On a Diophantine representation of the
predicate of provability.

M. Carl and B.Z. Moroz

§1. Introduction.

By a well-known theorem of Matiyasevich [10], [11], a recursively enumerable
set is Diophantine, and therefore there is no algorithm, deciding whether
a given Diophantine equation is soluble in Z. Moreover, given a recur-
sively enumerable set S, one can actually construct a polynomial Pg(t, )
in Z[t,Z], ¥ := (z1,...,x,), such that

S={alaeN, 3b(beZ" & Ps(a,b) =0)}.

The set of the theorems in a formalised mathematical theory, say 7, being
recursively enumerable, is Diophantine (cf. [3, pp. 327-328], [4]); therefore
one can construct a polynomial Fr(¢, %) in Z[t, ¥] such that the Diophantine
equation

FT(CL, f) =0

is soluble in Z if and only if a = N () for a formula 2 provable in 7', where
N:§F—N

is a suitable numbering of the set § of the well-formed formulae of 7. On the
other hand, if such a theory 7 is consistent, then there is an infinite sequence
of polynomials

[1(@), f2(Z), ...
such that f;(Z) € Z[Z] and, for every i, the formula

Vb(beZ" — fi(b)+#0)

is not provable in 7, although the Diophantine equation f;(Z) = 0 is insoluble
in Z.

Let P be the predicate calculus with a single binary predicate letter (and
no function letters or individual constants). By Kalmér’s theorem [8] (cf.

1



also [14, p. 223]), analysis of provability in any pure predicate calculus can
be reduced to studying provability in P. Moreover, the Godel-Bernays set
theory, to be denoted by &, is finitely axiomatisable in P [6], [14, Ch.4].
The goal of this work is to construct a polynomial Fp(¢,Z) defined above.
Since, as it is commonly assumed, any mathematical proof can be formalised
in &, one may say that the polynomial Fp(t,Z) encodes the content of pure
mathematics; in this sense, the arithmetic of the affine hypersurface, defined
by the equation
Fp (t> f) =0,

is "exactly as difficult as the whole of mathematics” (cf. [9, p. 2]).
On denoting by 2 the conjunction of the proper (non-logical) axioms of
G and letting
b=N (DB

for some (obviously) false in & formula 98, one obtains a Diophantine equa-
tion

Fp(b, &) = 0, (1)

whose insolubility is equivalent to the consistency of &. Thus in order to
prove that equation (1) has no solutions in Z, one has to employ an additional
axiom, for instance, the axiom asserting existence of an inaccessible ordinal
(cf. [5], where some combinatorial statements, whose provability depends on
that axiom, have been constructed).

As any other polynomial with integral rational coefficients, the polyno-
mial Fp(t, ) is a special instance of an universal polynomial (the reader may
consult references [7], [12, Ch. 4], and the literature cited in those works for
different constructions of an universal polynomial). If the Gédel-Bernays set
theory & is consistent, then the formula

(AD3b(beZ" &f(b) =0)),

with f(Z) € Z[Z], ¥ := (z1,...,x,), is provable in P if and only if equation
f(Z) = 01is soluble in Z; thus, under that assumption, Fp(t, Z) is an universal
polynomial (it suffices, of course, to assume the consistency of any theory 7°
formalisable in P and such that the formula

36 (be Z" &f(b) =0)

is provable in 7 if the equation f(Z) = 0 is soluble in Z).

The polynomial Fp(t,Z), constructed in our work, contains over 108
terms; a somewhat simpler polynomial is described in [1]. Although one
does not expect a polynomial, encoding provability in pure mathematics, to
be too simple, it is not known how complicated it must be.



In Section 2, we describe the language of P, define a numbering
N:P =N,

and give a Diophantine description of the first three groups of axioms of P.
The necessary preliminaries on Diophantine coding are collected in Section
3. After proving a few technical lemmata in Section 4, we complete the
description of the axioms of P in Section 5. Our polynomial Fp(t,7Z) is
described in Section 6; an example of a Diophantine equation of the shape
(1), whose insolubility is equivalent to the consistency of the Godel-Bernays
system G, is given in the final Section 7.

Notation and conventions. As usual, R,Z, and N stand for the field
of real numbers, the ring of rational integers, and the semigroup of positive
rational integers respectively. A finite sequence of symbols is denoted by 7
and L(Z) stands for its length (we write, for instance, Z := (y1,...,y,) and
L(Z) = n); let

Txy:=(a1,...,an,01,...,bp)

stand for the concatenation of the sequences
7= (ay,...,a,) and ¢ := (by,...,bp).
The polynomial

(1’1 + Ty — 2)(ZE1 + Ty — 1)

p(xbifz) = 9 + x4

defines a bijection
p: N2 = N, p: @+ p(a) for @ € N?
moreover, for @ € N2, a := (ay,ay),
p(@) > max{ar, a3} and p(@) < af + 2
(cf. [2, p. 237]). Given an arithmetical formula 2, let
Vi<n)A:=Vj((jeN&j<n) = A).

Ford e R", @ := (ai,...,ay), let

n
a?:= Za? and |d@| := max {|a;| | 1 <j <n}.
i=1



§2. The predicate calculus P.

The predicate calculus P is a first order theory. The alphabet of its language
consists of the set
X :={t; |1 €N}

of the individual variables, the binary predicate letter €, the logical connec-
tives: {—, D} ("negation” and "implication”), the universal quantifier V, and
the parentheses {(, )}. The set § of the formulae of P is defined inductively.
An expression of the form (z € y), with {z, y} C X, is a(n elementary) for-
mula; if 2 and 9B are formulae, then = 2, (A D 9B), and Vz A are formulae.

Let us define inductively a map N: § — N.

Definition. Let NV (¢; € t;) = 4p(i, j) —3 for {i, j} C N. For {2, B} C F
and 1 € N, let N(= ) = 4N(A) — 2, N(Vt; A) = 4p(i, N(A)) — 1, and
N D B) =4pN(A),N(B)).

Proposition 1. The map N: § — N is a bijection.

Proof. It follows easily from the definition of the map N by induction.

Notation. For 20 € § and {z, y} C X, let [A]; and A[z|y] stand for the
set of the free variables of 21 and the formula obtained from 2 on replacing
each of the free occurences of the variable = in 2 by y, respectively.

