
Efficient Functional Unification and
Substitution

Atze Dijkstra

Arie Middelkoop

S. Doaitse Swierstra

institute of information and computing sciences, utrecht university

technical report UU-CS-2008-027

www.cs.uu.nl

Efficient Functional Unification and Substitution

September 12, 2008

Abstract

Implementations of language processing systems often use unification and substitution to
compute desired properties of input language fragments; for example when inferring a type
for an expression. Purely functional implementations of unification and substitution usually
directly correspond to the formal specification of language properties. Unfortunately the
concise and understandable formulation comes with gross inefficiencies. A seond appoach is
to focus on efficiency of implementation. However, efficient implementations of unification
and substitution forgo pure functionality and rely on side effects. We present a third, ‘best
of both worlds’, solution, which is both purely functional and efficient by simulating side
effects functionally. We compare the three approaches side by side on implementation and
performance. Our work can be seen as the practical counterpart of explicit substitution in a
functional setting.

1 Introduction

Although unification arises in many problem areas, for example in theorem proving systems and in
Prolog implementations, our inspiration for this paper comes from its application in type checking
and inferencing in a Haskell compiler (5; 7; 6). In Haskell we may write, for example:

first (a, b) = a
x1 = first 3
x2 = first (3, 4)
x3 = first ((3, 4), 5)

For first we need to infer (or reconstruct) its type ∀a b.(a, b) → a, whereas for x1, x2 and x3 we
need to check whether it is permitted to pass the given argument to first . Obviously this is not
the case for x1.
In implementations of type systems the reconstruction of yet unknown type information and
the check whether known types match is usually done with the help of unification of types, the
unification paradigm being one of many strategies to solve equations on types imposed by the
formal specification of a type system. Types may contain type variables representing yet unknown
type information; unification then either matches two types, possibly returning new bindings for
such type variables, referred to as substitution, or it fails with a type mismatch. For example,
for the application of first to (3, 4) in the definition of x2 types (Int , Int) and (v1, v2) match with
bindings for type variables v1 and v2; in the right hand side of the definition for x1 the given
argument type Int and expected argument type (v1, v2) do not match.
Formally, the unification problem is described as follows (see Knight (13)). We define a term,
denoted by {s, t }, to be constructed from function symbols {f , g } and variable symbols {v ,w }:

t = f (t1, . . , tn)
| v

1

Function symbols take a possibly empty sequence of arguments; functions without arguments act
as constant symbols.
A substitution is a mapping from variables to terms: {v1 7→ t1, . . , vn 7→ tn }. We wll use {θ, σ, ϑ}
to refer to substitutions. A substitution can be extended to a function from terms to terms via
its application to terms, denoted by θ(t) or juxtaposition θt when it is clear that substitution
application is meant. The term θt denotes the term in which each variable vi in t in the domain
of θ is replaced by ti = θ(vi):

θ(f (t1, . . , tn)) = f (θt1, . . , θtn)
θ(v) = t , {v 7→ t }⊂θ

= v , otherwise

Substitutions can be composed: σθt denotes t after the application of θ followed by σ. The
application to a substitution θ = {vi 7→ ti } is defined as σθ = σ ∪ {vi 7→ σti }. Composition of
substitutions is associative, but in general not commutative.
Two terms s and t are unifiable if there exists a substitution θ such that θs = θt . The substitution
θ is then called the unifier , θt the unification. A unifier θ is called the most general unifier (MGU)
if for any other unifier σ, there exists a substitution ϑ such that ϑθ = σ. Two terms s and t may
be infinitely unifiable if their unifier binds variables to infinitely long terms. In this paper we
prevent this from happening.

The problem From the above definitions we already can see why a straightforward functional
implementation will be inefficient. When we directly translate the definition of the substitution
application θt to a corresponding function application in a purely functional language like Haskell,
each such application will construct a copy s of t , differing only in the free vi for which θ has
a binding. Furthermore, whenever vi occurs more than once in t , several copies of θ(vi) will be
present in s. This leads to duplication of work for a subsequent substitution, a situation which
occurs when substitutions are composed. Substitution composition is done frequently; this then
makes variable replacement in substitutions the culprit, and thus has to be avoided in more efficient
implementations of the subsitution process.

A solution with side effects and its derived problems The growth of terms via duplicate
copies of substituted variables can be avoided by never replacing variables. Instead we let variables
act as pointers to a possible replacement term. This is easily accomplished in imperative languages,
but is more difficult in purely functional ones because of the side effects involved: initially a variable
will have no replacement bound to it, and when later a replacement is found for the variable the
pointer is made to point to the term replacing the variable.
In a functional language like Haskell we achieve this by leaving the side effect free functional world:
the IO monad (Haskells imperative environment) and IORef s (Haskells pointer mechanism) are
then used. This is the approach taken in the GHC (16; 22) by the type inferencer, with the
following consequences:

• Side effects infect: term reconstruction (type inferencing) and related functionality all have
to be aware of side effects and loose the benefits of pure functions.

• Once updated, a variable is changed forever after. This, for example, complicates the use of
backtracking mechanisms that may need to undo substitutions.

