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Abstract

In this note we discuss two examples of approval voting games. The
first one, with six voters and three candidates, has a unique stable set,
where each voter approves only his most preferred candidate. This strat-
egy coincides with the sophisticated one, while other strategy combina-
tions, leading to different outcomes, are selected by the perfect equilib-
rium concept. Moreover, this example shows that sophisticated voting,
as well as strategic stability, does not imply the election of a Condorcet
winner, even if it exists. The second example, with four voters and four
candidates, shows that strategic stability does not exclude non sincere
strategies. Furthermore, the same results hold in complete neighborhoods
of the games considered.
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1 Introduction

Approval voting, introduced by Brams and Fishburn (1978), is a system in which
a voter can vote for as many candidates as he wants. With approval voting, even
if every voter has the same preference order on the various alternatives, voting
uniquely for the least preferred candidate is a Nash equilibrium, if there are more
than three voters. Given the irrationality of such behavior, it is necessary to use
some refinement of the Nash concept that excludes this “implausible” outcome.
In the following, we apply the general model of a one stage voting procedure
defined by Myerson and Weber (1993) to the approval rule case. In this model,
given the set of candidates K = (1,...,k), each voter submits a ballot, which
is a vector of k components. An electoral system is then defined by the set of
possible ballots that each voter can submit and by the election rule that, given
the ballots cast, selects the winner from the set K. Hence, with approval voting,
every voter has the same strategy space, and each pure strategy is a vector with
zeros, for non approved candidates, and ones, for approved candidates, while
abstention can be represented by the zero vector. With approval, the election
rule selects the candidate that receives the largest total number of votes. In case
of ties, to preserve the symmetry of the voters, we allow an equal probability
lottery among the winners.

The set of candidates, the electoral system, the set of voters and the utility
vectors with k& components (representing for each voter his payoff for all the
possible results of the election) define the associated normal form game. This
resulting game is highly non generic, since the same outcome arises from many
different pure strategy combinations.

In the next section we show that the solution concept of perfect equilibria is
not restrictive enough, in the context of approval games, since there are exam-
ples where some outcomes induced by this concept are excluded by an iterative
elimination of dominated strategies. Such procedure has a long-standing tradi-
tion in voting theory from the pioneering work of Farquharson (1969), who first
defined it “sophisticated voting”.

However, sophisticated voting, as well as strategic stability, does not imply
the election of the Condorcet winner, if it exists.

The second example shows that strategic stability, as well as stronger equilib-
rium concepts, does not imply the use of sincere strategies', not even generically.

Before discussing the two proposed examples, let us introduce some basic
notation. Given the set of candidates K = (1,...,k) and the set of voters
N = (1,...,n), the approval rule determines the strategy space of each player.
Since each voter can vote for as many candidates as he wants, everyone has 2*
pure strategies, corresponding to the set of vectors with & components where
each entry is either zero or one. The strategy space of each player is

S =A(V)

LA pure strategy is sincere if and only if whenever a candidate is approved, all the preferred
candidates are too.



where V is the set of pure strategies.

In order to determine the winner, we do not need to know the ballots cast
by all the voters, it is enough simply to know their sum. Given a pure strategy

n .
vector v € V™ let w = > v". Clearly w is a k-dimensional vector, and each
i=1

coordinate represents the total number of votes obtained by the corresponding
candidate. Then, denoting by p (¢ | v) the probability that candidate c is elected
if v is played, we have:

0 if dme K stw.<wm
plelv)=9 1 ifwe>wnVmeK and (1)
1 H#{deK st.w.=wy} =q.

Hence, given the utility vectors {u’} where u’ = (u},...,u},) and each

‘ ieEN’
u!, represents the payoff that player ¢ gets if candidate c is elected, we have a
normal form game; for each pure strategy combination v, the payoff of player

is given by:

Ul(v) =Y ple|v)u (2)

ceEK

Clearly, we can extend (1) and (2) to mixed strategies. Under a mixed
strategy o we have:

plela)y=> a(v)p(c|v)

and

U'o) = plelo)u,

ceK

where, as usual, o (v) denotes the probability of the (pure) strategy combination
v under o.
Since the election rule depends only upon the sum of the votes cast, the
payoff functions and the best reply correspondences also have this property.
Then, to analyze the games, we will often refer to the following set:

Qi=w ;| veVrst. Y vi=w_,;.
J#i
It is easy to see (cf. Brams and Fishburn (1978)) that an undominated
strategy always approves the most preferred candidate(s) and does not approve
the least preferred one(s).
With this background in mind, we discuss the two proposed examples.