Definition. Let A € § and {z, y} C X. If no free occurence of = in A
lies within the scope of a quantifier Yy, then the variable y is free for x in A

(cf. [14, p. 54]).
There are five groups of axioms in P (cf. [14, pp. 69-70]):
A ={2AD (B> | {A, B} CF}

A ={D(B>E)D(ADB)D(ADQC)|{A B, ¢} CF};
Ay ={(=B2-A) D> ((-BOA D>B) | {A B} CF};
Ay:={Vz (A DB)D(ADVzB) [ {A BYCF, ze X\ [}
As = {Vz A D Azly] | A€ F, {z, y} C X,
the variable y is free for = in 2(}.

The set T of the theorems of P is defined inductively:
(Bo) U_ A C%
(By) If{2A, (ADW)} C %, then B € T ("modus ponens”).
(By) If A €%, then Vo A € T ("generalisation”).



In what follows (see Corollary 3), we shall construct a polynomial f(t,Z)
in Z[t, 7] such that

NE) ={alaeN, 3b (e Z"D & f(a,b) =0)}.

Our first task is to give a Diophantine description of the predicate "2l is an
axiom of P”. In this section, we provide such a description for the three
predicates "2 € A;”, with 1 = 1,2, 3.

Proposition 2. Let gi(u, %) := u — 4p(x1,4p(x2, x1)) with & = (z1,x2).
Then L ~
N(A) = {u| 35 (F e N & g1 (u,B) = 0)}.

Proof. Let N() = 21, N(B) = x5, and N (A D (B D A)) = u. It follows
then from the definition of the map N that v = 4p(x1,4p(x2,x1)). This
proves the proposition.

Proposition 3. Let

92(u, T) := u — dp(4p(w1, 4p(x2, 3)), 4p(4p(w1, 22), 4p(21, 23)))

with ¥ = (x1,xa,x3). Then
N(As) = {u| 3b (b€ N* & go(u, b) = 0)}.

Proof. Let ® := (A D (B D €)) D (A D B) D (A D ¢))) and let
N@) =z, N(B) = 22, N(€) = z3. An easy calculation shows that,
in these notations, g(u,Z) = 0 if and only if N (®) = w. This proves the
proposition.

Proposition 4. Let
93(u, Z) = u — 4p(4p(dxe — 2,421 — 2), 4p(dp(dxe — 2,21), X2))
with & = (x1,x3). Then
N(As) ={u|3b (b eN& gs(u,b) =0)}.

Proof. Let € := (=B 2> -2) D (=B DA D VB)), NA) = x4, and
N ($B) = 5. The equation g3(u, Z) = 0 is easily seen to assert that N'(€) = w.
This proves the proposition.

To give a Diophantine description of the sets of axioms A4 and As, we
shall make use of the techniques developed in the works, relating to the
Hilbert tenth problem ( cf. [2], [12], and references therein ).
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§3. On Diophantine coding.

In this section, following [2]|, we state a few lemmata about Diophantine
coding.

Lemma 1. Let f(t,%) € Z[t, ¥] with L(¥) = n and suppose that
S={a|aeN,3b(beN" & f(a,b) =0)}.

Then L .
S={a|laeN, Ib(beZ" & g(a,b) =0)},

where
1
g(t, 7)== f(t,2), Z:=(21,...,2n), 2j 1= Zyi +1,1<j5<n.
i=1
Proof. See, for instance, [12, §1.3].
Lemma 2. Let fs(m,n, k; %) :=
(2f = (23 — D3 = 1)* + (2] — (23 — 1)af — 1)* + (2§ — (a7 — Dag — 1)*+
(25 — 2923) + (17 — 1 — 421923)* + (7 — B9 — 21174)* + (T6 — 71 — T1274)*+
(w5 —k—4(213—1)23)° + (23— k=214 +1)* + (217 —n—118)* + (217 —k —719)*+
(21 — 23(m9 — 1) —m)? — (w15 — 1)*(2z9n — n? — 1)%)*+
(m+ x16 — 222 0 +1? +1)° + (25 — (237 — V(217 — 1)%23 — 1)°,
where T := (x1,...,15). Then m = n* if and only if
3d (@ e N & fs(m,n, k;a@) =0).
Proof. See [2, pp. 244-248].
Lemma 3. Let fy(m,n, k; %) :=
fa(x1,2,n; D) + f(xs, w4, n; 82 + f3(26, 23, k; 7))+
(21 + w3 — 23)° + (24 — 23 — 1)* + (2677 + 78 — 75 — 1)*+
(w5 + 29 — (27 + Dag)* + (z7 — m — (z10 — 1)23)* + (m + 217 — 13)%,

where & = 7O % - % 7 with 7 = (zy,...,211), TV 1= (219,...,731),
7? = (w39,...,75), T = (252, ...,271). Then
n!
T = k)

if and only if
3ad (@€ N & fi(m,n, k;@) =0).



Proof. See [2, pp. 249-250].
Lemma 4. Let fo(m,n; @) :=

fa(ws, w1, 223 8V) + fa(wg, 23,0 8Y) + fa(ws, w3, 0 79)+
(x1—2n—1)*+ (22 —n—1)>+ (mas+ 26 — 1 —24)° + (x4 + 27 — (M + 1)25)?,

where T = 7O % - x 7O with 7O .= (21,...,27), TV := (25, ..., 207),
72 = (298, ..., 147), T 1= (14s,...,2118). Then m = n! if and only if

Ja (@ e N & fo(m,n;a@) =0).
Proof. See [2, pp. 251-252].
Lemma 5. Let fi(m,n,a,b;T) :=
(z1—a—bn)*+(v3—bxo—1)*+(bry—a—x375)* + (m+a8—23)° 4+ (29 — 14 —1)*+
(m + 23211 — Tx7710)? + f3(22, 21,1 7)) + fa(wg, b,n; 7)+

f2($7, n; .',U( ) + f4($10, Tg, N, x(4))7

where
=20 %...x2® 7O .= (2, 2), ZY = (219,...,231),
7 = (39, ..., x51), T = (52, ..., T169), TP 1= (T170, ..., Taug).
Then .
m = H a + bk)
k=1

if and only if
3¢ (e N & fi(m,n,a,b;&) =0).

Proof. See 2, p. 252].
Proposition 5. Let
o(u, j,w; 2) = 4((u—p(21, 22))* + (Wt z3(1+ jz2) — 21)* + (Wt 20— j 22— 2)°)
with Z = (z1,...,24). There is a function
S: N? - N,

satisfying the following conditions:

(i) w = S(j,u) if and only if 3b (b € N* & o(u, j, w; b) = 0);

(i) VJ, (S u) < u);

(13i) if {ax | 1 <k <n} CN for some n in N, then there is a number u
in N such that a, = S(k,u) for 1 <k <n.
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Proof. See [2, pp. 237-238].

