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§1. Introduction.

By a well-known theorem of Matiyasevich [10], [11], a recursively enumerable
set is Diophantine, and therefore there is no algorithm, deciding whether
a given Diophantine equation is soluble in Z. Moreover, given a recur-
sively enumerable set S, one can actually construct a polynomial PS(t, ~x)
in Z[t, ~x], ~x := (x1, . . . , xn), such that

S = {a | a ∈ N, ∃ ~b (~b ∈ Z
n & PS(a,~b) = 0)}.

The set of the theorems in a formalised mathematical theory, say T , being
recursively enumerable, is Diophantine (cf. [3, pp. 327-328], [4]); therefore
one can construct a polynomial FT (t, ~x) in Z[t, ~x] such that the Diophantine
equation

FT (a, ~x) = 0

is soluble in Z if and only if a = N (A) for a formula A provable in T , where

N : F → N

is a suitable numbering of the set F of the well-formed formulae of T . On the
other hand, if such a theory T is consistent, then there is an infinite sequence
of polynomials

f1(~x), f2(~x), . . .

such that fi(~x) ∈ Z[~x] and, for every i, the formula

∀ ~b (~b ∈ Z
n → fi(~b) 6= 0)

is not provable in T , although the Diophantine equation fi(~x) = 0 is insoluble
in Z.

Let P be the predicate calculus with a single binary predicate letter (and
no function letters or individual constants). By Kalmár’s theorem [8] (cf.
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also [14, p. 223]), analysis of provability in any pure predicate calculus can
be reduced to studying provability in P. Moreover, the Gödel-Bernays set
theory, to be denoted by S, is finitely axiomatisable in P [6], [14, Ch.4].
The goal of this work is to construct a polynomial FP(t, ~x) defined above.
Since, as it is commonly assumed, any mathematical proof can be formalised
in S, one may say that the polynomial FP(t, ~x) encodes the content of pure
mathematics; in this sense, the arithmetic of the affine hypersurface, defined
by the equation

FP(t, ~x) = 0,

is ”exactly as difficult as the whole of mathematics” (cf. [9, p. 2]).
On denoting by A the conjunction of the proper (non-logical) axioms of

S and letting
b = N (A ⊃ B)

for some (obviously) false in S formula B, one obtains a Diophantine equa-
tion

FP(b, ~x) = 0, (1)

whose insolubility is equivalent to the consistency of S. Thus in order to
prove that equation (1) has no solutions in Z, one has to employ an additional
axiom, for instance, the axiom asserting existence of an inaccessible ordinal
(cf. [5], where some combinatorial statements, whose provability depends on
that axiom, have been constructed).

As any other polynomial with integral rational coefficients, the polyno-
mial FP(t, ~x) is a special instance of an universal polynomial (the reader may
consult references [7], [12, Ch. 4], and the literature cited in those works for
different constructions of an universal polynomial). If the Gödel-Bernays set
theory S is consistent, then the formula

(A ⊃ ∃ ~b (~b ∈ Z
n &f(~b) = 0)),

with f(~x) ∈ Z[~x], ~x := (x1, . . . , xn), is provable in P if and only if equation
f(~x) = 0 is soluble in Z; thus, under that assumption, FP(t, ~x) is an universal
polynomial (it suffices, of course, to assume the consistency of any theory T
formalisable in P and such that the formula

∃ ~b (~b ∈ Z
n &f(~b) = 0)

is provable in T if the equation f(~x) = 0 is soluble in Z).
The polynomial FP(t, ~x), constructed in our work, contains over 106

terms; a somewhat simpler polynomial is described in [1]. Although one
does not expect a polynomial, encoding provability in pure mathematics, to
be too simple, it is not known how complicated it must be.
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In Section 2, we describe the language of P, define a numbering

N : P → N,

and give a Diophantine description of the first three groups of axioms of P.
The necessary preliminaries on Diophantine coding are collected in Section
3. After proving a few technical lemmata in Section 4, we complete the
description of the axioms of P in Section 5. Our polynomial FP(t, ~x) is
described in Section 6; an example of a Diophantine equation of the shape
(1), whose insolubility is equivalent to the consistency of the Gödel-Bernays
system S, is given in the final Section 7.

Notation and conventions. As usual, R,Z, and N stand for the field
of real numbers, the ring of rational integers, and the semigroup of positive
rational integers respectively. A finite sequence of symbols is denoted by ~x
and L(~x) stands for its length (we write, for instance, ~x := (y1, . . . , yn) and
L(~x) = n); let

~x ∗ ~y := (a1, . . . , an, b1, . . . , bm)

stand for the concatenation of the sequences

~x := (a1, . . . , an) and ~y := (b1, . . . , bm).

The polynomial

p(x1, x2) =
(x1 + x2 − 2)(x1 + x2 − 1)

2
+ x2

defines a bijection

p : N
2 → N, p : ~a 7→ p(~a) for ~a ∈ N

2;

moreover, for ~a ∈ N
2, a := (a1, a2),

p(~a) ≥ max{a1, a2} and p(~a) ≤ a2
1 + 2a2

2

(cf. [2, p. 237]). Given an arithmetical formula A, let

(∀j ≤ n) A := ∀j ((j ∈ N & j ≤ n) ⇒ A).

For ~a ∈ R
n, ~a := (a1, . . . , an), let

~a 2 :=

n
∑

i=1

a2
i and |~a| := max {|aj| | 1 ≤ j ≤ n}.
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§2. The predicate calculus P .

The predicate calculus P is a first order theory. The alphabet of its language
consists of the set

X := {ti | i ∈ N}

of the individual variables, the binary predicate letter ε, the logical connec-
tives: {¬, ⊃} (”negation” and ”implication”), the universal quantifier ∀, and
the parentheses {(, )}. The set F of the formulae of P is defined inductively.
An expression of the form (x ε y), with {x, y} ⊂ X , is a(n elementary) for-
mula; if A and B are formulae, then ¬ A, (A ⊃ B), and ∀x A are formulae.

Let us define inductively a map N : F → N.
Definition. Let N (ti ε tj) = 4p(i, j)−3 for {i, j} ⊆ N. For {A, B} ⊆ F

and i ∈ N, let N (¬ A) = 4N (A) − 2, N (∀ti A) = 4p(i,N (A)) − 1, and
N (A ⊃ B) = 4p(N (A),N (B)).

Proposition 1. The map N : F → N is a bijection.

Proof. It follows easily from the definition of the map N by induction.

Notation. For A ∈ F and {x, y} ⊂ X , let [A]f and A[x|y] stand for the
set of the free variables of A and the formula obtained from A on replacing
each of the free occurences of the variable x in A by y, respectively.

Definition. Let A ∈ F and {x, y} ⊂ X . If no free occurence of x in A

lies within the scope of a quantifier ∀y, then the variable y is free for x in A

(cf. [14, p. 54]).

There are five groups of axioms in P (cf. [14, pp. 69-70]):

A1 := {A ⊃ (B ⊃ A) | {A, B} ⊆ F};

A2 := {(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)) | {A, B, C} ⊆ F};

A3 := {(¬ B ⊃ ¬ A) ⊃ ((¬ B ⊃ A) ⊃ B) | {A, B} ⊆ F};

A4 := {∀x (A ⊃ B) ⊃ (A ⊃ ∀x B) | {A, B} ⊆ F, x ∈ X \ [A]f};

A5 := {∀x A ⊃ A[x|y] | A ∈ F, {x, y} ⊆ X ,

the variable y is free for x in A}.

The set T of the theorems of P is defined inductively:
(B0) ∪5

j=1 Aj ⊆ T.
(B1) If {A, (A ⊃ B)} ⊆ T, then B ∈ T (”modus ponens”).
(B2) If A ∈ T, then ∀x A ∈ T (”generalisation”).
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In what follows (see Corollary 3), we shall construct a polynomial f(t, ~x)
in Z[t, ~x] such that

N (T) = {a | a ∈ N, ∃ ~b (~b ∈ Z
L(~x) & f(a,~b) = 0)}.

