have developed a method
for accounting for second-order anisotropy energies.4 This
method relies on an exact and simple expression for the spin-
orbit coupling operator used in a second-order perturbative
treatment to determine the dependence of the total energy on
spin projection. Initial applications to the uniaxial Mn12-ac
lead to a density-functional-based second-order anisotropy
energy5 of 55.7 K, in agreement with the experimentally de-
duced values6,7 of 54.8~3! or 55.6 K.

Because the second-order anisotropy energy scales with
the square of the magnetization it was generally believed that
a high-spin ground state S would be beneficial for a large
barrier. The @Mn10O4(2,28-biphenoxide)4Br12#

42 cluster has
been reported to have a S512 high-spin ground state8 but
only a small energy barrier of about 7.7 K. In this work we
investigate the electronic and magnetic properties and the
magnetic anisotropy energy of this high-spin single molecule
magnet. The information obtained here may be useful in the
search for single molecule magnets with a greater magnetic
anisotropy.

Figure 1 shows the structure of the
@Mn10O4(2,28-biphenoxide)4Br12#

42 molecular magnet. The
10 Mn atoms form a tetrahedronlike structure with Mn atoms
at the corners and at the middle of the tetrahedron edges.
Two of the Mn atoms, the top and the bottom spheres in Fig.

1, are coupled antiferromagnetically to the rest of the Mn
atoms. The Mn atoms are bridged by O atoms. The magnetic
core is further stabilized by organic rings that are also con-
nected to the O atoms. The negatively charged cluster is
compensated by @(CH3CH2)3NH#2@Mn(CH3CN)4(H2O)2#
in the molecular crystal, but experimental results suggest that
the magnetic anisotropy is due to the localized valences of
the 10 Mn atoms.8 In order to use the higher symmetry and
make the problem computationally feasible, we carried out
our calculation on the negatively charged
@Mn10O4(2,28-biphenoxide)4Br12#

42 cluster which contains
114 atoms. The eight symmetry operations reduce the com-
plete cluster to 18 inequivalent atoms.

Our density functional-based calculations9,10 were per-

FIG. 1. The tetrahedronlike structure of the ten Mn atoms and
the surrounding organic rings. The Br atoms are not displayed for
clarity. Density isosurfaces for 0.03e/aB

3 for majority ~dark! and
minority ~light! spins on Mn atoms are shown. The plot clearly
shows that the magnetic moment is localized at the Mn atoms, and
it directly confirms the antiferromagnetic coupling of two Mn atoms
~large light spheres! to the remaining Mn atoms ~large dark
spheres!.
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formed with the Naval Research Laboratory Molecular Or-
bital Library ~NRLMOL! program,11–16 using the Perdew-
Burke-Ernzerhof ~PBE! generalized-gradient approximation
for the exchange and correlation functional17. The molecular
orbitals were expanded as linear combinations of Gaussian
functions centered at the atomic sites. The calculations were
carried out at the all-electron level and the multicenter inte-
grals required in the solution of the Kohn-Sham equation
were calculated by integrating numerically over a mesh of
points.11 NRLMOL combines large Gaussian orbital basis
sets, numerically precise variational integration and an ana-
lytic solution of Poisson’s equation to accurately determine
the self-consistent potentials, secular matrix, total energies,
and Hellmann-Feynman-Pulay forces. The exponents for the
single Gaussian have been fully optimized for density func-
tional theory calculations.15 The basis set for the Mn10 cluster
consisted of a total of 3756 contracted orbitals. The mini-
mum and maximum exponent of the bare Gaussians, the
number of bare Gaussians, and the number of contracted s-,
p-, and d-like basis functions are given in Table I for each
atomic species. The contraction coefficients for atomic orbit-
als were obtained by performing an SCF-LDA calculation on
the spherical unpolarized atom where the total energy of the
atom was converged to within 10 meV. The basis functions
that do not correspond to atomic wave function were con-
structed from the longest range bare Gaussians in the basis
set.