Proposition 6. Let P(uy,us; ¥y, 2) € Zluy, ug; vy, 2], with L(Z) =1, and sup-
pose there is a polynomial R(uq,us; ) in Zluy, us; Y] such that

-

|P(n, j;d@,d)| < R(n, T} a)
fora e N'W {n j1CN, j<n, deN, \aﬂ <T and

R(cq,co;@) > maz{cy, e}
for {c1,c2} CN, @€ NEW . Write, for brevity,

Hl(f, g) = fg(b5, b4; f@)) -+ fl(bﬁ, n, 1, b5; 5(3)) + (bﬁ — b1b5 — 1)2+

I
(by — bgbr)? + (# — 2 + §)% + Z Fibez®, by, 2™, 1; 70+,

=1

where

5:: (b17“‘7b7)7 g:: (617“‘76[) with /6i:b3+1f0r ]-Sléla

F= a7 with 39 = (@), 2) ) for 1< <541,
L(#V) = L(zW) = L(z®) = 1, L(#?) = 118,
L(#®)) = L)) = 240 for 1 <i <1,
and '
> L(#Y) = 2431 4 358,
1<i<5+1
Then

(Vj <n)3c(EeN & P(n,j;a,c) =0) <
37,0 (be N & e N® & (P(n,by;a@, 7V) — by)*+
(R(n, bs; @) — by)* + Hy(Z,b) = 0)
for @ € NLW).

Proof. See [2, pp. 253-256].



§4. A few technical lemmata.

Notation. For 2 € §, let m(2() stand for the number of occurences of the
logical connectives =, D, or V.

Definition. Let i € N. A sequence of formulae {¢1,...,¢,} in § is
i-admissible if, for every j in the interval 1 < 7 < n, one of the following
conditions holds true:

(@)1= (b 1) and i (k1)

b) p; :=Vt; ¥ for some ¢ in §,
c) @ :Z(SOchpl)With1<kl<j,

e)goj =Vt, (pkWIthVEN 1<k<j.

Lemma 6. The variable t; does not occur as a free variable in a formula ¢
if and only if there is an i-admissible sequence of formulae {1, ..., pn} with

Pn = -

Proof. Let m(p) = 0 and suppose that ¢; ¢ [¢];. Then ¢ := (t; € t;) with
i & {k,l} and we may take n = 1, p; = . Conversely, if m(¢) = 0 and
there is an i-admissible sequence of formulae {1, ..., ¢,} with ¢, = ¢, then
¢, must satisfy condition (a) (since m(y,) = m(p) = 0) and therefore t; is
not a free variable of ¢ (= p,).

Let m(y¢) = [ with [ € N and suppose the assertion be true for every
formula ¢ with m(¢’) < I. Let {¢1,...,¢,} be an i-admissible sequence of
formulae with ¢,, = ¢. Since m(p) > 0 and ¢,, = ¢, the formula ¢ satisfies
one the conditions (b) — (e). If ¢ := Vt; ¢ for some @ in §, then t; ¢ [¢]y;
if  := (¢r D @) with 1 < k,l < n, then, by the inductive supposition,
ti & [okls U @] and therefore t; ¢ [p]f; finally, if either ¢ := —¢; with
1 <k<nory: =Vt pp with v € N, 1 < k < n, then, by the inductive
supposition, ¢; ¢ [px]; and therefore t; ¢ [p]f. In either case, ¢; is not a
free variable of . Conversely, suppose that ¢; is not a free variable of ¢.
Since m(p) > 0, the formula ¢ must contain one of the logical connectives
-, D,or V. If o € {= 4, Vt, ¥} with ¢ € § and v # i, then ¢; is not
a free variable of 1, therefore, by the inductive supposition, there is an i-
admissible sequence of formulae {¢1,...,¢,} with ¢, := ¢ and we may
let n = p+1, ¢, = . If o := (Y1 D o) with {1,902} C §, then ¢,
is not a free variable of both 1, and 5, and therefore, by the inductive
supposition, there are two i-admissible sequences of formulae {p1,...,¢,}
and {¢},...,¢,} with ¢, = ¢y and ¢/, := 1)9; it is clear that in this case
the sequence of formulae {¢1,..., ¢, ¢, ..., ¢, ¢} is i-admissible. Finally,
if ¢ 1= Vt; ¢ for some 9 in §, then we may take n = 1 and let ¢; = ¢.



Definition. Let {ry,r2} C N. An (11, 72)-admissible triple consists of two
sequences of formulae {¢1,..., 0.}, {¢1,...,1¥,} and a sequence of integers
{di,...,d,} such that {¢;, ¢¥;} CF, d; € {1,2} for 1 < j <n and, for every
J in the interval 1 < 57 < n, one of the following conditions holds true:

1) @; == (t;, €t,,) with r € {r3, 74}, dj =2, ¢; = py;

2) Pj = (th € tT4) with rq € {T3,7’4}, dj =1, %’ = (pj[tm‘tm];

3) pj = g, dj =di, P =y, with 1 <k < j,

4) ¢ = (ex D 1), ¥y = (b D ), dj = (dp — 1)(dy — 1) + 1 with

1<k l<y;

5) Y = Vtr3 Pk with T3 Q/ {7’1,’/“2}, ’l/ij = Vtm zbk, dj = dk, 1 S k< j;

6) @; == Vt,, x with x € §, ¥; 1= @;, d;j = 2;

7) @ =Vt op with 71 # 1o, VY =, dj =dp =2, 1 <k < j.

Lemma 7. Let {r1,m} C N and {p,v} C §. Then the variable t,, is free
for t., in @ and ¥ = @[t |t,,] if and only if there is an (ry,ry)-admissible
triple

{@1)"'7gpn}a {wlw"awn}a {dla"'adn} (2)
with ¢, = ¢, ¥, = 1. Moreover, any (ry,rs)-admissible triple (2) satisfies
the condition ’ o

1 ot € |pjly
d; = oo J 3
! { 2 if t, & lpily )

for1 <j<n.

Proof. For any (rq,;)-admissible triple (2) relation (3) can be easily proved
by induction on n.

