

On a Diophantine representation of the predicate of provability.

M. Carl and B.Z. Moroz

§1. Introduction.

By a well-known theorem of Matiyasevich [10], [11], a recursively enumerable set is Diophantine, and therefore there is no algorithm, deciding whether a given Diophantine equation is soluble in \mathbb{Z} . Moreover, given a recursively enumerable set S , one can actually construct a polynomial $P_S(t, \vec{x})$ in $\mathbb{Z}[t, \vec{x}]$, $\vec{x} := (x_1, \dots, x_n)$, such that

$$S = \{a \mid a \in \mathbb{N}, \exists \vec{b} (\vec{b} \in \mathbb{Z}^n \& P_S(a, \vec{b}) = 0)\}.$$

The set of the theorems in a formalised mathematical theory, say \mathcal{T} , being recursively enumerable, is Diophantine (cf. [3, pp. 327-328], [4]); therefore one can construct a polynomial $F_{\mathcal{T}}(t, \vec{x})$ in $\mathbb{Z}[t, \vec{x}]$ such that the Diophantine equation

$$F_{\mathcal{T}}(a, \vec{x}) = 0$$

is soluble in \mathbb{Z} if and only if $a = \mathcal{N}(\mathfrak{A})$ for a formula \mathfrak{A} provable in \mathcal{T} , where

$$\mathcal{N}: \mathfrak{F} \rightarrow \mathbb{N}$$

is a suitable numbering of the set \mathfrak{F} of the well-formed formulae of \mathcal{T} . On the other hand, if such a theory \mathcal{T} is consistent, then there is an infinite sequence of polynomials

$$f_1(\vec{x}), f_2(\vec{x}), \dots$$

such that $f_i(\vec{x}) \in \mathbb{Z}[\vec{x}]$ and, for every i , the formula

$$\forall \vec{b} (\vec{b} \in \mathbb{Z}^n \rightarrow f_i(\vec{b}) \neq 0)$$

is not provable in \mathcal{T} , although the Diophantine equation $f_i(\vec{x}) = 0$ is insoluble in \mathbb{Z} .

Let \mathcal{P} be the predicate calculus with a single binary predicate letter (and no function letters or individual constants). By Kalmár's theorem [8] (cf.

also [14, p. 223]), analysis of provability in any pure predicate calculus can be reduced to studying provability in \mathcal{P} . Moreover, the Gödel-Bernays set theory, to be denoted by \mathfrak{S} , is finitely axiomatisable in \mathcal{P} [6], [14, Ch.4]. The goal of this work is to construct a polynomial $F_{\mathcal{P}}(t, \vec{x})$ defined above. Since, as it is commonly assumed, any mathematical proof can be formalised in \mathfrak{S} , one may say that the polynomial $F_{\mathcal{P}}(t, \vec{x})$ encodes the content of pure mathematics; in this sense, the arithmetic of the affine hypersurface, defined by the equation

$$F_{\mathcal{P}}(t, \vec{x}) = 0,$$

is "exactly as difficult as the whole of mathematics" (cf. [9, p. 2]).

On denoting by \mathfrak{A} the conjunction of the proper (non-logical) axioms of \mathfrak{S} and letting

$$b = \mathcal{N}(\mathfrak{A} \supset \mathfrak{B})$$

for some (obviously) false in \mathfrak{S} formula \mathfrak{B} , one obtains a Diophantine equation

$$F_{\mathcal{P}}(b, \vec{x}) = 0, \tag{1}$$

whose insolubility is equivalent to the consistency of \mathfrak{S} . Thus in order to prove that equation (1) has no solutions in \mathbb{Z} , one has to employ an additional axiom, for instance, the axiom asserting existence of an inaccessible ordinal (cf. [5], where some combinatorial statements, whose provability depends on that axiom, have been constructed).

As any other polynomial with integral rational coefficients, the polynomial $F_{\mathcal{P}}(t, \vec{x})$ is a special instance of an universal polynomial (the reader may consult references [7], [12, Ch. 4], and the literature cited in those works for different constructions of an universal polynomial). If the Gödel-Bernays set theory \mathfrak{S} is consistent, then the formula

$$(\mathfrak{A} \supset \exists \vec{b} (\vec{b} \in \mathbb{Z}^n \ \& \ f(\vec{b}) = 0)),$$

with $f(\vec{x}) \in \mathbb{Z}[\vec{x}]$, $\vec{x} := (x_1, \dots, x_n)$, is provable in \mathcal{P} if and only if equation $f(\vec{x}) = 0$ is soluble in \mathbb{Z} ; thus, under that assumption, $F_{\mathcal{P}}(t, \vec{x})$ is an universal polynomial (it suffices, of course, to assume the consistency of any theory \mathcal{T} formalisable in \mathcal{P} and such that the formula

$$\exists \vec{b} (\vec{b} \in \mathbb{Z}^n \ \& \ f(\vec{b}) = 0)$$

is provable in \mathcal{T} if the equation $f(\vec{x}) = 0$ is soluble in \mathbb{Z}).

The polynomial $F_{\mathcal{P}}(t, \vec{x})$, constructed in our work, contains over 10^6 terms; a somewhat simpler polynomial is described in [1]. Although one does not expect a polynomial, encoding provability in pure mathematics, to be too simple, it is not known how complicated it *must* be.

In Section 2, we describe the language of \mathcal{P} , define a numbering

$$\mathcal{N}: \mathcal{P} \rightarrow \mathbb{N},$$

and give a Diophantine description of the first three groups of axioms of \mathcal{P} . The necessary preliminaries on Diophantine coding are collected in Section 3. After proving a few technical lemmata in Section 4, we complete the description of the axioms of \mathcal{P} in Section 5. Our polynomial $F_{\mathcal{P}}(t, \vec{x})$ is described in Section 6; an example of a Diophantine equation of the shape (1), whose insolubility is equivalent to the consistency of the Gödel-Bernays system \mathfrak{S} , is given in the final Section 7.

Notation and conventions. As usual, \mathbb{R} , \mathbb{Z} , and \mathbb{N} stand for the field of real numbers, the ring of rational integers, and the semigroup of positive rational integers respectively. A finite sequence of symbols is denoted by \vec{x} and $L(\vec{x})$ stands for its length (we write, for instance, $\vec{x} := (y_1, \dots, y_n)$ and $L(\vec{x}) = n$); let

$$\vec{x} * \vec{y} := (a_1, \dots, a_n, b_1, \dots, b_m)$$

stand for the concatenation of the sequences

$$\vec{x} := (a_1, \dots, a_n) \text{ and } \vec{y} := (b_1, \dots, b_m).$$

The polynomial

$$p(x_1, x_2) = \frac{(x_1 + x_2 - 2)(x_1 + x_2 - 1)}{2} + x_2$$

defines a bijection

$$p: \mathbb{N}^2 \rightarrow \mathbb{N}, \quad p: \vec{a} \mapsto p(\vec{a}) \text{ for } \vec{a} \in \mathbb{N}^2;$$

moreover, for $\vec{a} \in \mathbb{N}^2$, $a := (a_1, a_2)$,

$$p(\vec{a}) \geq \max\{a_1, a_2\} \text{ and } p(\vec{a}) \leq a_1^2 + 2a_2^2$$

(cf. [2, p. 237]). Given an arithmetical formula \mathfrak{A} , let

$$(\forall j \leq n) \mathfrak{A} := \forall j ((j \in \mathbb{N} \& j \leq n) \Rightarrow \mathfrak{A}).$$

For $\vec{a} \in \mathbb{R}^n$, $\vec{a} := (a_1, \dots, a_n)$, let

$$\vec{a}^2 := \sum_{i=1}^n a_i^2 \text{ and } |\vec{a}| := \max \{|a_j| \mid 1 \leq j \leq n\}.$$

§2. The predicate calculus \mathcal{P} .

The predicate calculus \mathcal{P} is a first order theory. The alphabet of its language consists of the set

$$\mathcal{X} := \{t_i \mid i \in \mathbb{N}\}$$

of the individual variables, the binary predicate letter ϵ , the logical connectives: $\{\neg, \supset\}$ ("negation" and "implication"), the universal quantifier \forall , and the parentheses $\{(), ()\}$. The set \mathfrak{F} of the formulae of \mathcal{P} is defined inductively. An expression of the form $(x \in y)$, with $\{x, y\} \subset \mathcal{X}$, is a(n elementary) formula; if \mathfrak{A} and \mathfrak{B} are formulae, then $\neg \mathfrak{A}$, $(\mathfrak{A} \supset \mathfrak{B})$, and $\forall x \mathfrak{A}$ are formulae.

Let us define inductively a map $\mathcal{N}: \mathfrak{F} \rightarrow \mathbb{N}$.

Definition. Let $\mathcal{N}(t_i \in t_j) = 4p(i, j) - 3$ for $\{i, j\} \subseteq \mathbb{N}$. For $\{\mathfrak{A}, \mathfrak{B}\} \subseteq \mathfrak{F}$ and $i \in \mathbb{N}$, let $\mathcal{N}(\neg \mathfrak{A}) = 4\mathcal{N}(\mathfrak{A}) - 2$, $\mathcal{N}(\forall t_i \mathfrak{A}) = 4p(i, \mathcal{N}(\mathfrak{A})) - 1$, and $\mathcal{N}(\mathfrak{A} \supset \mathfrak{B}) = 4p(\mathcal{N}(\mathfrak{A}), \mathcal{N}(\mathfrak{B}))$.

Proposition 1. *The map $\mathcal{N}: \mathfrak{F} \rightarrow \mathbb{N}$ is a bijection.*

Proof. It follows easily from the definition of the map \mathcal{N} by induction.

Notation. For $\mathfrak{A} \in \mathfrak{F}$ and $\{x, y\} \subset \mathcal{X}$, let $[\mathfrak{A}]_f$ and $\mathfrak{A}[x|y]$ stand for the set of the free variables of \mathfrak{A} and the formula obtained from \mathfrak{A} on replacing each of the *free* occurrences of the variable x in \mathfrak{A} by y , respectively.

Definition. Let $\mathfrak{A} \in \mathfrak{F}$ and $\{x, y\} \subset \mathcal{X}$. If no free occurrence of x in \mathfrak{A} lies within the scope of a quantifier $\forall y$, then the variable y is *free for x in \mathfrak{A}* (cf. [14, p. 54]).

There are five groups of axioms in \mathcal{P} (cf. [14, pp. 69-70]):

$$\mathcal{A}_1 := \{\mathfrak{A} \supset (\mathfrak{B} \supset \mathfrak{A}) \mid \{\mathfrak{A}, \mathfrak{B}\} \subseteq \mathfrak{F}\};$$

$$\mathcal{A}_2 := \{(\mathfrak{A} \supset (\mathfrak{B} \supset \mathfrak{C})) \supset ((\mathfrak{A} \supset \mathfrak{B}) \supset (\mathfrak{A} \supset \mathfrak{C})) \mid \{\mathfrak{A}, \mathfrak{B}, \mathfrak{C}\} \subseteq \mathfrak{F}\};$$

$$\mathcal{A}_3 := \{(\neg \mathfrak{B} \supset \neg \mathfrak{A}) \supset ((\neg \mathfrak{B} \supset \mathfrak{A}) \supset \mathfrak{B}) \mid \{\mathfrak{A}, \mathfrak{B}\} \subseteq \mathfrak{F}\};$$

$$\mathcal{A}_4 := \{\forall x (\mathfrak{A} \supset \mathfrak{B}) \supset (\mathfrak{A} \supset \forall x \mathfrak{B}) \mid \{\mathfrak{A}, \mathfrak{B}\} \subseteq \mathfrak{F}, x \in \mathcal{X} \setminus [\mathfrak{A}]_f\};$$

$$\mathcal{A}_5 := \{\forall x \mathfrak{A} \supset \mathfrak{A}[x|y] \mid \mathfrak{A} \in \mathfrak{F}, \{x, y\} \subseteq \mathcal{X},$$

the variable y is free for x in $\mathfrak{A}\}$.