Our first task is to give a Diophantine description of the predicate ”A is an
axiom of P”. In this section, we provide such a description for the three
predicates ”A ∈ Ai”, with i = 1, 2, 3.

Proposition 2. Let g1(u, ~x) := u − 4p(x1, 4p(x2, x1)) with ~x := (x1, x2).
Then

N (A1) = {u | ∃ ~b (~b ∈ N
2 & g1(u,~b) = 0)}.

Proof. Let N (A) = x1,N (B) = x2, and N (A ⊃ (B ⊃ A)) = u. It follows
then from the definition of the map N that u = 4p(x1, 4p(x2, x1)). This
proves the proposition.

Proposition 3. Let

g2(u, ~x) := u− 4p(4p(x1, 4p(x2, x3)), 4p(4p(x1, x2), 4p(x1, x3)))

with ~x := (x1, x2, x3). Then

N (A2) = {u | ∃ ~b (~b ∈ N
3 & g2(u,~b) = 0)}.

Proof. Let D := ((A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))) and let
N (A) = x1, N (B) = x2, N (C) = x3. An easy calculation shows that,
in these notations, g2(u, ~x) = 0 if and only if N (D) = u. This proves the
proposition.

Proposition 4. Let

g3(u, ~x) := u− 4p(4p(4x2 − 2, 4x1 − 2), 4p(4p(4x2 − 2, x1), x2))

with ~x := (x1, x2). Then

N (A3) = {u | ∃ ~b (~b ∈ N
2 & g3(u,~b) = 0)}.

Proof. Let C := ((¬ B ⊃ ¬ A) ⊃ ((¬ B ⊃ A) ⊃ B)), N (A) = x1, and
N (B) = x2. The equation g3(u, ~x) = 0 is easily seen to assert that N (C) = u.
This proves the proposition.

To give a Diophantine description of the sets of axioms A4 and A5, we
shall make use of the techniques developed in the works, relating to the
Hilbert tenth problem ( cf. [2], [12], and references therein ).
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§3. On Diophantine coding.

In this section, following [2], we state a few lemmata about Diophantine
coding.

Lemma 1. Let f(t, ~x) ∈ Z[t, ~x] with L(~x) = n and suppose that

S = {a | a ∈ N, ∃ ~b (~b ∈ N
n & f(a,~b) = 0)}.

Then
S = {a | a ∈ N, ∃ ~b (~b ∈ Z

4n & g(a,~b) = 0)},

where

g(t, ~y) := f(t, ~z), ~z := (z1, . . . , zn), zj :=

4
∑

i=1

y2
ji + 1, 1 ≤ j ≤ n.

Proof. See, for instance, [12, §1.3].

Lemma 2. Let f3(m,n, k; ~x) :=

(x2
1 − (x2

2 − 1)x2
3 − 1)2 + (x2

4 − (x2
2 − 1)x2

5 − 1)2 + (x2
6 − (x2

7 − 1)x2
8 − 1)2+

(x5 − x9x
2
3)

2 + (x7 − 1− 4x10x3)
2 + (x7 − x2 − x11x4)

2 + (x6 − x1 − x12x4)
2+

(x8−k−4(x13−1)x3)
2+(x3−k−x14+1)2+(x17−n−x18)

2+(x17−k−x19)
2+

((x1 − x3(x2 − n) −m)2 − (x15 − 1)2(2x2n− n2 − 1)2)2+

(m+ x16 − 2x2 n + n2 + 1)2 + (x2
2 − (x2

17 − 1)(x17 − 1)2x2
20 − 1)2,

where ~x := (x1, . . . , x20). Then m = nk if and only if

∃ ~a (~a ∈ N
20 & f3(m,n, k;~a) = 0).

Proof. See [2, pp. 244-248].

Lemma 3. Let f4(m,n, k; ~x) :=

f3(x1, 2, n; ~x(1)) + f3(x5, x4, n; ~x(2)) + f3(x6, x3, k; ~x
(3))+

(x1 + x2 − x3)
2 + (x4 − x3 − 1)2 + (x6x7 + x8 − x5 − 1)2+

(x5 + x9 − (x7 + 1)x6)
2 + (x7 −m− (x10 − 1)x3)

2 + (m+ x11 − x3)
2,

where ~x = ~x(0) ∗ · · · ∗ ~x(3) with ~x(0) := (x1, . . . , x11), ~x
(1) := (x12, . . . , x31),

~x(2) := (x32, . . . , x51), ~x
(3) := (x52, . . . , x71). Then

m =
n!

(n− k)!k!

if and only if
∃ ~a (~a ∈ N

71 & f4(m,n, k;~a) = 0).
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Proof. See [2, pp. 249-250].

Lemma 4. Let f2(m,n; ~x) :=

f3(x3, x1, x2; ~x
(1)) + f3(x4, x3, n; ~x(2)) + f4(x5, x3, n; ~x(3))+

(x1 − 2n− 1)2 +(x2 −n− 1)2 +(mx5 +x6 − 1−x4)
2 +(x4 +x7 − (m+1)x5)

2,

where ~x = ~x(0) ∗ · · · ∗ ~x(3) with ~x(0) := (x1, . . . , x7), ~x
(1) := (x8, . . . , x27),

~x(2) := (x28, . . . , x47), ~x
(3) := (x48, . . . , x118). Then m = n! if and only if

∃ ~a (~a ∈ N
118 & f2(m,n;~a) = 0).

Proof. See [2, pp. 251-252].

Lemma 5. Let f1(m,n, a, b; ~x) :=

(x1−a−bn)2+(x3−bx2−1)2+(bx4−a−x3x5)
2+(m+x8−x3)

2+(x9−x4−n)2+

(m+ x3x11 − x6x7x10)
2 + f3(x2, x1, n; ~x(1)) + f3(x6, b, n; ~x(2))+

f2(x7, n; ~x(3)) + f4(x10, x9, n; ~x(4)),

where

~x = ~x(0) ∗ · · · ∗ ~x(4), ~x(0) := (x1, . . . , x11), ~x
(1) := (x12, . . . , x31),

~x(2) := (x32, . . . , x51), ~x
(3) := (x52, . . . , x169), ~x

(4) := (x170, . . . , x240).

Then

m =
n

∏

k=1

(a+ bk)

if and only if
∃ ~c (~c ∈ N

240 & f1(m,n, a, b;~c) = 0).

Proof. See [2, p. 252].

Proposition 5. Let

σ(u, j, w; ~z) := 4((u−p(z1, z2))
2 +(w+z3(1+ jz2)−z1)

2 +(w+z4− jz2−2)2)

with ~z := (z1, . . . , z4). There is a function

S : N
2 → N,

satisfying the following conditions:
(i) w = S(j, u) if and only if ∃ ~b (~b ∈ N

4 & σ(u, j, w;~b) = 0);
(ii) ∀j, u (S(j, u) ≤ u);
(iii) if {ak | 1 ≤ k ≤ n} ⊆ N for some n in N, then there is a number u

in N such that ak = S(k, u) for 1 ≤ k ≤ n.
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Proof. See [2, pp. 237-238].