Let m(¢) = 0, then ¢ := (t,, € t,,) with {r3,74} C N, so that the variable
t, is free for ¢,, in . Let ¢ := ¢[t, |t.,], n =1, and

g 1 if ry € {rs,ra}
"1 2 ifm & {rs,r4};

it is clear then that {¢}, {¢}, {d1} is an (ry,re)-admissible triple. Con-
versely, if (2) is an (rq,73)-admissible triple with ¢, = ¢, ¥, = 1, then,
since m(¢p) = 0, for j = n one of the conditions 1) or 2) holds; in either case
Y= Sa[trl‘tm]‘

Let now m(y) = [ with [ € N and suppose the assertion be true for every
formula ¢" with m(¢’) < 1. If ¢ := V¢, ¢’ with ¢’ € §, then ¢, & [¢]f and
the assertion is obvious; if ¢ = Vt,, ¢’ with ¢’ € § and r # 79, then ¢,, is
free for t,, in ¢ if and only if ¢, & [¢]; (and therefore ¢,, & [¢]s) and the
assertion follows from the inductive supposition. Finally, if

pef{-¢, Vt, ¢, ¢ D"} with{¢, ¢"} CF, rs & {ri,m},
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then one can deduce the assertion from the inductive supposition arguing as
in the proof of Lemma 6.

Notation. Let

ho(J; %) i= (Jo — j1+21)2 + (Ja — 1 +a2)? with §:= (ji, ja, ja), T := (21, 22).

It is clear that, for j € N3,
=N (f eN? & ho(}, Z)_S") = 0) = maX{jQ,jg} < J1.
The following lemma is a Diophantine reformulation of Lemma 6.

Lemma 8. Let C; :={A | A F, t; & [A]s}. Then
N(C) ={v | Bal(i, v)},
where By (i,v) =

= w,n ({w7n} g N & (le S n) = Zj(ge Nz? & P4(n>j1;iavaw;g) = 0))

—

with Py(n, j1;i,v,w;7)

3 5
o(w,n,v; 29) + 3 " o(w, ju, 2,3 2) + ho(J; 21, 22) + [ [ @ (0, D).

v=1 v=1
Here
q1(i, %) = (z1 — 4p(2g, 75) + 3)* + (x4 — 0)* — 26)* + (x5 — 1) — 27)?,
¢2(1,%) =21 —4p(i, x4) + 1, q3(4,Z) := 21 — 4p(22, 23),

— —

qu(1,7) == 2y — 4wy + 2, ¢5(i,T) 1= 11 — 4p(24, T2) + 1

o= (41,72, J3), @ = (21,...,27), ¥:= (J2,J3) * (21, 22) * T * Z,
7= .. 529 and L(Z)) =4 for 1 <v < 4, so that L(3j) = 27.
Proof. Let {¢1,...,¢,} be a sequence of formulae in § with N (¢,) = a,
for 1 < pu < n. In view of Proposition 5, there is a natural number w such

that the formula 3 b (l; e N & o(w, 7, z; l;) = 0) holds true if and only if
x = a; for 1 < j < n. Therefore the formula

3
3 7(7 € N & o(w, n,v; 7Y) + ZO’(’UJ;iju; 7)) =0)

v=1
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asserts that a;, = z, for 1 < v < 3 and a, = v. Moreover, the formula
3 Zl,ZQ(hO(j; z1,29) = 0) asserts that max{js,js} < j1. It follows further
that ¢;(¢,Z) = 0 if and only if m(¢;,) = 0, ¢;, = (tx € t;) and ¢ & {k, [},
where k 1= x4, | := x5, that ¢(i, ) = 0 if and only if ¢;, := V¢;¢ for some v
in §, that ¢3(¢,2) = 0 if and only if ¢;, := (¢;, D ¢j,) with 1 < ja, j3 < ju1,
that ¢4(¢,2) = 0 if and only if ¢;, = —¢;, with 1 < j, < j;, and that
¢s5(i, ) = 0 if and only if ;, = Vt,p;, with p € N, 1 < jo < ;. Thus,
by Lemma 6, the variable ¢; does not occur as a free variable in the formula
N~1(v) if and only if the formula B,(i, v) holds true.

Corollary 1. Let
Ag(u) :=Fi,v ({i,v} SN & By(i,v) & Fy(y € N & hy(u;i,v;y) =0)),
where hy(u;i,v;y) == u — 4p(4dp(i, 4p(v,y)) — 1, 4p(v, 4p(i,y) — 1)). Then
N(Ag) = {u | As(u)}.
Proof. Let € :=V¢t; (A D B) D (A D Vt; B), N(A) = v, and N(B) =
An easy calculation shows then that

N(€) = 4p(4p(i,4p(v,y)) — 1,4p(v,4p(i,y) — 1)).

The assertion follows now from Lemma 8.
The following lemma is a Diophantine reformulation of Lemma 7.

Lemma 9. Let
e =
[7] 01 = N ()12 = N(W), 0 € F, @ = Pltn ltn], by s free forty, in g},

where 7 := (r1,7r2) and U := (vy,vs). Then

C(7) = {7 | v € N* & B;(7,7)},

where
B (T, 7) _awn(weN3& eEN&
(Vi < n) 3y € N & Py(n, j1; 0,7, ;) = 0))
and
Py(n, ji3 0,70 §) = ho(J; 21, 22) + D oWy, ju Ta-yeni 22+
1<i,v<3
9
Z O—(wianavi;gyj@l))—i_Z( _1 _2 +HQZT T
1€{1,2} =7



Here

G (7, T) =
(z7 = 2)% + (x4 — 21)* + (21 — 4Ap(r3,74) + 3)* + ((r3 — r1)*(r4 — 71)* — 210)%;
3
@7, 7) = (7 = 1’ + [[ & (7. )
=1

with
@SV(F7) = (w1 — Ap(r1,1a) +3)2 + (24 — 4p(ra, 1a) +3)> + (ra — r1)? — 210)

