DARWIN Digitale Dissertationen German Version Strich

FU Berlin
Digitale Dissertation

Erik Werner :
Two Ways of Binding Nucleotides
Crystal Structures of Nicotinamide Mononucleotide Adenylyltransferase from Homo sapiens and of Domain I of the Homing Endonuclease PI-SceI from Saccharomyces cerevisiae
Zwei Wege, Nukleotide zu binden

FU Logo


|Abstract| |Table of Contents| |More Information|

Abstract

Nicotinamide adenin dinucleotide (NAD+) is an important molecule as coenzyme in cellular redox reactions and signal-transduction pathways. The enzyme nictotinamide/nicotinate mononucleotide adenylyltransferase (NMNAT/NaMNAT) takes part in the biosynthesis of NAD+ by transferring the adenosine monophosphate moiety of ATP to nicotinamide/nicotinate mononucleotide.
The crystal structure of NMNAT from Homo sapiens in complex with NMN was solved to a maximum resolution of 2.9 Å with the SAD method. The structure of NMNAT consists of a six-stranded parallel b-sheet with helices on both sides, which in the core is the Rossmann fold. Electron density was observed for the ligand NMN but not for a loop of 37 amino acids, residues 109 to 146, that is positionally disordered. The structure of hNMNAT differs from the homologous proteins of M. thermoautotrophicum and M. jannaschii by this loop that contains a nuclear localization signal and by additional amino acids that form the helices H and I and the strand f in the human enzyme. Those secondary structure elements cause a different oligomerization compared to the archaeal proteins but all occur as hexamer as biological unit. Bacterial NMNATs occur as monomer (E. coli) or dimer (B. subtilis) and in the case of E. coli NMNAT has further secondary structure elements.
The ligand NMN is bound by the amino acids Ser16, Lys57, Trp92, Thr95, Leu168 and Trp169, all on one side of the b-sheet. Comparison of the NMN complex with human NMNAT structures solved by other groups (the apoenzyme and the NAD+ complex) and with the archaeal and procarial homologs yield a model for ligand binding and synthesis.

The homing endonuclease PI-SceI of S. cerevisiae is an intein, an internal protein, embedded into the extein sequences of the 69 kDa subunit of the vacuolar membrane H+-ATPase. In a protein splicing process it cuts itself out of the protein precursor. Responsible is domain I of PI-SceI that at the same time accounts for most of the binding energy to the specific DNA sequence of at least 31 bp. Domain II of PI-SceI contains the nucleolytic center, which cuts the specific recognition sequence and initiates the insertion of the vde-gene ("homing").
The crystal structure of domain I of PI-SceI was solved with the molecular replacement method to a maximal resolution of 1.35 Å. The core of PI-SceI domain I adopts the Hint fold of the Hedgehog/intein domain and consists mainly of b-strands. The active center of domain I, the protein splicing site, has cysteine 1 and two N-terminal extein residues but lacks the C-terminus of the intein, Asn454. The common model for the first step of the protein splicing reaction mechanism can be structurally confirmed.
Residues Gln55 to Glu66 were not observed in the electron density due to local disorder. They obviously form a flexible loop that is suspected to take part in the tight binding of DNA by domain I. Further residues that are supposed to participate in DNA binding because of biochemical data, lie at the front side of a tongs-like subdomain that is formed by strands i, j and k and helices B and C. Most likely, helices D and E as well as strand l are also part of this subdomain because they also contain potential DNA-binding residues. A geometry based docking model makes the possibility of a movement of about 60º relative to the core visible.


Table of Contents

Download the whole PhDthesis as a zip-tar file or as zip-File

For download in PDF format click the chapter title

TITEL, INHALT, ABKÜRZUNGEN
TITEL

1. INHALTSVERZEICHNIS 6

2. ABKÜRZUNGSVERZEICHNIS 8

3. EINLEITUNG 11
     3.1. NUKLEOTIDE 11
     3.2. NUKLEINSÄUREN 12
     3.3. KRISTALLOGRAPHIE ALS METHODE DER STRUKTURBESTIMMUNG 14