The set \mathfrak{T} of the theorems of \mathcal{P} is defined inductively:

$$(\mathcal{B}_0) \quad \bigcup_{j=1}^5 \mathcal{A}_j \subseteq \mathfrak{T}.$$

$$(\mathcal{B}_1) \quad \text{If } \{\mathfrak{A}, (\mathfrak{A} \supset \mathfrak{B})\} \subseteq \mathfrak{T}, \text{ then } \mathfrak{B} \in \mathfrak{T} \text{ ("modus ponens").}$$

$$(\mathcal{B}_2) \quad \text{If } \mathfrak{A} \in \mathfrak{T}, \text{ then } \forall x \mathfrak{A} \in \mathfrak{T} \text{ ("generalisation").}$$

In what follows (see Corollary 3), we shall construct a polynomial $f(t, \vec{x})$ in $Z[t, \vec{x}]$ such that

$$\mathcal{N}(\mathfrak{T}) = \{a \mid a \in \mathbb{N}, \exists \vec{b} (\vec{b} \in \mathbb{Z}^{L(\vec{x})} \& f(a, \vec{b}) = 0)\}.$$

Our first task is to give a Diophantine description of the predicate " \mathfrak{A} is an axiom of \mathcal{P} ". In this section, we provide such a description for the three predicates " $\mathfrak{A} \in \mathcal{A}_i$ ", with $i = 1, 2, 3$.

Proposition 2. *Let $g_1(u, \vec{x}) := u - 4p(x_1, 4p(x_2, x_1))$ with $\vec{x} := (x_1, x_2)$. Then*

$$\mathcal{N}(\mathcal{A}_1) = \{u \mid \exists \vec{b} (\vec{b} \in \mathbb{N}^2 \& g_1(u, \vec{b}) = 0)\}.$$

Proof. Let $\mathcal{N}(\mathfrak{A}) = x_1$, $\mathcal{N}(\mathfrak{B}) = x_2$, and $\mathcal{N}(\mathfrak{A} \supset (\mathfrak{B} \supset \mathfrak{A})) = u$. It follows then from the definition of the map \mathcal{N} that $u = 4p(x_1, 4p(x_2, x_1))$. This proves the proposition.

Proposition 3. *Let*

$$g_2(u, \vec{x}) := u - 4p(4p(x_1, 4p(x_2, x_3)), 4p(4p(x_1, x_2), 4p(x_1, x_3)))$$

with $\vec{x} := (x_1, x_2, x_3)$. Then

$$\mathcal{N}(\mathcal{A}_2) = \{u \mid \exists \vec{b} (\vec{b} \in \mathbb{N}^3 \& g_2(u, \vec{b}) = 0)\}.$$

Proof. Let $\mathfrak{D} := ((\mathfrak{A} \supset (\mathfrak{B} \supset \mathfrak{C})) \supset ((\mathfrak{A} \supset \mathfrak{B}) \supset (\mathfrak{A} \supset \mathfrak{C})))$ and let $\mathcal{N}(\mathfrak{A}) = x_1$, $\mathcal{N}(\mathfrak{B}) = x_2$, $\mathcal{N}(\mathfrak{C}) = x_3$. An easy calculation shows that, in these notations, $g_2(u, \vec{x}) = 0$ if and only if $\mathcal{N}(\mathfrak{D}) = u$. This proves the proposition.

Proposition 4. *Let*

$$g_3(u, \vec{x}) := u - 4p(4p(4x_2 - 2, 4x_1 - 2), 4p(4p(4x_2 - 2, x_1), x_2))$$

with $\vec{x} := (x_1, x_2)$. Then

$$\mathcal{N}(\mathcal{A}_3) = \{u \mid \exists \vec{b} (\vec{b} \in \mathbb{N}^2 \& g_3(u, \vec{b}) = 0)\}.$$

Proof. Let $\mathfrak{C} := ((\neg \mathfrak{B} \supset \neg \mathfrak{A}) \supset ((\neg \mathfrak{B} \supset \mathfrak{A}) \supset \mathfrak{B}))$, $\mathcal{N}(\mathfrak{A}) = x_1$, and $\mathcal{N}(\mathfrak{B}) = x_2$. The equation $g_3(u, \vec{x}) = 0$ is easily seen to assert that $\mathcal{N}(\mathfrak{C}) = u$. This proves the proposition.

To give a Diophantine description of the sets of axioms \mathcal{A}_4 and \mathcal{A}_5 , we shall make use of the techniques developed in the works, relating to the Hilbert tenth problem (cf. [2], [12], and references therein).

§3. On Diophantine coding.

In this section, following [2], we state a few lemmata about Diophantine coding.

Lemma 1. *Let $f(t, \vec{x}) \in \mathbb{Z}[t, \vec{x}]$ with $L(\vec{x}) = n$ and suppose that*

$$S = \{a \mid a \in \mathbb{N}, \exists \vec{b} (\vec{b} \in \mathbb{N}^n \& f(a, \vec{b}) = 0)\}.$$

Then

$$S = \{a \mid a \in \mathbb{N}, \exists \vec{b} (\vec{b} \in \mathbb{Z}^{4n} \& g(a, \vec{b}) = 0)\},$$

where

$$g(t, \vec{y}) := f(t, \vec{z}), \vec{z} := (z_1, \dots, z_n), z_j := \sum_{i=1}^4 y_{ji}^2 + 1, 1 \leq j \leq n.$$

Proof. See, for instance, [12, §1.3].

Lemma 2. *Let $f_3(m, n, k; \vec{x}) :=$*

$$\begin{aligned} & (x_1^2 - (x_2^2 - 1)x_3^2 - 1)^2 + (x_4^2 - (x_2^2 - 1)x_5^2 - 1)^2 + (x_6^2 - (x_7^2 - 1)x_8^2 - 1)^2 + \\ & (x_5 - x_9x_3^2)^2 + (x_7 - 1 - 4x_{10}x_3)^2 + (x_7 - x_2 - x_{11}x_4)^2 + (x_6 - x_1 - x_{12}x_4)^2 + \\ & (x_8 - k - 4(x_{13} - 1)x_3)^2 + (x_3 - k - x_{14} + 1)^2 + (x_{17} - n - x_{18})^2 + (x_{17} - k - x_{19})^2 + \\ & ((x_1 - x_3(x_2 - n) - m)^2 - (x_{15} - 1)^2(2x_2n - n^2 - 1)^2)^2 + \\ & (m + x_{16} - 2x_2n + n^2 + 1)^2 + (x_2^2 - (x_{17}^2 - 1)(x_{17} - 1)^2x_{20}^2 - 1)^2, \end{aligned}$$

where $\vec{x} := (x_1, \dots, x_{20})$. Then $m = n^k$ if and only if

$$\exists \vec{a} (\vec{a} \in \mathbb{N}^{20} \& f_3(m, n, k; \vec{a}) = 0).$$

Proof. See [2, pp. 244-248].

Lemma 3. *Let $f_4(m, n, k; \vec{x}) :=$*

$$\begin{aligned} & f_3(x_1, 2, n; \vec{x}^{(1)}) + f_3(x_5, x_4, n; \vec{x}^{(2)}) + f_3(x_6, x_3, k; \vec{x}^{(3)}) + \\ & (x_1 + x_2 - x_3)^2 + (x_4 - x_3 - 1)^2 + (x_6x_7 + x_8 - x_5 - 1)^2 + \\ & (x_5 + x_9 - (x_7 + 1)x_6)^2 + (x_7 - m - (x_{10} - 1)x_3)^2 + (m + x_{11} - x_3)^2, \\ & \text{where } \vec{x} = \vec{x}^{(0)} * \dots * \vec{x}^{(3)} \text{ with } \vec{x}^{(0)} := (x_1, \dots, x_{11}), \vec{x}^{(1)} := (x_{12}, \dots, x_{31}), \\ & \vec{x}^{(2)} := (x_{32}, \dots, x_{51}), \vec{x}^{(3)} := (x_{52}, \dots, x_{71}). \text{ Then} \end{aligned}$$

$$m = \frac{n!}{(n - k)!k!}$$

if and only if

$$\exists \vec{a} (\vec{a} \in \mathbb{N}^{71} \& f_4(m, n, k; \vec{a}) = 0).$$

Proof. See [2, pp. 249-250].

Lemma 4. Let $f_2(m, n; \vec{x}) :=$

$$f_3(x_3, x_1, x_2; \vec{x}^{(1)}) + f_3(x_4, x_3, n; \vec{x}^{(2)}) + f_4(x_5, x_3, n; \vec{x}^{(3)}) + \\ (x_1 - 2n - 1)^2 + (x_2 - n - 1)^2 + (mx_5 + x_6 - 1 - x_4)^2 + (x_4 + x_7 - (m + 1)x_5)^2,$$

where $\vec{x} = \vec{x}^{(0)} * \dots * \vec{x}^{(3)}$ with $\vec{x}^{(0)} := (x_1, \dots, x_7)$, $\vec{x}^{(1)} := (x_8, \dots, x_{27})$, $\vec{x}^{(2)} := (x_{28}, \dots, x_{47})$, $\vec{x}^{(3)} := (x_{48}, \dots, x_{118})$. Then $m = n!$ if and only if

$$\exists \vec{a} (\vec{a} \in \mathbb{N}^{118} \& f_2(m, n; \vec{a}) = 0).$$

Proof. See [2, pp. 251-252].

Lemma 5. Let $f_1(m, n, a, b; \vec{x}) :=$

$$(x_1 - a - bn)^2 + (x_3 - bx_2 - 1)^2 + (bx_4 - a - x_3 x_5)^2 + (m + x_8 - x_3)^2 + (x_9 - x_4 - n)^2 + \\ (m + x_3 x_{11} - x_6 x_7 x_{10})^2 + f_3(x_2, x_1, n; \vec{x}^{(1)}) + f_3(x_6, b, n; \vec{x}^{(2)}) + \\ f_2(x_7, n; \vec{x}^{(3)}) + f_4(x_{10}, x_9, n; \vec{x}^{(4)}),$$

where

$$\vec{x} = \vec{x}^{(0)} * \dots * \vec{x}^{(4)}, \vec{x}^{(0)} := (x_1, \dots, x_{11}), \vec{x}^{(1)} := (x_{12}, \dots, x_{31}), \\ \vec{x}^{(2)} := (x_{32}, \dots, x_{51}), \vec{x}^{(3)} := (x_{52}, \dots, x_{169}), \vec{x}^{(4)} := (x_{170}, \dots, x_{240}).$$

Then

$$m = \prod_{k=1}^n (a + bk)$$

if and only if

$$\exists \vec{c} (\vec{c} \in \mathbb{N}^{240} \& f_1(m, n, a, b; \vec{c}) = 0).$$

Proof. See [2, p. 252].

Proposition 5. Let

$$\sigma(u, j, w; \vec{z}) := 4((u - p(z_1, z_2))^2 + (w + z_3(1 + jz_2) - z_1)^2 + (w + z_4 - jz_2 - 2)^2)$$

with $\vec{z} := (z_1, \dots, z_4)$. There is a function

$$S: \mathbb{N}^2 \rightarrow \mathbb{N},$$

satisfying the following conditions:

- (i) $w = S(j, u)$ if and only if $\exists \vec{b} (\vec{b} \in \mathbb{N}^4 \& \sigma(u, j, w; \vec{b}) = 0)$;
- (ii) $\forall j, u (S(j, u) \leq u)$;
- (iii) if $\{a_k \mid 1 \leq k \leq n\} \subseteq \mathbb{N}$ for some n in \mathbb{N} , then there is a number u in \mathbb{N} such that $a_k = S(k, u)$ for $1 \leq k \leq n$.

Proof. See [2, pp. 237-238].