¢P(F2) = (z1 — 4p(rs, 1) +3)% + (x4 — 4p(rs, 72) + 3)2 + ((rs — 1) — 210)?,
057 (7,7) = (a1 = Ap(ri,m) + 3) + (24— Ap(ra,m2) + 3)*
@3(7, 7)== (z1 — 4y + 2)% + (24 — 425 + 2)? + (27 — 28)%;
(7, %) = (z7 — (28 — 1) (29 — 1) — 1)? 4 (21 — 4p(w2, 13))? + (24 — 4p(w5, 76)*;
q5(7, %) := (x1 — 4p(r3, x2) + 1)? + (24 — 4p(rs, x5) + 1)*+
(w7 — 28)* + ((rs — r1)*(rs — 12)* — 210)%;
g6 (7, T) := (z1 — 4p(r1, v10) + 1)* + (27 — 2)* + (24 — 11)%;
¢ (7, %) := (x1 — 4p(rg, 22) + 1)? + (27 — 2)*+
(25 — 2)% + (24 — 21)? + ((rg — 11)* — 210)%;
@ = (wy, wa,w3), ] = (1, Jas ja), 20 = 2w A« 2 for1 < v <3,

7 .= ,2'(14)*5(24), with L(ZZ-(V)) —4for1 <i<3,1<v<4, 7:= 705 57,

7= (r3,74) * (21, 22) * (T1,. .., T10), ¥ = (Jo, J3) ¥ Tx 2,
so that L(y) = 60.
Proof. Let

{Spla"'?SOTL}v {wlw"awn}v {dla"'adn}

be two sequences of formulae and a sequence of natural numbers, so that
{¢j, ¥;} €&, dj € Nfor 1 < j < n. In view of Proposition 5, there are
three natural numbers wq, ws, w3 such that the formula

3b (b e N* & o(wy, j, ;b) = 0)

holds true if and only if

d; ifi=3

13



for 1 < 7 < n. Therefore the formula
JZ7(WeN & 7e N &

Z (wza]wxi’»(z 1)4vs # z + Z wzan V;; 2, 24)) :0)7

1<iv<3 ie{1,2}
with @ := (wy, we, w3), implies that there are three sequences
{9017"'7@?1}7 {wla“wwn}? {dla"'7dn}

such that {¢;, ¥;} € F, d; € Nfor 1 <j <n, N(g,) =v1, N(¢b,) = va,
and N(p;,) = 2y, N(¥;,) = xyys, dj, = 2,46 for 1 < v < 3. The formula
3 21,22({21,22} C N & ho(j, 21,22) = 0) asserts that maX{jg,jg} < jl-
Moreover, for 1 < i <7, the formula

3 Z(% € N & ¢;(F, ) = 0)

is equivalent to condition ) in the definition of an (ry, r3)-admissible triple.
Finally, the equation 2?27(% — 1)%(z; — 2)* = 0 implies that d; € {1,2} for
1 < j <n. Lemma 9 follows now from Lemma 7.

Corollary 2. Let
As(u) := 30,7 ({0,7} C N? & B5(v,7) & (hs(u;v,71) = 0)),

where 7 := (r1,72), U= (v1,02), and hs(u;U,r1) :=u—4p(4p(ri,v1) — 1, v9).
Then
N(As) = {u | As(u)}.

Proof. Let € := (Vt,, ® D Dt |tr,]), v1 :=N (D), and vy := N (D[t,, |t,,])-
It follows then that N (€) = 4p(4p(r1,v1) — 1,v2). In view of Lemma 9, this
proves the corollary.

§5. Elimination of universal quantifiers.

It follows from Proposition 6 that formulae 244 (u) and 5(u) define Diophan-
tine predicates. In this section, we shall construct two polynomials g4(u, 7))
and gs(u, #®) such that

{u|2A,(u)} = {u| 35 (b e N & g,(u,b) = 0)}
for v =4, 5.

14



Lemma 10. Let
Ry(ty, to;i, v, w) := 32w? + 160* + 300t + 2 - 10%¢3* 4+ 2 - 10536
with {i,v,w} CN. Then
| Py(n, g1; 4,0, w3 4)| < Ry(n, T4, v,w)
for gy <n, [l < T, y€ N*, {n,j1} €N,
Proof. Suppose that
ji<n, |y <T, 7€ N¥, {i,v,w,n,j} CN.
An easy calculation shows that
ho(f; Ty, w5) < 16T% + 4n?, o(w, j,, ., 7)) < 8w? + 2407° for v = 2,3,

o(w, ji, r1, 21) < 8w?+288T*n?, and o (w, n, v, 2Y) < 8w?+16v>+2807T"n2.
Moreover, under the same conditions, we have

@ (1, %) < 16i* + 1607, |qo(i, 7)| < 1277, |g3(i, Z)| < 1277, |qu(3, 7)| < 4T,

and |gs(i, Z) < 1272. The assertion of the lemma follows from these estimates
and the definition of the polynomial Py(n, ji;i,v,w;y) in Lemma 8.

Lemma 11. Let
Rs (21, 22; ¥, 7, 0) 1= 320° + 165° + 800t] + 1025 + 5. 102 (r$* + r3?)
with {v,7} C N? @ € N3. Then
| Ps(n, ju; 0, 7,00 )| < R (n, T3 0,7, )
forji<n, gl <T, §eN® {nj} CN.
Proof. Suppose that
g1 <n |yl <T,5€ N {n,j1} CN, {77} CN° & € N°.
An easy calculation shows that ho(J; 213, #14) < 1672 4 4n?,

Z o (Wi, Jus T3(—1)4v, ZZ'-(V)) < 8w? + 7207° for v = 2, 3,

1<i<3

> o(wi, i, w50, 27) < 82+ 432(T° +n),

1<3<3

15



and
7 o(win, v, 2Y) < 80 + 1657 + 280(T® + 70n%).
ie{1,2}
Moreover, under the same conditions, we have

9
D (i — 1) (2 — 2) < 1007, qu(7, &) < 300T° + 1307,
=7

¢V (7, ) < 32T* +128r%, ¢ (7, 7) < 100T* + 140(rt + rd),
¢’ (7, %) < 10072 4 300(r} +13), gs(F, ) < 4072, qu(7, %) < 3007,
45 (7, @) < 5007° +100(r +73), o7, 7) < 1507 + 32r7,

and q7(7, ¥) < 140T* 4 167} + 50r;. The assertion of the lemma follows from
those estimates and the definition of the polynomial Ps(n, ji; 9,7, @;y) in
Lemma 9.

By construction,

Py(n, j1;4,v,w;9) € Z[n, jr;1, v, w; Y
and

Ps(n, j1; 9,7, 4) € Zn, j1; 0, 7, 0; y).
Therefore one concludes as follows.
Proposition 7. Let g4(u, 2) :=
ha(u;i,v,y)2+ Hor (2, )+ (Py(n, by; i, v, w; #0) —by) 2+ (Ra(n, by: i, v, w)—by)?,
where Z =T % bx (i,v,w,n,y) with L(Z) = 6931. Then

N(Ay) ={u|3a(ae N & gy(u,a) =0)}.
Proof. In notations of Lemma 8,
By(i,v) :=
FJw,n ({w,n} CN& (Vj, <n)IEEe N & Py(n, ji;i,v,w;¢) = 0)).