Proposition 6. Let P (u1, u2; ~y, ~z) ∈ Z[u1, u2; ~y, ~z], with L(~z) = l, and sup-
pose there is a polynomial R(u1, u2; ~y) in Z[u1, u2; ~y] such that

|P (n, j;~a, ~d)| ≤ R(n, T ;~a)

for ~a ∈ N
L(~y), {n, j} ⊆ N, j ≤ n, ~d ∈ N

l, |~d| ≤ T and

R(c1, c2;~a) > max{c1, c2}

for {c1, c2} ⊆ N, ~a ∈ N
L(~y). Write, for brevity,

Hl(~x,~b) := f2(b5, b4; ~x
(2)) + f1(b6, n, 1, b5; ~x

(3)) + (b6 − b1b5 − 1)2+

(b2 − b6b7)
2 + (~x(4) − ~x(1) + ~β)2 +

l
∑

i=1

f1(b6x
(5)
i , b3, x

(4)
i , 1; ~x(5+i)),

where

~b := (b1, . . . , b7), ~β := (β1, . . . , βl) with βi = b3 + 1 for 1 ≤ i ≤ l,

~x = ~x(1) ∗ · · · ∗ ~x(5+l) with ~x(j) := (x
(j)
1 , . . . , x

(j)

L(~x(j))
) for 1 ≤ j ≤ 5 + l,

L(~x(1)) = L(~x(4)) = L(~x(5)) = l, L(~x(2)) = 118,

L(~x(3)) = L(~x(5+i)) = 240 for 1 ≤ i ≤ l,

and
L(~x) =

∑

1≤i≤5+l

L(~x(i)) = 243l + 358.

Then
(∀j ≤ n) ∃ ~c (~c ∈ N

l & P (n, j;~a,~c) = 0) ⇐⇒

∃ ~x,~b (~b ∈ N
7 & ~x ∈ N

L(~x) & (P (n, b1;~a, ~x
(1)) − b2)

2+

(R(n, b3;~a) − b4)
2 +Hl(~x,~b) = 0)

for ~a ∈ N
L(~y).

Proof. See [2, pp. 253-256].

8



§4. A few technical lemmata.

Notation. For A ∈ F, let m(A) stand for the number of occurences of the
logical connectives ¬, ⊃, or ∀.

Definition. Let i ∈ N. A sequence of formulae {ϕ1, . . . , ϕn} in F is
i-admissible if, for every j in the interval 1 ≤ j ≤ n, one of the following
conditions holds true:

(a) ϕj := (tk ε tl) and i 6∈ {k, l},
(b) ϕj := ∀ti ψ for some ψ in F,
(c) ϕj := (ϕk ⊃ ϕl) with 1 ≤ k, l < j,
(d) ϕj := ¬ϕk with 1 ≤ k < j,
(e) ϕj := ∀tν ϕk with ν ∈ N, 1 ≤ k < j.

Lemma 6. The variable ti does not occur as a free variable in a formula ϕ
if and only if there is an i-admissible sequence of formulae {ϕ1, . . . , ϕn} with
ϕn = ϕ.

Proof. Let m(ϕ) = 0 and suppose that ti /∈ [ϕ]f . Then ϕ := (tk ε tl) with
i 6∈ {k, l} and we may take n = 1, ϕ1 = ϕ. Conversely, if m(ϕ) = 0 and
there is an i-admissible sequence of formulae {ϕ1, . . . , ϕn} with ϕn = ϕ, then
ϕn must satisfy condition (a) (since m(ϕn) = m(ϕ) = 0) and therefore ti is
not a free variable of ϕ (= ϕn).

Let m(ϕ) = l with l ∈ N and suppose the assertion be true for every
formula ϕ′ with m(ϕ′) < l. Let {ϕ1, . . . , ϕn} be an i-admissible sequence of
formulae with ϕn = ϕ. Since m(ϕ) > 0 and ϕn = ϕ, the formula ϕ satisfies
one the conditions (b) − (e). If ϕ := ∀ti ψ for some ψ in F, then ti /∈ [ϕ]f ;
if ϕ := (ϕk ⊃ ϕl) with 1 ≤ k, l < n, then, by the inductive supposition,
ti /∈ [ϕk]f ∪ [ϕl]f and therefore ti /∈ [ϕ]f ; finally, if either ϕ := ¬ϕk with
1 ≤ k < n or ϕ := ∀tν ϕk with ν ∈ N, 1 ≤ k < n, then, by the inductive
supposition, ti /∈ [ϕk]f and therefore ti /∈ [ϕ]f . In either case, ti is not a
free variable of ϕ. Conversely, suppose that ti is not a free variable of ϕ.
Since m(ϕ) > 0, the formula ϕ must contain one of the logical connectives
¬, ⊃, or ∀. If ϕ ∈ {¬ ψ, ∀tν ψ} with ψ ∈ F and ν 6= i, then ti is not
a free variable of ψ, therefore, by the inductive supposition, there is an i-
admissible sequence of formulae {ϕ1, . . . , ϕµ} with ϕµ := ψ and we may
let n = µ + 1, ϕn = ϕ. If ϕ := (ψ1 ⊃ ψ2) with {ψ1, ψ2} ⊆ F, then ti
is not a free variable of both ψ1 and ψ2, and therefore, by the inductive
supposition, there are two i-admissible sequences of formulae {ϕ1, . . . , ϕµ}
and {ϕ′

1, . . . , ϕ
′
ν} with ϕµ := ψ1 and ϕ′

ν := ψ2; it is clear that in this case
the sequence of formulae {ϕ1, . . . , ϕµ, ϕ

′
1, . . . , ϕ

′
ν, ϕ} is i-admissible. Finally,

if ϕ := ∀ti ψ for some ψ in F, then we may take n = 1 and let ϕ1 = ϕ.
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Definition. Let {r1, r2} ⊆ N. An (r1, r2)-admissible triple consists of two
sequences of formulae {ϕ1, . . . , ϕn}, {ψ1, . . . , ψn} and a sequence of integers
{d1, . . . , dn} such that {ϕj, ψj} ⊆ F, dj ∈ {1, 2} for 1 ≤ j ≤ n and, for every
j in the interval 1 ≤ j ≤ n, one of the following conditions holds true:

1) ϕj := (tr3 ε tr4) with r1 6∈ {r3, r4}, dj = 2, ψj := ϕj;
2) ϕj := (tr3 ε tr4) with r1 ∈ {r3, r4}, dj = 1, ψj := ϕj[tr1 |tr2];
3) ϕj := ¬ϕk, dj = dk, ψj := ¬ψk with 1 ≤ k < j,
4) ϕj := (ϕk ⊃ ϕl), ψj := (ψk ⊃ ψl), dj = (dk − 1)(dl − 1) + 1 with
1 ≤ k, l < j;
5) ϕj := ∀tr3 ϕk with r3 6∈ {r1, r2}, ψj := ∀tr3 ψk, dj = dk, 1 ≤ k < j;
6) ϕj := ∀tr1 χ with χ ∈ F, ψj := ϕj, dj = 2;
7) ϕj := ∀tr2 ϕk with r1 6= r2, ψj := ϕj, dj = dk = 2, 1 ≤ k < j.

Lemma 7. Let {r1, r2} ⊆ N and {ϕ, ψ} ⊆ F. Then the variable tr2 is free
for tr1 in ϕ and ψ := ϕ[tr1|tr2 ] if and only if there is an (r1, r2)-admissible
triple

{ϕ1, . . . , ϕn}, {ψ1, . . . , ψn}, {d1, . . . , dn} (2)

with ϕn = ϕ, ψn = ψ. Moreover, any (r1, r2)-admissible triple (2) satisfies
the condition

dj =

{

1 if tr1 ∈ [ϕj]f
2 if tr1 6∈ [ϕj]f

(3)

for 1 ≤ j ≤ n.

Proof. For any (r1, r2)-admissible triple (2) relation (3) can be easily proved
by induction on n.

Let m(ϕ) = 0, then ϕ := (tr3 ε tr4) with {r3, r4} ⊆ N, so that the variable
tr2 is free for tr1 in ϕ. Let ψ := ϕ[tr1 |tr2 ], n = 1, and

d1 =

{

1 if r1 ∈ {r3, r4}
2 if r1 6∈ {r3, r4};

it is clear then that {ϕ}, {ψ}, {d1} is an (r1, r2)-admissible triple. Con-
versely, if (2) is an (r1, r2)-admissible triple with ϕn = ϕ, ψn = ψ, then,
since m(ϕ) = 0, for j = n one of the conditions 1) or 2) holds; in either case
ψ := ϕ[tr1|tr2 ].