How much we suffer from these consequences depends on the necessities of the program using
unification. We found ourselves in a situation where we were hindered by the lack of efficiency
of the basic functional solution, and did not want to corrupt the cleanliness of our compiler
implementation (5; 7; 6). Furthermore we wanted the freedom to experiment with temporary
assumptions about type variables, instead of fixing knowledge about such variables in one pass

2

directly. So we designed a third solution which is both functionally transparant and efficient. We
come back to our rationale and context of this paper in Section 7 after dealing with the technical
content.

Our contribution: a solution without side effects A solution infecting an otherwise func-
tional program with side effects can be avoided by simulating side effects purely functionally. The
essence of an efficient substitution mechanism is to share the binding of a variable instead of copy-
ing it. This can be implemented without relying on imperative constructs such as IO in Haskell.
Our contribution thus is:

• Present our side effect free efficient functional unification and substitution.

• Compare our solution with the naive purely functional as well as the side effect solution. We
look at both the implementation and performance.

Related work Our work is closely related to explicit substitutions (1; 21) in which substitutions
are modelled explicitly in λ-calculus for the same reason as we do, to avoid inefficient duplication
of work. Explicit substitution also deals with garbage collection (of term variables), which we
do not. On the other hand, we are not aware of other published work describing a solution for
unification and substitution in a practical and functional setting as ours; neither are we aware of
side by side presentations with other solutions.
The purely functional solution is frequently used in textbook examples (12; 17), whereas the one
with side effects is used when efficiency is important, such as in production quality compilers
(16; 22).
Much work has been done on unification, in fact so much that we only mention some entry points
into existing literature, amongst which some surveys (13; 2; 10) and seminal work by Robinson
(18; 19; 20), Paterson and Wegman (15), and Martelli and Montanari (14).
Observable sharing (4) provides identity of values, allowing equality checking based on this identity.
The low level implementation requires side effects, similar to the solution in this paper based on
side effects.
The problem we encounter is a consequence of being purely functional. Hiding the problem and its
solution can be done by offering unification as a language feature and building the implementation
of unification into the language implementation, as done in Prolog and its implementations.

Outline of the remainder of this paper In Section 2 we proceed with the preliminaries for our
work, in particular a mini system, formally described, and implemented using the three variants
of unification and substitution. In Section 3 we present the purely functional implementation,
in Section 4 the one with side effects, and in Section 5 our solution, which we call functional
sharing in this paper to emphasize the purely functional nature as well as sharing for efficiency.
We look at performance results in Section 6, discuss in Section 7, and conclude in Section 8.

2 Preliminaries

The essence of the problem: purely functional versus side effects A function f is called
purely functional (or simply functional) when for all invocations f1 x and f2 x of f parameterized
with x , in all execution contexts and all execution orderings, f1 x = f2 x holds. Given an execution
order f1 x1; e; f2 x2 with x1 = x2, then e has a side effect when for the execution order x1; e; x2

the invocations have different results f1 x 6= f2 x . In particular we are interested in computations
resulting in terms t . We want t to be purely functional, that is, we want two uses t1 and t2 of
t always to be equal: t1 = t2. Naively done this turns out to be inefficient (Section 3), so we
forgo pure functionality and allow side effects in e to modify t , that is t1 6= t2 in the execution

3

order t1; e; t2 (Section 4). Finally we recover purely functional behavior by parameterizing t with
that part se of e which is responsible for the side effect (Section 5), so once again t1 se = t2 se
in the execution order t1 se; e; t2 se. The side effect of e is modelled explicitly by se instead of
being implicit. A side effect means a different se. Different se1 6= se2 are passed explicitly as a
parameter to functions using a term t , in particular t itself: t se. In this paper unification yields
such t and se, where se is a substitution θ.

Experimental environment Our experimental environment consists of an implementation re-
sembling structures found in many compilers. We thus mimic the actual runtime environment we
are interested in, while keeping things as simple as possible. Fig. 1 shows the rules for our system;
it should be familiar to those acquainted with type systems. Since we want to focus on unification
mechanisms without wandering off to type systems, our example system neutrally specifies which
values Val are to be associated with a tree Tree.

Γ ` Tree : Val

Γ ` C : c
t.conD

(n 7→ v) ∈ Γ
Γ ` n : v

t.usebD

Γ ` x : v
n 7→ v ,Γ ` y : w

Γ ` bind n = x in y : w
t.defbD

Γ ` x : v
Γ ` y : w

Γ ` (x , y) : (v ,w)
t.tupD

Γ ` x : (v ,w)
Γ ` fst x : v

t.fstD
Γ ` x : (v ,w)
Γ ` snd x : w

t.sndD

Figure 1: Rules for Val of Tree (D)

A Tree offers constructs for binding and using program identifiers, as well as constructing and
deconstructing pairs of (ultimately) some constant. The concrete syntax is included in comment,
the exclamation mark enforces strictness and can be ignored for the purpose of understanding:

data Tree -- concrete syntax:
= Constant -- C
| UseBind String -- n
| DefBind String Tree Tree -- bind n = x in y
| Tuple Tree Tree -- (x,y)
| First Tree -- fst x
| Second Tree -- snd x

The rules associate a Val with a Tree. Again, a Val is inspired by type systems, but for the
purposes of this paper it is just some structure, complex enough to discuss unification and substi-
tution. Therefore, in the remainder of this paper a Val is a term participating in unification and
substitution.

data Val -- concrete syntax:
= Pair Val Val -- (v,w)
| Const -- c
| Var VarId
| Err String

type VarId = Int

4

A Val has two alternatives in its structure which do not have a Tree constructor as counterpart: a
construct Var for encoding variables as used in unification and substitution, and a construct Err
for signalling errors.