In view of Lemma 10, it follows from Proposition 6 that

By(i,v) @Hw,n,f,g({w,n} CN&beN &7 e N9 &

-

Hy (2,0) + (Py(n, by; i, v, w; .f(l)) —by)? + (Ry(n,bsg;i,v,w) — b)?) =0

for {i,v} C N, since L(¥) = 2431 + 358 = 6919 with | := L(¢) = 27. The
assertion of Proposition 7 follows now from Corollary 1.
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Proposition 8. Let g5(u, 2) :=

hs(w; T, 1) 2+ Heo (T, )+ (Ps(n, by; T, 7, 0; ) —by) 2+ (Rs (n, bs; T, 7, ) —by)?,

N(As) = {u|3d (3@ € N"9 & gs(u, @) = 0)}.
Proof. In notations of Lemma 9,
Bs(v,7) :=3w,n(WeN’ &neN&

(Vi1 < n) 3 & e N® & Py(n, jy; 0,7, 10;¢) = 0)).

In view of Lemma 11, it follows from Proposition 6 that

Bs(7,7) < @, n,T,b(FeN &neN&beN &7eN@ g

=,

Heo(Z, D) + (Ps(n, by; 0,7, 0; V) — by)? + (Rs(n, bs; U, 7, 0) — by)? = 0)

for {7,7} C N? since L(Z) = 2431 + 358 = 14938 with [ := L(¢) = 60. The
assertion of Proposition 8 follows now from Corollary 2.

§6. The main theorem.

Proposition 9. Let u; := N(2;) for some 2; in §, 1 < i < 3, and let
Gi(t;z) = z(ug — 4p(ug, uy)), where @ = (uy,ug,us). The formula Ay

follows from the formulae Ay and Az by the rule (By) if and only if
3b (b e N& Gy(u;b) =0).

Proof. Since the formula us = 4p(ug, u;y) asserts that A3 := Ay D Ay, the
assertion follows from the definition of inference rule (B;).

Proposition 10. Let u; := N(2;) for some ; in §, i = 1,2, and let
Ga(u;r) == uy — 4p(r,us) + 1, where @ := (uy,us). The formula Ay follows
from the formula Ay by the rule (By) if and only if 37 (r € N & Go(u;r) = 0).

Proof. Since the formula 37 (r € N & Go(@; ) = 0) asserts that
Ay = Vt, Uy for some t,. in X, the assertion follows from the definition of
inference rule (By).

The following lemma is a Diophantine reformulation of the definition of
the set ¥ of the theorems of P.
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Lemma 12. Let
3
Q(najl; v, U; ZD') = Z U(”?ji; Ty 5(2)) + U(U, n,v; 2<4))+
i=1

5

ho(j; 4, x5) + Gi(21, 22, 03351) G (w1, 12:91)° ng‘(xh ﬁ(i))a
i=1

where

—

7= (1, J2, J3)s T = (1, ,5), W= (o, ja) ¥ T# Tx g, Z:= 7V x5 50

* T %
g(l) 33(3) (yl,yz) ) (yl,y2>y3) ?7() (yl,--->?/6931),

A
7 =7 := (y1,...,Yus3), L(ZD) =4 for 1 <i <4, so that L(w) = 14976.
Then
N(@) ={v|3u,n ({u,n} S N&A(v;u,n))},
where

A(v;u,n) := (Vi <n) Iw(w@ e NED & Q(n, ji; v, u; @) = 0).

Proof. Let €4,...,¢&, be a sequence of formulae in § with A (€,) = a,, for
1 < pu < n. In view of Proposition 5, there is a natural number u such that
the formula 3 b (b € N* & o(u, j, z;b) = 0) holds true if and only if 2 = a;
for 1 < j < n. Therefore the formula

3
3 2(2 € N'S & o(u, n, v; 2 +ZUUJV,%7 ) =0)
—1

asserts that a;, = z, for 1 < v < 3 and a, = v. Moreover, the formula
3 x1, 25(ho(J; 21, 73) = 0) asserts that max{j,, js} < ji. Thus, in view of
Propositions 2-4 and Propositions 7-10, the formula 2A(v;u,n) asserts that
either €;, € U?_,C;, or €;, can be deduced from €;, and €;, (respectively,
from €;,) by the rule "modus ponens” (respectively, by the rule ”generali-
sation”), where max{js2,j3} < j1 < n, and that N (&,) = v. The formula
Ju,n ({u,n} C N & A(v;u,n)) can be now seen to assert that v € N (%), as
claimed.

Lemma 13. Let
R(z1, 29;v,u) := 32u* + 160* + 300z + 1089252
Then
|Q(n, j1;v,u;0)| < R(n, T;v,u) forji <n, |@] <T,% e N, 1 := 14976,
with {v,u,n, 51} CN.

18



Proof. Suppose that j; < n, |@] < T for & € N, and {v,u,n,j;} C N.
Then, arguing as in the proof of Lemma 10, one concludes that

3
hO(;a Ty, I’5) + Z U(u7ji7 Ty 5(2)) + U(UJ n,v; 2<4))
=1
< 32u? + 1602 + 300n* + 10378,

Moreover, it follows from the definition of the polynomials G, G, g1, g2, and
gz that
|G 1 (1, 2, 733 51)] < 12T2> |Go(21, 225 51)| < 12T4>

‘gl(xb?j(l))‘ < 1.2 103T4? |g2(xlay_<2))| < 5- 107T87

and |gs(x1, 7®)| < 10MT8. After some calculations, it follows from Lemmata
10 and 11 and the definition of g;(zy, %), i = 4,5, that

ga(m, y_<4)) < 10472 and g5(x1,g](5)) < 21047128,

Those estimates and the definition of the polynomial Q(n, ji;v,u; W) show
that
1Q(n, j1; v, u; W) < 32u* 4 1602 + 300n* + 10897182,

as asserted.

Theorem 1. In the notations of Proposition 6, let
F(U7 2) = (Q(na bl; v, U; f(l)) - b2)2 + (R(?’L, b3a v, U) - b4)2 + Hl(f> g)

with | := 14976 and Z := (u,n) x &, so that L(Z) = 2431 + 360 = 3639528.
Then
N(@Z)={a|a€N, 3¢ (¢ N3 & F(a,d) =0)}.