Let now m(ϕ) = l with l ∈ N and suppose the assertion be true for every
formula ϕ′ with m(ϕ′) < l. If ϕ := ∀tr1 ϕ

′ with ϕ′ ∈ F, then tr1 6∈ [ϕ]f and
the assertion is obvious; if ϕ := ∀tr2 ϕ

′ with ϕ′ ∈ F and r1 6= r2, then tr2 is
free for tr1 in ϕ if and only if tr1 6∈ [ϕ′]f (and therefore tr1 6∈ [ϕ]f ) and the
assertion follows from the inductive supposition. Finally, if

ϕ ∈ {¬ ϕ′, ∀tr3 ϕ
′, ϕ′ ⊃ ϕ′′} with {ϕ′, ϕ′′} ⊆ F, r3 6∈ {r1, r2},
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then one can deduce the assertion from the inductive supposition arguing as
in the proof of Lemma 6.

Notation. Let

h0(~j; ~x) := (j2 − j1 +x1)
2 +(j3 − j1 +x2)

2 with ~j := (j1, j2, j3), ~x := (x1, x2).

It is clear that, for ~j ∈ N
3,

∃ ~x (~x ∈ N
2 & h0(~j; ~x) = 0) ⇔ max{j2, j3} < j1.

The following lemma is a Diophantine reformulation of Lemma 6.

Lemma 8. Let Ci := {A | A ∈ F, ti /∈ [A]f}. Then

N (Ci) = {v | B4(i, v)},

where B4(i, v) :=

∃ w, n ({w, n} ⊆ N & (∀j1 ≤ n) ∃ ~y(~y ∈ N
27 & P4(n, j1; i, v, w; ~y) = 0))

with P4(n, j1; i, v, w; ~y) :=

σ(w, n, v; ~z(4)) +
3

∑

ν=1

σ(w, jν, xν; ~z
(ν)) + h0(~j; z1, z2) +

5
∏

ν=1

qν(i, ~x).

Here

q1(i, ~x) := (x1 − 4p(x4, x5) + 3)2 + ((x4 − i)2 − x6)
2 + ((x5 − i)2 − x7)

2,

q2(i, ~x) := x1 − 4p(i, x4) + 1, q3(i, ~x) := x1 − 4p(x2, x3),

q4(i, ~x) := x1 − 4x2 + 2, q5(i, ~x) := x1 − 4p(x4, x2) + 1

with

~j := (j1, j2, j3), ~x := (x1, . . . , x7), ~y := (j2, j3) ∗ (z1, z2) ∗ ~x ∗ ~z,

~z := ~z(1) ∗ · · · ∗ ~z(4), and L(~z(ν)) = 4 for 1 ≤ ν ≤ 4, so that L(~y) = 27.

Proof. Let {ϕ1, . . . , ϕn} be a sequence of formulae in F with N (ϕµ) = aµ

for 1 ≤ µ ≤ n. In view of Proposition 5, there is a natural number w such
that the formula ∃ ~b (~b ∈ N

4 & σ(w, j, x;~b) = 0) holds true if and only if
x = aj for 1 ≤ j ≤ n. Therefore the formula

∃ ~z(~z ∈ N
16 & σ(w, n, v; ~z(4)) +

3
∑

ν=1

σ(w, jν, xν; ~z
(ν)) = 0)

11



asserts that ajν
= xν for 1 ≤ ν ≤ 3 and an = v. Moreover, the formula

∃ z1, z2(h0(~j; z1, z2) = 0) asserts that max{j2, j3} < j1. It follows further
that q1(i, ~x) = 0 if and only if m(ϕj1) = 0, ϕj1 := (tk ε tl) and i 6∈ {k, l},
where k := x4, l := x5, that q2(i, ~x) = 0 if and only if ϕj1 := ∀tiψ for some ψ
in F, that q3(i, ~x) = 0 if and only if ϕj1 := (ϕj2 ⊃ ϕj3) with 1 ≤ j2, j3 < j1,
that q4(i, ~x) = 0 if and only if ϕj1 := ¬ϕj2 with 1 ≤ j2 < j1, and that
q5(i, ~x) = 0 if and only if ϕj1 := ∀tµϕj2 with µ ∈ N, 1 ≤ j2 < j1. Thus,
by Lemma 6, the variable ti does not occur as a free variable in the formula
N−1(v) if and only if the formula B4(i, v) holds true.

Corollary 1. Let

A4(u) := ∃ i, v ({i, v} ⊆ N & B4(i, v) & ∃ y(y ∈ N & h4(u; i, v; y) = 0)),

where h4(u; i, v; y) := u− 4p(4p(i, 4p(v, y))− 1, 4p(v, 4p(i, y)− 1)). Then

N (A4) = {u | A4(u)}.

Proof. Let C := ∀ti (A ⊃ B) ⊃ (A ⊃ ∀ti B), N (A) = v, and N (B) = y.
An easy calculation shows then that

N (C) = 4p(4p(i, 4p(v, y))− 1, 4p(v, 4p(i, y)− 1)).

The assertion follows now from Lemma 8.
The following lemma is a Diophantine reformulation of Lemma 7.

Lemma 9. Let
C(~r) :=

{~v | v1 = N (ϕ), v2 = N (ψ), ϕ ∈ F, ψ := ϕ[tr1 |tr2], tr2 is free for tr1 in ϕ},

where ~r := (r1, r2) and ~v := (v1, v2). Then

C(~r) = {~v | ~v ∈ N
2 & B5(~v, ~r)},

where
B5(~v, ~r) := ∃ ~w, n (~w ∈ N

3 & n ∈ N &

(∀j1 ≤ n) ∃ ~y(~y ∈ N
60 & P5(n, j1;~v, ~r, ~w; ~y) = 0))

and

P5(n, j1;~v, ~r, ~w; ~y) := h0(~j; z1, z2) +
∑

1≤i,ν≤3

σ(wi, jν, x3(i−1)+ν ; ~z
(ν)
i )+

∑

i∈{1,2}

σ(wi, n, vi; ~z
(4)
i ) +

9
∑

i=7

(xi − 1)2(xi − 2)2 +
7

∏

i=1

qi(~r, ~x).

12



Here
q1(~r, ~x) :=

(x7 − 2)2 + (x4 − x1)
2 + (x1 − 4p(r3, r4) + 3)2 + ((r3 − r1)

2(r4 − r1)
2 − x10)

2;

q2(~r, ~x) := (x7 − 1)2 +
3

∏

i=1

q
(i)
2 (~r, ~x)

with

q
(1)
2 (~r, ~x) := (x1 − 4p(r1, r4)+ 3)2 +(x4 − 4p(r2, r4)+ 3)2 +((r4 − r1)

2 −x10)
2,

q
(2)
2 (~r, ~x) := (x1 − 4p(r3, r1)+ 3)2 +(x4 − 4p(r3, r2)+ 3)2 +((r3 − r1)

2 −x10)
2,

q
(3)
2 (~r, ~x) := (x1 − 4p(r1, r1) + 3)2 + (x4 − 4p(r2, r2) + 3)2;

q3(~r, ~x) := (x1 − 4x2 + 2)2 + (x4 − 4x5 + 2)2 + (x7 − x8)
2;

q4(~r, ~x) := (x7 − (x8 − 1)(x9 − 1)− 1)2 +(x1 − 4p(x2, x3))
2 +(x4 − 4p(x5, x6)

2;

q5(~r, ~x) := (x1 − 4p(r3, x2) + 1)2 + (x4 − 4p(r3, x5) + 1)2+

(x7 − x8)
2 + ((r3 − r1)

2(r3 − r2)
2 − x10)

2;

q6(~r, ~x) := (x1 − 4p(r1, x10) + 1)2 + (x7 − 2)2 + (x4 − x1)
2;

q7(~r, ~x) := (x1 − 4p(r2, x2) + 1)2 + (x7 − 2)2+

(x8 − 2)2 + (x4 − x1)
2 + ((r2 − r1)

2 − x10)
2;

~w := (w1, w2, w3), ~j := (j1, j2, j3), ~z
(ν) := ~z

(ν)
1 ∗ ~z(ν)

2 ∗ ~z(ν)
3 for 1 ≤ ν ≤ 3,

~z(4) := ~z
(4)
1 ∗~z(4)

2 , with L(~z
(ν)
i ) = 4 for 1 ≤ i ≤ 3, 1 ≤ ν ≤ 4, ~z := ~z(1)∗· · ·∗~z(4);

~x := (r3, r4) ∗ (z1, z2) ∗ (x1, . . . , x10), ~y := (j2, j3) ∗ ~x ∗ ~z,

so that L(~y) = 60.