Proposition 6. Let $P(u_1, u_2; \vec{y}, \vec{z}) \in \mathbb{Z}[u_1, u_2; \vec{y}, \vec{z}]$, with $L(\vec{z}) = l$, and suppose there is a polynomial $R(u_1, u_2; \vec{y})$ in $\mathbb{Z}[u_1, u_2; \vec{y}]$ such that

$$|P(n, j; \vec{a}, \vec{d})| \leq R(n, T; \vec{a})$$

for $\vec{a} \in \mathbb{N}^{L(\vec{y})}$, $\{n, j\} \subseteq \mathbb{N}$, $j \leq n$, $\vec{d} \in \mathbb{N}^l$, $|\vec{d}| \leq T$ and

$$R(c_1, c_2; \vec{a}) > \max\{c_1, c_2\}$$

for $\{c_1, c_2\} \subseteq \mathbb{N}$, $\vec{a} \in \mathbb{N}^{L(\vec{y})}$. Write, for brevity,

$$\begin{aligned} H_l(\vec{x}, \vec{b}) := & f_2(b_5, b_4; \vec{x}^{(2)}) + f_1(b_6, n, 1, b_5; \vec{x}^{(3)}) + (b_6 - b_1 b_5 - 1)^2 + \\ & (b_2 - b_6 b_7)^2 + (\vec{x}^{(4)} - \vec{x}^{(1)} + \vec{\beta})^2 + \sum_{i=1}^l f_1(b_6 x_i^{(5)}, b_3, x_i^{(4)}, 1; \vec{x}^{(5+i)}), \end{aligned}$$

where

$$\vec{b} := (b_1, \dots, b_7), \quad \vec{\beta} := (\beta_1, \dots, \beta_l) \text{ with } \beta_i = b_3 + 1 \text{ for } 1 \leq i \leq l,$$

$$\vec{x} = \vec{x}^{(1)} * \dots * \vec{x}^{(5+l)} \text{ with } \vec{x}^{(j)} := (x_1^{(j)}, \dots, x_{L(\vec{x}^{(j)})}^{(j)}) \text{ for } 1 \leq j \leq 5 + l,$$

$$L(\vec{x}^{(1)}) = L(\vec{x}^{(4)}) = L(\vec{x}^{(5)}) = l, \quad L(\vec{x}^{(2)}) = 118,$$

$$L(\vec{x}^{(3)}) = L(\vec{x}^{(5+i)}) = 240 \text{ for } 1 \leq i \leq l,$$

and

$$L(\vec{x}) = \sum_{1 \leq i \leq 5+l} L(\vec{x}^{(i)}) = 243l + 358.$$

Then

$$\begin{aligned} (\forall j \leq n) \exists \vec{c} (\vec{c} \in \mathbb{N}^l \& P(n, j; \vec{a}, \vec{c}) = 0) \iff \\ \exists \vec{x}, \vec{b} (\vec{b} \in \mathbb{N}^7 \& \vec{x} \in \mathbb{N}^{L(\vec{x})} \& (P(n, b_1; \vec{a}, \vec{x}^{(1)}) - b_2)^2 + \\ & (R(n, b_3; \vec{a}) - b_4)^2 + H_l(\vec{x}, \vec{b}) = 0) \end{aligned}$$

for $\vec{a} \in \mathbb{N}^{L(\vec{y})}$.

Proof. See [2, pp. 253-256].

§4. A few technical lemmata.

Notation. For $\mathfrak{A} \in \mathfrak{F}$, let $m(\mathfrak{A})$ stand for the number of occurrences of the logical connectives \neg , \supset , or \forall .

Definition. Let $i \in \mathbb{N}$. A sequence of formulae $\{\varphi_1, \dots, \varphi_n\}$ in \mathfrak{F} is i -admissible if, for every j in the interval $1 \leq j \leq n$, one of the following conditions holds true:

- (a) $\varphi_j := (t_k \in t_l)$ and $i \notin \{k, l\}$,
- (b) $\varphi_j := \forall t_i \psi$ for some ψ in \mathfrak{F} ,
- (c) $\varphi_j := (\varphi_k \supset \varphi_l)$ with $1 \leq k, l < j$,
- (d) $\varphi_j := \neg \varphi_k$ with $1 \leq k < j$,
- (e) $\varphi_j := \forall t_\nu \varphi_k$ with $\nu \in \mathbb{N}$, $1 \leq k < j$.

Lemma 6. *The variable t_i does not occur as a free variable in a formula φ if and only if there is an i -admissible sequence of formulae $\{\varphi_1, \dots, \varphi_n\}$ with $\varphi_n = \varphi$.*

Proof. Let $m(\varphi) = 0$ and suppose that $t_i \notin [\varphi]_f$. Then $\varphi := (t_k \in t_l)$ with $i \notin \{k, l\}$ and we may take $n = 1$, $\varphi_1 = \varphi$. Conversely, if $m(\varphi) = 0$ and there is an i -admissible sequence of formulae $\{\varphi_1, \dots, \varphi_n\}$ with $\varphi_n = \varphi$, then φ_n must satisfy condition (a) (since $m(\varphi_n) = m(\varphi) = 0$) and therefore t_i is not a free variable of φ ($= \varphi_n$).

Let $m(\varphi) = l$ with $l \in \mathbb{N}$ and suppose the assertion be true for every formula φ' with $m(\varphi') < l$. Let $\{\varphi_1, \dots, \varphi_n\}$ be an i -admissible sequence of formulae with $\varphi_n = \varphi$. Since $m(\varphi) > 0$ and $\varphi_n = \varphi$, the formula φ satisfies one the conditions (b) – (e). If $\varphi := \forall t_i \psi$ for some ψ in \mathfrak{F} , then $t_i \notin [\varphi]_f$; if $\varphi := (\varphi_k \supset \varphi_l)$ with $1 \leq k, l < n$, then, by the inductive supposition, $t_i \notin [\varphi_k]_f \cup [\varphi_l]_f$ and therefore $t_i \notin [\varphi]_f$; finally, if either $\varphi := \neg \varphi_k$ with $1 \leq k < n$ or $\varphi := \forall t_\nu \varphi_k$ with $\nu \in \mathbb{N}$, $1 \leq k < n$, then, by the inductive supposition, $t_i \notin [\varphi_k]_f$ and therefore $t_i \notin [\varphi]_f$. In either case, t_i is not a free variable of φ . Conversely, suppose that t_i is not a free variable of φ . Since $m(\varphi) > 0$, the formula φ must contain one of the logical connectives \neg , \supset , or \forall . If $\varphi \in \{\neg \psi, \forall t_\nu \psi\}$ with $\psi \in \mathfrak{F}$ and $\nu \neq i$, then t_i is not a free variable of ψ , therefore, by the inductive supposition, there is an i -admissible sequence of formulae $\{\varphi_1, \dots, \varphi_\mu\}$ with $\varphi_\mu := \psi$ and we may let $n = \mu + 1$, $\varphi_n = \varphi$. If $\varphi := (\psi_1 \supset \psi_2)$ with $\{\psi_1, \psi_2\} \subseteq \mathfrak{F}$, then t_i is not a free variable of both ψ_1 and ψ_2 , and therefore, by the inductive supposition, there are two i -admissible sequences of formulae $\{\varphi_1, \dots, \varphi_\mu\}$ and $\{\varphi'_1, \dots, \varphi'_\nu\}$ with $\varphi_\mu := \psi_1$ and $\varphi'_\nu := \psi_2$; it is clear that in this case the sequence of formulae $\{\varphi_1, \dots, \varphi_\mu, \varphi'_1, \dots, \varphi'_\nu, \varphi\}$ is i -admissible. Finally, if $\varphi := \forall t_i \psi$ for some ψ in \mathfrak{F} , then we may take $n = 1$ and let $\varphi_1 = \varphi$.

Definition. Let $\{r_1, r_2\} \subseteq \mathbb{N}$. An (r_1, r_2) -admissible triple consists of two sequences of formulae $\{\varphi_1, \dots, \varphi_n\}$, $\{\psi_1, \dots, \psi_n\}$ and a sequence of integers $\{d_1, \dots, d_n\}$ such that $\{\varphi_j, \psi_j\} \subseteq \mathfrak{F}$, $d_j \in \{1, 2\}$ for $1 \leq j \leq n$ and, for every j in the interval $1 \leq j \leq n$, one of the following conditions holds true:

- 1) $\varphi_j := (t_{r_3} \in t_{r_4})$ with $r_1 \notin \{r_3, r_4\}$, $d_j = 2$, $\psi_j := \varphi_j$;
- 2) $\varphi_j := (t_{r_3} \in t_{r_4})$ with $r_1 \in \{r_3, r_4\}$, $d_j = 1$, $\psi_j := \varphi_j[t_{r_1}|t_{r_2}]$;
- 3) $\varphi_j := \neg\varphi_k$, $d_j = d_k$, $\psi_j := \neg\psi_k$ with $1 \leq k < j$,
- 4) $\varphi_j := (\varphi_k \supset \varphi_l)$, $\psi_j := (\psi_k \supset \psi_l)$, $d_j = (d_k - 1)(d_l - 1) + 1$ with $1 \leq k, l < j$;
- 5) $\varphi_j := \forall t_{r_3} \varphi_k$ with $r_3 \notin \{r_1, r_2\}$, $\psi_j := \forall t_{r_3} \psi_k$, $d_j = d_k$, $1 \leq k < j$;
- 6) $\varphi_j := \forall t_{r_1} \chi$ with $\chi \in \mathfrak{F}$, $\psi_j := \varphi_j$, $d_j = 2$;
- 7) $\varphi_j := \forall t_{r_2} \varphi_k$ with $r_1 \neq r_2$, $\psi_j := \varphi_j$, $d_j = d_k = 2$, $1 \leq k < j$.

Lemma 7. Let $\{r_1, r_2\} \subseteq \mathbb{N}$ and $\{\varphi, \psi\} \subseteq \mathfrak{F}$. Then the variable t_{r_2} is free for t_{r_1} in φ and $\psi := \varphi[t_{r_1}|t_{r_2}]$ if and only if there is an (r_1, r_2) -admissible triple

$$\{\varphi_1, \dots, \varphi_n\}, \{\psi_1, \dots, \psi_n\}, \{d_1, \dots, d_n\} \quad (2)$$

with $\varphi_n = \varphi$, $\psi_n = \psi$. Moreover, any (r_1, r_2) -admissible triple (2) satisfies the condition

$$d_j = \begin{cases} 1 & \text{if } t_{r_1} \in [\varphi_j]_f \\ 2 & \text{if } t_{r_1} \notin [\varphi_j]_f \end{cases} \quad (3)$$

for $1 \leq j \leq n$.

Proof. For any (r_1, r_2) -admissible triple (2) relation (3) can be easily proved by induction on n .

Let $m(\varphi) = 0$, then $\varphi := (t_{r_3} \in t_{r_4})$ with $\{r_3, r_4\} \subseteq \mathbb{N}$, so that the variable t_{r_2} is free for t_{r_1} in φ . Let $\psi := \varphi[t_{r_1}|t_{r_2}]$, $n = 1$, and

$$d_1 = \begin{cases} 1 & \text{if } r_1 \in \{r_3, r_4\} \\ 2 & \text{if } r_1 \notin \{r_3, r_4\}; \end{cases}$$

it is clear then that $\{\varphi\}$, $\{\psi\}$, $\{d_1\}$ is an (r_1, r_2) -admissible triple. Conversely, if (2) is an (r_1, r_2) -admissible triple with $\varphi_n = \varphi$, $\psi_n = \psi$, then, since $m(\varphi) = 0$, for $j = n$ one of the conditions 1) or 2) holds; in either case $\psi := \varphi[t_{r_1}|t_{r_2}]$.

Let now $m(\varphi) = l$ with $l \in \mathbb{N}$ and suppose the assertion be true for every formula φ' with $m(\varphi') < l$. If $\varphi := \forall t_{r_1} \varphi'$ with $\varphi' \in \mathfrak{F}$, then $t_{r_1} \notin [\varphi]_f$ and the assertion is obvious; if $\varphi := \forall t_{r_2} \varphi'$ with $\varphi' \in \mathfrak{F}$ and $r_1 \neq r_2$, then t_{r_2} is free for t_{r_1} in φ if and only if $t_{r_1} \notin [\varphi']_f$ (and therefore $t_{r_1} \notin [\varphi]_f$) and the assertion follows from the inductive supposition. Finally, if

$$\varphi \in \{\neg \varphi', \forall t_{r_3} \varphi', \varphi' \supset \varphi''\} \text{ with } \{\varphi', \varphi''\} \subseteq \mathfrak{F}, r_3 \notin \{r_1, r_2\},$$

then one can deduce the assertion from the inductive supposition arguing as in the proof of Lemma 6.