Proof. By contruction, Q(n, j1; v, u; @) € Z[n, j1; v, u; w]. Therefore, in view
of Lemma 13, the assertion follows from Proposition 6 and Lemma 12.
Corollary 3. Let f(t,%) := F(t,2), where Z:= (z1,...,2,), n := 3639528,
with

4

R 2 ; 2.
2z = g x5+ 1 for 1<j<n, T:= (T11, oo T1ay ooy Tl e o oy Td)-
i=1

Then o ~
NE)={a|aeN, 3b(bcZ" & f(a,b) =0)}.

Proof. In view of Lemma 1, the assertion follows from Theorem 1.

Thus we may let Fp(t,Z) := f(t,Z).
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§7. The Godel-Bernays system &.

Let us list the proper (non-logical) axioms of the Godel-Bernays axiomatic
set theory, denoted by &, in the language of the predicate calculus P (cf.
(14, Ch. 4]).

Notation. For {2, B} C § and x € X, let
AV B = =B DA ALB = — (- AV = B),
A=B:= (A B)&B S A), Tz A= Vo - A
For {i,j} C N\ {1}, write
m(t;) =3t (t; €ty) and t;, =t :=Vt; (t1 €t; =t € t5).
Assuming that {i,7,k} C N\ {1} and @ & {j, k}, let
ti=[t; t] ==

() &m(tp)&Vt (€ 6= (b = t; Vi = )V (= (m(t;)&m(ty))&t; = 0)

and
t; =< tj, tpy >=1t; = Ht]‘,t]‘], [tj, tk]]

Finally, let
t, =< tj,tk,tl >i=1 =<< tj,tk > 1 >

for {i,j,k, 1} CN\ {1} and i & {j, k,l}. Let us introduce the set of the "set
variables” {s; | ¢ € N, i > 1} by means of the following abbreviations:

Vs; A :=Vt; (m(t;)) DA) and Fs; A= Vs; = A
for A € Fand i € N\ {1}. Write
t; =0:=Vt = (t1 € t;).
There are sixteen proper axioms of &:
Ay = (ta =13) D (to Ety =t3 € 1y);

Ao := V89, 83354Vs1(t; €ty = (81 =ta Vi1 =13));
Az 1= JsoVs1— (t1 € ta);
Ay = FVs3, s4(< t3, ty >E Ly =t3 € 1y);
Us = Vi1, ta3tsVis(ty € t3 = (ty € t1&ty € 15));
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Wg := Vt1TtoVs3(ls € ta = — (t3 € t1));
Ay = Vi13toVs3(t3 € ty = Fsa(< t3,t4 >E t1));
AWg 1= Vit13oVs3, s4(< t3,t4 >E ty = t3 € ty);
g = Vt13taVss, 50, 85(< Lo, ta,ts >E€ to =< ta,ts,t5 >E 1)
Wig := Vi1 TtaVs3, sy, S5(< t3, by, b5 >E to =< t3,15,t4 >€E ty);
App = Vs1359Vs3(t3 € ty = Fsy(ts € t4&ty € t1));
Wpo 1= Vs1355Vs3(lg € to = Vig(ty €Et3 Dty € 1y));
Wpg 1= Vsy, taTs3Vsy(ty € t3 = (t4 € t1&ty € 19));
=AY DAY,
where
AL = (R(t1)&Vsa, 53, 54((< to, ts >E 1h& < ty,tg >E t1) Dt = 1))
with
R(t)) = Via(ts € t1 = Ty, talts =< ta,t4 >))

and
Qlﬁ) = VS2383VS4(t4 € i3 = 385(< ts,ty >€ tl&t5 c tg));

Q[15 = 382(3t4(t4 € t2&t4 = @)&VSg(tg €ty D E|t4(t4 c tg&m%)))),

where
22[%) =Vis(ts € ta = (s =tV (Is = [ts,13])));

26 is the axiom of choice, which need not be stated here (cf., however, [14,
p. 275)).

Notation. Let
910 = Qll& e &Ql15, A = Qlo&%w,

T(Sp) ={B|BeF (U DB) € T},

and

T(S):={B|BecF (A>B) eI}

The set T(S) (respectively, T(Sy)) is, by definition, the set of the theorems
of the system & (respectively, of the system Sg). By a theorem of K. Gédel’s
[6], the system & is consistent if and only if & is. Thus

(F(So) = F) = (2(6) = F).

21



Let a; := N (2;) and
€1(B) == (AU O B), C1(B) == (Y41 D (B)), 1 < j <16,
for B € §. Further, let b := N (B) and let
(@) =4p(x1,y), fi1(Zy) = 4p(zjp, f5(T,y), 1 < j <, (4)
where 7 := (z1,...,1x;). It follows then that
N(€;(B)) = f;(d,b), 1 < j <16,
with @ := (aq,...,a16). Write, for brevity,
mo(b) := f15(a@,b), m(b) := fi6(a D), (5)
and let n := 3639528. By construction, if =B € T(&), then the formula
3é (e 2 & Fp(m(b),é) = 0)
asserts that (&) = §; likewise, if =B € T(S), then the formula
32 (@ e 7 & Fp(mo(b), &) = 0))
asserts that T(Sy) = §. Take, for instance,
B =Vt (t €t,),
then =B € T(S) and N (B) = 3. Thus the formula
3¢ (Ce Z™ & Fp(my(3),6) = 0)

asserts that T(Sg) = T(Sp) = F. In view of Gédel’s second theorem [14, pp.
212-213], we can summarise our conclusions as follows.

Theorem 2. Let B € § and suppose that = B € T(Sy). If the Gidel-
Bernays axiomatic set theory & is consistent, then although the Diophantine
equation
F’p(mo(b),f) =0, b:= N<%)7
has no solutions in 7, the formula
-3¢ (e Z* & Fp(my(b),e) = 0)

can not be proved in the system &. The function b — mgy(b) can be explicitely
evaluated by means of formulae (4), (5), and formulae (6)-(20) below.

Corollary 4. If the Gddel-Bernays axiomatic set theory & is consistent,
then although the Diophantine equation

Fp(mo(3),7) =0
has no solutions in 7, the formula
= 8(56 7" & F’p(mo(3),5) = 0)

can not be proved in the system &.