2 Example I

Let us consider the following example, with six voters and three candidates:



—

u (3,1,0)
u? = (3,1,0)
= (0,3,1)
u = (0,3,1)
u = (0,1,3)
u = (0,1,3)

Each voter has only two undominated strategies, namely, approving uniquely
his most preferred candidate or approving also the second one. It is easy to see
that the strategy combination

¢ =((1,0,0),(1,0,0),(0,1,1),(0,1,1),(0,0,1),(0,0,1))

is an undominated equilibrium, leading to the election of the third candidate.
Moreover the equilibrium c is also perfect (Selten (1975)).

Definition 1 A completely mized strategy o¢ is an e—perfect equilibrium if

Vi € N, V' vt eV?
if U? (vi,os) > U (vi ,UE) then

o° (vz) < e

A strategy combination o is a perfect equilibrium if there exists a sequence {o°}
of e—perfect equilibria converging (for e — 0) to o.

Given the above definition, we can prove that c is a perfect equilibrium. In
fact, let us consider the following completely mixed strategy combination o€,
where &; denotes the center of the strategy space of player i:

of = (1-8¢2)(1,0,0) + 82 (&) i=1,2

of = (1-8¢2)(0,1,1) +8:2(¢,) i=3,4

05 =(1—¢—17%)(0,0,1) + (¢ — €2) (1,0,0) + 82 (¢,) i=5,6

It is easy to see that, for ¢ sufficiently close to zero, this is an e—perfect
equilibrium. In fact, in ¢, for each voter his two undominated strategies are
equivalent. Since for € going to zero the probability of players 5 and 6 to tremble
towards (1,0, 0) is infinitely greater than the probability of any other “mistake”,
it is enough to check that in this event the limiting strategy is preferred to the
other undominated strategy. Hence, for player 1, the relevant contingency which
allows him to discriminate between his two undominated strategies is when the
behavior of the others is summarized by the vector w_1 = (2,2,3). Since

U(1,0,0)] (2,2,3) = > > 4

= >5= U'((1,1,0) | (2,2,3))



we have that approving only the most preferred candidate is, for player 1, the
best reply to 0. Analogously for player 2.

For player 3, the relevant contingency in order to discriminate between his
two undominated strategies is given by w_5 = (3,1,2), with

U3((0,1,1) | (3,1,2)) = % >0=U3(0,1,0) | (3,1,2))

hence (0,1,1) is the best reply to o€, and the same holds for player 4.

For player 5, the relevant event is given by w_5 = (3,2, 2) with

5 3 _4 5
U°((0,0,1) | (3,2,2)) = 3 > 3= U°((0,1,1) | (3,2,2))
hence (0,0,1) is the best reply to o€, and the same holds for player 6.

Therefore, {o¢} is a sequence of e—perfect equilibria. Since c¢ is the limit of
o€, it is perfect.

Nevertheless, we claim that the game has a unique Mertens’ stable set? (call
it e) where each player approves only his most preferred candidate. Then the
only stable outcome is an equal probability lottery over the candidates. To prove
that e is the only stable set of the game, it is enough to consider the following
properties:

i)Stable sets always exist.

i1)Stable sets are connected sets of normal form perfect (hence undominated)
equilibria.

i7i)A stable set contains a stable set of every game obtained by iterated
elimination of dominated strategies.