Here we repeat some of the formulas needed for discus-
sion of the magnetic anisotropy energy. The same definitions
and notation are used as in Ref. 4. In the absence of a mag-
netic field the second-order MAE D2 resulting from the spin-
orbit coupling, for an arbitrary symmetry, reduces to

D25(
ss8

(
i j

M i j
ss8S i

ss8S j
s8s , ~1!

which is a generalization of Eq. ~19! of Ref. 4. The matrix
elements S i

ss8
5^xsuS iux

s8& implicitly depend on two angles
(u ,b) defining the axis of quantization. The matrix elements
M i j

ss8 , which are related to the induced orbital moment, are
given by

M i j
ss8

52(
kl

^f lsuV iufks8&^fks8
uV juf ls&

« ls2«ks8

, ~2!

where f ls , fks , and « ls are, respectively, the occupied,
unoccupied and the corresponding energies of states. V i is
same as defined in Eq. ~7! of Ref. 4 and is related to deriva-
tives of the Coulomb potential. The matrix elements can be
evaluated by integrating products of the Coulomb potential
with partial derivatives of the basis functions. This procedure
avoids the time consuming task of calculating the gradient of
the Coulomb potential directly.

In addition to the magnetically interesting complex, the
crystal also contains single Mn complexes to balance the
charges. Using high-field EPR spectroscopy Barra et al.8

found that this @(CH3CH2)3NH#2@Mn(CH3CN)4(H2O)2#
unit is paramagnetic. We also find that this unit is paramag-
netic, with the Mn atom in a 12 charge state and a spin of
S55/2. The complex exhibits easy-plane behavior with an
energy well of 0.1 K. We therefore focus the remainder of
our work on the Mn10 unit only.

Calculations on a S512 high spin state revealed that this
spin state would not be magnetically stable because there
would be no common Fermi level in the majority and minor-
ity spin channel. The Fermi level misalignment indicated fur-
ther transport of electrons of the minority to the majority
spin channel. As a result we obtained a S513 high spin state
as the magnetic ground state instead of the S512 state ob-
tained from high-field EPR spectroscopy. Our result is con-
sistent with experiment since it is difficult to differentiate
experimentally between the two possibilities.18

A plot of the spin density shown in Fig. 1 clearly confirms
the antiferromagnetic coupling of two of the Mn atoms to the
remaining Mn atoms. The spin density around the minority
spin Mn and the four majority spin Mn at the corners of the
tetrahedronlike magnetic core show a nearly spherical spin
density as expected for a closed d5 shell. The other four Mn
atoms which are on the edges of the tetrahedron ~large dark
spheres! show a less spherical spin density, indicating an-
other charge state for these atoms. In order to analyze the
magnetic ordering we calculated the spin density in spheres
around the atoms. This gives a measure of the localized mo-
ment at the atom, but will generally underestimate the exact
value. Using spheres with a radius of 2.23aB around the Mn
atoms we obtained for the three non-equivalent Mn atoms
~majority spin tetrahedron edge, majority spin tetrahedron
vertex, and minority spin tetrahedron edge! a local moment
of 3.6, 4.3, and 24.3mB , respectively. This result suggests
an ionic picture that the first Mn has an Mn31 (S52) state,
whereas the other two are Mn21 (S55/2). This picture is
fully in accord with the spin density plot in Fig. 1. Due to the
symmetry of the cluster, the two types of majority spin Mn
atoms have a multiplicity of 4 whereas the minority spin Mn
atom has a multiplicity of 2, resulting in the previously men-
tioned S54321435/22235/2513 magnetic ground
state.