Test examples For example, with the following tree:

bind v1 = C in
bind v2 = (v1, v1) in
bind v3 = (snd v2, fst v2) in v3

the rules associate the value (c, c). This example is one of the test cases we use, where we also
vary in the number of bindings similar to v3. The value of the tree is always (c, c).
The second example we use for testing infers a Val of exponential size in terms of the number of
bindings similar to v4, yielding values ((c, c), ((c, c), (c, c))) and so forth for increasing numbers
of similar bindings:

bind v1 = C in
bind v2 = (v1, v1) in
bind v3 = (fst v2, v2) in
bind v4 = (snd v3, (v2, v2)) in v4

The first example provides typical programming language input, with many small definitions,
whereas the second example provides a worst case scenario. We label the tests respectively linear
and exponential.

From declarative rules to an algorithm The rules in Fig. 1 are declarative of nature, no-
tationally indicated by the suffix D in the names of the rules. The rules in Fig. 2 provide an
algorithmic equivalent, indicated by the suffix A. The essential difference lies in rule t.fst (and
rule t.snd) where the declarative variant simply states some restriction on a Val . In this case
the argument of fst is constrained to have a Val of the form (v ,w). This is typical of declara-
tive rules: a restriction is just stated. The algorithmic variant however needs to computationally
check the restriction and compute its constituents. The rules in Fig. 2 do this in a way typical of
algorithmic variants: the constraining structure (v ,w) is unified with the structure to be checked.
Unification is denoted by ≡ and later on implemented by valUnify . The constraining Val is built
from variables guaranteed to be unique (called fresh), whereas the extraction is done by simply
using the unique variables together with a substitution θ holding possible additional information
about the variables.
The algorithmic version threads a substitution θ through its computation, while gathering infor-
mation about the Vars participating in the construction of the Val associated with the root of the
tree. The rules maintain the invariant that θ is already taken into account in resulting t ’s, that is
θt = t , where t refers to the Val component of the conclusion.
A substitution θ is represented by a variable mapping VMp, mapping identifiers VarId of variables
to terms Val :

newtype VMp = VMp (Map VarId Val)

We need the usual functions for constructing and querying, for which we only give the signatures:

emptyVM :: VMp
(|?) :: VarId → VMp → Maybe Val -- lookup
vmUnit :: VarId → Val → VMp
vmUnion :: VMp → VMp → VMp

5

θin; Γ ` Tree : Val θout

θ; Γ ` C : c θ
t.conA

(n 7→ v) ∈ Γ
θ; Γ ` n : θ v θ

t.usebA

θ; Γ ` x : v θx
θx ; n 7→ v ,Γ ` y : w θy

θ; Γ ` bind n = x in y : w θy
t.defbA

θ; Γ ` x : v θx
θx ; Γ ` y : w θy

θ; Γ ` (x , y) : (θyv ,w) θy
t.tupA

θ; Γ ` x : vw θx
v ,w fresh

(v ,w) ≡ vw θm
θ; Γ ` fst x : θmθxv θmθx

t.fstA

θ; Γ ` x : vw θx
v ,w fresh

(v ,w) ≡ vw θm
θ; Γ ` snd x : θmθxw θmθx

t.sndA

Figure 2: Rules for Val of Tree (A)

The rules in Fig. 2 thus specify a particular strategy to find a solution for all types represented
by the metavariable occurrences of v ,w in Fig. 1, constrained by the declarative rules. Usually
one would now prove soundness and completeness between these two sets of rules; we do not do
so here as we are exploring the behavior of the substitution mechanism.
Contextual information Γ holding assumptions for program identifiers is encoded by an environ-
ment Env :

newtype Env = Env (Map String Val)

We omit definitions for functions on Env and assume their names are understandable enough to
indicate their meaning.
Finally, in the following we restrict ourselves to first order unification, and do not allow infinite
values.