Once all the dominated strategies have been eliminated, we have a reduced
game with the following pure strategy sets:

V" = {(1,0,0),(1,1,0)} i=1,2
Vi = {(0,1,0),(0,1,1)} i=3,4
V' = {(0,0,1),(0,1,1)} i=5,6

In this reduced game, the last four voters have “approving only the most
preferred candidate” as dominant strategy. In fact, let us consider player 3.
We do not need to write down all the possible w_3, to claim that (0,1,0) is
the dominant strategy for him. In each w_g the first candidate takes two votes
while the second takes at least one and the third at least two. Hence, except for
w_3 = (2,1,2), the approval of only the second candidates is either equivalent
to the other strategy, since both lead to the election of the same candidate, or
it is preferred. Moreover, in w_3 = (2, 1,2) we have that (0,1,0) is preferred to
(0,1,1), leading to an utility of % instead of 1. The same argument applies to
the last three voters. Hence, we can further reduce the game by eliminating the
strategy v = (0,1,1) for i = 3,4, 5,6. In this game we have that player 1 (resp.

2For the definition of this concept see Mertens (1989).



2) can face only two circumstances, namely w_q1 = (1,2,2) or ' ; =(1,3,2). In
the latter case his two strategies are equivalent since both lead to the election
of the second candidate, while in the former (1,0,0) is preferred to (1,1,0),
giving an utility of % instead of 1. Hence (1,0,0) is dominant for player 1 (resp.
2). Thus, iterated elimination of dominated strategy isolates the equilibrium e
where each voter approves only his most preferred candidate. By property (iii)
of stable sets we can conclude that each stable set contains e. Moreover, it is
not difficult to see that e is a strict equilibrium (hence isolated); property (ii),
therefore, implies that e is the unique stable set of the game.

Furthermore, the second candidate is the Condorcet winner. In the unique
stable set e, however, he is elected with the same probability as the other two
candidates. In Fishburn and Brams (1981) it is proved that, if a candidate z
is a Condorcet winner, then there is a sincere undominated strategy combina-
tion that elects . Our example shows that this result cannot be extended to
sophisticated strategies (i.e. strategies that survive to iterated elimination of
dominated ones).

Moreover, the exclusion of the “Condorcet outcome” from the solution set
does not depend on the definition of stability. In fact, not even a weaker re-
quirement such as perfection guarantees that the set of solutions contains such
an outcome. To show this, it is enough to consider the approval game played
by 1, 3 and 5. This game has only one perfect equilibrium where each player
approves only his most preferred candidates. The second candidate, however, is
still the Condorcet winner.?

The above results, namely that ¢ is a perfect equilibrium but only e is a
stable set, hold for every game with the same preference order and such that,
for every voter, the difference in utility between the most preferred candidate
and the second preferred one is greater than the difference between the second
and the least preferred one.

3 Example II

Let us consider the following example I' with four voters and four candidates:
1_ 27 13
u = (10, 10’ ?,0)
u? = (0,10,2,9)
3 _ (191
u’ = (@,gg,l,O)
u4 = (4,0, 7 10)
This game has a stable set where player 1 approves the first and the third
candidate, hence strategic stability does not imply sincerity. Moreover, this

result still holds in a complete neighborhood of the game.

3This gamc has also another undominated cquilibrium, the “Condorcet” one, namcly
((1,1,0),(0,1,0),(0,1,1)). However, this is not a perfect equilibrium. We omit a formal
proof. Basically it can be shown that (1,1,0) is a best reply only if the “Condorcet” player
trembles toward approving the third candidate with a large enough probability with respect
to other perturbations. A symmetrical argument applies to strategy (0,1, 1). From these facts
it follows that both strategics cannot be simultancously best replics.



We do not use the explicit definition of stable set, but for our purpose it is
enough to use the fact that a strongly stable equilibrium* (Kojima et. al. (1985))
is a stable set as a singleton®. This follows from the fact that every perturbation
of the strategies corresponds (continuously) to a perturbation of utilities, and
the continuity of the equilibrium function e assures that the projection of the
graph of e on the space of perturbed games is homologically non trivial, being
a homeomorphism. Cf. also Mertens (1991) (pp.697-699) that shows how the
continuity of the map from the space of perturbed games to subsets of equilibria
is a stronger requirement than the one included in the definition of stability.