Proof. Let
{ϕ1, . . . , ϕn}, {ψ1, . . . , ψn}, {d1, . . . , dn}

be two sequences of formulae and a sequence of natural numbers, so that
{ϕj, ψj} ⊆ F, dj ∈ N for 1 ≤ j ≤ n. In view of Proposition 5, there are
three natural numbers w1, w2, w3 such that the formula

∃ ~b (~b ∈ N
4 & σ(wi, j, x;~b) = 0)

holds true if and only if

x =







N (ϕj) if i = 1
N (ψj) if i = 2
dj if i = 3

13



for 1 ≤ j ≤ n. Therefore the formula

∃ ~z (~w ∈ N
3 & ~z ∈ N

44 &

∑

1≤i,ν≤3

σ(wi, jν, x3(i−1)+ν ; ~z
(ν)
i ) +

∑

i∈{1,2}

σ(wi, n, vi; ~z
(4)
i ) = 0),

with ~w := (w1, w2, w3), implies that there are three sequences

{ϕ1, . . . , ϕn}, {ψ1, . . . , ψn}, {d1, . . . , dn}

such that {ϕj, ψj} ⊆ F, dj ∈ N for 1 ≤ j ≤ n, N (ϕn) = v1, N (ψn) = v2,
and N (ϕjν

) = xν , N (ψjν
) = xν+3, djν

= xν+6 for 1 ≤ ν ≤ 3. The formula

∃ z1, z2({z1, z2} ⊆ N & h0(~j; z1, z2) = 0) asserts that max{j2, j3} < j1.
Moreover, for 1 ≤ i ≤ 7, the formula

∃ ~x(~x ∈ N
10 & qi(~r, ~x) = 0)

is equivalent to condition i) in the definition of an (r1, r2)-admissible triple.
Finally, the equation

∑9
i=7(xi − 1)2(xi − 2)2 = 0 implies that dj ∈ {1, 2} for

1 ≤ j ≤ n. Lemma 9 follows now from Lemma 7.

Corollary 2. Let

A5(u) := ∃ ~v, ~r ({~v, ~r} ⊆ N
2 & B5(~v, ~r) & (h5(u;~v, r1) = 0)),

where ~r := (r1, r2), ~v := (v1, v2), and h5(u;~v, r1) := u− 4p(4p(r1, v1)− 1, v2).
Then

N (A5) = {u | A5(u)}.

Proof. Let C := (∀tr1 D ⊃ D[tr1 |tr2]), v1 := N (D), and v2 := N (D[tr1 |tr2]).
It follows then that N (C) = 4p(4p(r1, v1) − 1, v2). In view of Lemma 9, this
proves the corollary.

§5. Elimination of universal quantifiers.

It follows from Proposition 6 that formulae A4(u) and A5(u) define Diophan-
tine predicates. In this section, we shall construct two polynomials g4(u, ~x

(4))
and g5(u, ~x

(5)) such that

{u | Aν(u)} = {u | ∃ ~b (~b ∈ N
L(~x(ν)) & gν(u,~b) = 0)}

for ν = 4, 5.

14



Lemma 10. Let

R4(t1, t2; i, v, w) := 32w2 + 16v2 + 300t41 + 2 · 106t142 + 2 · 105i16

with {i, v, w} ⊆ N. Then

|P4(n, j1; i, v, w; ~y)| ≤ R4(n, T ; i, v, w)

for j1 ≤ n, |~y| ≤ T, ~y ∈ N
27, {n, j1} ⊆ N.

Proof. Suppose that

j1 ≤ n, |~y| ≤ T, ~y ∈ N
27, {i, v, w, n, j1} ⊆ N.

An easy calculation shows that

h0(~j; x4, x5) ≤ 16T 2 + 4n2, σ(w, jν, xν , ~z
(ν)) ≤ 8w2 + 240T 6 for ν = 2, 3,

σ(w, j1, x1, ~z
(1)) ≤ 8w2+288T 4n2, and σ(w, n, v, ~z(4)) ≤ 8w2+16v2+280T 4n2.

Moreover, under the same conditions, we have

q1(i, ~x) ≤ 16i4 + 160T 4, |q2(i, ~x)| ≤ 12T 2, |q3(i, ~x)| ≤ 12T 2, |q4(i, ~x)| ≤ 4T,

and |q5(i, ~x) ≤ 12T 2. The assertion of the lemma follows from these estimates
and the definition of the polynomial P4(n, j1; i, v, w; ~y) in Lemma 8.

Lemma 11. Let

R5(z1, z2;~v, ~r, ~w) := 32~w2 + 16~v2 + 800t41 + 1023t642 + 5 · 1020(r64
1 + r32

2 )

with {~v, ~r} ⊆ N
2, ~w ∈ N

3. Then

|P5(n, j1;~v, ~r, ~w; ~y)| ≤ R5(n, T ;~v, ~r, ~w)

for j1 ≤ n, |~y| ≤ T, ~y ∈ N
60, {n, j1} ⊆ N.

Proof. Suppose that

j1 ≤ n, |~y| ≤ T, ~y ∈ N
60, {n, j1} ⊆ N, {~v, ~r} ⊆ N

2, ~w ∈ N
3.

An easy calculation shows that h0(~j; x13, x14) ≤ 16T 2 + 4n2,

∑

1≤i≤3

σ(wi, jν, x3(i−1)+ν , ~z
(ν)
i ) ≤ 8~w2 + 720T 6 for ν = 2, 3,

∑

1≤i≤3

σ(wi, j1, x3i−2, ~z
(1)
i ) ≤ 8~w2 + 432(T 8 + n4),

15



and
∑

i∈{1,2}

σ(wi, n, vi, ~z
(4)
i ) ≤ 8~w2 + 16~v2 + 280(T 8 + 70n4).

Moreover, under the same conditions, we have

9
∑

i=7

(xi − 1)2(xi − 2)2 ≤ 100T 4, q1(~r, ~x) ≤ 300T 8 + 130r8
1,

q
(1)
2 (~r, ~x) ≤ 32T 4 + 128r4

1, q
(2)
2 (~r, ~x) ≤ 100T 4 + 140(r4

1 + r4
2),

q
(3)
2 (~r, ~x) ≤ 100T 2 + 300(r4

1 + r4
2), q3(~r, ~x) ≤ 40T 2, q4(~r, ~x) ≤ 300T 4,

q5(~r, ~x) ≤ 500T 8 + 100(r8
1 + r8

2), q6(~r, ~x) ≤ 150T 4 + 32r4
1,

and q7(~r, ~x) ≤ 140T 4 +16r4
1 +50r4

2. The assertion of the lemma follows from
those estimates and the definition of the polynomial P5(n, j1;~v, ~r, ~w; ~y) in
Lemma 9.

By construction,

P4(n, j1; i, v, w; ~y) ∈ Z[n, j1; i, v, w; ~y]

and
P5(n, j1;~v, ~r, ~w; ~y) ∈ Z[n, j1;~v, ~r, ~w; ~y].