4. DIE NICOTINAMID-MONONUKLEOTID-ADENYLYLTRANSFERASE VON HOMO SAPIENS 17
     4.1. EINLEITUNG 17
           4.1.1. Nicotinamid-Adenin-Dinukleotid NAD+ 17
           4.1.2. Nicotinamid-Mononukleotid-Adenylyltransferase NMNAT 18
           4.1.3. Strukturen von NMNATs 20
     4.2. MATERIAL UND METHODEN 22
           4.2.1. Expressionsklonierung und Proteinreinigung 22
           4.2.2. Aktivitätstest und Massenspektrum 22
           4.2.3. Kristallisation und Kryoprotektion 23
           4.2.4. Röntgendiffraktion, Phasenbestimmung und Verfeinerung 24
     4.3. ERGEBNISSE UND DISKUSSION 24
           4.3.1. Genexpression, Proteinqualität und -aktivität 24
           4.3.2. Nachweis von Selen 26
           4.3.3. Kristallisation und Kryoprotektion 28
           4.3.4. Diffraktion 29
           4.3.5. Phasenbestimmung und Verfeinerung 30
           4.3.6. Anzahl der Monomere pro asymmetrischer Einheit 34
           4.3.7. Struktur von hNMNAT 38
           4.3.8. Vergleich mit anderen Strukturen von humaner NMNAT 39
           4.3.9. Vergleich mit Strukturen von NMNAT anderer Spezies 45
           4.3.10. Superfamilie, Rossmann-Faltungstyp 49
           4.3.11. Oligomerisierung, Protein-Protein-Kontakte 51
           4.3.12. Ligandenbindung in humaner NMNAT 55

5. DIE HOMING ENDONUKLEASE PI-SCEI VON SACCHAROMYCES CEREVISIAE 65
     5.1. EINLEITUNG 65
           5.1.1. Inteine und Homing Endonukleasen 65
           5.1.2. Die Homing Endonuklease PI-SceI 66
           5.1.3. PI-SceI Domäne II: Endonuklease-Aktivität 67
           5.1.4. PI-SceI Domäne I: Protein-Splicing-Aktivität 69
           5.1.5. DNA-Bindung 70
           5.1.6. Warum Struktur Nummer Fünf? 73
     5.2. MATERIAL UND METHODEN 76
           5.2.1. Genexpression und Proteinreinigung 76
           5.2.2. DNA-Bindung 77
           5.2.3. Kristallisation 78
           5.2.4. Röntgendiffraktion, Datenreduktion und Strukturbestimmung 78
     5.3. ERGEBNISSE UND DISKUSSION 79
           5.3.1. Expression, Proteinreinigung und Kristallisation 79
           5.3.2. DNA-Bindungsversuche 81
           5.3.3. Diffraktion und Strukturbestimmung 83
           5.3.4. Struktur der Domäne I von S. cerevisiae PI-SceI 87
           5.3.5. Vergleich aller Strukturen von PI-SceI Domäne I 89
           5.3.6. Protein-Splicing-Stelle 96
           5.3.7. DNA-Bindung 99
           5.3.8. Geometriebasiertes Docking 103

6. ZUSAMMENFASSUNG - SUMMARY 109
     6.1. DEUTSCH - GERMAN 109
           6.1.1. Nicotinamid-Mononukleotid-Adenylyltransferase von Homo sapiens im Komplex mit Nicotinamid-Mononukleotid 109
           6.1.2. Domäne I der Homing Endonuclease PI-SceI von Saccharomyces cerevisiae 111
     6.2. ENGLISCH - ENGLISH 113
           6.2.1. Nicotinamide mononucleotide adenylyltransferase of Homo sapiens in complex with nicotinamide mononucleotide 113
           6.2.2. Domain I of the homing endonuclease PI-SceI of Saccaromyces cerevisiae 115

7. VERÖFFENTLICHUNGEN 117

8. ABBILDUNGSVERZEICHNIS 118

9. TABELLENVERZEICHNIS 121

10. LITERATURVERZEICHNIS 123

11. DANKSAGUNG 131

12. CURRICULUM VITAE 133

13. EIDESSTATTLICHE ERKLÄRUNG 135


More Information:

Online available: http://www.diss.fu-berlin.de/2002/179/indexe.html
Language of PhDThesis: german
Keywords: protein crystallography, nicotinamide mononucleotide adenylyltransferase, homing endonuclease
DNB-Sachgruppe: 30 Chemie
Date of disputation: 19-Aug-2002
PhDThesis from: Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin
First Referee: Prof. Dr. Udo Heinemann
Second Referee: PD Dr. Mathias Ziegler
Contact (Author): ewe@iscience.de
Contact (Advisor): heinemann@mdc-berlin.de
Notes: Die komplette Zusammenfassung, die Abbildungen in höherer Qualität und das mit PubMed verlinkte Literaturverzeichnis unter http://www.ewerner.de/diss/.The complete abstract, the pictures in higher quality and the PubMed-linked references at http://www.ewerner.de/diss/.
Date created:05-Sep-2002
Date available:10-Sep-2002

 


|| DARWIN|| Digitale Dissertationen || Dissertation|| German Version|| FU Berlin|| Seitenanfang ||


Mail-Icon Fragen und Kommentare an:
darwin@inf.fu-berlin.de

© Freie Universität Berlin 1999