Proposition 2 The strategy combination

1 1 1
s=((1,0,1,0),(0,1,0,1), 5(0, 1,0,0) + 5(1, 1,0,0), %(0,0,0, 1) + 1—0(0,0, 1,1))

is a stable set of T'. Moreover, there exists a neighborhood (¥r) of T', in the space
of approval games with four voters and four candidates, such that every game
in Wr has a stable set with the same support of s.

Proof. The first step of the proof consists in showing that the strategy
combination s is a quasi-strict equilibrium. This is done in the appendix.

The second step requires to prove that the quasi- strict equilibrium s is
isolated. To analyze the set of equilibria near s we can limit the analysis by
taking the strategy of players 1 and 2 as being fixed, since they are using a
strict best reply. Moreover, since s is quasi strict, also players 3 and 4 can use
(sufficiently close to s) only the pure strategies in s. Hence, to show that s
is isolated it is enough to study the equilibria of the following game between
players 3 and 4,

(0,0,0,1) (0,0,1,1)

11 104

(0,1,0,0) 5,5 397
581 14 155 33

(1’1’070) 11703 397

which has two pure strategies equilibria, i.e. ((0,1,0,0), (0,0,0,1)) and
((1,1,0,0), (0,0,1,1)), and a completely mixed one corresponding to s. Hence,
s is isolated.

1Remember that if we fix the pure strategy set of each player, we can identify a game with
a point r € R*™, where m is the number of purc strategy combinations and n the number of
players.

Given a game 7, an cquilibrium & is strongly stable if neighborhoods @ of 7 and W of & exist
such that (i) every game in @ has one and only one equilibrium in W and (ii) the mapping
e: Q — W that associates with cach game in @ its cquilibrium in W is continuous.

SFor the exact definition of stable set we refer to Mertens (1989), here we simply recall that
a set is stable if it is the limit at the true game of a subset of the equilibrium correspondence
for perturbed games such that the projection map to perturbed games is homologically non
trivial and the subset is locally connected to the true game.



The third step consists in showing that s is a strongly stable equilibrium.
Since s is quasi-strict and isolated we can conclude (cf. van Damme (1991) Th.
3.4.4 p.55) that (s3,s4) is a strongly stable equilibrium of the reduced game
where we take (s1,s2) as being fixed. Since the first two players are using their
strict best reply, s is a strongly stable equilibrium of the whole game. Hence s
is a stable set of I'.

The second part of the proposition directly follows from corollary 4.1 in Ko-
jima et. al. (1985), that assures,given a game and a strongly stable equilibrium,
the unique nearby equilibrium of a nearby game is strongly stable too. Since
each “approval game” near I' has a normal form close to that of I' and since for
sufficiently close games and sufficiently close strategies, no other strategy than
the ones in s can be a best reply, the claim easily follows. m

The above proof also shows that not even a more demanding criterion such
as strong stability can exclude non sincere strategies. Basically this is due
to the fact that a non sincere strategy can be the only best reply to mixed
strategy combinations of the opponents and hence, as long as we allow for mixed
strategies, there is no reason to exclude non sincere behavior.

Moreover, the second part of the proposition shows that this example is not
pathological.

4 Conclusion

In this note we have proposed two examples of approval voting games. The
first one allows us to conclude that in the class of approval games, the perfect
equilibrium concept is not restrictive enough to capture sophisticated voting,
since there are “perfect” outcomes that do not survive to iterated elimination of
dominated strategies. Furthermore, some outcomes selected by this concept are
not induced by any stable set. This immediately implies that also in this class of
games, the stable set is the “right” concept in order to have sensible solutions.
Furthermore, we have found that, even if there is a Condorcet winner, strategic
stability, as well as sophisticated voting, does not imply his election. Moreover,
not even a weaker requirement such as perfection guarantees the existence of
a solution in which he is elected. This is not surprising. As a matter of fact,
strategic stability concerns individual behavior, while the Condorcet criterion is
referred to society as a whole.