Notation. Let

$$h_0(\vec{j}; \vec{x}) := (j_2 - j_1 + x_1)^2 + (j_3 - j_1 + x_2)^2 \text{ with } \vec{j} := (j_1, j_2, j_3), \vec{x} := (x_1, x_2).$$

It is clear that, for $\vec{j} \in \mathbb{N}^3$,

$$\exists \vec{x} (\vec{x} \in \mathbb{N}^2 \& h_0(\vec{j}; \vec{x}) = 0) \Leftrightarrow \max\{j_2, j_3\} < j_1.$$

The following lemma is a Diophantine reformulation of Lemma 6.

Lemma 8. Let $\mathcal{C}_i := \{\mathfrak{A} \mid \mathfrak{A} \in \mathfrak{F}, t_i \notin [\mathfrak{A}]_f\}$. Then

$$\mathcal{N}(\mathcal{C}_i) = \{v \mid \mathfrak{B}_4(i, v)\},$$

where $\mathfrak{B}_4(i, v) :=$

$$\exists w, n (\{w, n\} \subseteq \mathbb{N} \& (\forall j_1 \leq n) \exists \vec{y} (\vec{y} \in \mathbb{N}^{27} \& P_4(n, j_1; i, v, w; \vec{y}) = 0))$$

with $P_4(n, j_1; i, v, w; \vec{y}) :=$

$$\sigma(w, n, v; \vec{z}^{(4)}) + \sum_{\nu=1}^3 \sigma(w, j_\nu, x_\nu; \vec{z}^{(\nu)}) + h_0(\vec{j}; z_1, z_2) + \prod_{\nu=1}^5 q_\nu(i, \vec{x}).$$

Here

$$q_1(i, \vec{x}) := (x_1 - 4p(x_4, x_5) + 3)^2 + ((x_4 - i)^2 - x_6)^2 + ((x_5 - i)^2 - x_7)^2,$$

$$q_2(i, \vec{x}) := x_1 - 4p(i, x_4) + 1, \quad q_3(i, \vec{x}) := x_1 - 4p(x_2, x_3),$$

$$q_4(i, \vec{x}) := x_1 - 4x_2 + 2, \quad q_5(i, \vec{x}) := x_1 - 4p(x_4, x_2) + 1$$

with

$$\vec{j} := (j_1, j_2, j_3), \quad \vec{x} := (x_1, \dots, x_7), \quad \vec{y} := (j_2, j_3) * (z_1, z_2) * \vec{x} * \vec{z},$$

$$\vec{z} := \vec{z}^{(1)} * \dots * \vec{z}^{(4)}, \text{ and } L(\vec{z}^{(\nu)}) = 4 \text{ for } 1 \leq \nu \leq 4, \text{ so that } L(\vec{y}) = 27.$$

Proof. Let $\{\varphi_1, \dots, \varphi_n\}$ be a sequence of formulae in \mathfrak{F} with $\mathcal{N}(\varphi_\mu) = a_\mu$ for $1 \leq \mu \leq n$. In view of Proposition 5, there is a natural number w such that the formula $\exists \vec{b} (\vec{b} \in \mathbb{N}^4 \& \sigma(w, j, x; \vec{b}) = 0)$ holds true if and only if $x = a_j$ for $1 \leq j \leq n$. Therefore the formula

$$\exists \vec{z} (\vec{z} \in \mathbb{N}^{16} \& \sigma(w, n, v; \vec{z}^{(4)}) + \sum_{\nu=1}^3 \sigma(w, j_\nu, x_\nu; \vec{z}^{(\nu)}) = 0)$$

asserts that $a_{j_\nu} = x_\nu$ for $1 \leq \nu \leq 3$ and $a_n = v$. Moreover, the formula $\exists z_1, z_2 (h_0(\vec{j}; z_1, z_2) = 0)$ asserts that $\max\{j_2, j_3\} < j_1$. It follows further that $q_1(i, \vec{x}) = 0$ if and only if $m(\varphi_{j_1}) = 0$, $\varphi_{j_1} := (t_k \in t_l)$ and $i \notin \{k, l\}$, where $k := x_4$, $l := x_5$, that $q_2(i, \vec{x}) = 0$ if and only if $\varphi_{j_1} := \forall t_i \psi$ for some ψ in \mathfrak{F} , that $q_3(i, \vec{x}) = 0$ if and only if $\varphi_{j_1} := (\varphi_{j_2} \supset \varphi_{j_3})$ with $1 \leq j_2, j_3 < j_1$, that $q_4(i, \vec{x}) = 0$ if and only if $\varphi_{j_1} := \neg \varphi_{j_2}$ with $1 \leq j_2 < j_1$, and that $q_5(i, \vec{x}) = 0$ if and only if $\varphi_{j_1} := \forall t_\mu \varphi_{j_2}$ with $\mu \in \mathbb{N}$, $1 \leq j_2 < j_1$. Thus, by Lemma 6, the variable t_i does not occur as a free variable in the formula $\mathcal{N}^{-1}(v)$ if and only if the formula $\mathfrak{B}_4(i, v)$ holds true.

Corollary 1. *Let*

$$\mathfrak{A}_4(u) := \exists i, v (\{i, v\} \subseteq \mathbb{N} \& \mathfrak{B}_4(i, v) \& \exists y (y \in \mathbb{N} \& h_4(u; i, v; y) = 0)),$$

where $h_4(u; i, v; y) := u - 4p(4p(i, 4p(v, y)) - 1, 4p(v, 4p(i, y) - 1))$. Then

$$\mathcal{N}(\mathfrak{A}_4) = \{u \mid \mathfrak{A}_4(u)\}.$$

Proof. Let $\mathfrak{C} := \forall t_i (\mathfrak{A} \supset \mathfrak{B}) \supset (\mathfrak{A} \supset \forall t_i \mathfrak{B})$, $\mathcal{N}(\mathfrak{A}) = v$, and $\mathcal{N}(\mathfrak{B}) = y$. An easy calculation shows then that

$$\mathcal{N}(\mathfrak{C}) = 4p(4p(i, 4p(v, y)) - 1, 4p(v, 4p(i, y) - 1)).$$

The assertion follows now from Lemma 8.

The following lemma is a Diophantine reformulation of Lemma 7.

Lemma 9. *Let*

$$\mathcal{C}(\vec{r}) :=$$

$\{\vec{v} \mid v_1 = \mathcal{N}(\varphi), v_2 = \mathcal{N}(\psi), \varphi \in \mathfrak{F}, \psi := \varphi[t_{r_1} | t_{r_2}], t_{r_2} \text{ is free for } t_{r_1} \text{ in } \varphi\}$,
where $\vec{r} := (r_1, r_2)$ and $\vec{v} := (v_1, v_2)$. Then

$$\mathcal{C}(\vec{r}) = \{\vec{v} \mid \vec{v} \in \mathbb{N}^2 \& \mathfrak{B}_5(\vec{v}, \vec{r})\},$$

where

$$\begin{aligned} \mathfrak{B}_5(\vec{v}, \vec{r}) := \exists \vec{w}, n (\vec{w} \in \mathbb{N}^3 \& n \in \mathbb{N} \& \\ (\forall j_1 \leq n) \exists \vec{y} (\vec{y} \in \mathbb{N}^{60} \& P_5(n, j_1; \vec{v}, \vec{r}, \vec{w}; \vec{y}) = 0)) \end{aligned}$$

and

$$\begin{aligned} P_5(n, j_1; \vec{v}, \vec{r}, \vec{w}; \vec{y}) := h_0(\vec{j}; z_1, z_2) + \sum_{1 \leq i, \nu \leq 3} \sigma(w_i, j_\nu, x_{3(i-1)+\nu}; \vec{z}_i^{(\nu)}) + \\ \sum_{i \in \{1, 2\}} \sigma(w_i, n, v_i; \vec{z}_i^{(4)}) + \sum_{i=7}^9 (x_i - 1)^2 (x_i - 2)^2 + \prod_{i=1}^7 q_i(\vec{r}, \vec{x}). \end{aligned}$$

Here

$$\begin{aligned}
q_1(\vec{r}, \vec{x}) &:= \\
(x_7 - 2)^2 + (x_4 - x_1)^2 + (x_1 - 4p(r_3, r_4) + 3)^2 + ((r_3 - r_1)^2(r_4 - r_1)^2 - x_{10})^2; \\
q_2(\vec{r}, \vec{x}) &:= (x_7 - 1)^2 + \prod_{i=1}^3 q_2^{(i)}(\vec{r}, \vec{x})
\end{aligned}$$

with

$$\begin{aligned}
q_2^{(1)}(\vec{r}, \vec{x}) &:= (x_1 - 4p(r_1, r_4) + 3)^2 + (x_4 - 4p(r_2, r_4) + 3)^2 + ((r_4 - r_1)^2 - x_{10})^2, \\
q_2^{(2)}(\vec{r}, \vec{x}) &:= (x_1 - 4p(r_3, r_1) + 3)^2 + (x_4 - 4p(r_3, r_2) + 3)^2 + ((r_3 - r_1)^2 - x_{10})^2, \\
q_2^{(3)}(\vec{r}, \vec{x}) &:= (x_1 - 4p(r_1, r_1) + 3)^2 + (x_4 - 4p(r_2, r_2) + 3)^2; \\
q_3(\vec{r}, \vec{x}) &:= (x_1 - 4x_2 + 2)^2 + (x_4 - 4x_5 + 2)^2 + (x_7 - x_8)^2; \\
q_4(\vec{r}, \vec{x}) &:= (x_7 - (x_8 - 1)(x_9 - 1) - 1)^2 + (x_1 - 4p(x_2, x_3))^2 + (x_4 - 4p(x_5, x_6))^2; \\
q_5(\vec{r}, \vec{x}) &:= (x_1 - 4p(r_3, x_2) + 1)^2 + (x_4 - 4p(r_3, x_5) + 1)^2 + \\
&\quad (x_7 - x_8)^2 + ((r_3 - r_1)^2(r_3 - r_2)^2 - x_{10})^2; \\
q_6(\vec{r}, \vec{x}) &:= (x_1 - 4p(r_1, x_{10}) + 1)^2 + (x_7 - 2)^2 + (x_4 - x_1)^2; \\
q_7(\vec{r}, \vec{x}) &:= (x_1 - 4p(r_2, x_2) + 1)^2 + (x_7 - 2)^2 + \\
&\quad (x_8 - 2)^2 + (x_4 - x_1)^2 + ((r_2 - r_1)^2 - x_{10})^2; \\
\vec{w} &:= (w_1, w_2, w_3), \vec{j} := (j_1, j_2, j_3), \vec{z}^{(\nu)} := \vec{z}_1^{(\nu)} * \vec{z}_2^{(\nu)} * \vec{z}_3^{(\nu)} \text{ for } 1 \leq \nu \leq 3, \\
\vec{z}^{(4)} &:= \vec{z}_1^{(4)} * \vec{z}_2^{(4)}, \text{ with } L(\vec{z}_i^{(\nu)}) = 4 \text{ for } 1 \leq i \leq 3, 1 \leq \nu \leq 4, \vec{z} := \vec{z}^{(1)} * \dots * \vec{z}^{(4)}; \\
\vec{x} &:= (r_3, r_4) * (z_1, z_2) * (x_1, \dots, x_{10}), \vec{y} := (j_2, j_3) * \vec{x} * \vec{z},
\end{aligned}$$

so that $L(\vec{y}) = 60$.