The electronic density of states ~DOS! for the majority
and minority spin channels is shown in Fig. 2. For each spin,
the DOS is further decomposed into the 3d contributions of
all Mn atoms. It is evident from the plot that the states
around the Fermi level are clearly connected with 3d states
of the Mn atoms. This result also agrees well with the ex-
perimental picture that the states near the Fermi level are

TABLE I. The Gaussian basis set used for the calculation. The
minimum and maximum exponent a of the bare Gaussians, the
number of bare Gaussians, the number of contracted s-, p-, and
d-like basis functions.

amin amax Nbare s p d

Br 0.0781 7.93106 21 11 6 4
Mn 0.0416 3.63106 20 11 5 4
O 0.1049 6.13104 13 8 4 3
C 0.0772 2.23104 12 8 4 3
H 0.0745 77.84 6 5 3 1
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well localized and do not show strong hybridization with
other atoms, although we find some O, Br, and N contribu-
tions for the occupied states.

Starting from the experimental geometry18 we carried out
about 30 steps of a conjugate-gradient algorithm using the
Hellmann-Feynman-Pulay forces for optimization of the ge-
ometry. For each new geometry we calculated the complete
Hamiltonian of the magnetic anisotropy and the second-order
contribution to magnetic anisotropy barrier DSz

2 . In accord
with experimental data, we find that the Mn10 single mol-
ecule magnet is an easy-axis system. The barrier showed no
strong dependence on geometry varying between 8.8 and
10.4 K with a value of 9.5 K for the lowest energy geometry.
Expressing the barrier in the form of a simple spin Hamil-
tonian H5DSz

2 we obtained a value of D520.056 K. For
the calculation of the spin orbit matrix elements, we included
all valence electrons and all unoccupied states in an energy
window of 13.6 eV above the highest occupied state. The
difference between the second-order treatment and exact di-
agonalization of the Hamiltonian including the spin-orbit
matrix elements, which also includes some higher order ef-
fects, was of the order of 0.1 K. This error is also an estimate
of the numerical accuracy of our calculation, indicating that
changes due to structural effects are much more significant.

Equation 2 shows that the barrier is related to matrix ele-
ments between occupied and unoccupied orbitals in the ma-
jority and minority spin channels. In order to give a deeper
insight into which states are forming the barrier, we analyze
these contributions in more detail. First, we focus on the
contributions of the different spin channels. Table II summa-
rizes the result in form of the D parameter allowing only a
given spin channel, for example including only matrix ele-
ments M i j

ss8 between occupied majority states and unoccu-
pied minority states, in the calculation of the barrier. All
matrix elements from the occupied majority electrons prefer
an easy-axis system, whereas the matrix elements from the
occupied minority spin channel would result in an easy-plane
system. Only due to the larger values of the contributions of

the occupied majority spin channel the system ends up as an
easy-axis system. This partial cancellation between the dif-
ferent spin channels seems to be the reason for the small
barrier as compared with Mn12 , where we observed con-
structive contributions to the barrier from all spin channels.

In addition to the spin channel contribution, we can ana-
lyze which electronic states contribute most to the matrix
elements M i j

ss8 . In Fig. 3 we display plots of the square of
the wavefunctions of the occupied majority state and the
unoccupied minority state that contribute to the matrix ele-
ment M i j

ss8 with the largest absolute value. It is clearly vis-
ible that the states of interest are d states localized at the
same Mn atom. In this case, the states are localized at the
minority spin Mn atoms ~light spheres in Fig. 1!. In order to
emphasize the d character of the wave functions, we have
chosen the top view, although the wave functions of the other
minority Mn atom are just below the top ones and are not
visible. The value of M i j

ss8 is not determined by a single
contribution, but rather the result of the sum of many contri-
butions with different signs.

While Mn is the only magnetically active species in the
complex, the remaining atoms affect the magnetic properties
of the molecule. In particular the electric field of the twelve
Br2 ions can affect the MAE through its effects on the elec-
tronic structure and on the spin-orbit coupling. Effects of the
Br ions on the electronic structure are of a chemical nature,
and a detailed analysis is beyond the scope of this work.
However, direct effects on the spin-orbit coupling energy

FIG. 2. Electronic density of states ~DOS! broadened by 0.54 eV
of Mn10 in the spin S513 configuration. For each spin the total
DOS and the projected DOS of all Mn(3d) are presented. The
vertical line indicates the Fermi level.