The second example shows that strategic stability does not imply sincerity.
It is not difficult to see that for every pure strategy of the other players, the
set of best replies contains a sincere strategy. As soon as we allow for mixed
strategies, not only this is not true, but not even such a strong requirement as
strategic stability can justify statements such as “under approval voting, voters
are never urged to vote insincerely” (Niemi (1984) p.954). Moreover, our result
holds in a complete neighborhood of the game and also for a more demanding
criterion such as strong stability. Hence, this phenomenon cannot be considered
pathological.
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Appendix

In this appendix we show that

L 0,0,1,1))

9
— 1
(0,0,0,1) + 10

s =((1,0,1,0),(0,1,0,1), 10

1 1
=(0,1,0,0) + =(1,1,0,0
2(7)))+2())))7

is a quasi-strict equilibrium of the second proposed example. To this end we
calculate the probability, under s, of each contingency that a player can face
and, from these probabilities, the expected utility of each undominated strategy.
It is easy to see that no dominated strategy is a best reply to s.

Pr(w_; = (0,2,0,2) | s_1) = 2110
Pr(w,l (0,2, 1,2) ‘ 8,1) = @
Pr(w 1= (1,2,0,2) ‘ 871) = @
Prw1=(1,2,1,2) | s_1) = 55
From these probabilities it follows that:
27 4 13 27 27 4 13

U'((1,0,1,0),5-1) = 290 20+ 20 wg - +2_90 i +2L0 10+lz+5 = %8(1)
Ul((looo)sl):i 27+ 27+ %+L.M:&

U V), S 20, 20 20 3 20 3 120
U'((1,1,0,0),s1) = U* ((1,1,1,0) 1) =2

Since no dominated strategy is a best reply to s_1 we have that (1,0, 1,0)
is the only best reply to s_;.

Player 2

Prw_o=(1,1,1,1) | s_2) = %

Prw_o=(1,1,2,1) | s_2) = %

Prw_o=1(2,1,1,1) | s_2) = ey

PI'(W_Q - (2) 1a27 1) ‘ S— ) 2_

From these probabilit 1es it follows that:

U2((0 1 0,1),5 ) = = .10+9+L.10+9+2_~_ 9 .1049 | 1 1049+2 _ 619

100, ¥ %0 £ 1048 29t 80

U%((0,1,0,0),5 ) = 290'10+ 20 _+_+ 20 1o %1'_;_ )
((0’ L1,0),5-2) = ?9 ' 10+9+§ 2 * 2 310+Jg+@ ‘2 s 457
((07 1) 11 1) ) 20 ° + 20 -2 4 20 —+ 20 =350

It is not dlfﬁcult to see that any dominated strategy is not a best reply to
s_g. Hence (0,1,0,1) it is the only best reply to s_s.

Player 3

Pr(w_z=(1,1,1,2) | s_3) = %

Pr(w_s = (1,1,2,2) | s_3) = 5

From these probabilities it follows that:

U3((0,1,0,0) s 3)_%_10+ 1 10+1 _ 73

3 15
10+131 0+1 +1
U3(L,1,0,0).5-5) = 5 - 205 4 - WEEE = 22
U3((0,1,10)53) _0'__l—_+10:5
10+1+44
U3((1,1,1,0),5_3) = & - a4 L — 289

Furthermore, it is not dlﬁicult to see that no dominated strategy is a best
reply to s_3. Hence the only two (pure) best replies of player 3 are (0,1,0,0)
and (1,1,0,0).

10



Player 4

Pr(w-g = (1,2,1,1) | s-4) = 3
Pr(w_4=(2,2,1,1) | s_4) = 5
From these probabilities it follows that:

_ 0 0+4 _ 2
U*((0,0,0,1),5_4) = & - 120:;% 45 il
U4((070’1’1)75 4):% 37 Jr; 4 == 69
UH(1,0,1,1),50) = 5 2EEE 4 4= g
UH(1,0,0,1),5g) = § - 20 4= 1

Moreover it is easy to see that no dominated strategy is a best reply to s_4.
Hence the only two (pure) best replies of player 4 are (0,0,0,1) and (0,0,1,1).
Hence s is a quasi-strict equilibrium of T'.
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