3 Substitution by copying

We first discuss the purely functional reference implementation to which we compare the others.
We present the overall computational structure on which we vary in the subsequent alternate
implementations. We label this solution by functional.
Fig. 3 shows the implementation of the algorithmic rules (Fig. 2). The rules strongly suggest a
direction in which information flows over a tree, upward or synthesized for e.g. Val , downward or
inherited for e.g. Γ, and chained for θ. We use a state monad to encode this flow:

data St = St{stUniq :: !VarId
, stEnv :: !Env
, stVMp :: !VMp
}

type Compute v = State St v

The Compute state monad threads the following three values through the computation:

• a counter used for creating fresh variables,

6

treeCompute :: Tree → Compute Val
treeCompute t =

case t of
Constant → return Const
UseBind n →

do st ← get
case envLookup n (stEnv st) of

Just v → return (stVMp st |@ v)
→ return (Err ("not found: " ++ show n))

DefBind n x y →
do v ← treeCompute x

st ← get
let env = stEnv st
put (st{stEnv = envUnit n v ‘envUnion‘ env })
w ← treeCompute y
st ← get
put (st{stEnv = env })
return w

Tuple x y →
do v ← treeCompute x

w ← treeCompute y
st ← get
return (Pair (stVMp st |@ v) w)

First x →
do vw ← treeCompute x

[v ,w]← newVars 2
valUnify (Pair v w) vw
st ← get
return (stVMp st |@ v)

Second x →
do vw ← treeCompute x

[v ,w]← newVars 2
valUnify (Pair v w) vw
st ← get
return (stVMp st |@ w)

Figure 3: Computation of Val over Tree in the functional solution

7

• an environment Env holding Γ,

• and a variable mapping VMp corresponding to both the inherited and synthesized substitu-
tion θ.

Strictly speaking the Env needs not be threaded, but we prefer to avoid the additional complexity
of placing this part of the state into a reader monad and using the associated monad transformers.

Substituting In a Val substitutable variables may occur, and thus also in Env . Substitutabilty
is expressed by the class Substitutable:

class Substitutable x where
(|@) :: VMp → x → x
ftv :: x → Set VarId

The application θx of a substitution θ to some x is expressed by the function |@. The function
ftv computes the free variables of a x .
Substitution over a Val is straightforwardly encoded as a recursive replacement:

instance Substitutable Val where
s |@ v

= sbs s v
where sbs s (Pair v w) = Pair (sbs s v) (sbs s w)

sbs s v@(Var i) = case i |? s of
Just v ′ → v ′

→ v
sbs s v = v

ftv (Var i) = Set .singleton i
ftv (Pair v w) = ftv v ‘Set .union‘ ftv w
ftv = Set .empty

The composition of two substitutions, that is, substituting over a substitution itself means taking
the union of two VMps and ensuring that all Vals in the previous substitution are substituted
over as well, the previous substitution being the second operand to |@:

instance Substitutable VMp where
s |@ (VMp m) = s ‘vmUnion‘ VMp (Map.map (s |@) m)
ftv (VMp m) = Map.fold (λv fv → fv ‘Set .union‘ ftv v)

Set .empty m

Applying the |@ from this instance over and over again makes the update of a substitution with
new bindings for variables a costly operation, and alone is responsible for a major part of the
efficiency loss of this solution.

Value unification Unification tells us whether two values can be made syntactically equal, and
a substitution tells us which variables in these values have to be bound to another value to make
this happen. Fig. 4 shows the code for valUnify , which unifies two Vals, thus implementing the
operator ≡ used by e.g. rule t.fst in Fig. 2. Function valUnify applied to t and s yields the
unification θt directly and the substitution θ via the state of Compute. A unification may also
fail, which we simply signal by the Err alternative of Val .
We note that always returning the unification θt is convenient but strictly not necessary, as θ and
t can also be combined outside valUnify . Now additional Vals are constructed, however, we could
not observe an effect on performance (see Section 6 for further discussion). Encoding an error

8

valUnify :: Val → Val → Compute Val
valUnify v w

= uni v w where
uni v@(Const) (Const) = return v
uni v@(Var i) (Var j) | i == j = return v
uni (Var i) w = bindv i w
uni v w@(Var) = uni w v
uni (Pair p q) (Pair r s) =

do pr ← uni p r
st1 ← get
qs ← uni (stVMp st1 |@ q) (stVMp st1 |@ s)
st2 ← get
return (Pair (stVMp st2 |@ pr) qs)

uni = err "fail"
bindv i v
| Set .member i (ftv v) = err "inf"
| otherwise =

do st ← get
put (st{stVMp = vmUnit i v |@ stVMp st })
return v

err x = return (Err x)

Figure 4: Val unification in the functional solution

as part of Val is also a matter of convenience, and merely to show where errors arise; we do not
report those errors and in our test cases no errors arise.
The function valUnify assumes that its Val parameters do not contain free variables bound by
the substitution stVMp passed via the Compute state. Whenever a variable is encountered during
the comparison of the two types being unified, it is bound to the other comparand. We prevent
recursive bindings causing infinite values, like v 7→ (v , v), from occurring by performing the so
called occurs check done in bindv , and by checking on the trivial unification of v with v .
Unification proceeds recursively over Pairs. We ensure the invariant that Vals passed for further
comparison always have the most recent substitution already applied to them.