TABLE II. The contributions of the different spin channels @see
Eq. ~2!# to the magnetic anisotropy parameter D and the magnetic
anisotropy energy DSz

2 .

occupied unoccupied D ~K! DSz
2 ~K!

majority majority 20.039 26.6
majority minority 20.106 217.9
minority majority 0.034 5.7
minority minority 0.055 9.3

FIG. 3. Isolines at 0.005e/aB
3 of the square of the wave func-

tions @occupied majority state ~a! and unoccupied minority state ~b!#

that contribute most to the matrix elements M i j
ss8 . The view is from

top with respect to the earlier figures. It is clearly visible that the
matrix element connects majority and minority d states at the same
Mn atom.
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could raise the possibility that even small variations in the
positions of these ions could affect the magnetic properties
of the molecule.

To measure the effects of the Br2 ions on the electronic
structure we repeated the calculations with various subsets of
the Br2 ions. For each removed Br we also removed an extra
electron, keeping the remaining molecule isoelectronic with
the original complex. For these systems with either zero,
four, or eight Br atoms, we observed a range of behaviors. In
some cases the electronic structure near the Fermi level was
similar to the original molecule, although it never showed
truly rigid-band-like behavior. In other cases, however, the
electronic structure changed significantly, sometimes com-
pletely closing the HOMO-LUMO gap. Associated with
these electronic structure changes were large changes in the
MAE, including changes in the magnitude of the anisotropy
barrier, as well as instances of changes to an easy-plane
system.

To measure the direct effect of the electric field of the Br
ions on the spin-orbit coupling, external Coulomb potentials
which acted to cancel the long range affects of the Br anions
were added and the spin-orbit interaction and magnetic an-
isotropy were recomputed. This neutralized the electric field
due to the Br2 ions near the Mn sites without changing the
electronic structure of the molecule. We tested the effects
with neutralizing charge distributions of various widths, and
by neutralizing four, eight, or all twelve Br anions. The MAE
changed by less than 1 K in all of these calculations. We

therefore conclude that the electric fields created by the Br2

ions do not have a significant effect on the magnetic proper-
ties of the molecule.

In conclusion, we present a study of the electronic and
magnetic properties of the Mn10 single molecule magnet. We
confirm the experimentally suggested magnetic ordering, al-
though we find that a state with S513 is the magnetic
ground state in contrast to the S512 state suggested from
high field EPR measurements8. In agreement with experi-
ment we find the Mn10 unit is an easy-axis system with a
small barrier of 9.5 K and the compensating cluster in the
molecular crystal, which has one Mn atom with S55/2, is an
easy plane system with a MAE of 0.1 K, negligible com-
pared with the Mn10 unit. We show that the magnetic anisot-
ropy is determined by a competition between different spin
channels involved. This competition is the main reason for
the small barrier observed. The electric field caused by the
negative charges of Br anions has no significant direct effect
on the spin-orbit coupling or the MAE, although their chemi-
cal interactions do have significant effect on the electronic
structure and therefore on the MAE. The states most impor-
tant for the magnetic anisotropy energy involve transitions
between occupied majority and unoccupied minority d states
at the same Mn atom.
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Hamiltonian of the V15 Spin System from First-Principles Density-Functional Calculations

Jens Kortus,* C. Stephen Hellberg, and Mark R. Pederson

Center for Computational Materials Science, Code 6390, Naval Research Laboratory, Washington, D.C. 20375
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We report first-principles all-electron density-functional-based studies of the electronic structure, mag-
netic ordering, and anisotropy for the V15 molecular magnet. From these calculations, we determine
a Heisenberg Hamiltonian with five antiferromagnetic and one ferromagnetic exchange couplings. We
perform direct diagonalization to determine the temperature dependence of the susceptibility. This Ham-
iltonian reproduces the experimentally observed spin S � 1�2 ground state and low-lying S � 3�2

excited state. A small anisotropy term is necessary to account for the temperature independent part of
the magnetization curve.