Proof. Let

$$\{\varphi_1, \dots, \varphi_n\}, \{\psi_1, \dots, \psi_n\}, \{d_1, \dots, d_n\}$$

be two sequences of formulae and a sequence of natural numbers, so that $\{\varphi_j, \psi_j\} \subseteq \mathfrak{F}$, $d_j \in \mathbb{N}$ for $1 \leq j \leq n$. In view of Proposition 5, there are three natural numbers w_1, w_2, w_3 such that the formula

$$\exists \vec{b} (\vec{b} \in \mathbb{N}^4 \& \sigma(w_i, j, x; \vec{b}) = 0)$$

holds true if and only if

$$x = \begin{cases} \mathcal{N}(\varphi_j) & \text{if } i = 1 \\ \mathcal{N}(\psi_j) & \text{if } i = 2 \\ d_j & \text{if } i = 3 \end{cases}$$

for $1 \leq j \leq n$. Therefore the formula

$$\begin{aligned} \exists \vec{z} (\vec{w} \in \mathbb{N}^3 \& \vec{z} \in \mathbb{N}^{44} \& \\ \sum_{1 \leq i, \nu \leq 3} \sigma(w_i, j_\nu, x_{3(i-1)+\nu}; \vec{z}_i^{(\nu)}) + \sum_{i \in \{1,2\}} \sigma(w_i, n, v_i; \vec{z}_i^{(4)}) = 0), \end{aligned}$$

with $\vec{w} := (w_1, w_2, w_3)$, implies that there are three sequences

$$\{\varphi_1, \dots, \varphi_n\}, \{\psi_1, \dots, \psi_n\}, \{d_1, \dots, d_n\}$$

such that $\{\varphi_j, \psi_j\} \subseteq \mathfrak{F}$, $d_j \in \mathbb{N}$ for $1 \leq j \leq n$, $\mathcal{N}(\varphi_n) = v_1$, $\mathcal{N}(\psi_n) = v_2$, and $\mathcal{N}(\varphi_{j_\nu}) = x_\nu$, $\mathcal{N}(\psi_{j_\nu}) = x_{\nu+3}$, $d_{j_\nu} = x_{\nu+6}$ for $1 \leq \nu \leq 3$. The formula $\exists z_1, z_2 (\{z_1, z_2\} \subseteq \mathbb{N} \& h_0(j; z_1, z_2) = 0)$ asserts that $\max\{j_2, j_3\} < j_1$. Moreover, for $1 \leq i \leq 7$, the formula

$$\exists \vec{x} (\vec{x} \in \mathbb{N}^{10} \& q_i(\vec{r}, \vec{x}) = 0)$$

is equivalent to condition *i*) in the definition of an (r_1, r_2) -admissible triple. Finally, the equation $\sum_{i=7}^9 (x_i - 1)^2 (x_i - 2)^2 = 0$ implies that $d_j \in \{1, 2\}$ for $1 \leq j \leq n$. Lemma 9 follows now from Lemma 7.

Corollary 2. *Let*

$$\mathfrak{A}_5(u) := \exists \vec{v}, \vec{r} (\{\vec{v}, \vec{r}\} \subseteq \mathbb{N}^2 \& \mathfrak{B}_5(\vec{v}, \vec{r}) \& (h_5(u; \vec{v}, r_1) = 0)),$$

where $\vec{r} := (r_1, r_2)$, $\vec{v} := (v_1, v_2)$, and $h_5(u; \vec{v}, r_1) := u - 4p(4p(r_1, v_1) - 1, v_2)$. Then

$$\mathcal{N}(\mathfrak{A}_5) = \{u \mid \mathfrak{A}_5(u)\}.$$

Proof. Let $\mathfrak{C} := (\forall t_{r_1} \mathfrak{D} \supset \mathfrak{D}[t_{r_1} | t_{r_2}])$, $v_1 := \mathcal{N}(\mathfrak{D})$, and $v_2 := \mathcal{N}(\mathfrak{D}[t_{r_1} | t_{r_2}])$. It follows then that $\mathcal{N}(\mathfrak{C}) = 4p(4p(r_1, v_1) - 1, v_2)$. In view of Lemma 9, this proves the corollary.

§5. Elimination of universal quantifiers.

It follows from Proposition 6 that formulae $\mathfrak{A}_4(u)$ and $\mathfrak{A}_5(u)$ define Diophantine predicates. In this section, we shall construct two polynomials $g_4(u, \vec{x}^{(4)})$ and $g_5(u, \vec{x}^{(5)})$ such that

$$\{u \mid \mathfrak{A}_\nu(u)\} = \{u \mid \exists \vec{b} (\vec{b} \in \mathbb{N}^{L(\vec{x}^{(\nu)})} \& g_\nu(u, \vec{b}) = 0)\}$$

for $\nu = 4, 5$.

Lemma 10. *Let*

$$R_4(t_1, t_2; i, v, w) := 32w^2 + 16v^2 + 300t_1^4 + 2 \cdot 10^6 t_2^{14} + 2 \cdot 10^5 i^{16}$$

with $\{i, v, w\} \subseteq \mathbb{N}$. Then

$$|P_4(n, j_1; i, v, w; \vec{y})| \leq R_4(n, T; i, v, w)$$

for $j_1 \leq n$, $|\vec{y}| \leq T$, $\vec{y} \in \mathbb{N}^{27}$, $\{n, j_1\} \subseteq \mathbb{N}$.

Proof. Suppose that

$$j_1 \leq n, |\vec{y}| \leq T, \vec{y} \in \mathbb{N}^{27}, \{i, v, w, n, j_1\} \subseteq \mathbb{N}.$$

An easy calculation shows that

$$h_0(\vec{j}; x_4, x_5) \leq 16T^2 + 4n^2, \sigma(w, j_\nu, x_\nu, \vec{z}^{(\nu)}) \leq 8w^2 + 240T^6 \text{ for } \nu = 2, 3,$$

$\sigma(w, j_1, x_1, \vec{z}^{(1)}) \leq 8w^2 + 288T^4n^2$, and $\sigma(w, n, v, \vec{z}^{(4)}) \leq 8w^2 + 16v^2 + 280T^4n^2$. Moreover, under the same conditions, we have

$$q_1(i, \vec{x}) \leq 16i^4 + 160T^4, |q_2(i, \vec{x})| \leq 12T^2, |q_3(i, \vec{x})| \leq 12T^2, |q_4(i, \vec{x})| \leq 4T,$$

and $|q_5(i, \vec{x})| \leq 12T^2$. The assertion of the lemma follows from these estimates and the definition of the polynomial $P_4(n, j_1; i, v, w; \vec{y})$ in Lemma 8.

Lemma 11. *Let*

$$R_5(z_1, z_2; \vec{v}, \vec{r}, \vec{w}) := 32\vec{w}^2 + 16\vec{v}^2 + 800t_1^4 + 10^{23}t_2^{64} + 5 \cdot 10^{20}(r_1^{64} + r_2^{32})$$

with $\{\vec{v}, \vec{r}\} \subseteq \mathbb{N}^2$, $\vec{w} \in \mathbb{N}^3$. Then

$$|P_5(n, j_1; \vec{v}, \vec{r}, \vec{w}; \vec{y})| \leq R_5(n, T; \vec{v}, \vec{r}, \vec{w})$$

for $j_1 \leq n$, $|\vec{y}| \leq T$, $\vec{y} \in \mathbb{N}^{60}$, $\{n, j_1\} \subseteq \mathbb{N}$.

Proof. Suppose that

$$j_1 \leq n, |\vec{y}| \leq T, \vec{y} \in \mathbb{N}^{60}, \{n, j_1\} \subseteq \mathbb{N}, \{\vec{v}, \vec{r}\} \subseteq \mathbb{N}^2, \vec{w} \in \mathbb{N}^3.$$

An easy calculation shows that $h_0(\vec{j}; x_{13}, x_{14}) \leq 16T^2 + 4n^2$,

$$\sum_{1 \leq i \leq 3} \sigma(w_i, j_\nu, x_{3(i-1)+\nu}, \vec{z}_i^{(\nu)}) \leq 8\vec{w}^2 + 720T^6 \text{ for } \nu = 2, 3,$$

$$\sum_{1 \leq i \leq 3} \sigma(w_i, j_1, x_{3i-2}, \vec{z}_i^{(1)}) \leq 8\vec{w}^2 + 432(T^8 + n^4),$$

and

$$\sum_{i \in \{1,2\}} \sigma(w_i, n, v_i, \vec{z}_i^{(4)}) \leq 8\vec{w}^2 + 16\vec{v}^2 + 280(T^8 + 70n^4).$$

Moreover, under the same conditions, we have

$$\begin{aligned} \sum_{i=7}^9 (x_i - 1)^2(x_i - 2)^2 &\leq 100T^4, \quad q_1(\vec{r}, \vec{x}) \leq 300T^8 + 130r_1^8, \\ q_2^{(1)}(\vec{r}, \vec{x}) &\leq 32T^4 + 128r_1^4, \quad q_2^{(2)}(\vec{r}, \vec{x}) \leq 100T^4 + 140(r_1^4 + r_2^4), \\ q_2^{(3)}(\vec{r}, \vec{x}) &\leq 100T^2 + 300(r_1^4 + r_2^4), \quad q_3(\vec{r}, \vec{x}) \leq 40T^2, \quad q_4(\vec{r}, \vec{x}) \leq 300T^4, \\ q_5(\vec{r}, \vec{x}) &\leq 500T^8 + 100(r_1^8 + r_2^8), \quad q_6(\vec{r}, \vec{x}) \leq 150T^4 + 32r_1^4, \end{aligned}$$

and $q_7(\vec{r}, \vec{x}) \leq 140T^4 + 16r_1^4 + 50r_2^4$. The assertion of the lemma follows from those estimates and the definition of the polynomial $P_5(n, j_1; \vec{v}, \vec{r}, \vec{w}; \vec{y})$ in Lemma 9.

By construction,

$$P_4(n, j_1; i, v, w; \vec{y}) \in \mathbb{Z}[n, j_1; i, v, w; \vec{y}]$$

and

$$P_5(n, j_1; \vec{v}, \vec{r}, \vec{w}; \vec{y}) \in \mathbb{Z}[n, j_1; \vec{v}, \vec{r}, \vec{w}; \vec{y}].$$

Therefore one concludes as follows.

Proposition 7. *Let $g_4(u, \vec{z}) :=$*

$$h_4(u; i, v, y)^2 + H_{27}(\vec{x}, \vec{b}) + (P_4(n, b_1; i, v, w; \vec{x}^{(1)}) - b_2)^2 + (R_4(n, b_3; i, v, w) - b_4)^2,$$

where $\vec{z} = \vec{x} * \vec{b} * (i, v, w, n, y)$ with $L(\vec{z}) = 6931$. Then

$$\mathcal{N}(\mathcal{A}_4) = \{u \mid \exists \vec{a} (\vec{a} \in \mathbb{N}^{6931} \& g_4(u, \vec{a}) = 0)\}.$$

Proof. In notations of Lemma 8,

$$\mathfrak{B}_4(i, v) :=$$

$$\exists w, n (\{w, n\} \subseteq \mathbb{N} \& (\forall j_1 \leq n) \exists \vec{c} (\vec{c} \in \mathbb{N}^{27} \& P_4(n, j_1; i, v, w; \vec{c}) = 0)).$$

In view of Lemma 10, it follows from Proposition 6 that

$$\mathfrak{B}_4(i, v) \iff \exists w, n, \vec{x}, \vec{b} (\{w, n\} \subseteq \mathbb{N} \& \vec{b} \in \mathbb{N}^7 \& \vec{x} \in \mathbb{N}^{6919} \&$$

$$H_{27}(\vec{x}, \vec{b}) + (P_4(n, b_1; i, v, w; \vec{x}^{(1)}) - b_2)^2 + (R_4(n, b_3; i, v, w) - b_4)^2 = 0$$

for $\{i, v\} \subseteq \mathbb{N}$, since $L(\vec{x}) = 243l + 358 = 6919$ with $l := L(\vec{c}) = 27$. The assertion of Proposition 7 follows now from Corollary 1.

