DARWIN Digitale Dissertationen German Version Strich

FU Berlin
Digitale Dissertation

Michael Gerrits :
function and efficiency of amber suppressor tRNAs in cell-free protein biosynthesis
Funktion und Effizienz von amber-Suppressor-tRNAs in der zellfreien Proteinbiosynthese

FU Logo


|Abstract| |Table of Contents| |More Information|

Abstract

The introduction of unnatural amino acids into proteins can be achieved by the use of an amber suppressor tRNA, that has been chemically acylated with the desired amino acid and that is not a substrate for the natural aminoacyl tRNA synthetases. The addition of the charged amber suppressor tRNA to the protein biosynthesis reaction results in site specific incorporation of the amino acid into the protein. However very often the usually applied methodology does not lead to sufficient amounts of mutant protein. The goal of this work was to expand our knowledge of in vitro amber suppression expecting that the strategy mentioned above can be applied more general.

Within the presented work the site specific incorporation of an unnatural amino acid could be demonstrated by the introduction of ?-dansyl lysine into FABP (fatty acid binding protein). As expected the incorporation of the unnatural amino acid was very inefficient. A further limitation of the methodology proved to be the preparation of large amounts of shortened tRNA molecules, which are necessary to produce the chemically acylated tRNA. The high level of 3'-end heterogeneity of the in vitro transcription products strongly impedes the purification of homogenous tRNA. The homogeneity and the amount of the tRNAs during T7-transcription could clearly be improved by increasing the reaction temperature from 37°C to an optimum temperature of 44°C. Additionally, various preparations of T7-RNA-Polymerase showed different n+1-activities.

To investigate the activities of amber suppressor tRNAs expressed in vivo, total tRNA from 10 different Escherichia coli amber suppressor strains (Kleina et al. 1990) was prepared and employed in cell-free translation. The relations between the suppression activities of the amber suppressors for leucine, histidine, tyrosine and serine in vitro corresponded to the in vivo results of other authors. In contrast to those four the suppression activities of other amber suppressors were decreased in vitro indicating that the activities of the corresponding amino acyl tRNA synthetases may be reduced.

Processing, repair and aminoacylation of in vitro transcribed tRNAs and the relation of these processes to each other were investigated in-depth. Incubation of 3'-shortened or 3'-prolonged heterogenous in vitro transcription products in the S100 enzyme fraction of the total translation system resulted in homogenous tRNA populations with correct 3'-terminal CCA-ends. Processing of prolonged tRNAs and repair of shortened tRNAs in the whole translation system were shown not to be limiting for protein biosynthesis in vitro.

The suppression activities of the transcripts of seven different amber suppressor tRNA species (tRNASerCUA {su+1}, tRNATyrCUA {su+3},  tRNALeuCUA {su+6},  tRNALeu5CUA, tRNAPheCUA, tRNAHisCUA and tRNAAla1CUA) were shown not to be limited by aminoacylation. Therefore the suppression activities of these tRNAs reflects structural properties of their aminoacylated counterparts. Suppression efficiency was defined as the frequency of ribosomal tRNA selection divided by the frequency of RF1 selection. The anticodon loops of all tRNAs contained the sequence 5'C34U35A36A37A383' which is ideal for efficient suppression as known from other studies. Still, in the presence of this sequence suppression efficiencies varied over a large range. The rate of tRNA selection was 20 times higher for the strongest suppressor, tRNASerCUA,  compared to the efficiency of the weakest one, tRNAAla1CUA, which represents the suppression efficiency of the actual tRNAs used for chemical aminoacylation. In general the more the sequence of the amber suppressor tRNA reflected the sequence of the original wild type tRNA, from which it was deviated, the better the suppression efficiencies became. With increasing number of nucleotide exchanges, that were necessary to get the sequence 5'C34U35A36A37A383' into the anticodon loop of the amber suppressor, suppression efficiencies decreased, indicating that tRNA sequences have been evolved to support optimal interaction between codon and anticodon, as it is postulated in the "Extended Anticodon" (Yarus 1982). The two best amber suppressors by far, tRNASerCUA and tRNATyrCUA, both contain the base C32 inside their anticodon loop. There is also some evidence, that certain structural features important for suppression are localized outside the anticodon arm and that these structural features are found mainly in typeII-tRNAs.