DOI: 10.1103/PhysRevLett.86.3400 PACS numbers: 75.50.Xx, 75.30.Et, 75.30.Gw, 75.45.+j

With the continued interest in the fabrication and
optimization of miniaturized magnetic devices [1], future
design considerations will require an understanding of
nanoscale magnetic systems. In order to transition such
materials into simple devices it is necessary to be able
to explain how interactions such as spin-spatial coupling
and spin-spin exchange effects may couple collectively
to create a seemingly single-spin system. Further, it is
necessary to determine the temperature range at which
such systems will indeed behave collectively. In general
the properties of a nanoscale system of coupled spins
depend directly on the strength of the exchange parame-
ters and on the size and sign of the anisotropy energy
due to spin-orbit coupling. While these parameters are
generally determined by the transition metal atoms, the
ligands and other nonmagnetic atoms are responsible for
stabilizing the array of spins. Requisite to a complete
computational understanding of such spin systems is the
ability to account for the strong ligand-metal interactions
and to determine whether the behavior of a given spin
system is mainly mediated by the anisotropy, by spin-spin
coupling, or by a combination of the two.

Recently, the Mn12-acetate and Fe8 molecules [2] have
attracted considerable interest because they behave as high-
single-spin systems (total spin S � 10) at temperature
ranges on the order of 20–60 K. Because of their large
magnetomolecular anisotropy energy these systems retain
their moment orientation at reasonably high temperatures
and exhibit the phenomena of resonant tunneling of mag-
netization at well defined magnetic fields [3,4].

The K6�V15As6O42�H2O��8H2O molecular crystal, first
synthesized by Müller and Döring [5,6], represents a
transition-metal spin system in the same size regime
as the Mn12 and Fe8 molecular crystals. In contrast to
Mn12 and Fe8 molecules, the V15 molecule is thought
to behave as a weakly anisotropic magnet composed of
15 spin s � 1�2 particles which couple together to form a
molecule with a total spin S � 1�2 ground state. Besides
the fundamental interest in understanding quantum effects
in these nanomagnets, they might be also relevant for im-
plementations of quantum computers [7]. Calculations on

such correlated systems present a challenge to mean-field
frameworks such as density-functional theory because it is
often not possible to construct a single collinear reference
state which preserves the inherent symmetry of the system
and has the correct spin quantum numbers.

This work utilizes an efficient coupled multilevel analy-
sis which relies on fitting density-functional energies to
mean-field Heisenberg or Ising energies in order to deter-
mine the exchange parameters. The approximate exchange
parameters gleaned from the first N Ising configurations
were used to find the next lowest energy Ising configura-
tion and subsequently to improve the parametrization of
the exchange parameters. “Self-consistency” of this ap-
proach is determined when the predicted Ising levels are
unchanged by the addition of data from new Ising configu-
rations. The coupling of the density-functional method
to a classical Ising representation allowed us to determine
the exchange parameters by considering only several spin
configurations. Further, the resulting ground-state spin
configuration within density-functional theory exhibits the
correct spin projection of 1�2. With the exchange parame-
ters determined, we diagonalize the complete many-body
Heisenberg Hamiltonian to calculate the susceptibility and
spin correlation functions for comparison with experiment.
The many-body basis is complete, so all states are al-
lowed including noncollinear spin arrangements and quan-
tum disordered phases [8].

Starting from x-ray data [9] we generated several unit
cells and isolated a single K6�V15As6O42�H2O�� unit. In
order to optimize the geometry within the quasi- D3 sym-
metry of the V15 molecule [5], we initially replaced the
statistically oriented water molecule at the center of the
molecule by a neon atom and used an S � 3�2 spin con-
figuration which does not break the crystallographic sym-
metry. The Ising configuration of this molecule consists of
three aligned spin- 1

2 V atoms in the triangle and equivalent
upper and lower hexagons composed of a ring of antifer-
romagnetically (AF) coupled spin- 1