Proposition 8. Let $g_5(u, \vec{z}) :=$

$$h_5(u; \vec{v}, r_1)^2 + H_{60}(\vec{x}, \vec{b}) + (P_5(n, b_1; \vec{v}, \vec{r}, \vec{w}; \vec{x}^{(1)}) - b_2)^2 + (R_5(n, b_3; \vec{v}, \vec{r}, \vec{w}) - b_4)^2,$$

where $\vec{z} = \vec{x} * \vec{b} * \vec{v} * \vec{r} * \vec{w} * (n)$ with $L(\vec{z}) = 14953$. Then

$$\mathcal{N}(\mathcal{A}_5) = \{u \mid \exists \vec{a} (\vec{a} \in \mathbb{N}^{L(\vec{z})} \& g_5(u, \vec{a}) = 0)\}.$$

Proof. In notations of Lemma 9,

$$\begin{aligned} \mathfrak{B}_5(\vec{v}, \vec{r}) := \exists \vec{w}, n \ (\vec{w} \in \mathbb{N}^3 \& n \in \mathbb{N} \& \\ (\forall j_1 \leq n) \ \exists \vec{c} (\vec{c} \in \mathbb{N}^{60} \& P_5(n, j_1; \vec{v}, \vec{r}, \vec{w}; \vec{c}) = 0)). \end{aligned}$$

In view of Lemma 11, it follows from Proposition 6 that

$$\begin{aligned} \mathfrak{B}_5(\vec{v}, \vec{r}) \iff \exists \vec{w}, n, \vec{x}, \vec{b} \ (\vec{w} \in \mathbb{N}^3 \& n \in \mathbb{N} \& \vec{b} \in \mathbb{N}^7 \& \vec{x} \in \mathbb{N}^{L(\vec{x})} \& \\ H_{60}(\vec{x}, \vec{b}) + (P_5(n, b_1; \vec{v}, \vec{r}, \vec{w}; \vec{x}^{(1)}) - b_2)^2 + (R_5(n, b_3; \vec{v}, \vec{r}, \vec{w}) - b_4)^2 = 0) \end{aligned}$$

for $\{\vec{v}, \vec{r}\} \subseteq \mathbb{N}^2$ since $L(\vec{x}) = 243l + 358 = 14938$ with $l := L(\vec{c}) = 60$. The assertion of Proposition 8 follows now from Corollary 2.

§6. The main theorem.

Proposition 9. Let $u_i := \mathcal{N}(\mathfrak{A}_i)$ for some \mathfrak{A}_i in \mathfrak{F} , $1 \leq i \leq 3$, and let $G_1(\vec{u}; x) := x(u_3 - 4p(u_2, u_1))$, where $\vec{u} := (u_1, u_2, u_3)$. The formula \mathfrak{A}_1 follows from the formulae \mathfrak{A}_2 and \mathfrak{A}_3 by the rule (\mathcal{B}_1) if and only if

$$\exists b (b \in \mathbb{N} \& G_1(\vec{u}; b) = 0).$$

Proof. Since the formula $u_3 = 4p(u_2, u_1)$ asserts that $\mathfrak{A}_3 := \mathfrak{A}_2 \supset \mathfrak{A}_1$, the assertion follows from the definition of inference rule (\mathcal{B}_1) .

Proposition 10. Let $u_i := \mathcal{N}(\mathfrak{A}_i)$ for some \mathfrak{A}_i in \mathfrak{F} , $i = 1, 2$, and let $G_2(\vec{u}; r) := u_1 - 4p(r, u_2) + 1$, where $\vec{u} := (u_1, u_2)$. The formula \mathfrak{A}_1 follows from the formula \mathfrak{A}_2 by the rule (\mathcal{B}_2) if and only if $\exists r (r \in \mathbb{N} \& G_2(\vec{u}; r) = 0)$.

Proof. Since the formula $\exists r (r \in \mathbb{N} \& G_2(\vec{u}; r) = 0)$ asserts that $\mathfrak{A}_2 := \forall t_r \mathfrak{A}_1$ for some t_r in \mathcal{X} , the assertion follows from the definition of inference rule (\mathcal{B}_2) .

The following lemma is a Diophantine reformulation of the definition of the set \mathfrak{T} of the theorems of \mathcal{P} .

Lemma 12. *Let*

$$Q(n, j_1; v, u; \vec{w}) := \sum_{i=1}^3 \sigma(u, j_i, x_i; \vec{z}^{(i)}) + \sigma(u, n, v; \vec{z}^{(4)}) +$$

$$h_0(\vec{j}; x_4, x_5) + G_1(x_1, x_2, x_3; y_1)^2 G_2(x_1, x_2; y_1)^2 \prod_{i=1}^5 g_i(x_1, \vec{y}^{(i)}),$$

where

$$\vec{j} := (j_1, j_2, j_3), \vec{x} := (x_1, \dots, x_5), \vec{w} := (j_2, j_3) * \vec{x} * \vec{z} * \vec{y}, \vec{z} := \vec{z}^{(1)} * \dots * \vec{z}^{(4)},$$

$$\vec{y}^{(1)} = \vec{y}^{(3)} := (y_1, y_2), \vec{y}^{(2)} := (y_1, y_2, y_3), \vec{y}^{(4)} := (y_1, \dots, y_{6931}),$$

$$\vec{y}^{(5)} = \vec{y} := (y_1, \dots, y_{14953}), L(\vec{z}^{(i)}) = 4 \text{ for } 1 \leq i \leq 4, \text{ so that } L(\vec{w}) = 14976.$$

Then

$$\mathcal{N}(\mathfrak{T}) = \{v \mid \exists u, n (\{u, n\} \subseteq \mathbb{N} \& \mathfrak{A}(v; u, n))\},$$

where

$$\mathfrak{A}(v; u, n) := (\forall j_1 \leq n) \exists \vec{w} (\vec{w} \in \mathbb{N}^{L(\vec{w})} \& Q(n, j_1; v, u; \vec{w}) = 0).$$

Proof. Let $\mathfrak{C}_1, \dots, \mathfrak{C}_n$ be a sequence of formulae in \mathfrak{F} with $\mathcal{N}(\mathfrak{C}_\mu) = a_\mu$ for $1 \leq \mu \leq n$. In view of Proposition 5, there is a natural number u such that the formula $\exists \vec{b} (\vec{b} \in \mathbb{N}^4 \& \sigma(u, j, x; \vec{b}) = 0)$ holds true if and only if $x = a_j$ for $1 \leq j \leq n$. Therefore the formula

$$\exists \vec{z} (\vec{z} \in \mathbb{N}^{16} \& \sigma(u, n, v; \vec{z}^{(4)}) + \sum_{\nu=1}^3 \sigma(u, j_\nu, x_\nu; \vec{z}^{(\nu)}) = 0)$$

asserts that $a_{j_\nu} = x_\nu$ for $1 \leq \nu \leq 3$ and $a_n = v$. Moreover, the formula $\exists x_1, x_2 (h_0(\vec{j}; x_1, x_2) = 0)$ asserts that $\max\{j_2, j_3\} < j_1$. Thus, in view of Propositions 2-4 and Propositions 7-10, the formula $\mathfrak{A}(v; u, n)$ asserts that either $\mathfrak{C}_{j_1} \in \cup_{i=1}^5 \mathcal{C}_i$, or \mathfrak{C}_{j_1} can be deduced from \mathfrak{C}_{j_2} and \mathfrak{C}_{j_3} (respectively, from \mathfrak{C}_{j_2}) by the rule "modus ponens" (respectively, by the rule "generalisation"), where $\max\{j_2, j_3\} < j_1 \leq n$, and that $\mathcal{N}(\mathfrak{C}_n) = v$. The formula $\exists u, n (\{u, n\} \subseteq \mathbb{N} \& \mathfrak{A}(v; u, n))$ can be now seen to assert that $v \in \mathcal{N}(\mathfrak{T})$, as claimed.

Lemma 13. *Let*

$$R(z_1, z_2; v, u) := 32u^2 + 16v^2 + 300z_1^4 + 10^{89}z_2^{182}.$$

Then

$$|Q(n, j_1; v, u; \vec{w})| \leq R(n, T; v, u) \text{ for } j_1 \leq n, |\vec{w}| \leq T, \vec{w} \in \mathbb{N}^l, l := 14976,$$

with $\{v, u, n, j_1\} \subseteq \mathbb{N}$.

Proof. Suppose that $j_1 \leq n$, $|\vec{w}| \leq T$ for $\vec{w} \in \mathbb{N}^l$, and $\{v, u, n, j_1\} \subseteq \mathbb{N}$. Then, arguing as in the proof of Lemma 10, one concludes that

$$\begin{aligned} h_0(\vec{j}; x_4, x_5) + \sum_{i=1}^3 \sigma(u, j_i, x_i; \vec{z}^{(i)}) + \sigma(u, n, v; \vec{z}^{(4)}) \\ \leq 32u^2 + 16v^2 + 300n^4 + 10^3 T^8. \end{aligned}$$

Moreover, it follows from the definition of the polynomials G_1, G_2, g_1, g_2 , and g_3 that

$$\begin{aligned} |G_1(x_1, x_2, x_3; \vec{y}_1)| &\leq 12T^2, \quad |G_2(x_1, x_2; \vec{y}_1)| \leq 12T^4, \\ |g_1(x_1, \vec{y}^{(1)})| &\leq 1.2 \cdot 10^3 T^4, \quad |g_2(x_1, \vec{y}^{(2)})| \leq 5 \cdot 10^7 T^8, \end{aligned}$$

and $|g_3(x_1, \vec{y}^{(3)})| \leq 10^{14} T^8$. After some calculations, it follows from Lemmata 10 and 11 and the definition of $g_i(x_1, \vec{y}^{(i)})$, $i = 4, 5$, that

$$g_4(x_1, \vec{y}^{(4)}) \leq 10^{14} T^{28} \text{ and } g_5(x_1, \vec{y}^{(5)}) \leq 2 \cdot 10^{47} T^{128}.$$

Those estimates and the definition of the polynomial $Q(n, j_1; v, u; \vec{w})$ show that

$$|Q(n, j_1; v, u; \vec{w})| \leq 32u^2 + 16v^2 + 300n^4 + 10^{89} T^{182},$$

as asserted.

Theorem 1. *In the notations of Proposition 6, let*

$$F(v, \vec{z}) := (Q(n, b_1; v, u; \vec{x}^{(1)}) - b_2)^2 + (R(n, b_3; v, u) - b_4)^2 + H_l(\vec{x}, \vec{b})$$

with $l := 14976$ and $\vec{z} := (u, n) * \vec{x}$, so that $L(\vec{z}) = 243l + 360 = 3639528$.

Then

$$\mathcal{N}(\mathfrak{T}) = \{a \mid a \in \mathbb{N}, \exists \vec{c} (\vec{c} \in \mathbb{N}^{L(\vec{z})} \& F(a, \vec{c}) = 0)\}.$$

Proof. By construction, $Q(n, j_1; v, u; \vec{w}) \in Z[n, j_1; v, u; \vec{w}]$. Therefore, in view of Lemma 13, the assertion follows from Proposition 6 and Lemma 12.

Corollary 3. *Let $f(t, \vec{x}) := F(t, \vec{z})$, where $\vec{z} := (z_1, \dots, z_n)$, $n := 3639528$, with*

$$z_j := \sum_{i=1}^4 x_{ji}^2 + 1 \text{ for } 1 \leq j \leq n, \quad \vec{x} := (x_{11}, \dots, x_{14}, \dots, x_{n1}, \dots, x_{n4}).$$

Then

$$\mathcal{N}(\mathfrak{T}) = \{a \mid a \in \mathbb{N}, \exists \vec{b} (\vec{b} \in \mathbb{Z}^{4n} \& f(a, \vec{b}) = 0)\}.$$

Proof. In view of Lemma 1, the assertion follows from Theorem 1.

Thus we may let $F_{\mathcal{P}}(t, \vec{x}) := f(t, \vec{x})$.

§7. The Gödel-Bernays system \mathfrak{S} .

Let us list the proper (non-logical) axioms of the Gödel-Bernays axiomatic set theory, denoted by \mathfrak{S} , in the language of the predicate calculus \mathcal{P} (cf. [14, Ch. 4]).