Fresh variables Besides the environment and the current substitution, the state St contains a
counter for the generation of fresh variables. Function newVar increments the counter stUniq in
the Compute state and returns Vars with unique VarIds:

newVar :: Compute Val
newVar = do st ← get

let fresh = stUniq st
put (st{stUniq = fresh + 1})
return (Var fresh)

Function newVars conveniently returns a group of such variables:

newVars :: Int → Compute [Val]
newVars n = sequence [newVar | ← [1 . .n]]

Computing a Val over a Tree All ingredients for Fig. 3 come together in the alternative for
e.g. rule t.fst:

First x →
do vw ← treeCompute x

9

[v ,w]← newVars 2
valUnify (Pair v w) vw
st ← get
return (stVMp st |@ v)

We closely follow the algorithmic variant of the rule by recursing over the x component of fst x ,
allocating fresh variables, using these to match the value of x and returning its first component
with the most recent substitution applied. We also slightly deviate from the rule by threading the
full Compute state through valUnify instead of computing additional bindings only.
Finally, treeCompute is invoked by a toplevel test environment which first constructs a tree as
specified by commandline arguments, then calls treeCompute, enforces a deep evaluation of the
result and prints the result, also depending on commandline arguments. See Fig. 5 for further
details not explained here.

main :: IO ()
main

= do ((kind : ’/’ : dep) : (output :) : variant :)
← getArgs

let t = case kind of
’a’→ mkLinearTree (read dep)
’b’→ mkExponentialTree (read dep)
→ error [kind]

(r ,) = runState (treeCompute t) emptySt
when (output == ’p’)

(do putPPLn (pp t)
putPPLn (pp r)

)
putStrLn (r ‘seq ‘ "done")

Figure 5: Toplevel test environment

This completes our basic reference implementation, often used for its simplicity in explanations, but
avoided in real world systems because of the time and memory spent in copying and substituting
over the content pointed to by variables.

4 Substitution by sharing

We can avoid the copying of Vals during substitution in the previous solution by sharing the content
bound to variables. Variables become pointers1 in a directed acyclic graph (DAG) representation
of Val instead of a tree representation as used by the functional solution (15). We use an
IORef to encode such a pointer (16), with utility functions like newRef for hiding its use. Note
that refRead is not returning a Compute monad; a tricky point we come back to at the end of this
section. We label this solution sharing.

data Val -- concrete syntax:
= Pair Val Val -- (v,w)
| Const -- c
| Var VarId Ref
| Err String

type RefContent = Maybe Val

1We still need the VarId fields because of the computation of ftv returning a Set ; IORef is not an instance of
Ord required for Set .

10

newtype Ref = Ref (IORef RefContent)
data St = St{stUniq :: VarId

, stEnv :: Env
}

type Compute v = StateT St IO v
newRef :: Compute Ref
refRead :: Ref → RefContent
refWrite :: Ref → RefContent → Compute ()
newRef = do r ← lift $ newIORef Nothing

return (Ref r)

In essence, we now store the substitution which maps variables to values directly in a Var . Hence
we do not need the VMp in the Compute state anymore. On the other hand, we need to combine
the State monad with the IO monad because of the use of IORef . A fresh variable now also gets
a fresh shared memory location Ref , initialized to hold nothing:

newVar :: Compute Val
newVar = do st ← get

let fresh = stUniq st
put (st{stUniq = fresh + 1})
r ← newRef
return (Var fresh r)

Unification now has to be aware that variables are pointers: the sharing solution is presented in
Fig. 6. Relative to the functional solution we need to modify the following:

valUnify :: Val → Val → Compute Val
valUnify v w

= uni v w where
uni v@(Const) (Const) = return v
uni v@(Var i) (Var j) | i == j = return v
uni (Var r) w | isJust mbv = uni v ′ w

where mbv = refRead r
v ′ = fromJust mbv

uni v@(Var) w = bindv v w
uni v w@(Var) = uni w v
uni (Pair p q) (Pair r s) =

do pr ← uni p r
qs ← uni q s
return (Pair pr qs)

uni = err "fail"
bindv (Var i r) v
| Set .member i (ftv v) = err "inf"
| otherwise =

do refWrite r (Just v)
return v

err x = return (Err x)

Figure 6: Val unification in the sharing solution

• When comparing a variable Var we no longer can assume that the variable is still unbound.
Hence we need to inspect its Ref and use it for further comparison.

11

• Binding a variable in bindv now also involves updating the reference with the bound value.

• There is no VMp threaded through the Compute state, hence we need not maintain the in-
variant that it is always applied, for example when comparing Pairs. This is now guaranteed
via the Ref mechanism.

The implementation of treeCompute becomes simpler, because we need not apply the VMp here
either. As before, we highlight the First case branch for rule t.fst; also for the other alternatives
the only difference with the functional solution is the removal of the application of VMp.

First x →
do vw ← treeCompute x

[v ,w]← newVars 2
valUnify (Pair v w) vw
return v

The substitution mechanism is completely hidden as a side effect throughout the Compute state.
Finally, when computing free variables one also has to be aware of Ref s. Since we no longer have
a need for class Substitutable we define ftv as a separate function:

ftv :: Val → Set VarId
ftv (Var i r) = case refRead r of

Just v → ftv v
→ Set .singleton i

ftv (Pair v w) = ftv v ‘Set .union‘ ftv w
ftv = Set .empty

The price we have to pay for this solution is that we only may have at most one binding for
a Var , the one stored in the Var itself. This is problematic if we want to have more than one
binding during the computation, for example when we want to compute a tentative value and
later backtrack on it (6; 8). We have lost the parameterizability of the binding by introducing side
effects and giving up purely functional behavior of substitutions.
The use of IORef has other, more subtle, consequences typical of the use of monads. For the sake
of clarity all implementations are kept as similar as possible, for example if we look in advance at
Fig. 7 alongside Fig. 6 we can see the case for Var in uni uses |? in the next solution and refRead
in the current solution. However, the implementation of refRead relies on unsafePerformIO :