Therefore one concludes as follows.

Proposition 7. Let g4(u, ~z) :=

h4(u; i, v, y)
2+H27(~x,~b)+(P4(n, b1; i, v, w; ~x(1))−b2)

2+(R4(n, b3; i, v, w)−b4)
2,

where ~z = ~x ∗~b ∗ (i, v, w, n, y) with L(~z) = 6931. Then

N (A4) = {u | ∃ ~a (~a ∈ N
6931 & g4(u,~a) = 0)}.

Proof. In notations of Lemma 8,

B4(i, v) :=

∃ w, n ({w, n} ⊆ N & (∀j1 ≤ n) ∃ ~c(~c ∈ N
27 & P4(n, j1; i, v, w;~c) = 0)).

In view of Lemma 10, it follows from Proposition 6 that

B4(i, v) ⇐⇒ ∃ w, n, ~x,~b ({w, n} ⊆ N & ~b ∈ N
7 & ~x ∈ N

6919 &

H27(~x,~b) + (P4(n, b1; i, v, w; ~x(1)) − b2)
2 + (R4(n, b3; i, v, w) − b4)

2) = 0

for {i, v} ⊆ N, since L(~x) = 243l + 358 = 6919 with l := L(~c) = 27. The
assertion of Proposition 7 follows now from Corollary 1.
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Proposition 8. Let g5(u, ~z) :=

h5(u;~v, r1)
2+H60(~x,~b)+(P5(n, b1;~v, ~r, ~w; ~x(1))−b2)

2+(R5(n, b3;~v, ~r, ~w)−b4)
2,

where ~z = ~x ∗~b ∗ ~v ∗ ~r ∗ ~w ∗ (n) with L(~z) = 14953. Then

N (A5) = {u | ∃ ~a (~a ∈ N
L(~z) & g5(u,~a) = 0)}.

Proof. In notations of Lemma 9,

B5(~v, ~r) := ∃ ~w, n (~w ∈ N
3 & n ∈ N &

(∀j1 ≤ n) ∃ ~c(~c ∈ N
60 & P5(n, j1;~v, ~r, ~w;~c) = 0)).

In view of Lemma 11, it follows from Proposition 6 that

B5(~v, ~r) ⇐⇒ ∃ ~w, n, ~x,~b (~w ∈ N
3 & n ∈ N & ~b ∈ N

7 & ~x ∈ N
L(~x) &

H60(~x,~b) + (P5(n, b1;~v, ~r, ~w; ~x(1)) − b2)
2 + (R5(n, b3;~v, ~r, ~w) − b4)

2 = 0)

for {~v, ~r} ⊆ N
2 since L(~x) = 243l + 358 = 14938 with l := L(~c) = 60. The

assertion of Proposition 8 follows now from Corollary 2.

§6. The main theorem.

Proposition 9. Let ui := N (Ai) for some Ai in F, 1 ≤ i ≤ 3, and let
G1(~u; x) := x(u3 − 4p(u2, u1)), where ~u := (u1, u2, u3). The formula A1

follows from the formulae A2 and A3 by the rule (B1) if and only if

∃ b (b ∈ N & G1(~u; b) = 0).

Proof. Since the formula u3 = 4p(u2, u1) asserts that A3 := A2 ⊃ A1, the
assertion follows from the definition of inference rule (B1).

Proposition 10. Let ui := N (Ai) for some Ai in F, i = 1, 2, and let
G2(~u; r) := u1 − 4p(r, u2) + 1, where ~u := (u1, u2). The formula A1 follows
from the formula A2 by the rule (B2) if and only if ∃ r (r ∈ N & G2(~u; r) = 0).

Proof. Since the formula ∃ r (r ∈ N & G2(~u; r) = 0) asserts that
A2 := ∀tr A1 for some tr in X , the assertion follows from the definition of
inference rule (B2).

The following lemma is a Diophantine reformulation of the definition of
the set T of the theorems of P.
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Lemma 12. Let

Q(n, j1; v, u; ~w) :=
3

∑

i=1

σ(u, ji, xi; ~z
(i)) + σ(u, n, v; ~z(4))+

h0(~j; x4, x5) +G1(x1, x2, x3; y1)
2G2(x1, x2; y1)

2
5

∏

i=1

gi(x1, ~y
(i)),

where

~j := (j1, j2, j3), ~x := (x1, . . . , x5), ~w := (j2, j3) ∗ ~x ∗ ~z ∗ ~y, ~z := ~z(1) ∗ · · · ∗ ~z(4),

~y(1) = ~y(3) := (y1, y2), ~y
(2) := (y1, y2, y3), ~y

(4) := (y1, . . . , y6931),

~y(5) = ~y := (y1, . . . , y14953), L(~z(i)) = 4 for 1 ≤ i ≤ 4, so that L(~w) = 14976.
Then

N (T) = {v | ∃ u, n ({u, n} ⊆ N & A(v; u, n))},

where

A(v; u, n) := (∀j1 ≤ n) ∃ ~w(~w ∈ N
L(~w) & Q(n, j1; v, u; ~w) = 0).

Proof. Let C1, . . . ,Cn be a sequence of formulae in F with N (Cµ) = aµ for
1 ≤ µ ≤ n. In view of Proposition 5, there is a natural number u such that
the formula ∃ ~b (~b ∈ N

4 & σ(u, j, x;~b) = 0) holds true if and only if x = aj

for 1 ≤ j ≤ n. Therefore the formula

∃ ~z(~z ∈ N
16 & σ(u, n, v; ~z(4)) +

3
∑

ν=1

σ(u, jν, xν; ~z
(ν)) = 0)

asserts that ajν
= xν for 1 ≤ ν ≤ 3 and an = v. Moreover, the formula

∃ x1, x2(h0(~j; x1, x2) = 0) asserts that max{j2, j3} < j1. Thus, in view of
Propositions 2-4 and Propositions 7-10, the formula A(v; u, n) asserts that
either Cj1 ∈ ∪5

i=1Ci, or Cj1 can be deduced from Cj2 and Cj3 (respectively,
from Cj2) by the rule ”modus ponens” (respectively, by the rule ”generali-
sation”), where max{j2, j3} < j1 ≤ n, and that N (Cn) = v. The formula
∃ u, n ({u, n} ⊆ N & A(v; u, n)) can be now seen to assert that v ∈ N (T), as
claimed.

Lemma 13. Let

R(z1, z2; v, u) := 32u2 + 16v2 + 300z4
1 + 1089z182

2 .

Then

|Q(n, j1; v, u; ~w)| ≤ R(n, T ; v, u) for j1 ≤ n, |~w| ≤ T, ~w ∈ N
l, l := 14976,

with {v, u, n, j1} ⊆ N.
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Proof. Suppose that j1 ≤ n, |~w| ≤ T for ~w ∈ N
l, and {v, u, n, j1} ⊆ N.

Then, arguing as in the proof of Lemma 10, one concludes that

h0(~j; x4, x5) +

3
∑

i=1

σ(u, ji, xi; ~z
(i)) + σ(u, n, v; ~z(4))

≤ 32u2 + 16v2 + 300n4 + 103T 8.

Moreover, it follows from the definition of the polynomials G1, G2, g1, g2, and
g3 that

|G1(x1, x2, x3; ~y1)| ≤ 12T 2, |G2(x1, x2; ~y1)| ≤ 12T 4,

|g1(x1, ~y
(1))| ≤ 1.2 · 103T 4, |g2(x1, ~y

(2))| ≤ 5 · 107T 8,

and |g3(x1, ~y
(3))| ≤ 1014T 8. After some calculations, it follows from Lemmata

10 and 11 and the definition of gi(x1, ~y
(i)), i = 4, 5, that

g4(x1, ~y
(4)) ≤ 1014T 28 and g5(x1, ~y

(5)) ≤ 2 · 1047T 128.