The most important conclusion resulting from this work within the field of biotechnology is, that the actual amber suppressor tRNAs used for chemical aminoacylation are comparably weak suppressors. A logical step from this work is the construction of new amber suppressor tRNAs with higly improved suppression efficiences for chemical aminoacylation. Therefore the present work should allow a much improved incorporation of unnatural amino acids into proteins in the future.


Table of Contents

Download the whole PhDthesis as a zip-tar file or as zip-File

For download in PDF format click the chapter title

       Titelblätter

       Inhaltsverzeichnis

    1. Einleitung  1

            1.1 in vitro Translation  4

            1.2 Die Einführung unnatürlicher oder modifizierter Aminosäuren in Proteine  6

            1.3 Struktur und Funktion der tRNA  10

            1.4 Die tRNA im Kontext der Translation  16

            1.5 amber-Suppression  23

    2 Problemstellung  28

    3. Material  29

            3.1 Chemikalien, Biochemica, Lösungsmittel  29

            3.2 Radiochemikalien  30

            3.3 Nukleinsäuren, Proteine, Enzyme  30

            3.4 Kits  31

            3.5 Sonstige Materialien und Geräte  31

            3.6 Zellstämme  33

    4. Methoden  34

            4.1 Escherichia coli -Zellkulturen  34

            4.2 Methoden für die Herstellung, Aufreinigung und Analytik von Nukleinsäuren  36

            4.3 In vitro Translation  61

            4.4 SDS-Polyacrylamidgel-Elektrophorese nach Laemmli (Laemmli 1970)  66

            4.5 TCA-Fällung von Protein und RNA  67

            4.6 Detektion von ß-Strahlung  68

            4.7 Quantifizierung der spezifischen Aktivität von Chloramphenicol-Acetyl-Transferase (CAT-Assay)  69

    5. Ergebnisse  71

            5.1 Aufbau und Charakterisierung von amber-Suppressions-Assays  72

            5.2 Vergleich der Suppressionsaktivität von Gesamt-tRNA-Präparationen aus verschiedenen Escherichia coli-amber-Suppressor-Zellstämmen  78

            5.3 Konstruktion von Plasmiden für die T7-Transkription von tRNAs  86

            5.4 Einsatz einer chemisch aminoacylierten amber-Suppressor-tRNA (?-DnsLys-tPheY)  87

            5.5 Untersuchungen zur Endheterogenität von T7-transkribierten tRNAs  91

            5.6 Prozessierung, Aminoacylierung und tRNA-Reparatur ? ihr Einfluß auf die Aktivität zweier Leucyl-amber-Suppressor-tRNAs in der in vitro Translation  106

            5.7 Vergleich der Suppressionseffizienz von verschiedenen in vitro transkribierten amber-Suppressor-tRNA-Spezies  119

    6. Diskussion  136

            6.1 Suppression in vivo und in vitro  137

            6.2 Struktur der Aminoacyl-tRNA und Suppressionseffizienz  142

            6.3 Konsequenzen der Untersuchungen zur Suppressionseffizienz für den Einsatz chemisch aminoacylierter tRNAs  149

            6.4 Ausblick  152

    7. Zusammenfassung / Summary  154

    8. Abkürzungen  158

    9. Literatur  161

         9.1 Eigene Publikationen  180

    10. Anhang  181

       Lebenslauf  191

       Danksagung  192


More Information:

Online available: http://www.diss.fu-berlin.de/2002/4/indexe.html
Language of PhDThesis: german
Keywords: cell-free translation, amber suppressor tRNA, vitro, processing, aminoacylation, transcription, translation
DNB-Sachgruppe: 30 Chemie
Date of disputation: 05-Nov-2001
PhDThesis from: Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin
First Referee: Prof. Dr. Volker A. Erdmann
Second Referee: Prof. Dr. Dr. med. Manfred Schweiger
Contact (Author): gerrits@rna-network.com
Contact (Advisor): erdmann@chemie.fu-berlin.de
Date created:10-Jan-2002
Date available:16-Jan-2002

 


|| DARWIN|| Digitale Dissertationen || Dissertation|| German Version|| FU Berlin|| Seitenanfang ||


Mail-Icon Fragen und Kommentare an:
darwin@inf.fu-berlin.de

© Freie Universität Berlin 1999