Notation. For $\{\mathfrak{A}, \mathfrak{B}\} \subseteq \mathfrak{F}$ and $x \in \mathcal{X}$, let

$$\mathfrak{A} \vee \mathfrak{B} := \neg \mathfrak{B} \supset \mathfrak{A}, \quad \mathfrak{A} \& \mathfrak{B} := \neg (\neg \mathfrak{A} \vee \neg \mathfrak{B}),$$

$$\mathfrak{A} \equiv \mathfrak{B} := (\mathfrak{A} \supset \mathfrak{B}) \& (\mathfrak{B} \supset \mathfrak{A}), \quad \exists x \mathfrak{A} := \neg \forall x \neg \mathfrak{A}.$$

For $\{i, j\} \subseteq \mathbb{N} \setminus \{1\}$, write

$$\mathfrak{m}(t_i) := \exists t_1 (t_i \in t_1) \text{ and } t_i = t_j := \forall t_1 (t_1 \in t_i \equiv t_1 \in t_j).$$

Assuming that $\{i, j, k\} \subseteq \mathbb{N} \setminus \{1\}$ and $i \notin \{j, k\}$, let

$$t_i = [t_j, t_k] :=$$

$$(\mathfrak{m}(t_j) \& \mathfrak{m}(t_k) \& \forall t_1 (t_1 \in t_i \equiv (t_1 = t_j \vee t_1 = t_k))) \vee (\neg (\mathfrak{m}(t_j) \& \mathfrak{m}(t_k)) \& t_i = \emptyset)$$

and

$$t_i = \langle t_j, t_k \rangle := t_i = [[t_j, t_j], [t_j, t_k]].$$

Finally, let

$$t_i = \langle t_j, t_k, t_l \rangle := t_i = \langle \langle t_j, t_k \rangle, t_l \rangle$$

for $\{i, j, k, l\} \subseteq \mathbb{N} \setminus \{1\}$ and $i \notin \{j, k, l\}$. Let us introduce the set of the "set variables" $\{s_i \mid i \in \mathbb{N}, i > 1\}$ by means of the following abbreviations:

$$\forall s_i \mathfrak{A} := \forall t_i (\mathfrak{m}(t_i) \supset \mathfrak{A}) \text{ and } \exists s_i \mathfrak{A} := \neg \forall s_i \neg \mathfrak{A}$$

for $\mathfrak{A} \in \mathfrak{F}$ and $i \in \mathbb{N} \setminus \{1\}$. Write

$$t_i = \emptyset := \forall t_1 \neg (t_1 \in t_i).$$

There are sixteen proper axioms of \mathfrak{S} :

$$\mathfrak{A}_1 := (t_2 = t_3) \supset (t_2 \in t_4 \equiv t_3 \in t_4);$$

$$\mathfrak{A}_2 := \forall s_2, s_3 \exists s_4 \forall s_1 (t_1 \in t_4 \equiv (t_1 = t_2 \vee t_1 = t_3));$$

$$\mathfrak{A}_3 := \exists s_2 \forall s_1 \neg (t_1 \in t_2);$$

$$\mathfrak{A}_4 := \exists t_2 \forall s_3, s_4 (\langle t_3, t_4 \rangle \in t_2 \equiv t_3 \in t_4);$$

$$\mathfrak{A}_5 := \forall t_1, t_2 \exists t_3 \forall t_4 (t_4 \in t_3 \equiv (t_4 \in t_1 \& t_4 \in t_2));$$

$$\begin{aligned}
\mathfrak{A}_6 &:= \forall t_1 \exists t_2 \forall s_3 (t_3 \in t_2 \equiv \neg (t_3 \in t_1)); \\
\mathfrak{A}_7 &:= \forall t_1 \exists t_2 \forall s_3 (t_3 \in t_2 \equiv \exists s_4 (< t_3, t_4 > \in t_1)); \\
\mathfrak{A}_8 &:= \forall t_1 \exists t_2 \forall s_3, s_4 (< t_3, t_4 > \in t_2 \equiv t_3 \in t_1); \\
\mathfrak{A}_9 &:= \forall t_1 \exists t_2 \forall s_3, s_4, s_5 (< t_3, t_4, t_5 > \in t_2 \equiv < t_4, t_5, t_3 > \in t_1); \\
\mathfrak{A}_{10} &:= \forall t_1 \exists t_2 \forall s_3, s_4, s_5 (< t_3, t_4, t_5 > \in t_2 \equiv < t_3, t_5, t_4 > \in t_1); \\
\mathfrak{A}_{11} &:= \forall s_1 \exists s_2 \forall s_3 (t_3 \in t_2 \equiv \exists s_4 (t_3 \in t_4 \& t_4 \in t_1)); \\
\mathfrak{A}_{12} &:= \forall s_1 \exists s_2 \forall s_3 (t_3 \in t_2 \equiv \forall t_4 (t_4 \in t_3 \supset t_4 \in t_1)); \\
\mathfrak{A}_{13} &:= \forall s_1, t_2 \exists s_3 \forall s_4 (t_4 \in t_3 \equiv (t_4 \in t_1 \& t_4 \in t_2)); \\
\mathfrak{A}_{14} &:= \mathfrak{A}_{14}^{(1)} \supset \mathfrak{A}_{14}^{(2)},
\end{aligned}$$

where

$$\mathfrak{A}_{14}^{(1)} := (R(t_1) \& \forall s_2, s_3, s_4 ((< t_2, t_3 > \in t_1 \& < t_2, t_4 > \in t_1) \supset t_3 = t_4))$$

with

$$R(t_1) := \forall t_2 (t_2 \in t_1 \equiv \exists t_3, t_4 (t_2 = < t_3, t_4 >))$$

and

$$\begin{aligned}
\mathfrak{A}_{14}^{(2)} &:= \forall s_2 \exists s_3 \forall s_4 (t_4 \in t_3 \equiv \exists s_5 (< t_5, t_4 > \in t_1 \& t_5 \in t_2)); \\
\mathfrak{A}_{15} &:= \exists s_2 (\exists t_4 (t_4 \in t_2 \& t_4 = \emptyset) \& \forall s_3 (t_3 \in t_2 \supset \exists t_4 (t_4 \in t_2 \& \mathfrak{A}_{15}^{(1)}))),
\end{aligned}$$

where

$$\mathfrak{A}_{15}^{(1)} := \forall t_5 (t_5 \in t_4 \equiv (t_5 = t_3 \vee (t_5 = [t_3, t_3])));$$

\mathfrak{A}_{16} is the axiom of choice, which need not be stated here (cf., however, [14, p. 275]).

Notation. Let

$$\mathfrak{A}_0 := \mathfrak{A}_1 \& \dots \& \mathfrak{A}_{15}, \quad \mathfrak{A} := \mathfrak{A}_0 \& \mathfrak{A}_{16},$$

$$\mathfrak{T}(\mathfrak{S}_0) := \{\mathfrak{B} \mid \mathfrak{B} \in \mathfrak{F}, (\mathfrak{A}_0 \supset \mathfrak{B}) \in \mathfrak{T}\},$$

and

$$\mathfrak{T}(\mathfrak{S}) := \{\mathfrak{B} \mid \mathfrak{B} \in \mathfrak{F}, (\mathfrak{A} \supset \mathfrak{B}) \in \mathfrak{T}\}.$$

The set $\mathfrak{T}(\mathfrak{S})$ (respectively, $\mathfrak{T}(\mathfrak{S}_0)$) is, by definition, the set of the theorems of the system \mathfrak{S} (respectively, of the system \mathfrak{S}_0). By a theorem of K. Gödel's [6], the system \mathfrak{S} is consistent if and only if \mathfrak{S}_0 is. Thus

$$(\mathfrak{T}(\mathfrak{S}_0) = \mathfrak{F}) \equiv (\mathfrak{T}(\mathfrak{S}) = \mathfrak{F}).$$

Let $a_j := \mathcal{N}(\mathfrak{A}_j)$ and

$$\mathfrak{C}_1(\mathfrak{B}) := (\mathfrak{A}_1 \supset \mathfrak{B}), \mathfrak{C}_{j+1}(\mathfrak{B}) := (\mathfrak{A}_{j+1} \supset \mathfrak{C}_j(\mathfrak{B})), 1 \leq j < 16,$$

for $\mathfrak{B} \in \mathfrak{F}$. Further, let $b := \mathcal{N}(\mathfrak{B})$ and let

$$f_1(\vec{x}) = 4p(x_1, y), f_{j+1}(\vec{x}, y) = 4p(x_{j+1}, f_j(\vec{x}, y)), 1 \leq j < l, \quad (4)$$

where $\vec{x} := (x_1, \dots, x_l)$. It follows then that

$$\mathcal{N}(\mathfrak{C}_j(\mathfrak{B})) = f_j(\vec{a}, b), 1 \leq j \leq 16,$$

with $\vec{a} := (a_1, \dots, a_{16})$. Write, for brevity,

$$m_0(b) := f_{15}(\vec{a}, b), m(b) := f_{16}(\vec{a}, b), \quad (5)$$

and let $n := 3639528$. By construction, if $\neg \mathfrak{B} \in \mathfrak{T}(\mathfrak{S})$, then the formula

$$\exists \vec{c} (\vec{c} \in \mathbb{Z}^{4n} \& F_{\mathcal{P}}(m(b), \vec{c}) = 0)$$

asserts that $\mathfrak{T}(\mathfrak{S}) = \mathfrak{F}$; likewise, if $\neg \mathfrak{B} \in \mathfrak{T}(\mathfrak{S}_0)$, then the formula

$$\exists \vec{c} (\vec{c} \in \mathbb{Z}^{4n} \& F_{\mathcal{P}}(m_0(b), \vec{c}) = 0))$$

asserts that $\mathfrak{T}(\mathfrak{S}_0) = \mathfrak{F}$. Take, for instance,

$$\mathfrak{B} := \forall t_1 (t_1 \in t_1),$$

then $\neg \mathfrak{B} \in \mathfrak{T}(\mathfrak{S}_0)$ and $\mathcal{N}(\mathfrak{B}) = 3$. Thus the formula

$$\exists \vec{c} (\vec{c} \in \mathbb{Z}^{4n} \& F_{\mathcal{P}}(m_0(3), \vec{c}) = 0)$$

asserts that $\mathfrak{T}(\mathfrak{S}_0) = \mathfrak{T}(\mathfrak{S}_0) = \mathfrak{F}$. In view of Gödel's second theorem [14, pp. 212-213], we can summarise our conclusions as follows.

Theorem 2. *Let $\mathfrak{B} \in \mathfrak{F}$ and suppose that $\neg \mathfrak{B} \in \mathfrak{T}(\mathfrak{S}_0)$. If the Gödel-Bernays axiomatic set theory \mathfrak{S} is consistent, then although the Diophantine equation*

$$F_{\mathcal{P}}(m_0(b), \vec{x}) = 0, b := \mathcal{N}(\mathfrak{B}),$$

has no solutions in \mathbb{Z} , the formula

$$\neg \exists \vec{c} (\vec{c} \in \mathbb{Z}^{4n} \& F_{\mathcal{P}}(m_0(b), \vec{c}) = 0)$$

can not be proved in the system \mathfrak{S} . The function $b \mapsto m_0(b)$ can be explicitly evaluated by means of formulae (4), (5), and formulae (6)-(20) below.

Corollary 4. *If the Gödel-Bernays axiomatic set theory \mathfrak{S} is consistent, then although the Diophantine equation*

$$F_{\mathcal{P}}(m_0(3), \vec{x}) = 0$$

has no solutions in \mathbb{Z} , the formula

$$\neg \exists \vec{c} (\vec{c} \in \mathbb{Z}^{4n} \& F_{\mathcal{P}}(m_0(3), \vec{c}) = 0)$$

can not be proved in the system \mathfrak{S} .

Appendix to §7.