Those estimates and the definition of the polynomial Q(n, j1; v, u; ~w) show
that

|Q(n, j1; v, u; ~w)| ≤ 32u2 + 16v2 + 300n4 + 1089T 182,

as asserted.

Theorem 1. In the notations of Proposition 6, let

F (v, ~z) := (Q(n, b1; v, u; ~x
(1)) − b2)

2 + (R(n, b3; v, u) − b4)
2 +Hl(~x,~b)

with l := 14976 and ~z := (u, n) ∗ ~x, so that L(~z) = 243l + 360 = 3639528.
Then

N (T) = {a | a ∈ N, ∃ ~c (~c ∈ N
L(~z) & F (a,~c) = 0)}.

Proof. By contruction, Q(n, j1; v, u; ~w) ∈ Z[n, j1; v, u; ~w]. Therefore, in view
of Lemma 13, the assertion follows from Proposition 6 and Lemma 12.

Corollary 3. Let f(t, ~x) := F (t, ~z), where ~z := (z1, . . . , zn), n := 3639528,
with

zj :=
4

∑

i=1

x2
ji + 1 for 1 ≤ j ≤ n, ~x := (x11, . . . , x14, . . . , xn1, . . . , xn4).

Then
N (T) = {a | a ∈ N, ∃ ~b (~b ∈ Z

4n & f(a,~b) = 0)}.

Proof. In view of Lemma 1, the assertion follows from Theorem 1.

Thus we may let FP(t, ~x) := f(t, ~x).
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§7. The Gödel-Bernays system S.

Let us list the proper (non-logical) axioms of the Gödel-Bernays axiomatic
set theory, denoted by S, in the language of the predicate calculus P (cf.
[14, Ch. 4]).

Notation. For {A, B} ⊆ F and x ∈ X , let

A ∨ B := ¬ B ⊃ A, A&B := ¬ (¬ A ∨ ¬ B),

A ≡ B := (A ⊃ B)&(B ⊃ A), ∃x A := ¬ ∀x ¬ A.

For {i, j} ⊆ N \ {1}, write

m(ti) := ∃t1 (ti ∈ t1) and ti = tj := ∀t1 (t1 ∈ ti ≡ t1 ∈ tj).

Assuming that {i, j, k} ⊆ N \ {1} and i 6∈ {j, k}, let

ti = [tj, tk] :=

(m(tj)&m(tk)&∀t1 (t1 ∈ ti ≡ (t1 = tj ∨ t1 = tk)))∨ (¬ (m(tj)&m(tk))&ti = ∅)

and
ti =< tj, tk >:= ti = [[tj, tj], [tj, tk]].

Finally, let
ti =< tj, tk, tl >:= ti =<< tj, tk >, tl >

for {i, j, k, l} ⊆ N \ {1} and i 6∈ {j, k, l}. Let us introduce the set of the ”set
variables” {si | i ∈ N, i > 1} by means of the following abbreviations:

∀si A := ∀ti (m(ti) ⊃ A) and ∃si A := ¬ ∀si ¬ A

for A ∈ F and i ∈ N \ {1}. Write

ti = ∅ := ∀t1 ¬ (t1 ∈ ti).

There are sixteen proper axioms of S:

A1 := (t2 = t3) ⊃ (t2 ∈ t4 ≡ t3 ∈ t4);

A2 := ∀s2, s3∃s4∀s1(t1 ∈ t4 ≡ (t1 = t2 ∨ t1 = t3));

A3 := ∃s2∀s1¬ (t1 ∈ t2);

A4 := ∃t2∀s3, s4(< t3, t4 >∈ t2 ≡ t3 ∈ t4);

A5 := ∀t1, t2∃t3∀t4(t4 ∈ t3 ≡ (t4 ∈ t1&t4 ∈ t2));
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A6 := ∀t1∃t2∀s3(t3 ∈ t2 ≡ ¬ (t3 ∈ t1));

A7 := ∀t1∃t2∀s3(t3 ∈ t2 ≡ ∃s4(< t3, t4 >∈ t1));

A8 := ∀t1∃t2∀s3, s4(< t3, t4 >∈ t2 ≡ t3 ∈ t1);

A9 := ∀t1∃t2∀s3, s4, s5(< t3, t4, t5 >∈ t2 ≡< t4, t5, t3 >∈ t1);

A10 := ∀t1∃t2∀s3, s4, s5(< t3, t4, t5 >∈ t2 ≡< t3, t5, t4 >∈ t1);

A11 := ∀s1∃s2∀s3(t3 ∈ t2 ≡ ∃s4(t3 ∈ t4&t4 ∈ t1));

A12 := ∀s1∃s2∀s3(t3 ∈ t2 ≡ ∀t4(t4 ∈ t3 ⊃ t4 ∈ t1));

A13 := ∀s1, t2∃s3∀s4(t4 ∈ t3 ≡ (t4 ∈ t1&t4 ∈ t2));

A14 := A
(1)
14 ⊃ A

(2)
14 ,

where

A
(1)
14 := (R(t1)&∀s2, s3, s4((< t2, t3 >∈ t1& < t2, t4 >∈ t1) ⊃ t3 = t4))

with
R(t1) := ∀t2(t2 ∈ t1 ≡ ∃t3, t4(t2 =< t3, t4 >))

and
A

(2)
14 := ∀s2∃s3∀s4(t4 ∈ t3 ≡ ∃s5(< t5, t4 >∈ t1&t5 ∈ t2));

A15 := ∃s2(∃t4(t4 ∈ t2&t4 = ∅)&∀s3(t3 ∈ t2 ⊃ ∃t4(t4 ∈ t2&A
(1)
15 ))),

where
A

(1)
15 := ∀t5(t5 ∈ t4 ≡ (t5 = t3 ∨ (t5 = [t3, t3])));

A16 is the axiom of choice, which need not be stated here (cf., however, [14,
p. 275]).

Notation. Let

A0 := A1& . . .&A15, A := A0&A16,

T(S0) := {B | B ∈ F, (A0 ⊃ B) ∈ T},

and
T(S) := {B | B ∈ F, (A ⊃ B) ∈ T}.

The set T(S) (respectively, T(S0)) is, by definition, the set of the theorems
of the system S (respectively, of the system S0). By a theorem of K. Gödel’s
[6], the system S is consistent if and only if S0 is. Thus

(T(S0) = F) ≡ (T(S) = F).
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Let aj := N (Aj) and

C1(B) := (A1 ⊃ B), Cj+1(B) := (Aj+1 ⊃ Cj(B)), 1 ≤ j < 16,

for B ∈ F. Further, let b := N (B) and let

f1(~x) = 4p(x1, y), fj+1(~x, y) = 4p(xj+1, fj(~x, y)), 1 ≤ j < l, (4)

where ~x := (x1, . . . , xl). It follows then that

N (Cj(B)) = fj(~a, b), 1 ≤ j ≤ 16,

with ~a := (a1, . . . , a16). Write, for brevity,

m0(b) := f15(~a, b), m(b) := f16(~a, b), (5)

and let n := 3639528. By construction, if ¬ B ∈ T(S), then the formula

∃ ~c (~c ∈ Z
4n & FP(m(b),~c) = 0)

asserts that T(S) = F; likewise, if ¬ B ∈ T(S0), then the formula

∃ ~c (~c ∈ Z
4n & FP(m0(b),~c) = 0))

asserts that T(S0) = F. Take, for instance,

B := ∀t1(t1 ∈ t1),

then ¬ B ∈ T(S0) and N (B) = 3. Thus the formula

∃ ~c (~c ∈ Z
4n & FP(m0(3),~c) = 0)

asserts that T(S0) = T(S0) = F. In view of Gödel’s second theorem [14, pp.
212-213], we can summarise our conclusions as follows.