22



Appendix to §7.

The following formulae (6)-(20) provide explicit expressions for the numbers
aj :=N(2;), 1 <j<16. An easy calculation shows that

NV B) = (N (), N(B)), N (2 & B) = n(N(A), N(B)),
NEA=DB) =N ®A),N(B)), N(3t; A) = vs(i, N (A)),
where
vo(u,v) = 4p(4v — 2,u), vi(u,v) = dvy(du — 2,40 — 2) — 2,

va(u,v) := v (4dp(u,v),4p(v,u)), vs(i,u) := 16p(i, 4u — 2) — 6,

and

N(m(t:) = va(@), N(t; = 0) = v5(i), N(t; = t;) = vs(i, J),
N(VSZ Ql) = V7(’L,N(Q[)), (ElSZ Ql) = Vg(’L,N(Q[))
with
V4(7;) = V3(174p<i7 1) - 3)7 V5(7;) = 4p(17 16p(172) - 14) - ]-7
Vﬁ(iaj) = 4p(17 V2(4p(]-72) - 374])(17]) - 3)) - 17
vr(i,u) = 4Ap(i, dp(va(i), u)) — 1, vg(i,u) := 4vy (i, du — 2) — 2.
A further calculation shows that
N(tl = [tmtk]) = VQ(i>j7 k)
with vg(i, 7, k) := vo(uq, uz), where
wuy = v (1 (va(g), va(k)), us), us :== 4p(1, v2(4p(1,4) — 3,uy)) — 1,
uy = 1p(4p(1,5) — 3,4p(1, k) — 3), ug := v1(us, v5(7)),
ug = 4vy (va(j), va(k)) — 2
N(tl =<< tj,tk >) = I/lo(i,j, k’)
with v19(4, 7, k) = v3(uq, v3(ug, us)), where
up =1+ 7+ k, ugi=uy + 1, ug = voug, vo(i, ur, us))),
uy = v1(vg(us, j,7), vo(ue, J, k));
Nt =<t te, t; >) = v11(4, 4, k, 1)
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with v11(4, 7, k, 1) := v3(uy, ug), where
uy =i+ j+k+1 ug = vi(vio(u, 4, k), vio(i, ur, k).

It follows now that

a1 = 4p(v6(2,3), v2(4p(2,4) — 3,4p(3,4) — 3)); (6)
az = v2(2, v2(3, vs(4, vr(1,0)))) (7)
with u = vs(dp(1,4) — 3, v0(s(L, 2), v6(1, 3)));
as = vs(2, v2(1, 4p(1, 2) — 3)); 8)
ay = v3(2, v2(3, vs(4,w1))), 9)

where uy 1= vo(v3(5, uz), 4p(3,4) — 3) and uy := v (v10(5, 3, 4),4p(5,2) — 3);
as = 4p(1,4p(2,u;) — 1) — 1, (10)

where uy := v3(3,4p(4, va(ug, us)) — 1), ug := 4p(4,3) — 3, and
ug = 11(4p(4,1) = 3,4p(4,2) = 3);

ag = 4p(1,v3(2,u7)) — 1, (11)
where uy 1= v7(3, va(ug, u3)), us :=4p(3,2) — 3, and ug := 16p(3, 1) — 14;
a7 = 4p(1,v53(2,uy)) — 1, (12)

where uy 1= v7(3, va(ug, u3)), us :=4p(3,2) — 3, us := v5(4,uy), and
uy = v3(5, v1(110(5, 3, 4),4p(5, 1) — 3));

ag = 4p(1,v3(2,uy)) — 1, (13)

where uy 1= 17(3,v7(4,u3)), ug := va(ug,4p(3,1) — 3), and
ug = v3(5, v1(110(5, 3, 4),4p(5,2) — 3));

ag = 4p(1,v3(2,u7)) — 1, (14)

where uy 1= v7(3, v7(4, v7(5, u2))), uz = v3(6,v3(7, v1(us, us))),
ug = v1(111(6,3,4,5),111(7,4,5,3)), and uy := v,(4p(6,2) — 3,4p(7,1) — 3);

ajo == 4p(1,v3(2,u1)) — 1, (15)

where uy 1= v7(3, v7(4, v7(5, u2))), us = v3(6, v3(7, 11 (us, uy))),
ug == 1v1(111(6,3,4,5),111(7,3,5,4)), and uy := 15(4p(6,2) — 3,4p(7,1) — 3);

ay; = v7(1,v8(2,17(3,u1))), (16)
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where uy 1= 1o (4p(3,2) — 3, v5(4, uz)) and uy := v1(4p(3,4) — 3,4p(4,1) — 3);

a2 = V7(1, V8(2; 1/7(3,u1))), (17)
where uy 1= 15(4p(3,2) — 3, ug), us := 4p(4,u3) — 1, and
uz == 4p(4p(4,3) — 3,4p(4,1) — 3);
a1z == v7(1,4p(2,u1) — 1), (18)
where u; 1= v5(3, v ( us)), uz = v2(4p(4,3) — 3,u3), and
ug == 1v1(4p(4,1) — (4 2) — 3)
a1s = 4p(ur, uz), (19)

where
uy := v (vr, v), v1 = 4p(2, va(vs, vy)), v3 = 4p(2,1) — 3,

Vg 1= 1/3(37 1/3(47 1/10(27 3, 4))), Vg 1= V7(27 V7(37 V7(47 U5)))7
vs = Ap(11(vs, v7), v6(3,4)), ve := v3(5, 11(110(5,2,3),4p(5, 1) — 3)),
vr = v3(5, 11 (v10(5,2,4),4p(5,1) — 3))

and
ug = v7(2,v8(3, v7(4,v8))), vs := va(4p(4,3) — 3,v9),

Vg 1= V8(5> Vl(Ulo, 4p(5, 2) — 3)), V10 ‘= V3(6> Vl(V10(67 57 4)7 4p<67 1) - 3))’
Q15 == V8(27 Vl(U1,U2))a (20)
where
uy = v3(4,v1(4p(4,2) — 3,v5(4))), uz :=v7(3,4p(4p(3,2) — 3, u3)),

Uz ‘= V3(47 7/1(4]9(4, 2) - 374p(5a U4) - 1))7

and
uyg = vo(4p(5,4) — 3, v0(vs(5, 3), 19(5, 3, 3))).

Acknowledgement. We are indebted to Professor Yu.V. Matiyasevich for
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a preliminary version of our paper.
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