2 V atoms.
The geometry of the molecule was then optimized within

the all-electron density-functional methodology using the
generalized-gradient approximation (GGA) [10]. The
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calculations were performed with the Naval Research
Laboratory Molecular Orbital Library (NRLMOL) [11].
Calculations on 49 geometrical configurations were per-
formed during the conjugate-gradient relaxation of the
molecule. Subsequent calculations show that the geomet-
rical, electronic, and magnetic properties of this system
are unaffected by the presence or type of inert moiety
enclosed within the void. Using this geometry, we per-
formed eleven additional calculations on different spin
configurations (see Table I) to determine the six exchange
parameters (J 0s) of the Heisenberg Hamiltonian

H �

X
JijSi ? Sj , (1)

as well as the spin configuration of the density-functional
ground state [8]. The J 0s used in the above Hamiltonian
are defined according to Fig. 1. As shown in Table I,
we have included high-spin configurations (XI, XII,
XIII), which generally have some symmetry as well as
lower-spin nonsymmetric configurations. The energy for
the high-spin S � 15�2 ferromagnetic (FM) state (XIII) of
873 meV is predominantly caused by a large AF exchange
coupling (J) between the most closely bonded hexagonal
V atoms. However, the 113 meV splitting between the
S � 9�2 and S � 15�2 states (XII and XIII) shows that
there is a reasonably strong AF coupling, approximately
18 meV on average, between the triangular and hexagonal
atoms. All of the data displayed in Table I have been
used to determine the exchange parameters from a least
square fit to the mean-field solution of the Heisenberg
Hamiltonian (1). The fit is very good with errors ranging
from 0.1–1.55 meV. The fit leads to exchange parameters
of J � 290.3 meV, J 0

� 222.7 meV, J 00
� 15.9 meV,

J1 � 13.8 meV, J2 � 23.4 meV, and J3 � 0.55 meV,
where positive numbers correspond to AF and negative
ones to FM interactions. The ferromagnetic interaction J 0

is a surprising result [12] and deserves further discussion

since it is qualitatively different from earlier assumptions
based on entirely AF interactions [6,13]. Ferromagnetic
coupling is possible without polarizing the oxygens
through a 4th order process similar to superexchange.
In superexchange, the intermediate state has the lowest
d orbital on the V doubly occupied with up and down
electrons [14]. However, electrons can also hop to higher
energy d orbitals on the V’s. In this case both parallel
and antiparallel spins are allowed without violating the
Pauli exclusion principle, but Hund’s rule coupling prefers
parallel alignment. The superexchange process (same d

orbital) completely excludes the process with same-spin
electrons while the FM process (different d orbitals)
merely favors FM alignment. Thus a FM coupling is ob-
tained if the V-O hopping matrix elements into the higher
d orbital are significantly larger than the matrix elements
for the hopping of O electrons into the lowest energy d

orbital. The occurrence of such interactions is possible in
a low-symmetry system such as the one studied here.

Even with this FM interaction, our spin Hamiltonian
yields an S � 1�2 ground state composed largely of Ising
configurations similar to the one depicted in Fig. 1. This
Ising configuration was predicted from the J’s from earlier
fits to DFT energies and corresponds to the ground-state
DFT configuration (I).

We have fully diagonalized the Heisenberg Hamilto-
nian (1). Using all symmetries, the largest irreducible
many-body subspace has dimension 2145. We find a spin-
1�2 Kramer doublet as the ground state with a low-lying
spin-3�2 quadruplet as shown in Fig. 1. The rest of the
spectrum is well separated from these eight states. The
large value of J binds the spins in the hexagons into sin-
glets. The low-energy physics arises from the inner tri-
angle spins interacting with each other both directly and
with an effective coupling through the hexagons, yielding
the doublet-quadruplet spectrum [15]. There are two im-
portant energy scales in the spectrum: D, the gap between
the doublet and quadruplet, and J , the energy at which the

TABLE I. DFT energies (E) of calculated Ising configurations, energies obtained from the fit, and 4�S
q

i S
q

j � along each of the six
bonds. Also included is the anisotropy shift d for the Ms � S state of each Ising configuration. A least square fit of this data leads
to exchange parameters of J � 290.3, J 0

� 222.7, J 00
� 15.9, J1 � 13.8, J2 � 23.4, and J3 � 0.55 meV.