The following formulae (6)-(20) provide explicit expressions for the numbers $a_j := \mathcal{N}(\mathfrak{A}_j)$, $1 \leq j \leq 16$. An easy calculation shows that

$$\mathcal{N}(\mathfrak{A} \vee \mathfrak{B}) = \nu_0(\mathcal{N}(\mathfrak{A}), \mathcal{N}(\mathfrak{B})), \quad \mathcal{N}(\mathfrak{A} \& \mathfrak{B}) = \nu_1(\mathcal{N}(\mathfrak{A}), \mathcal{N}(\mathfrak{B})),$$

$$\mathcal{N}(\mathfrak{A} \equiv \mathfrak{B}) = \nu_2(\mathcal{N}(\mathfrak{A}), \mathcal{N}(\mathfrak{B})), \quad \mathcal{N}(\exists t_i \mathfrak{A}) = \nu_3(i, \mathcal{N}(\mathfrak{A})),$$

where

$$\nu_0(u, v) := 4p(4v - 2, u), \quad \nu_1(u, v) := 4\nu_0(4u - 2, 4v - 2) - 2,$$

$$\nu_2(u, v) := \nu_1(4p(u, v), 4p(v, u)), \quad \nu_3(i, u) := 16p(i, 4u - 2) - 6,$$

and

$$\mathcal{N}(\mathfrak{m}(t_i)) = \nu_4(i), \quad \mathcal{N}(t_i = \emptyset) = \nu_5(i), \quad \mathcal{N}(t_i = t_j) = \nu_6(i, j),$$

$$\mathcal{N}(\forall s_i \mathfrak{A}) = \nu_7(i, \mathcal{N}(\mathfrak{A})), \quad \mathcal{N}(\exists s_i \mathfrak{A}) = \nu_8(i, \mathcal{N}(\mathfrak{A}))$$

with

$$\nu_4(i) := \nu_3(1, 4p(i, 1) - 3), \quad \nu_5(i) := 4p(1, 16p(1, i) - 14) - 1,$$

$$\nu_6(i, j) := 4p(1, \nu_2(4p(1, i) - 3, 4p(1, j) - 3)) - 1,$$

$$\nu_7(i, u) := 4p(i, 4p(\nu_4(i), u)) - 1, \quad \nu_8(i, u) := 4\nu_7(i, 4u - 2) - 2.$$

A further calculation shows that

$$\mathcal{N}(t_i = [t_j, t_k]) = \nu_9(i, j, k)$$

with $\nu_9(i, j, k) := \nu_0(u_1, u_2)$, where

$$u_1 := \nu_1(\nu_1(\nu_4(j), \nu_4(k)), u_3), \quad u_3 := 4p(1, \nu_2(4p(1, i) - 3, u_4)) - 1,$$

$$u_4 := \nu_0(4p(1, j) - 3, 4p(1, k) - 3), \quad u_2 := \nu_1(u_5, \nu_5(i)),$$

$$u_5 := 4\nu_1(\nu_4(j), \nu_4(k)) - 2;$$

$$\mathcal{N}(t_i = \langle t_j, t_k \rangle) = \nu_{10}(i, j, k)$$

with $\nu_{10}(i, j, k) := \nu_3(u_1, \nu_3(u_2, u_3))$, where

$$u_1 := i + j + k, \quad u_2 := u_1 + 1, \quad u_3 := \nu_2(u_4, \nu_9(i, u_1, u_2))),$$

$$u_4 := \nu_1(\nu_9(u_1, j, j), \nu_9(u_2, j, k));$$

$$\mathcal{N}(t_i = \langle t_j, t_k, t_l \rangle) = \nu_{11}(i, j, k, l)$$

with $\nu_{11}(i, j, k, l) := \nu_3(u_1, u_2)$, where

$$u_1 := i + j + k + l, \quad u_2 := \nu_1(\nu_{10}(u_1, j, k), \nu_{10}(i, u_1, k)).$$

It follows now that

$$a_1 = 4p(\nu_6(2, 3), \nu_2(4p(2, 4) - 3, 4p(3, 4) - 3)); \quad (6)$$

$$a_2 = \nu_7(2, \nu_7(3, \nu_8(4, \nu_7(1, u)))) \quad (7)$$

with $u = \nu_2(4p(1, 4) - 3, \nu_0(\nu_6(1, 2), \nu_6(1, 3)))$;

$$a_3 = \nu_8(2, \nu_7(1, 4p(1, 2) - 3)); \quad (8)$$

$$a_4 = \nu_3(2, \nu_7(3, \nu_7(4, u_1))), \quad (9)$$

where $u_1 := \nu_2(\nu_3(5, u_2), 4p(3, 4) - 3)$ and $u_2 := \nu_1(\nu_{10}(5, 3, 4), 4p(5, 2) - 3)$;

$$a_5 = 4p(1, 4p(2, u_1) - 1) - 1, \quad (10)$$

where $u_1 := \nu_3(3, 4p(4, \nu_2(u_2, u_3)) - 1)$, $u_2 := 4p(4, 3) - 3$, and $u_3 := \nu_1(4p(4, 1) - 3, 4p(4, 2) - 3)$;

$$a_6 = 4p(1, \nu_3(2, u_1)) - 1, \quad (11)$$

where $u_1 := \nu_7(3, \nu_2(u_2, u_3))$, $u_2 := 4p(3, 2) - 3$, and $u_3 := 16p(3, 1) - 14$;

$$a_7 = 4p(1, \nu_3(2, u_1)) - 1, \quad (12)$$

where $u_1 := \nu_7(3, \nu_2(u_2, u_3))$, $u_2 := 4p(3, 2) - 3$, $u_3 := \nu_8(4, u_4)$, and $u_4 := \nu_3(5, \nu_1(\nu_{10}(5, 3, 4), 4p(5, 1) - 3))$;

$$a_8 = 4p(1, \nu_3(2, u_1)) - 1, \quad (13)$$

where $u_1 := \nu_7(3, \nu_7(4, u_2))$, $u_2 := \nu_2(u_3, 4p(3, 1) - 3)$, and $u_3 := \nu_3(5, \nu_1(\nu_{10}(5, 3, 4), 4p(5, 2) - 3))$;

$$a_9 = 4p(1, \nu_3(2, u_1)) - 1, \quad (14)$$

where $u_1 := \nu_7(3, \nu_7(4, \nu_7(5, u_2)))$, $u_2 := \nu_3(6, \nu_3(7, \nu_1(u_3, u_4)))$, $u_3 := \nu_1(\nu_{11}(6, 3, 4, 5), \nu_{11}(7, 4, 5, 3))$, and $u_4 := \nu_2(4p(6, 2) - 3, 4p(7, 1) - 3)$;

$$a_{10} = 4p(1, \nu_3(2, u_1)) - 1, \quad (15)$$

where $u_1 := \nu_7(3, \nu_7(4, \nu_7(5, u_2)))$, $u_2 := \nu_3(6, \nu_3(7, \nu_1(u_3, u_4)))$, $u_3 := \nu_1(\nu_{11}(6, 3, 4, 5), \nu_{11}(7, 3, 5, 4))$, and $u_4 := \nu_2(4p(6, 2) - 3, 4p(7, 1) - 3)$;

$$a_{11} = \nu_7(1, \nu_8(2, \nu_7(3, u_1))), \quad (16)$$

where $u_1 := \nu_2(4p(3, 2) - 3, \nu_8(4, u_2))$ and $u_2 := \nu_1(4p(3, 4) - 3, 4p(4, 1) - 3)$;

$$a_{12} = \nu_7(1, \nu_8(2, \nu_7(3, u_1))), \quad (17)$$

where $u_1 := \nu_2(4p(3, 2) - 3, u_2)$, $u_2 := 4p(4, u_3) - 1$, and $u_3 := 4p(4p(4, 3) - 3, 4p(4, 1) - 3)$;

$$a_{13} = \nu_7(1, 4p(2, u_1) - 1), \quad (18)$$

where $u_1 := \nu_8(3, \nu_7(4, u_2))$, $u_2 := \nu_2(4p(4, 3) - 3, u_3)$, and $u_3 := \nu_1(4p(4, 1) - 3, 4p(4, 2) - 3)$;

$$a_{14} = 4p(u_1, u_2), \quad (19)$$

where

$$\begin{aligned} u_1 &:= \nu_1(v_1, v_2), \quad v_1 := 4p(2, \nu_2(v_3, v_4)), \quad v_3 := 4p(2, 1) - 3, \\ v_4 &:= \nu_3(3, \nu_3(4, \nu_{10}(2, 3, 4))), \quad v_2 := \nu_7(2, \nu_7(3, \nu_7(4, v_5))), \\ v_5 &:= 4p(\nu_1(v_6, v_7), \nu_6(3, 4)), \quad v_6 := \nu_3(5, \nu_1(\nu_{10}(5, 2, 3), 4p(5, 1) - 3)), \\ v_7 &:= \nu_3(5, \nu_1(\nu_{10}(5, 2, 4), 4p(5, 1) - 3)) \end{aligned}$$

and

$$\begin{aligned} u_2 &:= \nu_7(2, \nu_8(3, \nu_7(4, v_8))), \quad v_8 := \nu_2(4p(4, 3) - 3, v_9), \\ v_9 &:= \nu_8(5, \nu_1(v_{10}, 4p(5, 2) - 3)), \quad v_{10} := \nu_3(6, \nu_1(\nu_{10}(6, 5, 4), 4p(6, 1) - 3)); \\ a_{15} &:= \nu_8(2, \nu_1(u_1, u_2)), \end{aligned} \quad (20)$$

where

$$\begin{aligned} u_1 &:= \nu_3(4, \nu_1(4p(4, 2) - 3, \nu_5(4))), \quad u_2 := \nu_7(3, 4p(4p(3, 2) - 3, u_3)), \\ u_3 &:= \nu_3(4, \nu_1(4p(4, 2) - 3, 4p(5, u_4) - 1)), \end{aligned}$$

and

$$u_4 := \nu_2(4p(5, 4) - 3, \nu_0(\nu_6(5, 3), \nu_9(5, 3, 3))).$$

Acknowledgement. We are indebted to Professor Yu.V. Matiyasevich for a private communication [13], relating to this work, and for his remarks on a preliminary version of our paper.

References

- [1] M. Carl, Formale Mathematik und diophantische Gleichungen, Diplomarbeit, Universität Bonn, 2007.
- [2] M. Davis, Hilbert's tenth problem is unsolvable, *The American Mathematical Monthly*, 80 (1973), 233 - 269.
- [3] M. Davis, Yu. Matijasevič, and Ju. Robinson, Hilbert's tenth problem. Diophantine equations: positive aspects of a negative solution, *Proceedings of Symposia in Pure Maths*, 28 (1976), 323-378.
- [4] V.H. Dyson, J.P. Jones, and J.C. Shepherdson, Some Diophantine forms of Gödel's theorem, *Archiv für Mathematische Logik und Grunlagenforschung*, 22 (1982), no. 1-2, 51-60.
- [5] H.M. Friedman, Finite functions and the necessary use of large cardinals, *Annals of Mathematics*, 148 (1998), 803-893.
- [6] K. Gödel, The consistency of the axiom of choice and of the generalised continuum hypothesis with the axioms of set theory, Princeton University Press, 1940.
- [7] J.P. Jones, Universal Diophantine equation, *Journal of Symbolic Logic*, 47 (1982), 549-571.
- [8] L. Kalmár, Zurückführung des Entscheidungsproblems auf den Fall von Formeln mit einer einzigen binären Funktionsvariablen, *Compositio Mathematica*, 4 (1936), 137 - 144.
- [9] Yu.I. Manin, Brouwer memorial lecture, *Nieuw Arch. Wisk.*(4), 6 (1988), no. 1-2, 1-6.
- [10] Yu.V. Matiyasevich, Enumerable sets are Diophantine, *Doklady AN SSSR*, 191:2 (1970), 279-282 (translated in: *Soviet Math. Doklady*, 11 (1970), 354-358).
- [11] Yu.V. Matiyasevich, Diophantine representation of enumerable predicates, *Izvestiya AN SSSR. Seriya Matematicheskaya*, 35:1 (1971), 3-30 (translated in: *Mathematics of the USSR. Izvestiya*, 15(1) (1971), 1-28).
- [12] Yu.V. Matiyasevich, *Hilbert's Tenth Problem*, Moskva, Nauka, 1993 (translated in: *Hilbert's Tenth Problem*, The MIT Press, 1993).
- [13] Yu.V. Matiyasevich, An e-mail letter to the second author, March 2005.

[14] E. Mendelson, *Introduction to Mathematical Logic*, Chapman & Hall/CRM, 2001.

M. CARL: MATHEMATISCHES INSTITUT DER UNIVERSITÄT BONN,
BERINGSTRASSE 1, D-53115 BONN, GERMANY

E-mail address: goedel23@gmx.de

B.Z. MOROZ: MAX-PLANCK-INSTITUT FÜR MATHEMATIK,
VIVATSGASSE 7, D-53111 BONN, GERMANY

E-mail address: moroz@mpim-bonn.mpg.de