refRead :: Ref → RefContent
refRead (Ref r) = unsafePerformIO $ readIORef r

Getting rid of unsafePerformIO is possible, the consequence is that we need to encode the function
uni in valUnify differently because we cannot refer to the content of the Ref in the guard of the
Var case anymore:

uni (Var r) w
do mbv ← refRead ′ r

case mbv of
Just v ′ → uni v ′ w

→ ?? wrong branch after all
refRead ′ :: Ref → IO RefContent
refRead ′ (Ref r) = readIORef r

In Haskell we have no way to backtrack on a case alternative after having committed to it, which
is exactly what we must do after Ref inspection and finding out no binding exists for the variable.

12

Similarly, the signature of ftv would have to change to have IO (Set VarId) as its result type,
thereby making visible the side effect. We find ourselves stuck between the desire to maintain
clarity and the desire to avoid unsafePerformIO .
Finally, in similar spirit we attempted to use STRef and the ST monad in order to further simplify
this functional sharing solution; we discuss in Section 7 why we did abandon this approach.

5 Substitution by functional shared memory

We regain purely functional behavior of the unification and substitution machinery by letting
a Var itself –once again– be unaware of its content, and thus decouple it from the particular
baked-in way IORef s implement the notion of pointers to memory content. Instead we implement
our own dereferencing mechanism by combining VMps from the functional solution with the
pointer based approach of the sharing solution. We use the Val definition of the functional
solution, and adapt the valUnify function of the sharing solution: instead of IORef s we create
‘do it yourself’ memory in the VMp as shown in Fig. 7. The key difference with sharing is that
the dereferencing required for a variable now is implemented via a lookup in the threaded stVMp.
The key commonality with sharing is that we do not replace a variable; we do not apply the
substution to a variable but only use the variable itself.

valUnify :: Val → Val → Compute Val
valUnify v w

= do {st ← get ; uni st v w } where
uni st v@(Const) (Const) = return v
uni st v@(Var i) (Var j) | i == j = return v
uni st (Var i) w | isJust mbv = uni st v ′ w

where mbv = i |? stVMp st
v ′ = fromJust mbv

uni st (Var i) w = bindv st i w
uni st v w@(Var) = uni st w v
uni st (Pair p q) (Pair r s) =

do pr ← uni st p r
st2 ← get
qs ← uni st2 q s
return (Pair pr qs)

uni = err "fail"
bindv st i v =

do put (st{stVMp = vmUnit i v |@ stVMp st })
return v

err x = return (Err x)

Figure 7: Val unification in the functional sharing solution

We now also can avoid the expensive copying because we follow pointers instead of accessing a
copied value directly. The implementation of the Substitutable VMp instance no longer needs to
update the ‘previous’ VMp, a subtle but most effective memory saving change:

instance Substitutable VMp where
s |@ s2 = s ‘vmUnion‘ s2

Dereferencing and infinite values The consequence of derefencing via a table lookup is a
performance loss because such a lookup is expensive compared to a plain memory dereference.
Both valUnify and its use of ftv now require such table lookups. Our design choice is to avoid

13

functional sharing functional
sharing

functional
sharing
no top
subst

functional
sharing
occur
check

test depth sec Mb sec Mb sec Mb sec Mb sec Mb
linear 500 0.67 61.7 0.07 1.8 0.03 2.8 0.04 2.8 0.52 2.9

1100 4.10 391.3 0.30 3.2 0.08 5.5 0.10 5.5 3.14 5.8
1600 8.60 687.5 0.63 4.9 0.13 7.4 0.14 7.4 7.67 7.5

exponential 20 0.04 4.4 0.00 1.3 0.01 2.1 0.00 1.3 0.01 1.3
25 0.89 60.7 0.11 1.3 0.21 13.7 0.09 1.3 0.08 1.3
28 5.63 438.7 0.58 1.3 1.38 107.7 0.42 1.3 0.44 1.3

Figure 8: Performance results

excessive dereferencing by not using ftv at all during unification, and consequently omitting the
occurs check from unification. In turn this means that unification may return a substitution with
cycles, and we have to deal with infinite values and the occurs check elsewhere, that is, all functions
traversing a Val need to be aware that an infinite value may indirectly occur via a substitution.
For example, we need to check during application of a substitution to a Val . We adapt the
application of a substitution to a Val to implement the occurs check: we return an error whenever
a substitution for a variable occurs twice, marked by its presence in the set of dereferenced variables
visited , thus preventing the formation of cycles:

instance Substitutable Val where
s |@ v

= sbs Set .empty s v
where sbs visited s (Pair v w) = Pair v ′ w ′

where v ′ = sbs visited s v
w ′ = sbs visited s w

sbs visited s v@(Var i) =
case i |? s of

Just v ′

| Set .member i visited
→ Err "inf"

| otherwise
→ sbs (Set .insert i visited) s v ′

→ v
sbs visited s v = v

Actually, the necessity for such a check depends on the context in which unification and sub-
stitution are used. In this case we could have done without the check because a binding for a
variable leading to an infinite value, like v 7→ (v , v), only arises when we would have had recur-
sive references to bindings in the Tree language. Other languages of course have a need for the
check; for example in Haskell the following leads to an infinite type for the argument of f , unless
accompanied by an explicit type signature:

f x = f (x , x)