Theorem 2. Let B ∈ F and suppose that ¬ B ∈ T(S0). If the Gödel-
Bernays axiomatic set theory S is consistent, then although the Diophantine
equation

FP(m0(b), ~x) = 0, b := N (B),

has no solutions in Z, the formula

¬ ∃ ~c (~c ∈ Z
4n & FP(m0(b),~c) = 0)

can not be proved in the system S. The function b 7→ m0(b) can be explicitely
evaluated by means of formulae (4), (5), and formulae (6)-(20) below.

Corollary 4. If the Gödel-Bernays axiomatic set theory S is consistent,
then although the Diophantine equation

FP(m0(3), ~x) = 0

has no solutions in Z, the formula

¬ ∃ ~c (~c ∈ Z
4n & FP(m0(3),~c) = 0)

can not be proved in the system S.
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Appendix to §7.

The following formulae (6)-(20) provide explicit expressions for the numbers
aj := N (Aj), 1 ≤ j ≤ 16. An easy calculation shows that

N (A ∨ B) = ν0(N (A),N (B)), N (A & B) = ν1(N (A),N (B)),

N (A ≡ B) = ν2(N (A),N (B)), N (∃ti A) = ν3(i,N (A)),

where

ν0(u, v) := 4p(4v − 2, u), ν1(u, v) := 4ν0(4u− 2, 4v − 2) − 2,

ν2(u, v) := ν1(4p(u, v), 4p(v, u)), ν3(i, u) := 16p(i, 4u− 2) − 6,

and
N (m(ti)) = ν4(i), N (ti = ∅) = ν5(i), N (ti = tj) = ν6(i, j),

N (∀si A) = ν7(i,N (A)), N (∃si A) = ν8(i,N (A))

with

ν4(i) := ν3(1, 4p(i, 1) − 3), ν5(i) := 4p(1, 16p(1, i) − 14) − 1,

ν6(i, j) := 4p(1, ν2(4p(1, i) − 3, 4p(1, j)− 3)) − 1,

ν7(i, u) := 4p(i, 4p(ν4(i), u)) − 1, ν8(i, u) := 4ν7(i, 4u− 2) − 2.

A further calculation shows that

N (ti = [tj, tk]) = ν9(i, j, k)

with ν9(i, j, k) := ν0(u1, u2), where

u1 := ν1(ν1(ν4(j), ν4(k)), u3), u3 := 4p(1, ν2(4p(1, i) − 3, u4)) − 1,

u4 := ν0(4p(1, j) − 3, 4p(1, k)− 3), u2 := ν1(u5, ν5(i)),

u5 := 4ν1(ν4(j), ν4(k)) − 2;

N (ti =< tj, tk >) = ν10(i, j, k)

with ν10(i, j, k) := ν3(u1, ν3(u2, u3)), where

u1 := i+ j + k, u2 := u1 + 1, u3 := ν2(u4, ν9(i, u1, u2))),

u4 := ν1(ν9(u1, j, j), ν9(u2, j, k));

N (ti =< tj, tk, tl >) = ν11(i, j, k, l)
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with ν11(i, j, k, l) := ν3(u1, u2), where

u1 := i+ j + k + l, u2 := ν1(ν10(u1, j, k), ν10(i, u1, k)).

It follows now that

a1 = 4p(ν6(2, 3), ν2(4p(2, 4) − 3, 4p(3, 4)− 3)); (6)

a2 = ν7(2, ν7(3, ν8(4, ν7(1, u)))) (7)

with u = ν2(4p(1, 4) − 3, ν0(ν6(1, 2), ν6(1, 3)));

a3 = ν8(2, ν7(1, 4p(1, 2)− 3)); (8)

a4 = ν3(2, ν7(3, ν7(4, u1))), (9)

where u1 := ν2(ν3(5, u2), 4p(3, 4) − 3) and u2 := ν1(ν10(5, 3, 4), 4p(5, 2)− 3);

a5 = 4p(1, 4p(2, u1) − 1) − 1, (10)

where u1 := ν3(3, 4p(4, ν2(u2, u3)) − 1), u2 := 4p(4, 3) − 3, and
u3 := ν1(4p(4, 1) − 3, 4p(4, 2)− 3);

a6 = 4p(1, ν3(2, u1)) − 1, (11)

where u1 := ν7(3, ν2(u2, u3)), u2 := 4p(3, 2) − 3, and u3 := 16p(3, 1) − 14;

a7 = 4p(1, ν3(2, u1)) − 1, (12)

where u1 := ν7(3, ν2(u2, u3)), u2 := 4p(3, 2) − 3, u3 := ν8(4, u4), and
u4 := ν3(5, ν1(ν10(5, 3, 4), 4p(5, 1)− 3));

a8 = 4p(1, ν3(2, u1)) − 1, (13)

where u1 := ν7(3, ν7(4, u2)), u2 := ν2(u3, 4p(3, 1)− 3), and
u3 := ν3(5, ν1(ν10(5, 3, 4), 4p(5, 2)− 3));

a9 = 4p(1, ν3(2, u1)) − 1, (14)

where u1 := ν7(3, ν7(4, ν7(5, u2))), u2 := ν3(6, ν3(7, ν1(u3, u4))),
u3 := ν1(ν11(6, 3, 4, 5), ν11(7, 4, 5, 3)), and u4 := ν2(4p(6, 2) − 3, 4p(7, 1)− 3);

a10 == 4p(1, ν3(2, u1)) − 1, (15)

where u1 := ν7(3, ν7(4, ν7(5, u2))), u2 := ν3(6, ν3(7, ν1(u3, u4))),
u3 := ν1(ν11(6, 3, 4, 5), ν11(7, 3, 5, 4)), and u4 := ν2(4p(6, 2) − 3, 4p(7, 1)− 3);

a11 = ν7(1, ν8(2, ν7(3, u1))), (16)
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where u1 := ν2(4p(3, 2)− 3, ν8(4, u2)) and u2 := ν1(4p(3, 4)− 3, 4p(4, 1)− 3);

a12 = ν7(1, ν8(2, ν7(3, u1))), (17)

where u1 := ν2(4p(3, 2) − 3, u2), u2 := 4p(4, u3) − 1, and
u3 := 4p(4p(4, 3)− 3, 4p(4, 1)− 3);

a13 == ν7(1, 4p(2, u1) − 1), (18)

where u1 := ν8(3, ν7(4, u2)), u2 := ν2(4p(4, 3) − 3, u3), and
u3 := ν1(4p(4, 1) − 3, 4p(4, 2)− 3);

a14 = 4p(u1, u2), (19)

where

u1 := ν1(v1, v2), v1 := 4p(2, ν2(v3, v4)), v3 := 4p(2, 1) − 3,

v4 := ν3(3, ν3(4, ν10(2, 3, 4))), v2 := ν7(2, ν7(3, ν7(4, v5))),

v5 := 4p(ν1(v6, v7), ν6(3, 4)), v6 := ν3(5, ν1(ν10(5, 2, 3), 4p(5, 1)− 3)),

v7 := ν3(5, ν1(ν10(5, 2, 4), 4p(5, 1)− 3))

and
u2 := ν7(2, ν8(3, ν7(4, v8))), v8 := ν2(4p(4, 3) − 3, v9),

v9 := ν8(5, ν1(v10, 4p(5, 2) − 3)), v10 := ν3(6, ν1(ν10(6, 5, 4), 4p(6, 1)− 3));

a15 =:= ν8(2, ν1(u1, u2)), (20)

where

u1 := ν3(4, ν1(4p(4, 2) − 3, ν5(4))), u2 := ν7(3, 4p(4p(3, 2)− 3, u3)),

u3 := ν3(4, ν1(4p(4, 2) − 3, 4p(5, u4) − 1)),

and
u4 := ν2(4p(5, 4) − 3, ν0(ν6(5, 3), ν9(5, 3, 3))).

Acknowledgement. We are indebted to Professor Yu.V. Matiyasevich for
a private communication [13], relating to this work, and for his remarks on
a preliminary version of our paper.
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