E (meV) Fit J J 0 J 00 J1 J2 J3 Spin Label d (K)

278.37 278.44 26 2 22 6 26 21 1�2 I 0.8
273.39 273.63 26 2 22 4 24 21 1�2 II
235.48 235.08 26 22 2 4 24 21 1�2 III
234.89 234.53 26 22 2 4 24 3 3�2 IV

0.00 20.79 26 26 6 6 26 3 3�2 V 1.5
8.38 8.28 26 26 6 2 22 21 1�2 VI 1.3

28.14 28.08 26 26 6 26 6 3 3�2 VII
126.32 126.14 24 24 6 4 26 3 1�2 VIII
129.17 128.88 24 24 2 6 24 3 5�2 IX
278.35 278.50 22 26 2 4 24 3 3�2 X
434.22 435.78 0 0 6 6 0 3 9�2 XI 1.6
760.75 760.76 6 6 6 26 26 3 9�2 XII 1.6
873.11 872.35 6 6 6 6 6 3 15�2 XIII 1.8
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FIG. 1. The 15 magnetic vanadium atoms of the
K6�V15As6O42�H2O�� molecule. They form two hexagonal
layers and an inner triangular layer of vanadium atoms
sandwiched within. The arrows show the lowest energy spin
configuration found from DFT calculations. The six exchange
parameters used in the Heisenberg Hamiltonian are shown as
lines. Schematically displayed are energy levels of the Kramer
doublet (S � 1�2) ground state and the low-lying quadruplet
(S � 3�2) separated by D.

singlets in the hexagon break and the molecule starts to
behave as more than three spins.

The low-energy effective interaction between inner tri-
angle spins proceeds via J1 and J2 (which frustrate each
other) to a hexagon singlet, via J 0 and J 00 to a neighboring
singlet, and finally via J1 and J2. A larger contribution to
D comes from a direct interaction through J3 mediated by
hopping through O and As levels. Thus simple perturba-
tion theory [6] yields

D �

3

4

�J2 2 J1�2�J 00 2 J 0�
J2

1
3

2
J3 . (2)

Comparing our calculated susceptibility with experi-
ment [13], we find the low-temperature behavior indicates
our doublet-quadruplet gap D � 10 K to be significantly
larger than the experimental value of D � 3.7 K, while the
high-temperature behavior shows our calculated value of J

is too large. Both of these discrepancies can be explained
almost entirely by J 0s that are too large within the density-
functional-based treatment, as known for other vanadium
systems [8].

Agreement with experiment for the low temperature D
can be achieved by dividing all J 0s by a constant factor
of 2.9. Figure 2 shows our calculated result with rescaled
J 0s compared to experimental data from Chiorescu. A uni-
form scaling of our calculated exchange parameters is not
able to obtain the right low and high temperature behavior
at the same time. The high temperature behavior could be
improved by further reducing J with corresponding adjust-
ments to the other couplings to keep D constant.
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FIG. 2. The effective moment meff �

p
3xT calculated with

all J 0s uniformly rescaled by dividing by a constant factor of
2.9. The diamonds are the actual experimental values from
Chiorescu. The inset shows the low temperature behavior.

A set of AF interactions [6] also fits the experimental
results. In fact any set of parameters with the correct
values of J and D given by Eq. (2) will fit the effective
moment well. To support future efforts aimed at experi-
mentally confirming our relative parameters, we have
calculated the spin-spin correlation function CS �

4�S
q
i ? S

q
j �, with q representing the arbitrary quantization

axis. Since J is always largest, the spins tend to form a
singlet along this bond, yielding CS�J� 	 21 (AF corre-
lation). The three inner triangle spins form a noncollinear
arrangement with CS 	 20.33 between all pairs of spins.
The direct J3 coupling reduces the correlations between
triangle and hexagon spins. We find CS�J1� 	 10.02

and CS�J2� 	 20.02 (FM and AF correlations, respec-
tively), while the coupling constants of Ref. [6] yield
CS�J1� 	 10.12 and CS�J2� 	 20.14. This prediction
should be measurable with neutron scattering.