For valUnify we have to look harder for an example leading to infinite recursion of valUnify . This
is because we only can recurse infinitely when two values unfold in parallel in the same way, for
example when unifying v and w given bindings v 7→ (v , v) and w 7→ (w ,w) or similar pairs of
bindings with pairwise recursion. The following Haskell program gives rise to such a situation if it
were not for binding group analysis which prevents the three definitions to be analysed together:

14

f x = f (x , x)
g x = g (x , x)
h x = (f x , g x)

The unification function valUnify now has to be adapted to check for variables which are already
expanded, in the same way as done for |@ on Val above.
We come back to its effect on performance (by putting the occurs check back into valUnify) when
discussing performance (Section 6).
Finally, for the result to be usable without being aware of a VMp, we apply the substitution
outside treeCompute, in the toplevel test function. For example, our pretty printing is unaware of
a VMp. Again, we come back to this because of its degrading effect on performance.

6 Performance results

We compared the three solutions, functional, sharing and functional sharing, by running
two test trees, linear and exponential, with various depths. Both tests are described in Sec-
tion 2 and are characterized by manipulation of Vals, linear and exponential in the number of
bindings introduced (which equals the depth of the tree) by the test Trees. The results are shown
in Fig. 8. The functional, sharing and functional sharing variants are already described;
the remaining variants are introduced and discussed hereafter as part of the performance anal-
ysis. The memory sizes in Fig. 8 correspond to the maximum resident set size as reported by
the Unix time command, and is because of the GHC garbage collection an overestimate of the
actual memory requirements. However, it still gives an indication of the proportial memory use.
Tests were run on a MacBook Pro 2.2Ghz Intel Core 2 Duo with 2GB memory, MacOS X 10.5.4,
the programs compiled with GHC 6.8.2 without optimization flags. Each test was run twice, the
results taken from the second run. Further runs did not give significant variation in the results.
We observe the following:

• On the linear test cases all but the functional variant perform equally well, using small
amounts of memory.

• On the exponential test case the sharing variant runs best, the functional variant worst,
especially in terms of memory. The functional sharing variant sits in between. It turned
out this was caused by the substitution still applied in the toplevel test function. Variant
functional sharing no top subst has this substitution removed and replaced by code
forcing a deep evaluation over the Val and substitution jointly. The results are now similar
to those of sharing, even a bit faster.

• When tests are run with GHC optimization switched on, the absolute numbers drop, but
only by a relative small factor of at most 1.5; the relative performance remains the same.
We therefore did not include these numbers.

• Omitting the occurs check in functional sharing is worthwhile. Variant functional
sharing occur check includes the occurs check relative to the fastest variant func-
tional sharing no top subst: it is significantly slower for the linear test. This is an
apparent trade-off between efficiency and responsibility of doing the occurs check: encap-
sulated in unification or outside of unification. Carrying the ‘occurs check’ responsibility
implies additional program complexity, but, in the light of variant functional sharing
no top subst, no loss of efficiency. We did not further experiment and measure this. In our
real world use (7) of our solution only a limited number of functions is aware of substitutions,
yielding a sufficient gain in efficiency.

15

• We noted that valUnify constructs a fresh copy for the resulting unification θt of t and
s. Replacing such construction for functional sharing by a Bool indicating success or
failure did not improve performance; we therefore did not include performance numbers for
this variation. However, it confirms that the copying involved in the substitution mechanism
indeed is the performance bottleneck, and not the copying of terms occurring in valUnify .

7 Discussion

Implementation alternative: use of ST and STRef In order to get rid of IO and IORef in
solution sharing we did consider the use of ST and STRef instead. ST may be seen as a more
general IO ; vice versa IO corresponds to a ST specialized to the RealWorld . This did not turn out
very well because the use of our state St and the restrictions imposed upon any state by ST do not
combine. Using the and ST means running it via runST , which in turn means hiding of state; we
want it to be visible so we can use its content. This can be remedied by adding even more use of
unsafe IO constructs or more clever monadic compositions by the use of monad transformers. Or
we could place the full machinery in the ST monad, forgo the use of monad transformers, and put
all state in a STRef ; we did not explore this option, as we doubt it will bring additional benefit.
In summary, our ST approaches defeat the purpose of getting rid of IO and achieving simplicity.

Context In the introduction we expressed the desire to get rid of IO and mechanisms with
side effects. One could ask why we do want this because IO works well enough, doesn’t it?
Our longterm goal is to be able to describe and implement languages aspect wise, with tools and
mechanisms to build description and implementation compositionally from such aspects. Currently
we achieve this by using attribute grammars (3) and a type rule domain specific language (9),
which allow us to specify aspectwise, with tools to construct working compilers (7). This solution
roughly corresponds to the use of monads for each aspect with monad transformers combining
these (11). The difference lies in the obligation of the use of monad transformers to specify their
construction on the type level, and thereby fixing the ordering of use of state and computation
of results. Both become difficult to do, if not impossible, when the number of basic monads,
each of which corresponds to an independent implementation of a language aspect, increases and
their interaction becomes more complex. Adding side effect to this mix limits –in our view– the
practical applicability of monads for the implementation of complex languages.
The gist of these observations and the above experience with the ST monad is that we want to
avoid monads and side effects in particular, in order to have better compositionality. Our solution
functional sharing contributes to just that by separating the notion of value and what we
get to know about it as part of a particular strategy of finding out more about such a value. Of
course, some interaction cannot be avoided, a Val has Var alternative after all, but at least any
knowledge about a Var is never irrevocably hardcoded in the Var : it is manipulated separately,
thus allowing its compositional use.

8 Conclusion

Avoiding copying and the resulting memory allocation, and using sharing mechanisms instead,
pays off. This is the overall conclusion which can be drawn. Furthermore, using a solution with
IORef based side effect can be avoided without performance penalties; there is no need to fall
back on the IO monad to achieve acceptable levels of performance.
Our ‘best of both worlds’ solution has been implemented as part of EHC, the essential Haskell
Compiler (5; 7); The programs discussed in this paper can also be found there as part of its ex-
periments subdirectory. Because we have based our EHC implementation on attribute grammars,
avoiding the dependency on IO and side effects, the efficient functional solution was critical to the
success of the implementation of the type system in EHC.

16

References

[1] M. Abadi, L. Cardelli, and P-L. Curien. Explicit Substitutions. Journal of Functional
Programming, 1(4):375–416, Oct 1991.

[2] Franz Baader and Wayne Snyder. Unification Theory, chapter 8, pages 447–531. Elsevier Science
Publishers, 2001.

[3] Arthur Baars, S. Doaitse Swierstra, and Andres Löh. Attribute Grammar System.
http://www.cs.uu.nl/groups/ST/Center/AttributeGrammarSystem, 2004.

[4] Koen Claessen and David Sands. Observable Sharing for Functional Circuit Description. In Asian
Computing Science Conference, number 1742 in LNCS, pages 62–73, 1999.

[5] Atze Dijkstra. EHC Web. http://www.cs.uu.nl/groups/ST/Ehc/WebHome, 2004.

[6] Atze Dijkstra. Stepping through Haskell. PhD thesis, Utrecht University, Department of
Information and Computing Sciences, 2005.

[7] Atze Dijkstra, Jeroen Fokker, and S. Doaitse Swierstra. The Structure of the Essential Haskell
Compiler, or Coping with Compiler Complexity. In Implementation of Functional Languages, 2007.

[8] Atze Dijkstra and S. Doaitse Swierstra. Exploiting Type Annotations. Technical Report
UU-CS-2006-051, Department of Computer Science, Utrecht University, 2006.

[9] Atze Dijkstra and S. Doaitse Swierstra. Ruler: Programming Type Rules. In Functional and Logic
Programming: 8th International Symposium, FLOPS 2006, Fuji-Susono, Japan, April 24-26, 2006,
number 3945 in LNCS, pages 30–46. Springer-Verlag, 2006.

[10] Jean H. Gallier. Unification Procedures in Automated Deduction Methods Based on Matings: A
Survey. Technical Report MS-CIS-91-76, University of Pennsylvania, Department of Computer and
Information Science, 1991.

[11] Mark P. Jones. Functional Programming with Overloading and Higher-Order Polymorphism. In
First International Spring School on Advanced Functional Programming Techniques, B̊astad,
Sweden, number 925 in LNCS. Springer-Verlag, may 1995.

[12] Mark P. Jones. Typing Haskell in Haskell. In Haskell Workshop, 1999.

[13] Kevin Knight. Unification: a multidisciplinary survey. ACM Computing Surveys, 21(1):93–124, Mar
1989.

[14] Alberto Martelli and Ugo Montanari. An Efficient Unification Algorithm. ACM TOPLAS, 4(2):258
– 282, April 1982.

[15] M.S. Paterson and M.N. Wegman. Linear unification. Journal of Computer and System Sciences,
16(2):158–167, Apr 1978.

[16] Simon Peyton Jones and Mark Shields. Practical type inference for arbitrary-rank types, 2004.

[17] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[18] J.A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM,
12(1):23–41, Jan 1965.

[19] J.A. Robinson. Computational logic: The unification computation. In B. Meltzer and D. Michie,
editors, Machine Intelligence, pages 63–72, 1971.

[20] J.A. Robinson. Fast unification. In Theorem Proving Workshop, 1976.

[21] Kristoffer H. Rose. Explicit Substitution - Tutorial and Survey. Technical Report BRICS-LS-96-3,
Department of Computer Science, University of Aarhus, 1996.

[22] GHC Team. GHC Developer Wiki. http://hackage.haskell.org/trac/ghc, 2007.

17