Chiorescu et al. observe that rotation of the spin pro-
jection is achieved without encountering a barrier [13] and
Dobrovitski et al. posit that the V15 molecule is indeed
a low anisotropy system [15]. As shown below the ex-
istence of either easy-plane or easy-axis anisotropy will
shift the Ms � 3�2 1�2 Zener-Landau tunneling transi-
tions that have been observed by Chiorescu et al. [13].

Recently, Pederson and Khanna have developed a new
method for accounting for second-order anisotropy ener-
gies [16]. This method relies on a simple albeit exact
method for spin-orbit coupling and a second-order pertur-
bative treatment of the spin-orbit operator to determine the
dependence of the total energy on spin projection. Ini-
tial applications to Mn12 lead to a density-functional-based
second-order anisotropy energy of 55.7 K [17] which is in
essential agreement with the experimentally deduced val-
ues of 55.6 K [18]. We have generalized this methodology
to systems with arbitrary symmetry and have calculated the
anisotropy energy for several different spin configurations
of the V15 molecule.
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We have calculated the anisotropy energy for the low-
est Ising configurations with one, three, nine, and fifteen
unpaired electrons, as given in Table I. In all cases we
find that the V15 possesses weak easy-plane anisotropy.
This result ensures that anisotropy effects will not change
the total spin of the V15 ground state. Examination of
the expression for the second order anisotropy energy in
Ref. [16], shows that such energies do not necessarily scale
as the square of the total moment. Indeed, as shown in
Table I, we find that the anisotropic effects are in fact only
weakly dependent on the total spin and that the energy of
the Ms � S state increases by approximately d � 0.8 to
1.8 K. Chiorescu et al. show that the broadening of the
Zener-Landau tunneling fields decreases with temperature
for the j1�2, 1�2� to j1�2, 21�2� transitions but are inde-
pendent of temperature for the j3�2, 3�2� to the j3�2, 1�2�
transitions [13]. This behavior is exactly what is expected
from a sample containing weak easy-plane spin anisotropy.
At sufficiently low temperatures, only the S � 3�2 and
S � 1�2 states are relevant, and the field-dependent cross-
ing of these states depends on whether the magnetic field
is parallel or perpendicular to the easy plane. The broad-
ening is proportional to the difference of the magnetic
anisotropy energy for the different spin configurations in-
volved. Because of the small anisotropy in V15 the effect
will be small. Although it is not possible to translate the
DFT obtained anisotropy energies directly to the quantum
mechanical many-spin ground state discussed here, we ob-
tain from these energies tunnel field broadenings between
0.1 to 0.48 T which envelop the experimentally observed
field broadening of about 0.2 T [13]. In powdered samples,
the small easy-plane anisotropy would lead to a broaden-
ing in the tunneling field and in single crystals the effect
would change the tunneling fields as a function of field
orientations.

To summarize, we have performed accurate all-electron
density-functional calculations on the V15 cluster as a func-
tion of geometry and spin configuration. By dynamically
coupling the mean-field density-functional approach to
exact-diagonalization of a many-spin Heisenberg represen-
tation, we have efficiently determined the lowest density-
functional configurations and the entire Heisenberg spin
excitation spectrum. Our calculations suggest that the
small experimentally observed orientational dependence
of the tunneling field for the Ms � 3�2 to Ms � 1�2 is a
signature of configuration dependent magnetic anisotropy
in this molecule. The method used here is general and
allows one to characterize both systems which are poten-
tially useful for magnetic storage (Mn12, Fe8) and systems
which show quantum coherence, such as the one studied
here.
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